Technical Report - SNAILS: Schema Naming Assessments for
Improved LLM-Based SQL Inference

KYLE LUOMA, University of California, San Diego, USA and United States Military Academy - Army
Cyber Institute, USA
ARUN KUMAR, University of California, San Diego, USA

Large Language Models (LLMs) have revolutionized Natural Language to SQL (NL-to-SQL), dominating most
NL-to-SQL benchmarks. But LLMs still face limitations due to hallucinations, semantic ambiguity, and lexical
mismatches between an NL query and the database schema. Naturally, a lot of work in the ML+DB intersection
aims to mitigate such LLM limitations. In this work, we shine the light on a complementary data-centric
question: How should DB schemas evolve in this era of LLMs to boost NL-to-SQL? The intuition is that more
NL-friendly schema identifiers can help LLMs work better with DBs. We dive deeper into this seemingly
obvious, but hitherto underexplored and important, connection between schema identifier “naturalness”
and the behavior of LLM-based NL-to-SQL by creating a new integrated benchmark suite we call SNAILS.
SNAILS has 4 novel artifacts: (1) A collection of real-world DB schemas not present in prior NL-to-SQL
benchmarks; (2) A set of labeled NL-SQL query pairs on our collection not seen before by public LLMs; (3)
A notion of naturalness level for schema identifiers and a novel labeled dataset of modified identifiers; and
(4) AI artifacts to automatically modify identifier naturalness. Using SNAILS, we perform a comprehensive
empirical evaluation of the impact of schema naturalness on LLM-based NL-to-SQL accuracy, and present a
method for improving LLM-based NL-to-SQL with natural views. Our results reveal statistically significant
correlations across multiple public LLMs from OpenAl, Meta, and Google on multiple databases using both
zero-shot prompting as well as more complex NL-to-SQL workflows: DIN SQL, and CodeS. We present several
fine-grained insights and discuss pathways for DB practitioners to better exploit LLMs for NL-to-SQL.

1 Introduction

Natural language-to-SQL (NL-to-SQL) query generation capability has been revolutionized by
foundational large language models (LLMs) [33, 45, 52]. This has made the integration of LLM-
based query tools into relational database workflows more viable, with both established DBMS
vendors and startups beginning to offer commercial NL-to-SQL interfaces. However, challenges in
the NL-to-SQL space remain that can degrade the effectiveness of an LLM-enabled data retrieval
workflow in real-world databases [13]. Principal among such challenges is schema linking, which is
the association of entities in NL utterances to elements in the database schema.

While much work has studied making LLMs larger or more sophisticated, a more basic issue
often underlies this challenge: lexical mismatches between natural language and poorly-named
tables and columns in a schema. Intuitively, schema elements that are “better named” could raise
the accuracy of schema linking within the NL-to-SQL setup. In this paper, we unpack and dive
deeper into this intuition to study how exactly the “naturalness” of schema elements matters for
NL-to-SQL by instituting a new benchmark and performing extensive empirical analysis using that.
One might ask: Why bother formalizing a concept that seems obvious and intuitive? We believe this
is important for 2 reasons. First, without a more formalized—-or at least automated way-to define,
verify, and compare “naturalness” researchers and practitioners alike will be forced to grapple with
ad hoc and inconsistent approaches. In turn, this can lead to confounded conclusions by researchers
on how different LLMs behave on different schemas and mislead practitioners comparing different
NLIs. This points to the need for a new benchmark labeled dataset for this problem.

Authors’ Contact Information: Kyle Luoma, kluoma@ucsd.edu, University of California, San Diego, La Jolla, California, USA
and United States Military Academy - Army Cyber Institute, West Point, New York, USA; Arun Kumar, akk018@ucsd.edu,
University of California, San Diego, La Jolla, California, USA.

77:2 Kyle Luoma and Arun Kumar

NATURALNESS CLASSIFICATION & MODIFICATION WORKFLOW
/

Natural
Existing Language
Interfaces Interface Modified Regular

DATABASE Naturalness

Regular ?
* Naturalness
SQL S
* .
. ’—>
' : Naturainess > U
Naﬂve Natural Schema Native : Regular Native Naturalness ——— Least » Naturaness

Schema View Mapping \derxmers Classifier Naturainess Modifier

1
L J

((0

Fig. 1. Databases with poorly named, or less natural, schema identifiers perform poorly in LLM-based NL-
to-SQL interfaces, and this project exposes the need for more natural schemas. We offer approaches and
artifacts, including a naturalness classification and modification workflow, that can aid in the naturalness
assessment and modification processes required to create a performance-enhancing natural view. In this way,
the native schema remains as-is so that existing tools can continue talking to it without modification, while
an LLM-based NLI can be integrated into the existing stack via a natural view.

Second, practitioners need a way to efficiently and accurately operationalize any insights about
the impact of naturalness on their schema elements for LLM-based NLIs. This points to the need
for a systematic evaluation of how naturalness affects different databases, queries, and LLMs used
for NL-to-SQL.

Our Focus. In this paper, we take the first steps toward deeper understanding on this seem-
ingly obvious, but hitherto underexplored and important, relationship between schema identifier
naturalness and LLM-based NL-to-SQL. Specifically, we ask the following three interconnected
questions. (1) How do we quantify “naturalness” of schema identifiers? (2) Does it really impact
schema linking accuracy in LLM-based NL-to-SQL and if so, by how much? (3) How does that
impact vary by complexity of the database and query, as well as across different popular LLMs?

To answer the above questions, we create a novel integrated benchmark suite we call SNAILS
with new collections of real-world databases and query pairs, a new labeled dataset of schema
identifiers, a set of evaluation metrics, and LLM prompting and other Al artifacts.

1.1 Preliminaries and Setup

LLM-based NL-to-SQL. The most obvious way to seek LLM performance improvements would
be by increasing the power of the language models themselves. But the cost of training and deploying
LLMs continues to increase in concert with their complexities. Additionally, many practitioners
seek “plug and play” solutions by employing already-available LLMs. Model training and finetuning
impose access barriers that may render such a pursuit untenable for organizations that use databases
but lack the requisite talent such as data science and machine learning expertise.

The practice of prompt engineering can also help improve NL-to-SQL performance, though
dealing with schema complexity and schema representations in LLM prompting is an ongoing
challenge in enterprise-level NL-to-SQL applications [13]. The majority of leading submissions on
the popular Spider NL-to-SQL benchmark leaderboard are LLM-based solutions [10, 15, 43] that
employ a variety of prompting strategies, some of which require multiple successive API requests
containing schema context and instructions. These approaches can be costly and unintuitive for
NLIDB end users, and can incur excessive costs and overhead when deployed at scale.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:3

A complementary line of work on realistic NL-to-SQL benchmarking uses structural schema
modification such as normalization, flattening, and replacement to evaluate effects on LLM per-
formance. Making such structural changes to target schemas challenges model robustness and
increases error rates in NL-to-SQL performance [28], and this recent work indicates that schema
design is a viable target for LLM-based NL-to-SQL accuracy improvements.

Schema Linking. Schema linking remains as a persistent challenge for LLMs. With the avail-
ability of capable LLMs that consistently generate valid SQL statements, a larger proportion of
NL-to-SQL generation errors are now associated with incorrect or ambiguous database identifier
selection as opposed to incorrect syntax [49]. Schema linking performance has been improved using
lexical matching heuristics [18, 59], joint relationally aware embeddings with attention [5, 55], the
use of pre-trained language models to perform schema probing [56], and multimodel pipelines
with ML models for pruning schema knowledge [24]. Some NL-to-SQL methods address schema
linking challenges by adding additional context such as sample values or metadata [43] to schema
knowledge representations. These methods can improve performance in some cases [31], and can
be useful for schemas with obscurely-named tables and columns, though they do so at the cost of
much larger schema knowledge representations.

Schema linking still often fails, even with the most capable LLMs due to poorly-aligned schema
identifier names with natural language question contents, that could be due to the use of synonyms
or the obscurity of a database identifier. In the latter case, it can be challenging for even a sophisti-
cated linking solution to match natural language words to schema elements that yield minimal
semantic meaning.

Schema Naming Conventions. The majority of database schema naming best practices originate
from practitioners and are generally published as software documentation, organization policies,
tutorials, etc. We find that there is a gap in database and data integration academic literature
evaluating schema identifier naming practices for any purpose. While the semantics of schema
identifiers may not have been considered as a necessary subject of database research in the past,
the increasing integration of natural language interfaces to databases has elevated its importance.

Naming conventions for database schema identifiers vary by organization, database vendor,
application, and purpose. A web search for database table and column naming guidelines yields
multiple resources ranging from blog posts [6], StackOverflow responses [47], DBMS vendor
documentation [36], and tutorials [17]. Poor schema identifier naming practices is considered a
database code smell [46] where meaningless identifier names should be avoided. Generally, the
most consistent best practices include selecting descriptive and concise names that contain only
commonly-understood abbreviations and acronyms, though some conventions suggest the use of
abbreviated prefix and suffix modifiers that describe application associations, or entity purpose [37].

In our research, we identified several databases containing schemas with varying levels of human-
readability and understandability (what we will call naturalness) which suggests that there can be
a tendency for database schema designers to choose shorter and less descriptive identifier naming
conventions. As we will see, such naming shortcuts can negatively affect NL-to-SQL performance.

1.2 Our Benchmark Artifacts and Analyses

Given the above context of our benchmarking setup, we now explain the new artifacts in SNAILS,
followed by a summary of our empirical analysis.

Artifact 1: Real-World Database Schemas. The SNAILS benchmark contains several new real-
world database schemas that are not part of existing NL-to-SQL benchmarks (Artifact 1). Our focus
on schema naming motivates the creation of a new novel benchmark dataset, because existing

77:4 Kyle Luoma and Arun Kumar

benchmark naturalness levels are higher than those of many real-world schemas, and other real-
world schema collections including SchemaPile [9] lack the necessary database instances to enable
NL-to-SQL evaluation. In our analysis of these real-world schemas, we discover that identifier
naming variances generally appear in the form of abbreviations and expansions; we refer to these
variances as identifier naturalness.

Artifact 2: Identifier Naturalness Classifications. Our analysis reveals that naturalness can be
formalized categorically with the help of finetuned language models and feature engineering. We
then hand-label the schema identifiers, with some ML assistance, to classify their naturalness level
and produce a new golden labeled dataset. We classify identifiers into one of 3 naturalness levels
(Regular, Low, and Least) (Artifact 2). This dataset, consisting of over 17,000 labeled identifiers,
serves as the training data for the naturalness classifiers described next.

Artifact 3: Naturalness Classifiers. We experiment with various classification approaches, and
make available the models trained to classify the naturalness of a database schema identifier
(Artifact 3).

Artifact 4: Naturalness-Modified Identifiers. To better understand the effect of schema identifier
naturalness, and to enable within-database experiments, we create alternate versions of each real-
world schema identifier at each naturalness level (Artifact 4). This dataset serves two purposes:
1) Training data for ML-based naturalness modifiers, and 2) Generation of schemas with varying
naturalness levels to analyze the impact of naturalness on NL-to-SQL performance. We modify the
identifiers with the assistance of LLM prompting, finetuned models, and database metadata.

Artifact 5: Naturalness Modifier. We offer an in-context learning-based prompting strategy for
identifier naturalness reduction (or abbreviation). We also provide an identifier naturalness increaser
(or expander) that leverages retrieval augmented generation, interactive few-shot example building,
and database metadata parsing methods to streamline the database naturalness improvement
process.

Artifact 6: NL-to-SQL Question Query Pairs. The SNAILS benchmark contains 503 NL question-
SQL query pairs which we use for NL-to-SQL performance analysis of 4 LLMs. We created this new
collection as another hand-labeled golden dataset without the use of Al-based workflows (Artifact
6).

Experimental Evaluation. Using the SNAILS benchmark artifacts, we analyze and experiment
with the effects of schema identifier naturalness on LLM NL-to-SQL performance. We select 5
publicly-available LLMs: OpenAI’s GPT-3.5, GPT-4o, a finetuned variant of Meta’s Code-Llama,
Google’s newest Gemini 1.5, and CodeS finetuned for NL-to-SQL. We evaluate them using both
execution result set matching and a novel identifier set comparison approach that pinpoints schema
linking performance.

In this paper we focus primarily on a simple zero-shot prompting of the LLM for our experiments.
We recognize that this may not be the best for overall execution accuracy, but it helps us isolate
the impact of schema identifier naturalness in this first work on this problem. As such, more
complex workflows will create confounding effects while not necessarily providing more insights
into schema linking performance. However, for completeness sake, we also compare two illustrative
complex workflows: DIN SQL for task-specific prompt chaining [43], and CodeS [25] for NL-to-SQL
finetuning.

We find that schema identifier naturalness by and large does have a meaningful effect on NL-to-
SQL accuracy and schema linking performance. Specifically, identifier naturalness is moderately and
positively correlated with both schema linking and execution accuracy. Identifiers of low naturalness

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:5
Regular Low Least
airbag AccountChk | AACtTxIRWT
AdaptiveCruiseControl | IsueFrDate COGM_Act
ModelYear RecvAsst DAItSlp
service_name UsrQuery FNDAbDs
Research_Staff ValueOf T CSI22

Table 1. Example identifiers and their naturalness levels, from the SNAILS naturalness labeled dataset
(Artifact 2).

yield lower performing NL-to-SQL inferences in terms of both schema linking (identifier recall) and
execution accuracy. These findings have implications for practitioners who are either designing
new databases intended for LLM-based applications, or seeking to augment existing RDBMSs with
an LLM-based NL-to-SQL interface.

In summary, this paper makes the following contributions:

e We propose a novel measure of naturalness of a database schema identifier and demonstrate
through extensive experiments that naturalness has a significant effect on LLM schema
linking performance in the context of NL-to-SQL.

e We provide a hybrid LLM-generated and human-curated training dataset (Artifact 2) and
language model (Artifact 3) for schema naturalness classification.

e We offer a new multi-domain NL-to-SQL evaluation benchmark collection consisting of
9 real-world relational databases (Artifact 1) and 503 unpublished NL-to-SQL query pairs
(Artifact 6) that do not exist in any LLM training corpora.

e We create anovel labeled dataset of alternate naturalness levels that map the identifiers from
Artifact 1 to hybrid LLM-human curated identifiers of different naturalness levels (Artifact
4), and methods for expanding and abbreviating identifiers to change their naturalness
(Artifact 5).

e We conduct an extensive empirical analysis of the performance of 5 popular foundational
LLMs over our benchmark using a novel schema linking metric for NL-to-SQL.

e We propose a realistic workflow that enables the preservation of existing database integra-
tions while offering LLM-based NLIs a natural view of a target schema.

2 Schema Identifier Naturalness

Intuitively, naturalness can be thought of as the degree to which a phrase, or word, resembles
natural language. Naturalness is a concept and target of research in field of controlled natural
languages [23], where controlled language syntax is evaluated in terms of naturalness levels. Recent
NL-to-SQL research also defines and measures naturalness [28] for the purpose of evaluating
the naturalness of natural language question utterances, but avoids measuring the naturalness of
schema elements.

To the best of our knowledge, no prior attempts have been made to definitively measure the
naturalness of a database schema’s identifiers. In order to achieve this goal, we propose a three-
category naturalness classification scheme in order to measure the effects of naturalness on NL-to-
SQL performance.

77:6 Kyle Luoma and Arun Kumar

Regular Low Least
4000 E -
o
[
>
O 3000 1 1 .
o
—
2 2000 1 1
E
o
< 1000 - :
o-H . t } . o
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

Mean Tok in Dict Mean Tok in Dict Mean Tok in Dict

Fig. 2. Mean Token in Dictionary, the proportion of tokens in an identifier that match a word in an English
dictionary, generally aligns with the SNAILS 3-class naturalness categorization approach.

2.1 Naturalness Categories

As the first work on this topic of how schema identifier naturalness affects LLMs, we seek to
define a preliminary metric-one that is consistent and descriptive enough to differentiate between
naturalness levels and to measure their effects.

To gain insights into naturalness-related trends in the SNAILS datasets, we create a mean token-
in-dictionary measurement that describes the proportion of tokens in an identifier that exactly
match a word in a comprehensive English word list. Figure 2 reveals differences between each
naturalness category where Least naturalness identifiers contain fewer in-dictionary tokens, and
Regular naturalness identifiers are more likely to consist of in-dictionary tokens. This distribution
suggests that because the bulk of the training corpora of LLMs is human-generated natural language
text, what humans consider “natural” for such identifiers generally aligns with how LLMs react to
them.

Examples of schema identifiers and their naturalness categories are displayed in Table 1. We
define these categories with the underlying assumption that the identifiers are named as some
semantic representation of the data, and that naming-related problems of interest are related how
an identifier is codified. That is, identifiers are assumed to not be random character sequences or
random words that do not correspond to the content of the database entities they represent. With
this assumption in mind, we categorize naturalness into 3 discrete levels as follows:

o Regular: The identifier contains complete English words with no abbreviations or acronyms,
or contains only acronyms in common usage (e.g., ID or GPS).

e Low: The identifier contains abbreviated English words and less common acronyms that
are usually recognizable by non-domain experts (e.g., UTM or CPI). The meaning of the
identifier can be inferred without consulting external documentation.

e Least: The identifier’s meaning cannot be inferred by non-experts due to indecipherable
acronyms or abbreviations, and external metadata or other documentation must be consulted
in order to determine its purpose.

While we recognize that naturalness can also be treated as a continuous spectrum, between the
choices of continuous scoring and discrete categories, we select the latter as an initial approach to
naturalness evaluation. The primary factors underlying this choice are the level of effort required to
conduct human-based scoring of a large set of database identifiers, and the difficulty of consistently
scoring naturalness on a continuous range over a large set of data. Therefore, we use an intuitive
and easily-verifiable discrete 3-class taxonomy in the first work on this topic.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:7

Naturalness Level
0.8 NN | east EEE Low EEEH Regular
0.6
0.
0.
0.0

Spider Spider-Real Bird SchemaPile SNAILS
(Ours)

~

Identifier Naturalness Proportion
N

Schema Collection

Fig. 3. Comparison of the SNAILS database collection (Artifact 1) described in Section 3.1 to other real-world
and benchmark schema collections. SNAILS naturalness proportions are generally biased toward less natural
identifiers and is more consistent with the real-world SchemaPile collection than other existing benchmarks
including Spider and Spider Realistic.

