Use Custom-Trained Model
After training your own model you can use it to generate predictions by passing the model checkpoint path to the make_predictions.py
script as follows:
python make_predictions.py --pre-processed-dir <pre-processed-dir> --predictions-dir <predictions-dir> --model-checkpoint-path <checkpoint-dir>
If you change the default tuning parameters during training (e.g., bi-lstm-window-size), you also need to set the same values for make_predictions.py
by using the respective directives (e.g., --bi-lstm-window-size
).
Complete usage details of make_predictions.py
script with all overiding configuration values are as follows:
usage: make_predictions.py [-h] --pre-processed-dir PRE_PROCESSED_DIR
[--model {CHAP_A,CHAP_B,CHAP_C,CHAP,CHAP_ALL_ADULTS,CHAP_CHILDREN,CHAP_AUSDIAB}]
[--predictions-dir PREDICTIONS_DIR] [--no-segment]
[--output-label]
[--model-checkpoint-path MODEL_CHECKPOINT_PATH]
[--cnn-window-size CNN_WINDOW_SIZE]
[--bi-lstm-window-size BI_LSTM_WINDOW_SIZE]
[--down-sample-frequency DOWN_SAMPLE_FREQUENCY]
[--gt3x-frequency GT3X_FREQUENCY]
[--activpal-label-map ACTIVPAL_LABEL_MAP]
[--silent] [--padding {drop,zero,wrap}]
[--batch-size BATCH_SIZE] [--amp-factor AMP_FACTOR]
[--num-classes NUM_CLASSES]
Argument parser for generating model predictions.
required arguments:
--pre-processed-dir PRE_PROCESSED_DIR
Pre-processed data directory
optional arguments:
-h, --help show this help message and exit
--model {CHAP_A,CHAP_B,CHAP_C,CHAP,CHAP_ALL_ADULTS}
Pre-trained prediction model name (default:
CHAP_ALL_ADULTS)
--predictions-dir PREDICTIONS_DIR
Predictions output directory (default: ./predictions)
--no-segment Do not output segment number
--output-label Whether to output the actual label
--model-checkpoint-path MODEL_CHECKPOINT_PATH
Path where the custom trained model checkpoint is
located
--cnn-window-size CNN_WINDOW_SIZE
CNN window size of the model in seconds on which the
predictions to be made (default: 10).
--bi-lstm-window-size BI_LSTM_WINDOW_SIZE
BiLSTM window size in minutes (default: 7).
--down-sample-frequency DOWN_SAMPLE_FREQUENCY
Downsample frequency in Hz for GT3X data (default:
10).
--gt3x-frequency GT3X_FREQUENCY
GT3X device frequency in Hz (default: 30)
--activpal-label-map ACTIVPAL_LABEL_MAP
ActivPal label vocabulary (default: {"sitting": 0,
"not-sitting": 1, "no-label": -1})
--silent Whether to hide info messages
--padding {drop,zero,wrap}
Padding scheme for the last part of data that does not
fill a whole lstm window (default: drop)
--batch-size BATCH_SIZE
Inference batch size (default: 16)
--amp-factor AMP_FACTOR
Factor to increase the number of neurons in the CNN layers (default: 2)
--num-classes NUM_CLASSES
Number of classes in the training dataset (default: 2)