2.2 Naturalness Classification

To consider naturalness as a factor in NL-to-SQL performance, we derive naturalness scores of the
target schemas’ identifiers. We use this score to consider effects of individual identifier naturalness,
schema naturalness, and query identifier naturalness. Because manual naturalness classification
can be a time consuming task for large schemas, we automate the process by training a machine
learning-based classifier. This effort is beneficial in multiple situations. First, it can ease some
manual effort of the labeling process and make the process of scaling to more databases in the
future less labor intensive. Second, it can help practitioners efficiently and consistently evaluate
the naturalness of their own database schema identifiers prior to NLI integration.

To train a classifier to perform identifier naturalness scoring, we employ the 3-class set of
naturalness categories described in Section 2.1, and a list of database identifiers drawn from the
SNAILS real-world database schemas (Artifact 1). We categorize the naturalness of each identifier
to generate the SNAILS identifier naturalness classification labeled data (Artifact 2) which we use
for ML-based naturalness classifier training, evaluation and testing.

We evaluate multiple classification approaches including heuristic-based word matching, few-
shot LLM prompting with GPT-3.5 and GPT-4, and LLM finetuning. The GPT-4 few-shot approach
achieves 74 percent accuracy and an f1 score of 0.77. We experiment with multiple finetuning
collections, first using a hand-labeled collection of 1,648 naturalness classifications and then
leveraging the initial classifier along with weak supervision to generate a larger collection of 17,226
labeled identifiers. Finetuning using the second collection outperforms all few-shot approaches,
with the two best-performing classifiers fine-tuned GPT 3.5 and BERT-based CANINE [7] models
performing at 89 percent accuracy, and 0.89 f1 score.

Figure 3 provides a visual comparison between the SNAILS schema collection and common
NL-to-SQL benchmarks including Spider, Spider Realistic, and BIRD. Additionally, we compare
the SNAILS collection to the real-world SchemaPile collection and find that SNAILS collection
proportions generally align to SchemaPile naturalness, more so than other existing benchmarks,
which creates a more realistic and challenging benchmark in terms of schema naturalness.

77:8 Kyle Luoma and Arun Kumar

VegHeight - .
Classifier VegHe1ght\ IE,E_I@ =P (Reg

[V, ‘eg’, Il

*Heixht ~AS vegetation_height

eight’

|g_]l Expander -, . L R 1
\) ['veget', 'ation’,

| _height']

Fig. 4. Schema identifiers are classified (Artifact 2) and modified to increase or decrease naturalness as
appropriate. Modified identifiers comprise the schema crosswalks used for schema modification during
NL-to-SQL experimentation (Artifact 3).

To better understand the magnitude of naming practices in real-world schemas, we use the
CANINE-based classifier to classify the naturalness of the SchemaPile collection: a large volume of
real-world database schemas [9] that contains over 22,000 database schemas, 198,000 tables, and 1
million columns. We find that in over 7,500 schemas (32 percent of the collection) Least natural
identifiers make up at least 10 percent of the schema identifier names. Additionally, over 5,000
schemas register a combined naturalness of 0.7 or below-an indicator that the schema contains
a high level of Low and Least naturalness identifiers. We examined the naturalness category
distribution for these 5,000 schemas, and found that for this subset of schemas Low and Least
naturalness identifiers outnumber Regular naturalness identifiers. These findings reinforce the
importance of the naturalness problem by confirming that, although a reasonable majority of
schemas are already natural, there still exist many schemas with lower naturalness levels in the
real-world-enough to motivate the formalization of schema naming quality measures.

2.3 Identifier Schema Naturalness Mapping

In addition to measuring the effects of identifier naturalness in existing schemas, we also seek
to evaluate the effects of modifying schema naturalness. For this purpose, we create Artifact 4,
naturalness-modified identifiers. This artifact enables schema modification during prompt genera-
tion and query inference, which provides a within-schema assessment of naturalness level effects
on NL-to-SQL accuracy.

Identifier Mapping. In addition to the ground truth, or Native, naturalness of the 9 schemas in
the SNAILS real-world database collection, the naturalness-modified identifier collection contains
3 additional sets of identifiers: Regular, Low, and Least. That is, each native identifier is mapped to
2 additional, semantically equivalent, identifiers of higher or lower naturalness, and mapped to
itself for its own naturalness level (i.e., we do not generate new identifiers of the same naturalness
as its native form).

Figure 4 provides a visual example of the Native identifier VegHeight which is classified as
Low naturalness. With this naturalness classification as a starting point, we abbreviate it further
to generate a corresponding Least naturalness identifier VgHt. We also expand it to generate
the corresponding Regular naturalness version vegetation_height. We map the Native VegHeight
identifier to itself in the Low naturalness category.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:9
Database Tables | Columns | Questions | Org
ASIS 36 245 40 NPS
ATBI 28 192 40 NPS
CWO 13 71 40 NPS
KIS 18 157 40 NPS
NPFM 27 190 40 NPS
NTSB 40 1611 100 NHTSA
NYSED 27 423 63 NYSED
PILB 21 196 40 NPS
SBOD 2588 90,477 100 SAP

Table 2. SNAILS Real-World Database Schemas

Naturalness Modification. For more natural to less natural modifications (the abbreviator
in Figure 4), we employ in-context learning (few-shot) prompt strategies with GPT-3.5 turbo to
generate naturalness-modified identifiers (e.g., Regular to Low, Low to Least, and Regular to Least).
We favor this approach over model finetuning, as simple instructions to abbreviate the identifier
coupled with several examples prove more effective and less prone to poor results (e.g., presence of
unwanted characters in the modified identifier).

Automating the reverse less natural to more natural naturalness modification (the expander
in Figure 4) requires additional context and external knowledge from data description sources.
Though a recent project describes a promising identifier expansion strategy [60] without external
knowledge, it requires finetuning over a large dataset, and is likely susceptible to overfitting;
therefore we opt for our own approach that incorporates the use of an LLM augmented with
schema metadata lookup capability. To accomplish this, we create a Python program with GPT
interaction that takes as input metadata describing a schema’s native identifiers, and outputs an
identifier with regular naturalness. More details of this process are available in the appendix.

3 Base Collections

Given the recency of the LLMs selected for evaluation in this project, and the relative maturity of
existing NL-to-SQL benchmarks, we believe that foundational LLMs have been exposed to existing
benchmark training and development NL questions and queries in their training corpora. NL-to-SQL
performance differences between queries over seen vs. unseen schema are significant [49], and we
seek to avoid as much bias as possible due to intentional or unintentional pre-training on existing
benchmark datasets.

We also find that existing benchmarks including Spider [58], and BIRD [26], do not match
the identifier naturalness distribution of real-world schema collections such as SchemaPile [9].
Although SchemaPile is a very large representation of real-world schemas, it does not contain
database instances necessary for benchmark performance evaluations; so, we are not able to leverage
its dataset in the creation of a new benchmark. To reduce bias due to benchmark data exposure,
and to create a benchmark more representative of real-world schema naming, SNAILS contains
two artifacts for NL-to-SQL benchmarking: Artifact 1, which is a collection of 9 publicly-available
database schemas and data; and Artifact 6, a human-generated set of 503 NL question - gold query
pairs.

77:10 Kyle Luoma and Arun Kumar

3.1 Datasets

Native Schemas. The SNAILS real-world database schema collection (Artifact 1) consists of 9
databases sourced from multiple locations. We refer to the schema identifier names as they exist in
the source databases as Native, and we classify each schemas’ Native naturalness level (see Figure
5). Domain diversity facilitates a more thorough evaluation [12]; so, SNAILS database collections
span multiple domains. Domain coverage includes scientific nature observation records, vehicle
safety statistics, primary school performance data, and business resource planning.

The U.S. National Parks Service’s IRMA Portal [1] is the source of the scientific observation
databases which include the Field Data for the Inventory of Amphibians and Reptiles of Assateague
Island National Seashore (ASIS) [8], Great Smoky Mountains All Taxa Biodiversity Inventory
(ATBI) Plot Vegetation Monitoring Database [11], Wildlife Observations Database: Craters of
the Moon National Monument and Preserve 1921-2021 (CWO) [48], Exotic and Invasive Plants
Monitoring Database (KIS) [21], Northern Plains Fire Management (NPFM) [30] and Pacific Island
Network Landbird Monitoring Dataset (PILB) [22].

The National Transportation Safety Bureaus 2021 safety sampling dataset [32, 44] is the source
of SNAILS NTSB safety statistics database. We source school performance data (NYSED) from the
New York State Education Department [4].

The business resource planning database SBOD is a training example of the popular SAP Business
One system, and is publicly available in MS SQL server backup format [42]. The SBOD schema
consists of an extremely large number of tables and columns; so pruning is required to fit the
schema within the context window of the LLMs we compared. We reduce the schema knowledge
token requirements by segmenting the SBOD schema into submodules and further reducing tables
through data profiling. Additional information on the SBOD schema knowledge management is
available in the appendix.

Each database was migrated from its source format into an MS SQL Server database. Several
databases contained identifiers with whitespace characters, which is uncommon in most schemas.
To mitigate whitespace-related inference failures as a confounder, we modify the native identifiers
by replacing whitespace characters with underscore characters. In total, 148 out of over 19,000 total
identifiers (less than .01 percent) contained at least 1 whitespace character.

Native Schema Naturalness Levels. Since the intent of this project is to measure the effect of
schema naturalness, we first check if there is sufficient distribution of naturalness levels across
the collection. We employ the GPT-3.5-based classifier described in Section 2.2 to evaluate the
naturalness of the native schema identifiers.

In addition to measuring the proportion of identifiers in each naturalness category, we also
derive a combined naturalness score. Combined naturalness is the weighted average of category
proportion values, where scores range from 0.0 to 1.0 with 1.0 representing a schema containing
only Regular naturalness identifiers. A more detailed description of its calculation is available in
the appendix.

Figure 5 displays the proportions of identifiers in each naturalness category, as well as the
combined naturalness, in each native schema. From the chart, we can see that the schemas in
the SNAILS collection described in Section 3.1 represent a heterogeneous selection of naturalness
combinations.

Modified (Virtual) Schemas. To control for confounding factors such as schema structure,
normalization levels, and constraint variances between native schemas, we perform within-database
evaluations of naturalness. To accomplish this, we generate 3 additional virtual schemas using
the naturalness-modified identifiers (Artifact 4) described in Section 2.3. Each virtual schema is

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:11

Naturalness Level
B | east BEEH Low [EEH Regular

o
™

507

£

o

g 06

o

205

=

[0

5 0.4

©

z

503

5 02

3 0.

0.1
0.0
=) (%) m o = m =)
o :4 %) = = [7] o
n =
> 5 2 & & s z 3
Database

Fig. 5. Proportion of identifiers in each naturalness category within the SNAILS real-world database collection
(Artifact 1). Horizontal line markers indicate calculated combined naturalness as described in the appendix

Database Qs Top Funct. Join C-Join Ex SQ Where Neg Grp Ord Hvg

ASIS 40 1 24 13 1 0 2 18 0 17 1 0
ATBI 40 5 20 18 0 1 7 21 2 16 7 1
CwWO 40 2 18 5 1 5 10 34 7 12 2 1
KIS 40 8 26 15 0 0 2 25 1 11 8 0
NPFM 40 5 27 21 0 0 1 29 0 16 5 0
NTSB 100 8 82 23 21 0 6 62 4 42 23 4
NYSED 63 10 36 10 4 1 21 55 1 16 10 1
PILB 40 6 25 23 0 0 3 20 0 16 11 2
SBOD 100 2 33 44 0 o0 0 82 0 17 2 1

Table 3. Gold query clause counts for each SNAILS database. Columns represent a count of gold queries that
contain the listed clause types. Qs is the count of question-query pairs for each database. C-Join is the subset
of joins that require a composite key. Ex indicates the use of an exists clause. SQ indicates a subquery. Neg,
Grp, Ord, and Hvg represent negation, group by, order by, and having. Note: MS SQL Server dialect replaces
the common LIMIT clause with an equivalent TOP clause that precedes select items in the SELECT clause.

representative of a naturalness category, where schema identifiers are replaced with a semantically
equivalent identifier of a different naturalness level. This results in 4 schema versions per database
in the base collection: Native, Regular, Low, and Least.

77:12 Kyle Luoma and Arun Kumar

The modified schemas are virtual because we do not create database instances that can be queried
directly. Rather, we query virtual schemas via identifier replacement in prompts and generated
queries using processes described in Section 4. This approach reduces storage overhead. It also
enables possible future schema variations of different naturalness proportions without the need to
instantiate additional database instances.

SNAILS Database Selection and Extension Processes. The initial 9 datasets and schemas
are included because they were (1) publicly available, (2) not included in any prior NL-to-SQL
benchmarks, (3) contained relational tables with dependencies and database instances with values,
(4) had available table and column metadata, (5) represented a diversity of application domains,
and (6) contain data potentially useful for real-world data analysis or data science applications.
Databases are not selected or pre-screened using perceived naturalness as criteria.

We view the initial 9 schemas as a starting point from which the SNAILS dataset can grow.
Researchers who wish to extend the SNAILS collection should use the same selection criteria. In
addition, the extension process must ensure that new databases: (1) can be represented as MS
SQL Server instances, (2) each native identifier’s naturalness is classified according to defined
criteria using the SNAILS naturalness classifier, and (3) that native identifiers are modified using
the SNAILS modification artifacts to create alternate naturalness levels.

3.2 NL Question - SQL Query Pairs

To evaluate SQL inference performance over the Native and modified schemas in the SNAILS
real-world database collection, we create a new set of 503 NL-question and SQL gold query pairs
(Artifact 6). Schema identifier naturalness are the primary considerations for NL question and gold
query composition. During question and query formulation we track schema coverage to ensure
that the distribution of identifier naturalness within a set of gold queries generally matches the
naturalness distribution of target schemas.

To enable accuracy measurements at the identifier level, gold queries contain the minimum
identifiers (tables and columns) required to answer its corresponding question. For this reason, for
questions that require the count aggregation function, where appropriate, we use the COUNT(*)
clause (as opposed to selecting an arbitrary column). This approach eliminates incorrect penalties
to recall if a generated query fails to project an arbitrary column as a function argument.

Gold queries contain only native identifiers, such that all gold queries return valid non-null
results from target databases in the real-world database collection (Artifact 1). We measure query
complexity as a count of its clauses and identifiers. Gold queries span a range of complexities, from
very simple single table projections, to multi-table joins and nested subqueries (see Table 3).

Adding New NL-SQL Pairs to the SNAILS Collection. For researchers interested in extending
the SNAILS collection, it is necessary to create new ground truth NL-SQL pairs for evaluation. While
we employed a fully manual approach for question writing, and this approach may be used for
future additions, they may also consider the use of new approaches such as using a template-based
approach for generating question-query pairs with relational data as input [39]. Regardless of
NL-SQL pair creation method, researchers should ensure adequate schema coverage and minimum
essential identifier selection as described in the preceding section.

4 NL-to-SQL Benchmarking Setup

To evaluate the impact of naturalness on NL-to-SQL accuracy, we build a benchmarking setup
pipeline as shown in Figure 6. NL question and gold query pairs, database schemas, and naturalness
crosswalk mappings are inputs into subprocesses. The subprocesses include prompt generation,

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:13

Generate & Naturalness- e A
ll Identifiers (BB * +

NL Generate Mty NL-to-SQL;| Predicted
—>1 Schema I

Question Prompt \dentifiers Inference Query

Y

Fig. 6. Experiment setup workflow from NL question and schema as input to predicted query as output.

schema identifier naturalness modification, identifier naturalness classification, LLM-based NL-to-
SQL inference, and predicted query “denaturalization” (i.e., converting table and column identifiers
to native schema identifiers prior to query execution). The output of the experiment setup is a
predicted query, which along with its gold query counterpart, is executed against a target database.
This predicted query is passed into a parser analysis tool as initial steps of the Performance Evaluation
and Results Classification phase of the experiment described in Section 5.

4.1 Prompt Generation

The design space for LLM-based NL-to-SQL prompting is quite large, with options ranging from
zero-shot instructions to sequential prompting broken into discrete tasks such as schema subsetting
and error handling. Although we evaluate 2 complex NL-to-SQL workflows, to maintain consistency
across the LLMs compared in this study, our performance comparisons focus on a single prompting
strategy: zero-shot prompting with schema knowledge.

Prompting Strategy. SNAILS prompts consist of zero-shot instructions with schema knowledge
(denoted as ZS in results figures) in a format similar to OpenAI’s Text-to-SQL demonstration
prompt [15] for completions. The prompt begins with task instructions and database information:

For the database described next, provide only a sql query.
do not include any text that is not valid SQL.

#Database: NTSB

#MS SQL Server tables, with their properties:

Target database system tables provide schema knowledge, which is represented as a list of tables
and their column names with data types in the format:

#TableName (Col1Name Type, Col2Name Type, ...)
The prompt ends with the instruction:

a sql query, written in the MS SQL Server dialect,
to answer the question: <Question>

Where <Question> is replaced with an NL question directed at the given schema.

To evaluate naturalness effects on more complex NL-to-SQL prompting workflows, we also
implement DIN SQL [43] which uses prompt chaining with GPT-4, and CodeS [25]-a multi-step
NL-to-SQL system (schema filtering and SQL inference) based on StarCoder [27] and finetuned for
the NL-to-SQL translation task.

Prompt Schema Identifier Modification. For inference on virtual schemas with modified
naturalness levels, we replace Native identifiers with corresponding identifiers of the target virtual
schema’s naturalness level. We accomplish this step using the naturalness-modified identifier
collection (Artifact 4) described in Section 2.3. We use a SQL parser to encase identifiers within

77:14 Kyle Luoma and Arun Kumar

tags to improve identifier replacement accuracy and eliminate errors due to substring matching
between identifiers.

4.2 NL-to-SQL Inference

Language Models. Foundational LLMs continue to grow in capability at a rapid pace. Despite this
growth, not all NLI implementations can avail of the most-capable LLMs, often due to organizational
policy constraints (e.g., organizational security concerns [16]). Additionally, we seek to understand
if schema naming effects generalize across model architectures and sizes. Thus, we consider several
LLMs, both open and closed source, to capture as many use profiles as possible including OpenAI’s
GPT-3.5 Turbo and GPT-4o0 [33, 34]; Google’s Gemini 1.5 Ultra [50, 51]; and Phind-CodeLlama-34B-
v2 [41] which is a finetuned variant of Meta’s CodeLlama 2 [45].

CodeS and DIN SQL Implementation. For the more complex DIN SQL and CodeS NL-to-SQL
workflows, we provide additional versions of the SNAILS schema artifacts to conform to the input
requirements of the target systems. Additionally, we add data logging between agents to document
the schema filtering step for additional analysis. For consistency between approaches, we use
GPT-4o for all steps in the prompting chain. For CodeS inference, we execute the schema filtering
and NL-to-SQL inference using the CodeS codebase and finetuned models.

Generated Query Denaturalization. For queries targeted at virtual schemas and generated
using modified schema identifiers, we perform reverse modifications prior to query execution on the
native database schema. Using a purpose-built Antlr [40]-based parser, we extract table and column
identifiers, and generate a tagged query with identifier tags encasing table and column names.
The tags guide the replacement algorithm, ensuring accurate replacement of naturalness-modified
identifiers with their Native naturalness counterparts.

5 NL-to-SQL Benchmarking Results

This section describes the process of evaluating the generated SQL query output from the prior
section. We evaluate performance in terms of execution accuracy (result set comparison and manual
evaluation) and schema linking (recall, precision, and F1).

Predicted Query | Pred Results Accuracy I\Pnirtfrti):rsrrance
Query Execution | »(Gold Results Analaysis Execution

— Accuracy
Query (Pred Identifiers Linking ;remﬁlon
Parsing | | 5 (Gold Identifiers Analysis cha

Fig. 7. Benchmark results evaluation includes generated and gold query execution on target schemas, parser-
based analysis, and identifier set comparisons. We evaluate performance in terms of execution accuracy and
schema linking (precision, recall, and F1).

Key Takeaways. Overall, there is a model-dependent statistically significant correlation between
identifier naturalness and execution accuracy, with smaller models exhibiting higher correlations
between naturalness and performance. The presence of Least naturalness identifiers has the largest
negative effect on schema linking. Additionally, while the performance difference between Regular
and Low is visible, it is less impactful. So, modifying Least naturalness identifiers should be a higher
priority than modifying Low naturalness identifiers.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:15

0.6
goAs
=
304 Level
< == Native
5§03 == Regular
‘g == Low
g 0.2 =m Least
]

0.1

0.0

Gem-1.5-ZS GPT-40-ZS DINSQL GPT-3.5-ZS Ph-CdLIm2-ZS CodeS

Fig. 8. Execution accuracy (proportion of correct queries) by model. There is slight accuracy improvement
from native schemas to schemas modified to regular naturalness. Accuracy drops significantly for schemas
modified to low naturalness.

5.1 Execution Accuracy

Execution Result Set Comparison. Execution accuracy is the standard measure of performance
in most NL-to-SQL benchmarks [26, 58] where accuracy is determined using result set comparisons
between gold and generated queries executed over one or more database instances. A drawback
of existing methods is that strict set or bag comparisons risk increased false-negatives when a
generated query includes additional fields that are not required, but do not render the result
incorrect in terms of the natural language question [13, 59].

To reduce false negatives, the SNAILS approach to execution accuracy evaluation adopts 2
aspects of relaxed execution matching as described in [13]; it accounts for: (1) The possibility that
a predicted query may contain additional columns beyond those retrieved by a gold query; and
(2) That unless specified in the NL question, tuples may appear in any order. To achieve this, we
perform result set-superset comparisons to ensure that the predicted result set column set is a
superset of the gold result set column set. That is, a generated query is considered incorrect if
it does not contain all gold query columns; but it is not considered incorrect (at this stage) if it
includes columns not present in the gold query result. A more detailed description of this approach
is available in the appendix.

Manual Evaluation. Execution result set comparison cannot prove query correctness; so we
rely on it only to rule out true negatives from further consideration. To validate correctness, the
authors manually review generated queries that pass execution result set-superset comparison
checks. We streamline this process by creating a Python-based manual validation user interface that
makes the process of comparing gold and generated queries more user-friendly. Manual validation
steps include ensuring the generated query answers the NL question, matches the gold query in
terms of semantic structure, and does not contain semantically incorrect predicates, projections, or
clauses.

Naturalness Effect on Execution Accuracy. Figure 8 shows execution accuracy for each LLM
and naturalness level. There is a clear difference in overall performance between LLMs, most likely
due to model size. We find that generally more natural database schemas yield more correct queries.
Databases with more natural native schemas did not benefit from identifier renaming, though we
observe that altering a schema to become less natural degrades accuracy in most cases. We find
that for databases with Native schema combined naturalness scores less than 0.69, modifying the
schema identifiers to increase naturalness improves execution accuracy.

77:16 Kyle Luoma and Arun Kumar

Statistical Significance. The Kendall-Tau correlation between the naturalness of identifiers in
a query and execution accuracy ranges from low (z = 0.09, p < 0.0001) for Gemini 1.5, to moderate
(r =0.19, p < 0.0001) for Phind-CodeLlama2 and CodeS. The most impactful relationship is between
the presence of Least naturalness identifiers and performance, with Kendall-Tau correlations
between the proportion of Least identifiers in a query and execution accuracy between 7 = —.15
and 7 = —.22 with p < 0.0001 for all models.

5.2 Schema Linking Evaluation

We make schema linking a “first class citizen” of our analysis, and study schema linking performance
in queries irrespective of other aspects of correctness. Thus, we propose query-level and identifier-
level schema linking measurements. We propose an approach similar to the Spider benchmark exact
set matching system [58] in which we employ a schema linking-specific evaluation method using
recall scoring of gold and generated query pairs. Other schema linking-focused research measure
effects of schema linking improvements using ablation [5, 49, 55, 56]. In other cases, schema linking
is described in post-hoc analysis of NL-to-SQL model performance, with schema linking accounting
for roughly 30% of failures [10, 43].

Query-Level Linking Analysis. The set of all schema identifiers (table and column names)
present in gold queries represents the minimum identifiers required to correctly answer an NL
question. Our purpose-built ANTLR4-based [40] query parser extracts identifiers from gold and
generated queries. With a set QI of identifiers present in the gold query and a set of identifiers
QI, present in the generated (or predicted) query, we calculate recall, as well as F1 and precision.

|QI; N QIp|
==7J =F 1
QueryRecall 07,| (1)
I, N QL
QueryPrecision = M (2)
Q1|

QueryF1 = 2(QueryRecall = QueryPrecision)

— ®)
QueryRecall + QueryPrecision

We exclude 137 linking score calculations from analysis in situations where the predicted query
contains invalid SQL that prevents query parsing and identifier extraction. We use recall as the
primary measure for schema linking, as it does not penalize generated queries that contain extra
identifiers that do not render an answer incorrect in our setting, such as cases when an arbitrary
column is referenced in a count function. Charts and tables depicting F1 and precision scores are
available in the appendix.

Identifier-Level Linking Analysis. For an identifier-focused (rather than query-focused) metric,
we perform identifier-level linking analysis. We derive recall linking scores for each Native schema
identifier I as follows. I;,4¢cp, is the count of instances when I is correctly present in a predicted
query. Igoq is the count of gold queries that contain I.

I
IdentifierRecall = -2t (4)
Igold

Figure 9 visualizes IdentifierRecall of Native identifiers in each naturalness level, and for each
LLM. The chart indicates an observable difference in IdentifierRecall scores for each naturalness
level, with IdentifierRecall increasing for higher naturalness levels. These results remain consistent
relative to overall model performance across all 5 LLMs and various workflows.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:17

Level
em Regular
== Low
== Least

Gem-1.5-ZS GPT-40-ZS DINSQL GPT-3.5-ZS Ph-CdLIm2-ZS CodeS

1.0

IdentifierRecall
o o o
s (=) o

o
)

Fig. 9. Native identifier recall scores by model and naturalness level. Error bars set with confidence interval
of 0.95. For all models, identifiers in lower naturalness categories yield lower recall scores.

1.0
0.8
T 06 o
8 8
':E‘ oo
g
00
G 04 °Q
ooo [e X} o
o °o ©° 088
oo0o [eJe) 8 000
02 o 8.°] 588
o o - =~ HEl Native Schema
8 o 8°o S Regular
EE Low
0.0 oood oooo oood <4 ol Least
Gem-1.5-ZS GPT-40-ZS DINSQL GPT-3.5-ZS Ph-CdLIm2-ZS CodeS

Fig. 10. Schema linking performance across database schema naturalness levels generally yields equal or better
performance for higher levels of naturalness, with open source models Phind-CodeLlama2 (Ph-CdLIm2-ZS)
and CodeS as well as OpenAl’s GPT-3.5 (GPT-3.5-ZS) exhibiting higher sensitivity to changes in naturalness.
Zero-shot prompting NL-to-SQL methods are denoted as (ZS).

Naturalness Effect on Schema Linking. Overall, we find that schema naturalness has a model-
dependent and significant effect on schema linking performance with the highest correlations
between QueryRecall and query naturalness occurring with the open-source CodeLlama and CodeS
models, and the lowest (though still significant) correlations occurring with Google’s SoTA Gemini
1.5 Pro and OpenAI’s GPT-40 models. The more complex DIN SQL and CodeS workflow QueryRecall
results are also significantly affected by naturalness level differences.

Both DIN SQL and the CodeS complex NL-to-SQL workflows are sensitive to changes in natu-
ralness, suggesting that these more complex workflows by themselves do not overcome schema
naturalness effects. We also see that execution accuracy differences between the GPT-40 zero-shot
prompting method and the DINSQL prompt chaining method suggest that applying more complex
workflows to high-performing LLMs may be counterproductive for more recent SOTA LLMs.

77:18 Kyle Luoma and Arun Kumar

Figure 10 illustrates QueryRecall across schema naturalness levels, and for each LLM. For GPT
3.5, Phind-CodeLlamaz2, and CodeS, we observe an improvement to QueryRecall when converting
identifiers in a Native schema to Regular naturalness. This improvement did not manifest for
Gemini and GPT-40 when observing the data in aggregate (i.e., between databases) due to their
overall high performance relative to the other models, but improvements within databases of lower
naturalness are still present (see Figure 11). The recall drop (approximately 20 percent decrease)
associated with a modification from both Regular and Low to Least naturalness remains consistent
across all LLMs.

Naturalness changes within specific SNAILS database schemas paints a clearer picture of the
impact of naturalness. Figure 11 provides a drill-down view of the effect of schema modification
on the PILB, SBOD, and NTSB schemas in terms of QueryRecall, and for each LLM and schema
naturalness level. The center example (PILB) is a highly natural Native schema where schema
naturalness modification would not be required. The leftmost example (NTSB) indicates linking
performance improvement across all models for a native schema of lower naturalness converted
to a higher naturalness schema, and presents a case where naturalness modification will improve
NLI performance. The rightmost database (SBOD) represents a Least naturalness schema, and
transformation from Native to Regular yields significant improvements for all models. In all cases,
we see that reducing naturalness to the Least level consistently degrades QueryRecall.

Statistical Significance. Kendall-Tau correlations between the proportion of Least identifiers
and QueryRecall range from 7 = —0.16 (Gemini) to 7 = —0.28 (Phind-CodeLlama2), with P < 0.001
for all models. Both Regular and Low identifier proportions are significantly correlated with
improved outcomes in terms of QueryRecall. Identifiers with Regular naturalness show the highest
positive Kendall-Tau correlations ranging from 7 = 0.07 (Gemini) to 7 = 0.20 (Phind-CodeLlama2).
Low naturalness identifier proportions correlate positively, but to a lesser degree, with Kendall-Tau
values ranging from 7 = 0.05 (Phind-CodeLlamaz2) to 7 = 0.07 (Gemini).

Naturalness Effects on Schema Subsetting. We measure the schema subsetting (also known as
schema filtering, or table retrieval) in terms of recall, precision, and f1 score, and present the results
in Figure 12. We find that for the CodeS finetuned classifier approach, schema naturalness level
differences result in observable differences in f1. For the DIN SQL LLM-based approach, naturalness
effects are less pronounced, though still present, particularly for Least level schemas.

Performance Over Modified Spider Schemas. Figure 13 shows that with the SNAILS schema
renaming artifacts applied to the Spider NL-to-SQL benchmark dev dataset [58], naturalness effects
are the most significant between Low and Least levels of naturalness. Performance differences
across naturalness levels for the highly natural Spider schemas resemble performance over similarly-
natural schemas in the SNAILS collection.

Additional Charts and Figures. The appendix also provides additional fine-grained results:
a more detailed tabular breakdown of execution accuracy by schema and LLM; Precision- and
F1-based results; token ratio correlations; and more granular QueryRecall correlations and box
plots.

6 Discussion and Limitations

The ability to assess the naturalness of existing schemas can inform the feasibility of “hooking up”
an NL query interface to an existing database. We believe that practitioners who are considering
the integration of an LLM into their database interaction workflows would benefit from making
naturalness-focused schema analysis a key step in their integration process.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:19

0.2

DB: PILB
0 = <o
o O o0 o
o
0.8 o
o8 g
— o
© ° o o
(&)
Cqé 0.6
(o)
= o
8 0.4 R
o 0 O (o)
o (o)
O O O

0.0 o 0 O [oRel

Gem-1.5-ZS GPT-40-ZS DINSQL GPT-3.5-ZS Ph-CdLIm2-ZS CodeS

DB: NTSB
1.0
0.8
o
0.0 O =

Gem-15-ZS GPT-40-ZS DINSQL GPT-3.5-ZS Ph-CdLIm2-ZS CodeS
DB: SBOD

m

Gem-1.5-ZS GPT-40-ZS DINSQL GPT-3.5-ZS Ph-CdLIm2-ZS CodeS

o
o

QueryRecall

o
[N}

QueryRecall
o o o o =
N = (<2} o] o
(o)

(o) O 0000 O
O O O 000OO0O0®O

(o) o0 O O O
o 00
00 O

0.0 o O ==

mmNative Schema EmRegular gmalLow mml east

Fig. 11. Schema linking performance (QueryRecall score) changes across 3 example databases’ native and
virtual schemas. We selected these 3 examples to showcase the diversity of the databases in our collection.
PILB Native is a more natural schema with 65 percent Regular, 22 percent Low, and 13 percent Least; NTSB
Native contains 42 percent Regular, 34 percent Low, and 24 percent Least; and SBOD Native is the lowest
naturalness schema with 24 percent Regular, 49 percent Low, and 27 percent Least.

77:20

0.8

o
[

Measurement Score
o
~

o
[N

0.0

Recall

o 0 0o

DIN SQL

Subsetting Method

[e]

(o}

Kyle Luoma and Arun Kumar

Precision 1

CodeS DIN SQL

o
o
o
o
8
o

O @

CodeS DIN SQL CodeS

Subsetting Method Subsetting Method

mEmNative Schema E=IRegular EmELow EELeast

Fig. 12. Schema subsetting performance, measured with recall, precision, and f1 score, varies by naturalness
levels for both DIN SQL and CodeS. Measurement Score is Recall, Precision, or f1 respectively.

0.8

0.6

QueryRecall

0.2

0.0

Spider Query Recall
(o]

O 0 8 o
O0O0O0 O 0O
0000 00O
Il Native Schema 8
= Regular o+
EEE Low

Bl Least

GPT-40-ZS GPT-3.5-ZS

Execution Accuracy

0 Spider Execution Accuracy

o
™

o
[}

o
~

o
N

0.0

GPT-40-ZS GPT-3.5-ZS

Fig. 13. QueryRecall and Execution Accuracy differences over the Spider [58] dev set modified using SNAILS

renaming artifacts.

Other Naming Patterns in Real-World Schemas. To examine naming practices in the real-
world, we classified the identifiers of SchemaPile dataset [9] with our CANINE-based classifier, and
evaluated the identifiers for other LLM-unfriendly patterns. We observe that whitespace characters
within schema identifiers contributes to identifier mutation during inference. That is, rather than
encasing a whitespace-containing identifier with brackets or quotes, the LLM hallucinates the

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:21

identifier into snake or camel case format. We find that in the SchemaPile collection, though
whitespace is uncommon (less than 1 percent for both tables and columns), it appears in 808
columns and 63 tables, and is comparable to the proportions in the SNAILS dataset.

Another naming practice that yields disproportionate failures with some LLMs is the presence
of the word table in the identifier name. In these instances, we find that the LLM tends to drop the
word table from the name (e.g., table_employee becomes employee). There are over 700 identifiers
(less than 1 percent of all identifiers) in the SchemaPile collection that employ this naming pattern.

These observations suggest that although these naming patterns are not necessarily a common
occurrence in many real-world schema designs, they do appear in some cases. We suggest that
practitioners would benefit from assessing the naming patterns of their database schemas.

Variations in LLM Sensitivity to Naturalness. There are many LLMs to select from for
NLIDBs, and we can see even within the select 5 models in our work large variations in NL-to-SQL
performance as well as the degree of sensitivity to schema naturalness. The Google Gemini and
GPT-40 models demonstrate the highest overall performance, as well as the lowest sensitivity to
naturalness differences between Regular and Low levels. Without access to the underlying model
architectures and weights, it remains as a black box in our research, and we can merely speculate
the reasons why it is not as affected by naturalness as the other 3 models in our study. Generally,
we observe that the these models have an overall higher performance, and are less prone to linking
errors such as selecting the incorrect identifier from the schema knowledge representation or
committing a typo-like hallucination.

Though selecting the most performant model would seem to be an obvious course of action,
competing factors such as an organization’s policies, budget, or existing vendor contracts, may
require the selection of a model that is more sensitive to schema naturalness differences. Thus, we
believe that naturalness-aware NLI integration will remain important for at least the practitioners
who use LLMs other than Gemini in the set that we have studied.

Modifying Existing Schemas. For already-existing schemas, renaming identifiers is generally
a non-trivial effort, particularly for those databases for which documentation has been published
and application interfaces have been integrated. Schema modifications may not be necessary (or
helpful), if a schema is already classified as highly natural. DBAs should assess current naturalness
levels prior to committing to naming modifications. At a minimum, we recommend that any Least
identifier be modified to a Regular naturalness level and, if feasible, Low identifiers as well. If
renaming a less natural schema’s identifiers is not feasible due to integration constraints, we
suggest one of two approaches: 1) adopting a naturalness-as-a-view strategy by mapping Native
identifiers to Regular naturalness identifiers using SQL views, or 2) a middleware approach that
modifies schema knowledge in LLM prompts and generated SQL queries prior to execution on the
database. We sketch a rough design of both options in the appendix.

We demonstrate a natural schema view proof of concept with our SNAILS database collection
and their MS SQL Server instances. For each table and column in the collection’s database schemas,
we map the Native table or column to its Regular counterpart in the naturalness modified identifier
dataset using SQL view creation DDL and a db_nl schema. This enables schema information retrieval
for LLM-based NL-to-SQL prompting without prompt or generated query modification while still
retaining the underlying Native schema naming patterns required for existing integrations.

In lieu of schema modificaftion, practitioners may elect to employ prompting techniques that
augment schema representations with additional metadata or value samples. While these methods
may improve schema linking performance in some contexts [31], they greatly increase schema
representations on a per-identifier basis. Thus, the cost to do so is high in terms of token efficiency,
latency, and implementation complexity, especially for very large schemas.

77:22 Kyle Luoma and Arun Kumar

Designing New Schemas. For new schema development, our results show that making schema
identifiers more natural from the start can make databases work better with LLMs. Specifically,
database designers should try to avoid Least naturalness identifiers and would likely also benefit
from limiting Low naturalness identifiers. Database practitioners can evaluate the naturalness of
identifiers using the identifier naturalness classification techniques and model artifacts described
in this paper and released publicly by us as part of the SNAILS collection.

Limitations. LLM research is advancing rapidly, and the LLMs represented in this paper may
get superseded by newer versions or newer models (e.g., DBRX [53], Arctic [54]). But it does not
negate our work’s core value—the first in-depth characterization of how schema naturalness affects
LLM-based NL-to-SQL-and our new labeled datasets, Al artifacts, and benchmarking framework
can be used for future LLMs too. We leave it to future work to also include such very recent LLMs
for further benchmark analyses.

We recognize that the correlation statistics indicate a moderate (in some cases only a weak)
correlation between naturalness and IdentifierRecall. This suggests that other undiscovered fac-
tors also influence linking performance; and further research may reveal additional schema- and
language-related correlations.

Our selection of 9 database schemas is of course not fully representative of all types of schemas
available in the real-world. The SNAILS collection will benefit from continued growth in terms
of both databases and NL-SQL pairs. We hope our open source datasets and artifacts can be built
upon by the database and NLP communities to keep improving LLM-based NL-to-SQL.

Future Work. In addition to extending the SNAILS benchmark artifacts to include additional
datasets and artifacts, we identify several NLP+DB directions for future work. First, we wish to
ask why and how exactly do different naturalness levels alter schema linking performance so
much? Is it due to the tokenization and embedding mechanics? If so, where in the latent space
do these altered tokens end up, and how do the encoders make use of them? Second, why do the
different foundational LLMs behave so differently? Is it related to their architectures, tokenization,
(pre)training data, post-training finetuning process, or some other factors? We believe these open
questions have the potential to lead to several interesting new lines of research at the DB and NLP
intersection.

7 Related Work

Ontology Mapping. Schema modifications and intermediate representations to enhance perfor-
mance in a specific context extend beyond NL-to-SQL applications. Mapping relational database
schemas to ontologies is an approach used to improve schema-to-schema integration and web
application application-database interfaces [57]. This improves the semantic description of under-
lying data, which is often a desirable feature in web applications that interact within the semantic
web [19]. While ontological mapping of a relational database can improve performance in this
context; we see less evidence that such an approach is useful or necessary in NL-to-SQL applications,
though this may serve as a compelling opportunity for future research.

NL-to-SQL Benchmarks. Spider [58], soon to be superseded by a more challenging benchmark
for the LLM era, was a popular NL-to-SQL benchmark that still offers a publically-available dataset
consisting of 166 multi-table databases and 1,034 NL questions and gold queries over the databases
in a development dataset. Spider-Syn [14] and Spider-Realistic [14] are extensions of the Spider
benchmark that perform NL question synonym replacement to reduce the occurrences of lexi-
cal matching between NL question keywords and schema identifiers. BIRD [26] is an emergent
benchmark containing 95 large databases over 37 domains that seeks to better replicate real-world

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:23

databases in order to better challenge highly capable LLM-based NL-to-SQL systems. While Spi-
der and its variants as well as BIRD intend to better-replicate real-world database designs, our
naturalness-focused analysis indicates that their schema identifiers are more natural than those we
encountered in our real-world database selection process (see the statistics in Figure 3). Additionally,
Spider and BIRD both evaluate performance using either exact set matching or execution result
set comparison while we use the more pragmatic set-superset matching as proposed in [13] and
schema linking-specific recall metrics.

Archerfish [13] is a benchmarking framework that relaxes execution matching and accounts
for semantic ambiguity in NL questions by allowing for multiple correct answers derived from
candidate key analysis. This framework relies on the binary “correct, or not” evaluation approach
common to other benchmarks, whereas in addition to relaxed execution matching, SNAILS evaluates
target schema linking performance via query identifier recall. Overall, we find that our benchmark
and findings complement this existing and ongoing research by enhancing our ability to target
specific schema-related aspects of NL-to-SQL performance in future NLI development.

Impacts of Schema on NL-to-SQL Performance. Spider-Syn [14] demonstrates degraded NL-
to-SQL performance of language models trained for NL-to-SQL tasks when the occurrence of lexical
matching between NL questions and schema identifiers is reduced. This approach differs from our
experiments in that it evaluates a LM specifically trained on NL-to-SQL tasks using the Spider
training set as opposed to the more general-purpose foundational LLMs evaluated in this work.
They also make no apparent attempt to reduce the naturalness of database schema identifiers.

Semantics-preserving schema transformation is a design feature of MT-teql [28], an NL-to-
SQL evaluation framework that modifies natural language utterances and schema properties to
stress LM robustness. MT-tegl provides a holistic view of the effect of NL utterance variances and
schema design on LM performance. However, it does not address the question of schema identifier
naturalness, nor does it make modifications to schema elements that are necessary for answer
generation.

Some recent work has examined the effects of schema ambiguity, where semantically different
tables or columns have identical or synonymous names. Schema ambiguity, where a schema
contains one or more semantically similar pairs of elements, degrades semantic parsing (i.e.,
NL-to-SQL) performance by recalling undesired tables or columns in response to a NL question
that contains patterns or keywords that align with more than one schema element in the latent
space [38]. Documentation, combined with agent-based column selection, can improve Text-to-SQL
performance in the presence of data and schema ambiguity [20]. Though we did not focus on
ambiguity in our work, identifier naturalness and ambiguity are complementary efforts that provide
a potential future direction for the expansion of the SNAILS benchmark artifacts.

Acknowledgments

We thank the members of the UCSD Database Lab and Jingbo Shang for their feedback on this work.
This work was supported in part by the U.S. Army Advanced Civil Schooling program and gifts
from VMWare. A part of this work used AWS through the CloudBank project, which is supported
by NSF grant 1925001. This work was done in part at the U.S. Army Cyber Institute by the first
author. OpenAI GPT 3.5 was used to help with KIEX table and syntax editing.

References

[1] [n.d.]. NPS IRMA Portal. https://irma.nps.gov/Portal/. Accessed: April 2023.

[2] [n.d.]. SAP TABLES. https://sap.erpref.com/. Accessed: June 2023.

[3] 2022. grammars-v4. https://github.com/antlr/grammars-v4.

[4] 2022. Report Card Database 2021-22. https://data.nysed.gov/files/essa/21-22/SRC2022.zip. Accessed: May 2023.

https://irma.nps.gov/Portal/
https://sap.erpref.com/
https://github.com/antlr/grammars-v4
https://data.nysed.gov/files/essa/21-22/SRC2022.zip

77:24 Kyle Luoma and Arun Kumar

[5] Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao, Su Zhu, and Kai Yu. 2021. LGESQL: Line Graph Enhanced Text-to-SQL
Model with Mixed Local and Non-Local Relations. In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers). Association for Computational Linguistics, Online, 2541-2555. doi:10.18653/v1/2021.acl-long.198

[6] Pankaj Kumar Choudhary. 2022. Naming Conventions in SQL. https://www.c-sharpcorner.com/UploadFile/f0b2ed/
what-is-naming-convention/. Last accessed on 2024-01-01.

[7] Jonathan H. Clark, Dan Garrette, Iulia Turc, and John Wieting. 2022. Canine: Pre-training an Efficient Tokenization-
Free Encoder for Language Representation. Transactions of the Association for Computational Linguistics 10 (2022),
73-91. doi:10.1162/tacl_a_00448

[8] Robert Cook. 2016. Field Data for Assateague Island National Seashore Amphibian and Reptile Inventory. https:
//irma.nps.gov/DataStore/Reference/Profile/2236826. Accessed: April 2023.

[9] Till Doehmen, Radu Geacu, Madelon Hulsebos, and Sebastian Schelter. 2024. SchemaPile: A Large Collection of
Relational Database Schemas. In Proceedings of the ACM SIGMOD International Conference on Management of Data.

[10] Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, lu Chen, Jinshu Lin, and Dongfang Lou. 2023. C3:
Zero-shot Text-to-SQL with ChatGPT. arXiv:2307.07306 [cs.CL]

[11] Thomas Evans. 2015. Great Smoky Mountains All Taxa Biodiversity Inventory (ATBI) Plot Vegetation Monitoring
Database. https://irma.nps.gov/DataStore/Reference/Profile/2221324. Accessed: April 2023.

[12] Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui Zhang, and
Dragomir Radev. 2018. Improving Text-to-SQL Evaluation Methodology. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics,
Melbourne, Australia, 351-360. doi:10.18653/v1/P18-1033

[13] Auvrilia Floratou, Fotis Psallidas, Fuheng Zhao, Shaleen Deep, Gunther Hagleither, Wangda Tan, Joyce Cahoon, Rana
Alotaibi, Jordan Henkel, Abhik Singla, Alex Van Grootel, Brandon Chow, Kai Deng, Katherine Lin, Marcos Campos,
Venkatesh Emani, Vivek Pandit, Victor Shnayder, Wenjing Wang, and Carlo Curino. 2024. NL2SQL is a solved problem...
Not!. In Proceedings of the CIDRDB 2024 Conference. https://www.cidrdb.org/cidr2024/papers/p74-floratou.pdf

[14] Yujian Gan, Xinyun Chen, Qiuping Huang, Matthew Purver, John R. Woodward, Jinxia Xie, and Pengsheng Huang.
2021. Towards Robustness of Text-to-SQL Models against Synonym Substitution. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language
Processing (Volume 1: Long Papers), Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (Eds.). Association for
Computational Linguistics, Online, 2505-2515. doi:10.18653/v1/2021.acl-long.195

[15] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding, and Jingren Zhou. 2024. Text-to-SQL
Empowered by Large Language Models: A Benchmark Evaluation. 14 pages. doi:10.14778/3641204.3641221

[16] General Services Administration. 2023. Security Policy for Generative Artificial Intelligence (AI) Large Language
Models (LLMs). https://www.gsa.gov/directives-library/security-policy-for- generative-artificial- intelligence-ai-large-
language-models-llms. Last accessed on 2024-05-28.

[17] Frederic Piesschaert Gert Van Spaendonk, Jo Loos. [n. d.]. Database naming conventions. https://inbo.github.io/
tutorials/tutorials/database_conventions/. Last accessed on 2024-01-01.

[18] Sree Hari Krishnan Parthasarathi, Lu Zeng, and Dilek Hakkani-Tir. 2023. Conversational Text-to-SQL: An Odyssey
into State-of-the-Art and Challenges Ahead. In ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP). 1-5. doi:10.1109/ICASSP49357.2023.10096170

[19] Mohamed A. G. Hazber, Ruixuan Li, Yuxi Zhang, and Guandong Xu. 2015. An Approach for Mapping Relational
Database into Ontology. In 2015 12th Web Information System and Application Conference (WISA). 120-125. doi:10.
1109/WISA.2015.25

[20] Zezhou Huang, Pavan Kalyan Damalapati, and Eugene Wu. 2023. Data Ambiguity Strikes Back: How Documentation
Improves GPT’s Text-to-SQL. In NeurIPS 2023 Second Table Representation Learning Workshop. https://openreview.net/
forum?id=FfIKTuIRTD

[21] Klamath Inventory and Monitoring Network. 2021. Exotic and Invasive Plants Monitoring Database. https://irma.nps.
gov/DataStore/Reference/Profile/2288667. Accessed: April 2023.

[22] SethJudge and Kevin Kozar. 2023. Pacific Island Network Landbird Monitoring Dataset. https://irma.nps.gov/DataStore/
Reference/Profile/2300107. doi:10.57830/2300107 Accessed: April 2023.

[23] Tobias Kuhn. 2014. A Survey and Classification of Controlled Natural Languages. Computational
Linguistics 40, 1 (03 2014), 121-170. do0i:10.1162/COLI_a_00168 arXiv:https://direct.mit.edu/coli/article-
pdf/40/1/121/1812691/coli_a_00168.pdf

[24] Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 2023. RESDSQL: decoupling schema linking and skeleton parsing
for text-to-SQL. 9 pages. doi:10.1609/aaai.v37i11.26535

[25] Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu, Renjie Wei, Hongyan Pan, Cuiping Li, and
Hong Chen. 2024. CodeS: Towards Building Open-source Language Models for Text-to-SQL. Proc. ACM Manag. Data

https://doi.org/10.18653/v1/2021.acl-long.198
https://www.c-sharpcorner.com/UploadFile/f0b2ed/what-is-naming-convention/
https://www.c-sharpcorner.com/UploadFile/f0b2ed/what-is-naming-convention/
https://doi.org/10.1162/tacl_a_00448
https://irma.nps.gov/DataStore/Reference/Profile/2236826
https://irma.nps.gov/DataStore/Reference/Profile/2236826
https://arxiv.org/abs/2307.07306
https://irma.nps.gov/DataStore/Reference/Profile/2221324
https://doi.org/10.18653/v1/P18-1033
https://www.cidrdb.org/cidr2024/papers/p74-floratou.pdf
https://doi.org/10.18653/v1/2021.acl-long.195
https://doi.org/10.14778/3641204.3641221
https://www.gsa.gov/directives-library/security-policy-for-generative-artificial-intelligence-ai-large-language-models-llms
https://www.gsa.gov/directives-library/security-policy-for-generative-artificial-intelligence-ai-large-language-models-llms
https://inbo.github.io/tutorials/tutorials/database_conventions/
https://inbo.github.io/tutorials/tutorials/database_conventions/
https://doi.org/10.1109/ICASSP49357.2023.10096170
https://doi.org/10.1109/WISA.2015.25
https://doi.org/10.1109/WISA.2015.25
https://openreview.net/forum?id=FflKTuIRTD
https://openreview.net/forum?id=FflKTuIRTD
https://irma.nps.gov/DataStore/Reference/Profile/2288667
https://irma.nps.gov/DataStore/Reference/Profile/2288667
https://irma.nps.gov/DataStore/Reference/Profile/2300107
https://irma.nps.gov/DataStore/Reference/Profile/2300107
https://doi.org/10.57830/2300107
https://doi.org/10.1162/COLI_a_00168
https://arxiv.org/abs/https://direct.mit.edu/coli/article-pdf/40/1/121/1812691/coli_a_00168.pdf
https://arxiv.org/abs/https://direct.mit.edu/coli/article-pdf/40/1/121/1812691/coli_a_00168.pdf
https://doi.org/10.1609/aaai.v37i11.26535

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:25

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33
[34
[35
[36

—

[37]

[38]

[39]

[40]

[41
[42]

—

[43]

[44]

[45]

2,3, Article 127 (May 2024), 28 pages. doi:10.1145/3654930

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng, Nan Huo,
Xuanhe Zhou, Chenhao Ma, Guoliang Li, Kevin C.C. Chang, Fei Huang, Reynold Cheng, and Yongbin Li. 2024. Can
LLM already serve as a database interface? a big bench for large-scale database grounded text-to-SQLs. 28 pages.
Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao Mou, Marc Marone,
Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, Thomas Wang, Olivier
Dehaene, Mishig Davaadorj, Joel Lamy-Poirier, Jodo Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, Zhihan Zhang,
Nour Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo Villegas, Maxim Kunakov,
Fedor Zhdanov, Manuel Romero, Tony Lee, Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan
Ebert, Tri Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Mufioz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. 2023. StarCoder: may the source be with you!
(2023). arXiv:2305.06161 [cs.CL]

Pingchuan Ma and Shuai Wang. 2021. MT-Teql: Evaluating and Augmenting Neural NLIDB on Real-World Linguistic
and Schema Variations. Proc. VLDB Endow. 15, 3 (nov 2021), 569-582. do0i:10.14778/3494124.3494139

Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz, Eneko Agirre,
Ilana Heintz, and Dan Roth. 2023. Recent Advances in Natural Language Processing via Large Pre-Trained Language
Models: A Survey. ACM Comput. Surv. 56, 2, Article 30 (sep 2023), 40 pages. doi:10.1145/3605943

Tan Muirhead. 2021. Northern Great Plains Fire Management: FFI Database. https://irma.nps.gov/DataStore/Reference/
Profile/2297267. Accessed: April 2023.

Linyong Nan, Yilun Zhao, Weijin Zou, Narutatsu Ri, Jaesung Tae, Ellen Zhang, Arman Cohan, and Dragomir Radev.
2023. Enhancing Few-shot Text-to-SQL Capabilities of Large Language Models: A Study on Prompt Design Strategies.
arXiv:2305.12586 [cs.CL] https://arxiv.org/abs/2305.12586

National Center for Statistics and Analysis. 2022. Overview of the 2021 Crash Investigation Sampling System.
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813397 Traffic Safety Facts Research Note. Report No.
DOT HS 813 397.

OpenAl [2022]. ChatGPT: Optimizing Language Models for Dialogue. https://openai.com/blog/chatgpt/.

OpenAl 2023. OpenAI API Documentation. https://platform.openai.com/docs/guides/gpt. Last accessed on 2023-10-30.
OpenAl 2023. OpenAl Tokenizer. https://github.com/openai/tiktoken. Last accessed on 2023-10-30.

Oracle. 2024. Database Object Names and Qualifiers. https://docs.oracle.com/en/database/oracle/oracle-database/19/
sqlrf/Database-Object-Names-and-Qualifiers.html. Last accessed on 2025-01-04.

Oracle. 2024. Table Naming Standards and Conventions. https://docs.oracle.com/cd/E92917_01/PDF/8.1.x.x/common/
HTML/DM_Naming/2_Table_and_Column_Naming_Standards.htm. Last accessed on 2025-01-04.

Simone Papicchio, Paolo Papotti, and Luca Cagliero. 2024. Evaluating Ambiguous Questions in Semantic Parsing. In
2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW). 338-342. doi:10.1109/I[CDEW61823.
2024.00050

Simone Papicchio, Paolo Papotti, and Luca Cagliero. 2024. QATCH: benchmarking SQL-centric tasks with table
representation learning models on your data. In Proceedings of the 37th International Conference on Neural Information
Processing Systems (New Orleans, LA, USA) (NIPS °23). Curran Associates Inc., Red Hook, NY, USA, Article 1348,
20 pages.

Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL(*) Parsing: The Power of Dynamic Analysis.
In Proceedings of the 2014 ACM International Conference on Object Oriented Programming Systems Languages and
Applications (Portland, Oregon, USA) (OOPSLA ’14). Association for Computing Machinery, New York, NY, USA,
579-598. doi:10.1145/2660193.2660202

Phind. 2023. Phind-CodeLlama-34B-v2. https://huggingface.co/Phind/Phind-CodeLlama-34B-v2.

Marie-Laurence Poujois. 2021. Localized Demo Databases Now Available for SAP Business One 10.0 FP 2011. https:
//blogs.sap.com/2021/01/29/localized- demo-databases-now-available-for-sap-business-one-10.0-fp-2011/. Accessed:
April 2023.

Mohammadreza Pourreza and Davood Rafiei. 2024. DIN-SQL: decomposed in-context learning of text-to-SQL with
self-correction. In Proceedings of the 37th International Conference on Neural Information Processing Systems (New
Orleans, LA, USA) (NIPS °23). Curran Associates Inc., Red Hook, NY, USA, Article 1577, 10 pages.

G. A. Radja, E.-Y. Noh, and F. Zhang. 2022. Crash Investigation Sampling System 2021 analytical user’s manual.
Accessed: April 2023.

Baptiste Roziére, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi, Jingyu Liu, Tal
Remez, Jérémy Rapin, Artyom Kozhevnikov, Ivan Evtimov, Joanna Bitton, Manish Bhatt, Cristian Canton Ferrer, Aaron

https://doi.org/10.1145/3654930
https://arxiv.org/abs/2305.06161
https://doi.org/10.14778/3494124.3494139
https://doi.org/10.1145/3605943
https://irma.nps.gov/DataStore/Reference/Profile/2297267
https://irma.nps.gov/DataStore/Reference/Profile/2297267
https://arxiv.org/abs/2305.12586
https://arxiv.org/abs/2305.12586
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813397
https://openai.com/blog/chatgpt/
https://platform.openai.com/docs/guides/gpt
https://github.com/openai/tiktoken
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/Database-Object-Names-and-Qualifiers.html
https://docs.oracle.com/en/database/oracle/oracle-database/19/sqlrf/Database-Object-Names-and-Qualifiers.html
https://docs.oracle.com/cd/E92917_01/PDF/8.1.x.x/common/HTML/DM_Naming/2_Table_and_Column_Naming_Standards.htm
https://docs.oracle.com/cd/E92917_01/PDF/8.1.x.x/common/HTML/DM_Naming/2_Table_and_Column_Naming_Standards.htm
https://doi.org/10.1109/ICDEW61823.2024.00050
https://doi.org/10.1109/ICDEW61823.2024.00050
https://doi.org/10.1145/2660193.2660202
https://huggingface.co/Phind/Phind-CodeLlama-34B-v2
https://blogs.sap.com/2021/01/29/localized-demo-databases-now-available-for-sap-business-one-10.0-fp-2011/
https://blogs.sap.com/2021/01/29/localized-demo-databases-now-available-for-sap-business-one-10.0-fp-2011/

77:26 Kyle Luoma and Arun Kumar

Grattafiori, Wenhan Xiong, Alexandre Défossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier,
Thomas Scialom, and Gabriel Synnaeve. 2023. Code Llama: Open Foundation Models for Code. arXiv:2308.12950 [cs.CL]

[46] Tushar Sharma, Marios Fragkoulis, Stamatia Rizou, Magiel Bruntink, and Diomidis Spinellis. 2018. Smelly Relations:
Measuring and Understanding Database Schema Quality. In Proceedings of the 40th International Conference on Software
Engineering: Software Engineering in Practice (Gothenburg, Sweden) (ICSE-SEIP ’18). Association for Computing
Machinery, New York, NY, USA, 55-64. doi:10.1145/3183519.3183529

[47] StackOverflow. [n.d.]. Database, Table and Column Naming Conventions? https://stackoverflow.com/questions/7662/

database-table-and-column-naming-conventions. Last accessed on 2024-01-01.

Charles Stefanic. 2021. Wildlife Observations Database: Craters of the Moon National Monument and Preserve

1921-2021. https://irma.nps.gov/DataStore/Reference/Profile/2192964. Accessed: April 2023.

[49] Alane Laughlin Suhr, Kenton Lee, Ming-Wei Chang, and Pete Shaw. 2020. Exploring Unexplored Generalization
Challenges for Cross-Database Semantic Parsing. In ACL 2020.

[50] Gemini Team. 2024. Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context.
arXiv:2403.05530 [cs.CL]

[51] Gemini Team. 2024. Gemini: A Family of Highly Capable Multimodal Models. arXiv:2312.11805 [cs.CL]

[52] PaLM 2 Team. 2023. PaLM 2 Technical Report. Technical Report. arXiv:2305.10403 [cs.CL]

[53] The Mosaic Research Team. 2024. Introducing DBRX: A New State-of-the-Art Open LLM. https://www.databricks.
com/blog/introducing-dbrx-new-state-art-open-1lm.

[54] The Snowflake Research Team. 2024. Snowflake Arctic: The Best LLM for Enterprise Al - Efficiently Intelligent, Truly
Open. https://www.snowflake.com/blog/arctic-open-efficient-foundation-language-models-snowflake/.

[55] Bailin Wang, Richard Shin, Xiaodong Liu, Alex Polozov, and Matthew Richardson. 2020. RAT-SQL: Relation-Aware
Schema Encoding and Linking for Text-to-SQL Parsers. In ACL 2020. https://www.microsoft.com/en-us/research/
publication/rat-sql-relation-aware-schema-encoding-and-linking- for- text-to-sql-parsers/

[56] Lihan Wang, Bowen Qin, Binyuan Hui, Bowen Li, Min Yang, Bailin Wang, Binhua Li, Jian Sun, Fei Huang, Luo Si, and
Yongbin Li. 2022. Proton: Probing Schema Linking Information from Pre-Trained Language Models for Text-to-SQL
Parsing. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (Washington DC,
USA) (KDD °22). Association for Computing Machinery, New York, NY, USA, 1889-1898. doi:10.1145/3534678.3539305

[57] Zhuoming Xu, Shichao Zhang, and Yisheng Dong. 2006. Mapping between Relational Database Schema and OWL
Ontology for Deep Annotation. In 2006 IEEE/WIC/ACM International Conference on Web Intelligence (WI 2006 Main
Conference Proceedings)(WI'06). 548—552. doi:10.1109/W1.2006.114

[58] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle
Roman, Zilin Zhang, and Dragomir Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the 2018 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, Brussels, Belgium.

[59] Lu Zeng, Sree Hari Krishnan Parthasarathi, and Dilek Hakkani-Tur. 2023. N-Best Hypotheses Reranking for Text-to-SQL
Systems. In 2022 IEEE Spoken Language Technology Workshop (SLT). 663-670. doi:10.1109/SLT54892.2023.10023434

[60] Jiani Zhang, Zhengyuan Shen, Balasubramaniam Srinivasan, Shen Wang, Huzefa Rangwala, and George Karypis. 2023.
NameGuess: Column Name Expansion for Tabular Data. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Association for Computational
Linguistics, Singapore, 13276-13290. doi:10.18653/v1/2023.emnlp-main.820

[48

—

A Source Databases and Queries in SNAILS

The SNAILS database collection (Artifact 1) contains 9 real-world schemas sourced from several
different organizations and domains. In this section, we describe the technical details of each
schema and its associated NL question-SQL query pairs. The bar charts in each data source section
visually portray the clause compositions of the gold queries in Artifact 6-the NL question-SQL
query pairs.

A.1 Data Sources
A.1.1 Field Data for Assateague Island National Seashore Amphibian and Reptile Inventory (ASIS).

Data Description. The ASIS database [8] is sourced from the National Parks Service (NPS) Irma
portal [1] and contains scientific observation data of wildlife in the Assateague Island National
Seashore preserve.

https://arxiv.org/abs/2308.12950
https://doi.org/10.1145/3183519.3183529
https://stackoverflow.com/questions/7662/database-table-and-column-naming-conventions
https://stackoverflow.com/questions/7662/database-table-and-column-naming-conventions
https://irma.nps.gov/DataStore/Reference/Profile/2192964
https://arxiv.org/abs/2403.05530
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2305.10403
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.snowflake.com/blog/arctic-open-efficient-foundation-language-models-snowflake/
https://www.microsoft.com/en-us/research/publication/rat-sql-relation-aware-schema-encoding-and-linking-for-text-to-sql-parsers/
https://www.microsoft.com/en-us/research/publication/rat-sql-relation-aware-schema-encoding-and-linking-for-text-to-sql-parsers/
https://doi.org/10.1145/3534678.3539305
https://doi.org/10.1109/WI.2006.114
https://doi.org/10.1109/SLT54892.2023.10023434
https://doi.org/10.18653/v1/2023.emnlp-main.820

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:27

stat_value
select elem
table sourci
predicate
avg
join
where
group by
count
and
sum
subquery
non ansi joi
composite-|
max
top clause
order by

16 1

144

12 A

10 A

Count

0 20
query_sort

Fig. 14. Gold query clause composition - ASIS database

ASIS Database Technical Details.

e Data source format: Microsoft Access

e Migration method: SQL Server Migration Assistant
e Table count: 36

e Column count: 245

e Mean columns per table: 6.125

e NL Questions: 40

e Combined naturalness level: 0.77

A.1.2 Great Smoky Mountains All Taxa Biodiversity Inventory (ATBI) Plot Vegetation Monitoring
Database.

Data Description. The ATBI database [11] contains scientific observations of vegetation within
the Great Smoky Mountains national park.

77:28

20 A

154

Count

10

Kyle Luoma and Arun Kumar

20
query_sort

Fig. 15. Gold query clause composition - ATBI database

ATBI Database Technical Details.

Data source format: Microsoft Access

Migration method: SQL Server Migration Assistant
Table count: 28

Column count: 192

Mean columns per table: 6.857

NL Questions: 40

Combined naturalness level: 0.70

A.1.3 Klamath Inventory and Monitoring Network (KIS).

stat_valu
select eler
table sour
predicate
join
where
group by
count
subquery
order by
top clause
max
negation
and
exists
asterisk
avg
having

Data Description. The Klamath Invasive Species (KIS) database [21] contains scientific observa-
tions of exoctic and invasive plants observed in Klamath Falls, Oregon.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:29

stat_valu
[select eler
=3 table sour
3 predicate
= where
3 count
3 join
3 function
= and
=3 group by
3 top clause
=3 order by
= avg
3 subquery
3 negation

20 A

154

Count

10

0 5 20
query_sort

Fig. 16. Gold query clause composition - KIS database

KIS Database Technical Details.

Data source format: Microsoft Access

Migration method: SQL Server Migration Assistant
Table count: 18

Column count: 157

Mean columns per table: 8.72

NL Questions: 40

Combined naturalness level: 0.79

A.1.4 Pacific Island Network Landbird Monitoring Dataset.

Data Description. Pacific island landbirds (PILB) database [22] contains scientific observations of
bird observations in various Pacific islands within the US states and territories.

77:30 Kyle Luoma and Arun Kumar

— stat_valu
40 4 [table sour

3 predicate
=3 join
count
group by
where
order by
top clause
and
subquery
avg
having
max

or

sum

354

304 —

25 A

Count

1514

|
goooopoooona

c
=
a
o
o
=

0 5 10 15 20 25 30 35 40
query_sort

Fig. 17. Gold query clause composition - PILB database

PILB Database Technical Details.

Data source format: Microsoft Access

Migration method: SQL Server Migration Assistant
Table count: 21

Column count: 196

Mean columns per table: 9.33

NL Questions: 40

Combined naturalness level: 0.75

A.1.5 Wildlife Observations Database: Craters of the Moon National Monument and Preserve 1921-
2021.

Data Description. The Craters Wildlife Observation (CWO) database [48] contains observations
of wildlife spotted at the Craters of the Moon national monument and preserve. It is the smallest
and most natural database in the benchmark data set.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:31

20.0 4 — stat_value
select elem
predicate
table sourc
where
group by
subquery
and
negation
count

join

exists
asterisk
top clause
order by

or

having
composite-|
max

17.5 A

Count

7.5 A

5.0 — = ——

goooopoEOoDOOOODOm

2.54

0.0 I T T T T T T T T T
0 5 10 15 20 25 30 35 40
query_sort

Fig. 18. Gold query clause composition - CWO database

CWO Database Technical Details.

Data source format: Microsoft Access

Migration method: SQL Server Migration Assistant
Table count: 13

Column count: 71

Mean columns per table: 5.461

NL Questions: 40

Combined naturalness level: 0.84

A.1.6 Northern Great Plains Fire Management: FFl Database.

Data Description. The NPFM database [30] contains observations of various overstory and other
flora within the Northern Plains region of the Nationa Parks Service.

Code-Bison Evidence of Familiarity. With this dataset, we observe some indications of exposure
to the Code-Bison language model. We note that we no longer report performance results of
Code-Bison inference in our main report.

When prompted with the NL question "How many overstory’s have a codominant canopy
position?", it generated the query:

SELECT COUNT (*)
FROM tbl_Overstory
WHERE CanPos = 2;

Which is a correct reference to the canopy position (CanPos) lookup code of 2, which corresponds
to the codominant canopy position. The LLM was not provided code lookup information within the
prompt, which suggests that some reference to the NPFM schema was included in its training data.

77:32 Kyle Luoma and Arun Kumar

— stat_valu
[select eler
=3 table sour
predicate
where
join

count
group by
function
avg

top clause
order by
and

max

min
subquery

144

101 — H

Count

goooopoononom

0 5 10 15 20 25 30 35 40
query_sort

Fig. 19. Gold query clause composition - NPFM database

NPFM Database Technical Details.

Data source format: Microsoft Access

Migration method: SQL Server Migration Assistant
Table count: 27

Column count: 190

Mean columns per table: 7.037

NL Questions: 40

Combined naturalness level: 0.70

A.1.7 2021 Crash Investigation Sampling System.

Data Description. The crash investigation sampling system [44] is sourced from the National
Transportation Safety Board, and referred to as NTSB in this paper. It contains sampled data of
crash and vehicle statistics from 2021. The data is organized such that composite key joins are
required for most multi-relation queries.

Additional Implementation Details. This is the only database in our collection that required
deliberate migration from a non-database format to the target MS SQL Server environment. We
acquired the data in .csv form, with a single .csv per table. Analysis of the files confirmed that
although not in database form, the data was relational in nature, and migration involved SQL-based
ingestion from .csv files into the target schema. The .sql scripts used to generate the database
schema and insert table values are available in the project repository.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:33

254
- stat_value
select elem
predicate
table sourc
where
group by
and

count

join
composite-|
order by
avg

concat

top clause
subquery
max
negation
having

cast

sum

20 A]

15 - mIHHIHIH

Count
]
|
1
|
1
T

10 L T LR

—opoooopoEODEDODOODOD

—
o4
S

0 20 40 60 80
query_sort

Fig. 20. Gold query clause composition - NTSB database

NTSB Database Technical Details.

Data source format: Comma Separated Value (CSV) files

Migration method: SQL database creation and Python-based ETL scripting
Table count: 40

Column count: 1,611

Mean columns per table: 40.275

NL Questions: 100

Combined naturalness level: 0.59

A.1.8 New York State Education Department Report Card Database 2021-22.

Data Description. The NYSED database [4] is sourced from the New York State Education De-
partment. It contains standardized testing and demographic data for all public elementary, middle,
and high schools in New York State.

77:34 Kyle Luoma and Arun Kumar

30 4
— stat_value

predicate
select elem
and

table sourc
where
function
avg
subquery
group by
count

join

top clause
order by
composite-|
sum
negation
exists

max
having

25 A — | H

201 T

10 HH L FA L H | A HH|HH

pogoopoooopomOooDoom

«
]
i
|
|
|
|
|
|
|

11T
|
|
|
I
|
I
I
|
,
I
|
|
I

I T1T

0 10 20 30 40 50 60
query_sort

Fig. 21. Gold query clause composition - NYSED database

NTSB Database Technical Details.

Data source format: Microsoft Access

Migration method: SQL Server Migration Assistant
Table count: 27

Column count: 423

Mean columns per table: 15.67

NL Questions: 63

Combined naturalness level: 0.68

A.1.9 Localized Demo Databases Now Available for SAP Business One.

Data Description. The SBOD database [42] is sourced from a publically available SAP demonstra-
tion and training database. It is the largest, and least natural, database within our dataset. Given
its schema size, we divided it based on SAP module, and further reduced the schemas used in our
benchmark based on the training database cardinality (e.g. we removed most tables containing 0

tuples).

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:35

stat_valu
T select eler
3 predicate
3 table sour
I where
3 join
B3 and
=3 function
=3 count
/ avg

Count

4
query_sort

Fig. 22. Gold query clause composition - SBOD database module example

SBOD Database Technical Details.

e Data source format: MS SQL Server backup (.bak) file
e Migration method: MS SQL Server backup recovery
e Table count: 2,588

e Column count: 90,477

e Mean columns per table: 34.96

e NL Questions: 100

e Combined naturalness level: 0.49

Module Tables | Columns | Questions
Banking 40 1720 10
Business Partners 40 1443 10
Finance 61 1988 10
General 71 1035 10
Human Resources 28 440 20
Inventory and Prod. 65 1942 10
Reports 40 734 10
Sales Opportunities 20 283 10
Service 40 875 10

Table 4. SBO Demo Module Schemas

SAP Business One Additional Details. Business One is an enterprise resource planning (ERP)
system created by the German software systems developer SAP. It is a common platform in govern-
ment and commercial domains where large-scale business management solutions are required. The
SBOD database contains a significant number of tables and columns. Such a schema size poses a
problem for generating schema knowledge representations in zero shot prompts, even for large

77:36 Kyle Luoma and Arun Kumar

context window variations of evaluated LLMs. To overcome this constraint, we divide the SBOD
schema into 9 sub-modules based on schema descriptions published by an online community of
SAP practicioners [2]. We further prune the SBOD schemas using the cardinality of the training
database, where tables without data entries were excluded from NL questions and prompt schema

knowledge.

A.2 NL Questions and Gold Queries

The NL question - SQL query pair artifact consists of 9 .sql files containing between 40 and 100
entries each. Question and query pairs are written in executable .sql files. Natural language questions
are written as SQL comments; and SQL is written in the T-SQL dialect employed in MS SQL Server.
For public repositories storing the questions, we store them in .zip files in order to reduce the
possibility of inclusion in language model training material. Each file is associated with a database
in the SNAILS schema collection. Some NL questions contain hint and note entries annotated as
HINT and NOTE in lines that follow the NL query. We used neither the hints nor columns in any
of the experiments described in this paper, but retain them for possible use in future research.
While we store the data in .sql file format for readability and ease of use, we also offer a NL
question loading script (load_nl_questions.py) in our repository. This script performs rudimentary
parsing of the .sql files and returns a Pandas DataFrame and optional .xlsx formatted spreadsheet.

NL Question - Query Example 1, ASIS Database Question 8. The focus of this benchmark dataset is
on the evaluation of schema linking. As such, we were generous with value descriptions, providing
literal value strings (e.g. ASIS_HERPS_20H location code in example 1) in the prompt.

-- 8: show how many minnows of each stage were counted
at the location ASIS_HERPS_20H

SELECT stage, sum(count) minnowCountSum

FROM tblFieldDataMinnowTrapSurveys

WHERE locationID = 'ASIS_HERPS_20H'

GROUP BY stage

’

NL Question - Query Example 2, NTSB Database Question 13. Example 2 shows additional code
value hints provided in the NL question. In order to enable the recall evaluation statistic, we limited
the use of columns and tables in gold queries to the minimum necessary to form a correct query. In
the cases where any arbitrary column as an argument in the count function will yield the same
result as the #, we use only the * symbol. This eliminates the recall penalty for models selecting an
arbitrary column within the count function.

-- 13: How many vehicles are there where drugs were present
(presence code value is 1) and the vehicle was towed
for a reason not due to disabling damage (towed code is 3)
SELECT COUNT(*) VEHCOUNT
FROM GV
WHERE PARDRUG = 1 AND TOWED = 3

’

NL Question - Query Example 3, SBOD Database Human Resources Module Question 18. Questions
vary in their complexity. This example shows one of the more complex questions that require
multiple projections and joins as well as a selection.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:37

Naturalness Level
0.8 NN | east EEE Low EEEH Regular
0.6
0.
0.
0.0

Spider Spider-Real Bird SchemaPile SNAILS
(Ours)

~

Identifier Naturalness Proportion
N

Schema Collection

Fig. 23. Spider [58] and Bird [26] benchmarks classified with the Davinci-based classifier reveals that both
benchmark databases have highly natural identifiers even compared to the most natural of the databases in
our proposed benchmark. Our benchmark more closely aligns with the naturalness of the real-world schema
collection SchemaPile [9]

-- 18: Show the professional status and educational
statuses as well as the home and work street
numbers of employees on the purchasing team.

SELECT StatusOfP, StatusOfE, StreetNoW, StreetNoH

FROM OHEM employees

JOIN HTM1 teamMembers

ON employees.empId = teamMembers.empID

JOIN OHTM emplTeams

ON teamMembers.teamID = emplTeams.teamID
WHERE emplTeams.name = 'Purchasing'

’

A.3 Benchmark Naturalness Comparisons

Though we believe the quality of existing benchmarks is excellent, and the hard work of researchers
associated with those projects has resulted in significant improvements in NL-to-SQL system design,
we find that a large proportion of these benchmark schemas are canonical, small in composition, and
highly natural compared to databases and data sets often encountered in real world scenarios. Using
our naturalness classifier described in the main report and the appendix section B, we determine
the naturalness levels of the Spider [58] and Bird-SQL [26]. Our classifier model indicates that
both Spider and Bird database schemas are highly natural, moreso than any real-world schema we
acquired for our benchmark (see Figure 23 for a visual comparison). Additionally, we evaluate the
naturalness of the real-world schema identifiers in the SchemaPile [9] and find that the SNAILS
naturalness better-aligns with SchemaPile than the previously-mentioned benchmarks. Figure 5

77:38

Identifier Proportion
o 1 o o =
N 2 @ ® o

o
o

I o o =
IS o @ o

Identifier Proportion

o
~

0.0

o o 14 g
IS o ™ o

Identifier Proportion

o
N

o
o

Fig. 24.

Kyle Luoma and Arun Kumar

DB_LABEL = ASIS DB_LABEL = ATBI DB_LABEL = BUIS DB_LABEL = CWO

DB_LABEL = KIS DB_LABEL = MINV DB_LABEL = NTSB DB_LABEL = NPFM

COLUMN_OR_TABLE
B TABLE
=1 COLUMN

DB_LABEL = PILB DB_LABEL = SBOD DB_LABEL = Bird DB_LABEL = Spider

Regular Low Least Regular Low Least Regular Low Least Regular Low Least
Naturalness-Level Naturalness-Level Naturalness-Level Naturalness-Level

At the individual database schema level, the SNAILS database collection has a diverse arrangement

of naturalness levels.

B Naturalness Classification

B.1

Heuristics-based scoring

Prior to experimenting with ML classifiers, we used a set of heuristics to score the naturalness of
each identifier. Comparisons between the heuristics-based scoring approach and ML classification
reveals that ML is superior in terms of recall, precision, and F1. We include a description of the
heuristics here for completeness, but exclude them from the main body of the report.

e Vectorize an English word vocabulary as frequency counts of letters in the word.

With a given database identifier, vectorize the identifier as frequency counts of letters in the
identifier and downsample to the English word vocabulary to words that have a superset of
the letters in the identifier.

Further downsample the candidate words to words where the letters appear in the same
order as the words in the identifier.

For each word in the downsampled vocabulary, compute the Levenshtein distance between
the word and the identifier. This number is called the edit distance.

For each word, count the number of possible word candidates within 1 and 2 Levenshtein
distance from the word. We call this number candidate ambiguity.

The distribution of candidate ambiguity across our vocabulary is highly skewed, so we take
the log of the candidate ambiguity to normalize the distribution.

We then calculate the naturalness score as the weighted mean of the inverse of the edit
distance and the inverse of the log of the candidate ambiguity. This yields values ranging
from 0 to 1, where 0 is least natural and 1 is most natural.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:39

— o | = (oW

VegHeight
grielg Classifier VegHeight\ D) | =P (Reg
‘_I_‘ I—'—I
[HV.,hteg’; U = vegetation_height
ei '
L feieht'] Expander M veget’ A ation .
- s s

| _height']

Fig. 25. Schema identifiers in our benchmark dataset are classified into a naturalness category and modified
to increase or decrease naturalness as appropriate. Modified identifiers comprise the schema crosswalks used
for schema modification during experiment query inference.

B.2 Dataset Naturalness Classifications

Identifier naturalness within each dataset is categorized using the N1 (Regular), N2 (Low), and
N3 (Least) categories. Naturalness of table and column identifiers are cataloged both separately,
and in consolidated form (i.e. tables and columns together). Additionally, we calculate a combined
naturalness score for consolidated identifiers using category weights.

CombinedNaturalness = 1.0"Regular + 0.5*Low + 0.0"Least

®)

where Regular, Low, and Least are proportions of schema identifiers in each respective category
within the total count of identifiers in the identifier’s source schema.

B.3 Training Data Collections

For finetuning tasks, we train language models using database identifiers extracted from the
schemas in the SNAILS real-world database collection. We begin with a human-classified collection
(Collection 1); then we employ classifier models trained on Collection 1 to generate a larger set
(Collection 2) of machine-classified and human-curated identifier classifications.

Collection 1 The full dataset contains 1,648 manually classified unique schema identifiers. The
identifiers are hand labeled as one of 3 naturalness levels (Regular, Low, Least). We randomly divide
the data into a training, validation, and test set. This resulted in a distribution of 959 identifiers
used for training, 356 for validation, and 333 for testing.

Collection 2 The labeled data set contains 13,722 distinct column identifiers and 3,504 dis-
tinct table identifiers for a total size n = 17,226. We employ GPT’s Davinci model finetuned on
Collection 1 to generate the preliminary naturalness scores. The authors reviewed, and where
necessary, modified the model-generated identifier scores to affirm the accuracy of the naturalness
classifications. Of the 17,223 identifiers reviewed, 15,527 naturalness scores, or 90.1 percent, were
accurately predicted by the Davinci-based model. We manually scored the incorrectly-predicted
1,696 identifiers. For model finetuning, we randomly split the resulting data into training (n =
10,327), validation (n = 3,457), and test (n = 3,457).

77:40 Kyle Luoma and Arun Kumar

Model Accuracy Precision Recall F1
GPT-3.5- 0.646 0.623 0.638 0.630
FewShot

CANINE-Seq 0.719 0.699 0.727 0.712
C1

GPT-4- 0.742 0.742 0.792 0.766
FewShot

CANINE- 0.829 0.829 0.838 0.833
Seq+TG C1

GPT-3.5- 0.899 0.878 0.877 0.878
FineTune

GPT-3.5- 0.896 0.896 0.897 0.896
FineTune+TG

CANINE- 0.896 0.896 0.898 0.897
Seq+TG C2

Table 5. Performance comparison of different language models for classifying a database identifier’s natural-
ness

B.4 ML Classifier-based scoring

The use of pre-trained language models is a SOTA approach for classification problems [29], and we
experiment with various attempts at model-based scoring, including few-shot learning via the GPT
API, and finetuning several BERT-like language models on our dataset of database identifiers to
create a second larger collection of identifier naturalness scores. Since the presence of acronyms and
abbreviations is a significant determining factor of identifier naturalness, a primary consideration
for our naturalness scoring task is the granularity of the tokenizer output. For this reason, we
use models that employ either character-level tokenization, word part tokenization, or byte pair
tokenization techniques. We select 2 approaches: 1) Use of a foundational LLM in various capacities;
and 2) Finetuning of a character-level token language model.

B.5 Character Tagging Feature

We include a pre-processing step that generates a sequence of special characters that correspond
to the type of characters of the identifier to be classified. The sequence is then concatenated with
the identifier and passed to the language models during training and inference. We refer to this
approach as character tagging, and models employing tagging are labeled with TG in Table 5. Both
GPT- and CANINE-based models exhibit improvement in F1 scores using character tagging.
There are intuitive structural differences between abbreviated words and their complete counter-

parts. Specifically, we observe that word abbreviations generally contain more consonants than
vowels, as vowels seem more likely to be removed during abbreviation. We are unsure of a lan-
guage model’s ability to make use of this observation, so we offer some assistance in the form of a
pre-processing step that generates a sequence of special characters that correspond to the type of
characters of the identifier to be classified. We concatenate the tag sequence to the identifier and
pass it to the language models for training and inference. Special characters include:

e ":Vowels

e +: Consonants

e #: Numbers

e $: Special characters

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:41

e x: Any character not in the above categories

We refer to this approach as character tagging, and models employing tagging are labeled with TG
in Table 5.
For example, the identifier AuthorID_5 would be pre-processed as follows:

AuthorID_5 "*++*+7+$#

Both GPT- and CANINE-based models exhibit improvement in F1 scores when using the character
tagging feature.

B.6 GPT 3.5/4 Turbo Few-Shot-Based Scoring

We experiment with the effectiveness of few-shot prompting to classify identifier naturalness. We
opt to provide one set of instructions followed by a series of 25 randomly selected human-validated
examples of naturalness levels. We perform text replacement on the trailing row by replacing
the _IDENTIFIER _ text with the identifier to be classified. This approach does not require model
pre-training; but this convenience is paid for in terms of the number of tokens in the prompt, and
classifying a large schema with this method can incur rather high LLM usage costs.

The following is a list of database identifiers and

labels that indicate how closely they resemble
natural english words:

N1: most natural english words

N2: second

most natural english words

(e.g. abbreviations or combinations of
natural words and acronyms)

N3:
(e.g. very
meaning or

third most natural english words

short abbreviations with obscured
acronyms)

identifier: CASENO Label: N1

identifier: BENTHOS_TotalAreaSampled_m2 Label: N2
identifier: CAUSE3 Label: N1

identifier: MT_RIVPACS_2011_0TU Label: N3
identifier: ACTIVATE Label: N1

identifier: MotorcycleChassisTypeld Label: N1
identifier: First_Name Label: N1

identifier: IPCAREA_2ND Label: N2

identifier: INJNO Label: N2

identifier: tbl_MicroHabitat Label: N2
identifier: EMSGCSEYE Label: N3

identifier: HEADRESTDAM Label: N2

identifier: AutoPedestrianAlertingSound Label: N1
identifier: ModelTest Label: N1

identifier: tlu_topo_position Label: N2
identifier: Understory_Comp Label: N1
identifier: BAGDAMAGE Label: N1

identifier: HARNESSDESIGN Label: N1
identifier: Coord_Syst Label: N2

identifier: CINJSEV Label: N2

identifier: JKWGT12 Label: N3

77:42 Kyle Luoma and Arun Kumar

identifier: _IDENTIFIER_ Label:

B.7 GPT Davinci Fine Tuning

We train the Davinci-based completion models using the OpenAl command line API. We generated
models with character tagging, as well as models without tagging. Below is an excerpt from the
tagging-based training data.
{"prompt":"ADDRESS *+++*++ ->" "completion":" N1"}
{"prompt":"AIS **+ —>" "completion":" N3"}
{"prompt":"AISCODE **++*+* ->" "completion":" N3"}
{"prompt":"BACKBPILL +*++++*++ —>" "completion":" N2"}
{"prompt":"ALIGNMENT A+*+++~++ ->" "completion":" N1"}
{"prompt":"ARRMEDICAL *+++*+*+%+ ->" "completion":" N2"}
Inference using charager tagged models requires appending the tag to the identifier in the same
format as the training data.

B.8 CANINE Fine Tuning

CANINE [7] is a BERT-based language model that tokenizes inputs at the character level. We
trained a sequence classification head using both generation 1 and generation 2 data sets using a
single NVIDIA GTX 1080 GPU. We employed the HuggingFace Transformers library, CUDA 12.1,
and Torch 2.0.1 to fine tune the "google/canine-s’ model. Hyperparameter tuning was conducted
using the optuna library, which resulted in the parameter settings:

e Optimizer: adamw hf

e Learning rate: 4.910828967396573e-05
e Per device training batch size: 24

e Per device evaluation batch size: 12

e Number of epochs: 15

e Weight decay: 0.04168784348465411

Models were trained both with, and without, the character tagging feature. We offer the evaluated
models in our project repository. The snails_naturalness_classifier.py Python file contains the
CanineldentifierClassifier class. This class provides a simple classify_identifier method for using the
CANINE model to classify identifier naturalness with or without character tagging.

B.9 Tokenizers

We examine the relationship between tokenization and naturalness by generating token counts,
character counts, and a character-to-token ratio of each identifier. As expected, due to the unab-
breviated nature of the identifiers, more natural identifiers have more characters (see Figure 26).
Perhaps more surprising, token count is not very sensitive to naturalness levels, mainly due to the
general behavior where more abbreviated identifiers will have character sequences not found in
the LLM tokenizer’s vocabulary. When a character sequence is not present in the vocabulary, the
tokenizer will split the sequence into multiple subtokens.

I
TCR = _Miokens| (6)

|Icharacters |
Because there is not a clear relationship between token count and naturalness, we derive a
token-to-character ratio metric (see 6) which is the count of identifier tokens I;oxens divided by the
count of identifier characters Ipgracrers- What we see in Figure 28 is a fairly strong differentiation
between naturalness levels and TCR, where more natural identifiers have lower TCR than less

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference

Proportion

0.8

0.6 1

0.4

0.2

0.0 1—=

Naturalness Level

—-- Native
—— Regular

Least
Low

40 60
Character Count

80

77:43

Fig. 26. Cumulative distribution of schema identifier character counts by naturalness level. More natural
(less abbreviated) identifiers logically have more characters.

model = gpt-35-turbo-16k

1.01 ot q q P
-] e
| |
0.8 4 g
: :r.l
c H
S 06]] i Naturalness Level
£ i | ----- Least
S I Low
S]] 1
g 04 | —-- Native
s —— Regular
0.2+ 1 b 9
0.0 T T 1 T T T 1 T T T d
0 5 10 15 20 0 5 10 15 20 O 5 10 15 20
Token Count Token Count Token Count
Fig. 27. Token count CDF, by naturalness level, for each language model.
10 Model = GPT Model = Llama2 Model = Gemini
0.8 1 q q
c
5 0.64]] Naturalness Level
c |\ (e 0y e e e Least
g Low
o 4 4 4
g o4 —-- Native
—— Regular
0.2 1 1 9
0.0 T r r r ! e r r ! e r r !
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

Token Count Character Ratio

Token Count Character Ratio

Token Count Character Ratio

Fig. 28. Token counts to character count ratio, by naturalness level, for each language model. More natural
identifiers generally contain fewer tokens-per-character than less natural identifiers, suggesting a higher
presence of in-vocabulary keywords for more natural identifiers.

natural identifiers. We believe that this hints at the effects of in- vs. out-of-vocabulary character
sequences and the strength of their semantic meaning in latent space. However, the relationship is
not so strong that TCR alone can serve as a useful classification method for identifier naturalness.
We leave additional exploration of this topic to future research.

77:44 Kyle Luoma and Arun Kumar

C Naturalness-modified Identifiers

Naturalness modification is the process of changing an identifier in such a way that it assumes a
naturalness category that is not its original classification (see Figure 25). Modifying an identifier
to become less natural is useful for creating benchmark schemas of varying naturalness levels.
The same benefit applies to the process of modifying less natural identifiers to become more
natural; this direction of modification also generally yields improved NL-to-SQL performance, as is
demonstrated in the experiment and evaluation sections of this report.

Naturalness-modified identifiers generated by the ML-based approaches described next are
human-validated and, when necessary, modified. Once validated, the identifiers are added to
our ground truth dataset and used for the prompt and query naturalness modification processes
described elsewhere in this report.

C.1 Decreasing Naturalness (Abbreviation)

Decreasing naturalness generally involves the removal of characters from an identifier in a manner
that shortens the length while retaining some structure that still allows for some measure of
readability. This cannot be achieved by randomly removing characters from an identifier; so we
elect to use machine learning-based approaches to decrease identifier naturalness. As with our
classification approaches, we experiment with both engineered few shot prompts targeted at a
general purpose foundational LLM (GPT), and a fine tuning approach (GPT Davinci).

FPT Davinci Fine Tuning Abbreviation. Seperate models are trained for converstion tasks
from one naturalness level to a model-specific alternative naturalness level. This resulted in the
following fine tuned models:

e Regular to Low
e Regular to Least
e Low to Least

Each fine tune dataset consists of 176 randomly selected identifiers and human-created natural-
ness modifications. Below is an example of Regular to Least model training data:

{"prompt":"Plot ->","completion":" p\n"}
{"prompt":"Metals ->","completion":" mt\n"}
{"prompt":"Station_ID ->","completion":" S_ID\n"}
{"prompt":"FUELEAK ->" "completion":" F_Lk\n"}

The outputs of these finetuned models require significant adjustment by human researchers; so
we elect to employ an alternative approach described next.

GPT Few Shot Abbreviation. GPT 3.5-based few shot prompting (see example below) resulted
in the most consistent outputs, with a reasonably low prompt token count. Rather than explaining
the different categories followed by an instruction to convert an identifier to a specific category,
we find that providing a simple instruction to abbreviate the database schema identifier to make it
slightly shorter followed by several examples is more effective.

Abbreviate the database schema identifier
to make it slightly shorter:
Protocol_Name -> Protcl_Nm

Abbreviate the database schema
identifier to make it slightly shorter:
WaterTemperature -> WaterTemp

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:45

Abbreviate the database schema
identifier to make it slightly shorter:
Customer -> Custmr

Abbreviate the database schema
identifier to make it slightly shorter:
IDENTIFIER ->

C.2 Increasing Naturalness (Expansion)

Increasing naturalness requires the expansion of an abbreviated identifier. A recent attempt at
performing this task with model fine tuning [60] was made during our research; and it appears
to be a promising direction for research. However, we elect to enrich our process with external
database metadata.

Expansion Process. In order to accomplish this, we engineered a solution that employs a
database metadata reader capable of reading .pdf, .xml, and .csv formatted metadata. Metadata is
read and indexed at the word level, where an array of file locations (page and line numbers for pdf,
line numbers for xml and csv) where words occur are mapped to each word. When a user keys in an
identifier to modify, file locations where the identifier exists in the document are returned via index
lookup. These index locations are used as the centerpoints of context windows that retrieve the
surrounding content. This content is added to a fewshot prompt to provide the language model with
document content that is likely to contain references to, and definitions of, the provided identifier.

The fewshot prompt for generating an expanded identifier adheres to the template:

Using the following text extracted from a
data dictionary:
__CONTEXT__

In the response, provide only the old identifier
and new identifier (e.g. "old_identifier,
new_identifier").

Create a meaningful and concise database identifier
using SQL compatible complete words to represent
abbreviations and acronyms for only

the identifier __IDENTIFIER__:

The __ CONTEXT__ placeholder is replaced with up to ten context window-length excerpts from
the database metadata. This is an example of a completed prompt using the NYSED .pdf based data
manual with context window of 200 characters:

Using the following text extracted from a data dictionary:
r school Text 255

YEAR Reporting Year (2021 for 2020 -21; 2022 for 2021 -22)
Number 4

NUM_TEACH Number of teachers as reported

in the Student Information Repository System

(SIRS) Number 12

NUM_TEACH_INEXP Number of teachers with fewer

than four years of experience in their positions

Number 12

77:46 Kyle Luoma and Arun Kumar

PER_TEACH_INEXP Percent of teachers with
fewer than four years of experience in their posi

In the response, provide only the old identifier

and new identifier (e.g. "old_identifier, new_identifier").
Create a meaningful and concise database identifier

using SQL compatible complete words to represent
abbreviations and acronyms for

only the identifier num_teach_inexp:

num_teach_inexp, number_of_teachers_inexperienced

In this successful example, we see that the identifier num_teach_inexp has been expanded to
a more natural number_of teachers_inexperienced. This is despite the observation that the data
retrieved from the .pdf file is quite unstructured and contains document artifacts. A sufficiently
wide context window coupled with the retrieval of multiple occurences of the identifier in the
document generally results in valid expansions.

Prompt Building. In order to generate few shot prompts over an arbitrary metadata source, some
prompt engineering is necessary. Generally, hand-crafted prompt building is suitable approach; but
it does not scale nor does it lend itself to an automated solution that can be deployed beyond a
research lab. To make this process more portable, we introduce a command line-based subroutine
that enables the automatic build of a five example few shot prompt. In this process:

(1) User enters an identifier

(2) Zero shot prompt -> expanded identifier

(3) User reviews and validates identifier

(4) Correct: identifier added to example list

(5) Incorrect: User tries again with different identifier

(6) User enters another identifier

(7) Few shot prompt (with prior successes as examples) -> expanded identifier
(8) Correct: identifier added to example list

(9) Incorrect: User tries again with different identifier

(10) Process repeats until five successful examples are generated

Once a fewshot prompt has been created for a given database’s metadata, the prompt is stored
for any future program runs. This particular aspect of our project was built to support our research
efforts; and we did not perform any experiments to evaluate its overall accuracy and usability. We
leave these tasks as future research opportunities.

D NL-to-SQL Benchmarking Setup
D.1 Prompting

Prompts are generated dynamically during inference runtime and include schema knowledge, task
and syntax instructions, and a natural language question. Schema information is extracted from the
target database system tables and encoded into relational diagram format as schema knowledge.
Instructions include SQL dialect type, and answer format (e.g. provide only a SQL query without
explanation).

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:47

D.2 Prompt Naturalness Modification

Prompt naturalness modification is necessary when generating SQL queries over schemas with
modified identifiers. In order to prevent producing additional database instances with renamed
identifiers, we employ a middleware approach where modified identifiers are retrieved from a
mapping of native identifiers to the target naturalness level. The prompt is generated using native
schema identifiers, and table and column names are encased in XML-like opening and closing
<TABLE_NAME> and <COLUMN_NAME> tags. Native identifiers and their tags are replaced with
modified identifiers using standard Python string replacement (e.g. str.replace(target, value)).

Prompt naturalness conversion example. The objective is to modify the naturalness of the Klamath
Invasive Species (KIS) schema to the least natural form. The first step is to generate a tagged prompt
which is formed using the database metadata accessed via system tables. A tagged prompt table
with columns and datatypes takes on the form:

#<TABLE_NAME>tlu_Species_WHIS</TABLE_NAME>

(
<COLUMN_NAME>Species</COLUMN_NAME> nvarchar,
<COLUMN_NAME>SampleYear</COLUMN_NAME> nvarchar,
<COLUMN_NAME>Park</COLUMN_NAME> nvarchar

)

Each table and its columns occupies a single line within the prompt. The resulting prompt after
string replacement appears as the following in the final prompt:

#TSW(Sp nvarchar, S_Yr nvarchar, Pk nvarchar)

The modified schema knowledge is presented to the LLM as though it is the native schema.

D.3 NL-to-SQL Prediction

Four LLMs are integrated into the experiment pipeline: GPT 3.5 Turbo, GPT 40, Gemini 1.5 Pro,
and Phind Code Llama. In earlier experiments, we also used CodeLlama 34b, CodeLlama 7b, and
Google Bison. Due to these models being superseded by more-capable variants, we exclude them
from the results in our main report.

GPT 3.5 Turbo and GPT 4o. GPT-based [33] generations use the gpt-3.5-turbo-16k model
accessed using OpenATI’s API services [34]. GPT-based models employ BPE using tiktoken [35] to
tokenize inputs and decode model outputs.

Due to the size of larger schema knowledge prompts, we make use of the GPT 3.5 model [33] with
a context window of 16,000 tokens gpt-3.5-turbo-16k. For consistency, all queries were generated
with a 0 temperature, 1 top p, 0 frequency penalty, 0 presence pentalty. Responses are fetched from
the OpenAlI Python ChatCompletion class’ create method with a single message (prompt) passed in
the user role.

Phind Code-Llama. Phind Code-Llama [41] is a fine-tuned version of the 34b parameter Code
Llama model. We used the TogetherAI API to access this model. We find that the finetuning appears
to have improved its performance as compared to the baseline Code Llama 34b version, and as such
we replace our prior analysis using Code Llama 34b with the results generated using the Phind
model.

Gemini 1.5 Pro. During the course of our research, Google released Gemini 1.5 Pro [50], and
we quickly integrated it into our existing workflows using the Google generative Al Python library.
The remarkable faced of the Gemini 1.5 model is its context window size if 1 million tokens, which

77:48 Kyle Luoma and Arun Kumar

negates the need to reduce schema knowledge representations in order to meet context window
constraints.

D.4 Query Naturalness Modification

When a query is formed against a schema with naturalness-modified identifiers, it is necessary to
replace the modified identifiers with the native identifiers prior to executing the query over the
target database. Simple string replacement is not sufficient in this case, because some identifier
names may sometimes be substrings of other identifiers within a query; and replacing one may
corrupt the other. We employ a Java-based parser and AST generator [3, 40] to build a parser system
for tagging table and column identifiers in a query.

Query naturalness modification example. To answer the question For each location type, show a
count of locations in shasta county, GPT 3.5 generated the query with lowest naturalness schema
knowledge:

SELECT LcTp, COUNT(*) AS LocationCount
FROM Locs

WHERE Cty = 'Shasta County'

GROUP BY LcTp

This query is converted to all capital characters and passed to the query parser tagger via APL
The tagger traverses the AST using a listener class to encase tables and columns with identifier
opening and closing tags. The parser also returns a list of aliases generated within the query. This
allows consuming systems to ignore tagged aliases within the tagged query:

@BEGINTAGGEDQUERY
SELECT

<COLUMN_NAME> LCTP </COLUMN_NAME> ,

COUNT (*) AS LOCATIONCOUNT
FROM <TABLE_NAME> LOCS </TABLE_NAME>
WHERE

<COLUMN_NAME> CTY </COLUMN_NAME>

= '"SHASTA COUNTY'

GROUP BY

<COLUMN_NAME> LCTP </COLUMN_NAME>
@ENDTAGGEDQUERY
@BEGINALIASES
<COLUMN_ALIASES>LOCATIONCOUNT</COLUMN_ALIASES>
@ENDALIASES

With the tagged query and aliases, the query is converted into a form that is compatible with
the target native schema. This is accomplished using the schema identifier mapping dataset and
standard Python string operations (e.g. str.replace("<TABLE_NAME> LOCS </TABLE_NAME>",
"TBL_LOCATIONS")).

@DENATURALIZED RESPONSE:
SELECT

[LOC_TYPE],

COUNT (*) AS LOCATIONCOUNT
FROM [TBL_LOCATIONS]
WHERE [COUNTY] = 'SHASTA COUNTY'
GROUP BY [LOC_TYPE]

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:49

This completes the query modification step. The modified query is then used to extract results
from the target database for result set matching evaluation.

E Performance Evaluation
E.1 Query Execution

Predicted and gold queries are executed over target databases with native schemas using the PyOdbc
Python library. Valid result sets are stored as Pandas Dataframes for comparison.

E.2 Execution Result Set-Subset Matching

Result set and subset comparison consisted of a comparison of the columns and rows returned
by the two queries. Because it is possible for semantically equivalent query results to differ in
terms of column ordering, column and aggregate function aliasing, row ordering (when an order is
not specified in the question), and even the number of columns returned (as long as the predicted
column set is a superset of the gold column set), result set comparison was performed using a series
of rules implemented in Python.

Result cardinality The number of tuples, denoted as |Cg| and |Cc| in the predicted result Rp
and the gold result Rg must be equal, and must be greater than 0:

VCs € Rg,Cp € Rp (|C| = |Cp|) A (ICg| > 0 A|Cp| > 0)

Empty sets are tagged as undetermined and retained for syntactic comparison. Non-empty, non-
equal-size sets are tagged as non-matches and witheld from further analysis.

Projection completeness The columns in the predicted result Rp must be a superset of the
columns in the gold result Rg. Columns Cp and Cg equivalence is determined by value comparisons
between tuples T and Tp of the columns’ contents:

VCs € Rg, 3Cp € Rp such that VI € Cg, Tg € Cp

Column match candidates are determined via pairwise comparison of the sorted values in each
column in Rg to each column in Rp. Full result sets Rg and Rp are sorted by corresponding column
match candidates, with columns containing the most unique values serving as the primary sort key.
With both Rg and Rp sorted by column match candidates, the two sets are compared row-wise for
all columns in the set of column match candidates. If the two sets are not equal, the result sets are
considered semantically non-equivalent.

E.3 Human Evaluation

Predicted queries that pass execution result set-subset matching are further evaluated by a human
researcher to rule out false positives. Predictions that fail result set comparison are pre-classified
as also failing manual matching. Predictions that pass set comparison are classified as ungraded
until reviewed by a human researcher. Once reviewed using the Python-based GUI evaluation tool
(see Figure 29), the predicted query receives its final matching score. Human evaluation resulted
in scoring as incorrect 41 predictions that passed result set matching which is approximately two
percent of all result set matched queries.

E.4 Schema Linking End-to-end Example

To better pinpoint schema linking performance, we devise a new approach for evaluating NL-to-SQL
generation. In this approach, performance is measured using set comparisons between sets of
identifiers within gold and predicted SQL queries. Recall is the primary metric. Precision and F1 are
available, but less helpful, due to penalization for additional predicted columns that do not cause a

77:50 Kyle Luoma and Arun Kumar

7tk - m] X
Prev Question | Mext Question | Next Ungraded ‘ Load ‘ Save ‘
Question Num: 1 Result Set Match: True
What are the first and last names of employees on the Sales team? Recall: 0.875 Precision: 0.875 F1: 0.875
Syntax Errors: 0 Hallucinations: O
Gold Query

Predicted Query
SELECT lastName, firstName

FROM OHEM employees SELECT AHEM.firstName, AHEM.lastMame
JOIN HTM1 teamMembers on employees.empld = FROM AHEM INNER

teamMembers . empID JOIN HTM1 ON AHEM.empID = HTM1.empID INNER
JOIN OHTM emplTeams on teamMembers.teamID = JOIN OHTM ON HTM1.teamID = OHTM.teamID
emplTeams.teamID WHERE OHTM.name = 'Sales’

WHERE emplTeams.name = 'Sales’

- Schema matches —
Tables: 'HTM1', '"OHTM'
Columns: TEAMID', 'NAME', 'LASTNAME', 'EMPID', 'FIRSTNAME'

— Schema missing —
Manual Match: < No © Yes & Ungraded Tables: 'OHEM'
Columns:

— Schema extras —
Tables:"AHEM'
Columns:

Remaining Ungraded: 6

Fig. 29. Screenshot of the query manual validation tool. This example depicts a query that passed set-subset
matching, and is currently classified as ungraded. Helper information indicates that although the results
matched, the incorrect table was selected during inference (AHEM instead of OHEM). This example was
classified as incorrect.

query to be incorrect. The formulae for deriving linking metrics are printed in subsection 5.2 of the
main report.

Linking Evaluation Example (ATBI Question 30, CodeLlama-34b). This is an example of a
predicted query that fails result set match comparison.

Natural Language Question. Which tree species were recorded as mature overstory but not as
saplings? Include the species name and common name.

Gold Query. The gold query is quite complex, where using EXISTS clauses is a possible approach
for solving.

SELECT species, CommonName
FROM tlu_PlantSpecies sp
WHERE EXISTS(
SELECT overstory_id
FROM tbl_Overstory
WHERE SpCode = sp.SpeciesCode
) AND NOT EXISTS (
SELECT Seedlings_ID
FROM tbl_Seedlings
WHERE SpCode = sp.SpeciesCod

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:51

Predicted Query (Code Llama 34b). As we can see below, Code Llama 34b did not provide a
correct solution. However, failure of result set matching does not preclude us from gleaning useful

information from the

SELECT DISTINCT
tlu_PlantSpecies.
tlu_PlantSpecies.
tlu_PlantSpecies.
tlu_PlantSpecies.
tlu_PlantSpecies.
tlu_PlantSpecies.

FROM
tlu_PlantSpecies

result.

genus,
subgenus,
species,
subspecies,
SpeciesCode,
CommonName

LEFT JOIN tbl_Overstory
ON tbl_Overstory.SpCode

tlu_PlantSpecies.SpeciesCode

LEFT JOIN tbl_Saplings
ON tbl_Saplings.SpCode

WHERE

tlu_PlantSpecies.SpeciesCode

tbl_Overstory.SpCode IS NOT NULL

AND tbl_Saplings.
ORDER BY
tlu_PlantSpecies.
tlu_PlantSpecies.
tlu_PlantSpecies.
tlu_PlantSpecies.
tlu_PlantSpecies.
tlu_PlantSpecies.

SpCode IS NULL

genus,
subgenus,
species,
subspecies,
SpeciesCode,
CommonName

Identifier Set Extraction. Using the purpose-built T-SQL parser, we extract a set of identifiers
from the gold and predicted queries. Note that we do set comparison; so although columns are
referenced in multiple clauses in the predicted query, we only measure the presence of a column or
table once.

With a set QI of identifiers present in the gold query and a set of identifiers QI, present in the
generated (or predicted) query, we calculate recall, as well as f1 and precision.

Gold query identifiers QI :=

{

"TLU_PLANTSPECIES', 'TBL_OVERSTORY', 'TBL_SEEDLINGS',
"SPECIES', 'SPECIESCODE', 'COMMONNAME', 'SPCODE',
"OVERSTORY_ID', 'SEEDLINGS_ID'

3

Predicted query identifiers QI,, :=

{

'"TLU_PLANTSPECIES', 'TBL_OVERSTORY', 'TBL_SAPLINGS'
"SPECIES', 'SPECIESCODE', 'COMMONNAME', 'SPCODE',
"GENUS', 'SUBSPECIES', 'SUBGENUS'

3

77:52 Kyle Luoma and Arun Kumar

Identifier Set Comparisons. True positives are the intersection QI, N QI,, =

{
"TLU_PLANTSPECIES', 'TBL_OVERSTORY',

"SPECIES', 'SPECIESCODE', 'COMMONNAME', 'SPCODE'

}
I, N OI 6
QueryRecall = M = - =0.667
0L 9
I, N OL 6
QueryPrecision = M =—=0.60
|QL,| 10

0 F1 2(Recall + Precision) 0.632
uer = =0.
y Recall + Precision

So we see that although the predicted query failed in terms of execution result set comparison,
we can still grade it in terms of linking performance. In other words, we can assign partial credit to
predicted queries where correct schema identifiers are recalled.

F Results
F.1 Execution Accuracy

In this section, we provide a more fine-grained analysis of execution accuracy by examining NL-to-
SQL accuracy within databases by schema naturalness level. Figure 30 provides a detailed view of
accuracy performance while reminding the reader of the naturalness scores of each Native schema.
With one exception (Llama-34b over NTSB), databases with native schema scores less than 0.69
exhibit improvement with schemas modified to Regular level naturalness. We also note that for
databases with higher naturalness scores, Native schemas generally perform the best.

F.2 Schema Linking

Naturalness effect on schema linking. A Kendall-Tau distribution study (Tables 32a-46b
) of correlation between naturalness and schema linking suggests a moderate and statistically
significant relationship between the two for most combinations of language model, and schema
type (modified or unmodified). Generally, we see that more natural query identifiers result in higher
schema linking outcomes.

Tables 35a—46b indicate that proportions of a naturalness category within a set of query identifiers
also have an effect on linking performance. Specifically, as the proportion of Regular naturalness
identifiers increases, so does schema linking. We also observe that in most cases, as the proportion
of Low increases, schema linking generally improves, but not to the same degree as for Regular
identifiers. The most striking effect comes from the proportion of Least identifiers, where as the
proportion of Least naturalness increases, schema linking performance decreases.

Mean token to character ratio effect on schema linking. The Kendall-Tau correlation mean
token-to-character ratio correlations (Tables 31a and 31b) indicates that there is significant evidence
that for GPT and Code Llama tokenizers over both native and modified schemas, that as the token-
to-character ratio increases, schema linking performance decreases. This same observation does not
hold for the Code Bison tokenizer ober the native schemas. Because of the inconsistent power of the
token-character ratio measurement, we believe it may not serve as a viable proxy for naturalness
in all cases.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:53

Database ASIS ATBI CWO KIS NPFM NTSB NYSEDPILB SBOD
(Score) (0.77) (0.70) (0.84) (0.79) (0.70) (0.59) (0.68) (0.75) (0.49)
Model Category

gemini-1.5-pro Native 053 0.65 060 070 0.72 0.17 033 055 0.30
Regular 053 062 0.65 042 042 029 0.35 0.70 0.57

Low 0.57 062 062 078 060 025 030 055 049
Least 042 033 060 062 042 022 019 033 0.20
gpt-4o0 Native 0.62 0.72 080 080 082 029 033 082 0.57
Regular 0.65 068 0.80 080 0.82 039 0.37 0.78 0.69
Low 0.55 065 075 080 072 029 032 072 0.68
Least 028 047 062 062 068 028 021 042 033
DINSQL Native 0.57 055 0.62 053 055 027 029 057 043
Regular 050 0.62 0.62 047 050 0.28 032 055 0.56
Low 062 055 062 053 055 029 033 057 054
Least 025 035 055 047 035 027 021 033 0.25
gpt-3.5 Native 062 055 072 062 060 013 019 055 035
Regular 0.62 053 065 053 0.60 026 0.24 050 0.48
Low 062 045 070 057 060 013 0.24 047 042
Least 020 025 050 050 035 008 011 025 0.20

Phind CodeLlama Native 028 033 0.62 062 040 007 013 042 0.16
Regular 0.28 045 0.62 0.60 042 015 0.16 0.50 0.38

Low 0.17 028 030 053 053 014 0.08 033 031
Least 0.12 0.12 0.05 030 0.12 012 0.00 0.12 0.07
CodeS Native 042 038 053 047 050 011 0.05 045 0.21
Regular 045 0.55 0.57 045 0.68 0.16 0.10 047 0.47
Low 028 040 030 055 062 014 0.05 042 030
Least 0.10 0.12 023 023 033 006 0.02 023 0.05

Fig. 30. Execution accuracy by database and language model. Databases with native schema scores less
than 0.69 exhibit improvement with schemas modified to Regular level naturalness. We also note that for
databases with higher naturalness scores, Native schemas generally perform the best.

G Related Work

Ontology Mapping. Schema modifications and intermediate representations to enhance perfor-
mance in a specific context extend beyond NL-to-SQL applications. Mapping relational database
schemas to ontologies is an approach used to improve schema-to-schema integration and web
application application-database interfaces [57]. This improves the semantic description of under-
lying data, which is often a desirable feature in web applications that interact within the semantic
web [19]. While ontological mapping of a relational database can improve performance in this
context; we see less evidence that such an approach is useful or necessary in NL-to-SQL applications,
though this may serve as a compelling opportunity for future research.

H Practical Applications

It is clear that naturalness has an effect on multiple NL-to-SQL performance measurements, but
what is less clear is what should be done about it. Adopting good schema naming practices, including
the use of natural words, can be easily applied when designing new schemas, which makes the

77:54 Kyle Luoma and Arun Kumar

application of naturalness-based performance improvements relatively straightforward in these
cases. For existing schemas, the challenge is much greater, as it is likely that external interfaces
and documentation have coalesced around the database schema, making it difficult (or impossible)
to change without overhauling external systems and artifacts.

H.1 For New Databases

We refer the reader to Section 2.1 for the descriptions of Regular, Low, and Least category criteria.
Additionally, Table 1 provides some examples of database identifiers at each naturalness level.

When creating a new database schema, we recommend that designers apply the Regular definition
criteria, where the identifier contains complete English words with no abbreviations or acronyms,
or contains only acronyms in common usage. We also recommend avoiding the use of whitespace
characters, as well as identifier type labels (e.g., table or column), as we observe that some LLMs
tend to drop these words during NL-to-SQL inference.

H.2 For Existing Databases

Modifying existing database schemas directly is infeasible for a myriad of reasons ranging from
external integrations to constraint management within the database. As such, we offer two viable
approaches to making database interactions more natural: 1) schema and query modification
middleware, and 2) a within-database natural view.

Schema Modification Middleware. This approach is the more complex of the two, but may
be necessary in cases where practicioners do not have write access to the target database. This
approach contains the following pre-processing steps:

(1) Classify schema identifiers using Artifact 3.

(2) For Low and Least identifiers classified in step 1: create Regular representations using
Artifact 5.

(3) Create a Native-to-Regular map (or crosswalk) for all identifiers using the output of step 2
(see Artifact 4 for an example).

The output of the preprocessing steps is the Native-to-Regular map that maps every Native
database identifier to a Regular representation. In the case where the Native identifier has a Regular
classification, it should be mapped to itself.

The next step involves the development of a middleware that modifies schema knowledge during
NL-to-SQL inference so that the LLM receives a Regular naturalness schema representation. It
contains the following steps:

(1) Modify prompt schema knowledge by replacing Low and Least identifiers with Regular
representations drawn from the identifier map.

(2) Incorporate modified schema knowledge into the NL-to-SQL workflows involving schema
representations (e.g., schema filtering and SQL generation steps).

(3) After SQL generation, modify the SQL query by replacing Regular naturalness represen-
tations of lower naturalness Native identifiers to enable compatibility with the Native
schema.

The output of the inference-time steps is a SQL query that can be executed over the target Native
database.

The SNAILS project repository contains a prototype of such a middleware system, which is
incorporated into the NL-to-SQL workflow used in our experimental design.
The nl_to_sql_inference_and_prompt_generation.py file employs the naturalize_prompt() and denat-
uralize_query() functions to enable NL-to-SQL inference over natural schemas. While this is not an

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:55

easily portable and standalone system, we encourage interested readers to trace the processes in
these scripts for an example of a middleware solution.

Schema naturalization for LLM prompting is a fairly straightforward map lookup task. On
the other hand, query “denaturalization” presents a more technical challenge due to the large
variety of SQL queries that can be generated for a given NL question. To consistently replace
identifiers in SQL queries, we create a Java-based SQL parser that supports both Sqlite and T-
SQL syntax. This parser and query analyzer provides two important services: 1) query clause
extraction, which we use for measuring query complexity; and 2) schema identifier tagging, which
we use for query denaturalization. The latter feature (tagging) takes a SQL query as input, and
returns the same query where all table and column names are encased within XML-like tags (e.g.,
<TABLE_NAME>Customers</TABLE_NAME=). We discuss this in more detail in Section D.4.

Natural Views. The natural view concept is simple, but also very powerful. Rather than incor-
porating a relatively complex middleware strategy, for databases that support multiple schemas
within an instance such as MS Sql Server we can create views that map a Regular naturalness
representation of tables and their columns to their Native identifier counterparts within the base
database schema. This approach is suitable when 2 main criteria can be met: 1) the user has schema
and view creation privileges, and 2) the database supports multiple schemas for a database instance
(e.g., a base dbo schema and a natural db_nl schema). Seperate schemas are required to avoid
collisions between a natural view and a native schema where the native schema tables already have
Regular naturalness levels.

The SNAILS project repository contains a prototype end-to-end natural view creation exam-
ple that generates natural views for the SNAILS databases in a db_nl schema, which can be
viewed and used by downloading the SNAILS real-world database collection (artifact 1). The
classify_rename_and_build_view.py demonstrates the process of schema classification, identifier
modification, and view creation over a target MS SQL Server database.

We first begin with the same pre-processing steps as the middleware approach where we:

(1) Classify schema identifiers using Artifact 3.

(2) For Low and Least identifiers classified in step 1: create Regular representations using
Artifact 5.

(3) Create a Native-to-Regular map (or crosswalk) for all identifiers using the output of step 2
(see Artifact 4 for an example).

At this point, with the naturalness map (or crosswalk) as input, we generate a set of SQL view
creation queries—one for each table in the schema. The resulting view query appears as follows:

CREATE VIEW db_nl.[table_deadwood] AS
SELECT
[Data_ID] AS [Data_ID],
[Event_ID] AS [Event_ID],
[01dPlot] AS [0ldPlot],
[Module] AS [Module],
[Decay] AS [Decayl,
[MPD] AS [Midpoint_Diameter],
[Length]l AS [Length],
[X_coord] AS [x_coordinate],
[Y_coord] AS [y_coordinate]
FROM dbo.[tbl_Deadwood];

77:56 Kyle Luoma and Arun Kumar

We make note of a few important aspects of the natural view: 1) Many identifiers map to
themselves, as their Native naturalness is already Regular. 2) to avoid table name collisions, the
views are mapped from the dbo schema to the db_nl schema. 3) This particular transformation
contains an example of a poor naming habit (the word table in table_deadwood), and serves to
remind us that we should typically review the output of the schema renamer and make necessary
changes.

I Additional Tables and Figures

The remaining pages contain several figures and tables of fine-grained analysis of dataset distribu-
tions and performance correlations.

Kendall-Tau Correlation Experiment Result Tables. Figures 31a-34b provide Kendall-Tau experi-
ment results for naturalness and token ratio correlations with linking performance (F1, Recall, and
Precision).

e Figure 31a: Token-Character ratio-Recall

o Figures 32a-34b: Combined naturalness—[Recall, F1, Precision]

e Figures 35a-37b: [Regular, Low, Least] naturalness—recall

o Figures 38a—40b: [Regular, Low, Least] naturalness—F1

e Figures 41a—43b: [Regular, Low, Least] naturalness—precision

o Figures 44a-34b: [Combined, Regular, Low, Least] naturalness—execution accuracy

Database-level Schema Linking Box and Whisker Plots. Figures 48-51 show additional database-
level box and whisker plots depicting schema linking performance over individual database schemas
and their naturalness levels for each LLM.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:57
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro -0.142596 0.000023 492 gemini-1.5-pro -0.130732 0.000000 1978
gpt-4o -0.125236 0.000182 512 gpt-40 -0.136292 0.000000 2009
DINSQL -0.155634 0.000003 503 DINSQL -0.131631 0.000000 2007
gpt-3.5 -0.259029 0.000000 500 gpt-3.5 -0.170698 0.000000 1998
Phnd-Llama2 -0.269220 0.000000 484 Phnd-Llama2 -0.263657 0.000000 1936
CodeS -0.218149 0.000000 501 CodeS -0.270844 0.000000 2008

(a) Native schemas (b) All schemas (native + modified)

Fig. 31. Kendall-Tau Correlations between the Mean Token-to-Character Ratio and Query Recall.
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro 0.137770 0.000066 492 gemini-1.5-pro 0.113625 0.000000 1978
gpt-4o0 0.146350 0.000020 512 gpt-40 0.154416 0.000000 2009
DINSQL 0.182666 0.000000 503 DINSQL 0.151862 0.000000 2007
gpt-3.5 0.209031 0.000000 500 gpt-3.5 0.171700 0.000000 1998
Phnd-Llama2 0.254438 0.000000 484 Phnd-Llama2 0.250113 0.000000 1936
CodeS 0.199335 0.000000 501 CodeS 0.285891 0.000000 2008

(a) Native schemas (b) All schemas (native + modified)

Fig. 32. Kendall-Tau Correlations between Query Combined Naturalness and Query Recall.
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro 0.151056 0.000005 492 gemini-1.5-pro 0.110138 0.000000 1978
gpt-4o 0.130006 0.000069 512 gpt-4o 0.141699 0.000000 2009
DINSQL 0.137414 0.000027 503 DINSQL 0.147045 0.000000 2007
gpt-3.5 0.214360 0.000000 500 gpt-3.5 0.185058 0.000000 1998
Phnd-Llama2 0.253227 0.000000 484 Phnd-Llama2 0.249083 0.000000 1936
CodeS 0.216096 0.000000 501 CodeS 0.285834 0.000000 2008

(a) Native schemas

(b) All schemas (native + modified)

Fig. 33. Kendall-Tau Correlations between Query Combined Naturalness and Query f1.

77:58 Kyle Luoma and Arun Kumar
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro 0.165627 0.000001 492 gemini-1.5-pro 0.099675 0.000000 1978
gpt-4o 0.117021 0.000444 512 gpt-4o 0.130333 0.000000 2009
DINSQL 0.084476 0.012116 503 DINSQL 0.149127 0.000000 2007
gpt-3.5 0.213515 0.000000 500 gpt-3.5 0.193870 0.000000 1998
Phnd-Llama2 0.240645 0.000000 484 Phnd-Llama2 0.240081 0.000000 1936
CodeS 0.222640 0.000000 501 CodeS 0.279425 0.000000 2008

(a) Native schemas (b) All schemas (native + modified)

Fig. 34. Kendall-Tau Correlations between Query Combined Naturalness and Query Precision.
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro 0.117594 0.000720 492 gemini-1.5-pro 0.069195 0.000265 1978
gpt-4o0 0.139545 0.000053 512 gpt-40 0.113739 0.000000 2009
DINSQL 0.162703 0.000002 503 DINSQL 0.098608 0.000000 2007
gpt-3.5 0.179904 0.000000 500 gpt-3.5 0.122796 0.000000 1998
Phnd-Llama2 0.214458 0.000000 484 Phnd-Llama2 0.198193 0.000000 1936
CodeS 0.155772 0.000003 501 CodeS 0.229038 0.000000 2008

(a) Native schemas (b) All schemas (native + modified)

Fig. 35. Kendall-Tau Correlations between Regular Identifier Proportion and Query Recall.
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro -0.020559 0.555850 492 gemini-1.5-pro 0.073173 0.000115 1978
gpt-4o -0.033719 0.330627 512 gpt-4o 0.044010 0.020955 2009
DINSQL -0.027539 0.424527 503 DINSQL 0.084950 0.000006 2007
gpt-3.5 -0.012805 0.704874 500 gpt-3.5 0.073867 0.000058 1998
Phnd-Llama2 -0.031016 0.359014 484 Phnd-Llama2 0.055309 0.002677 1936
CodeS 0.019808 0.553404 501 CodeS 0.073957 0.000049 2008

(a) Native schemas

(b) All schemas (native + modified)

Fig. 36. Kendall-Tau Correlations between Low Identifier Proportion and Query Recall.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:59
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro -0.165916 0.000010 492 gemini-1.5-pro -0.158525 0.000000 1978
gpt-4o -0.154217 0.000032 512 gpt-40 -0.174026 0.000000 2009
DINSQL -0.207309 0.000000 503 DINSQL -0.198730 0.000000 2007
gpt-3.5 -0.239186 0.000000 500 gpt-3.5 -0.212258 0.000000 1998
Phnd-Llama2 -0.285738 0.000000 484 Phnd-Llama2 -0.279290 0.000000 1936
CodeS -0.255086 0.000000 501 CodeS -0.310967 0.000000 2008

(a) Native schemas (b) All schemas (native + modified)
Fig. 37. Kendall-Tau Correlations between Least Identifier Proportion and Query Recall.
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro 0.131560 0.000074 492 gemini-1.5-pro 0.070395 0.000111 1978
gpt-4o0 0.139678 0.000022 512 gpt-40 0.109530 0.000000 2009
DINSQL 0.123802 0.000172 503 DINSQL 0.104732 0.000000 2007
gpt-3.5 0.182707 0.000000 500 gpt-3.5 0.137642 0.000000 1998
Phnd-Llama2 0.226842 0.000000 484 Phnd-Llama2 0.201929 0.000000 1936
CodeS 0.173666 0.000000 501 CodeS 0.231121 0.000000 2008
(a) Native schemas (b) All schemas (native + modified)
Fig. 38. Kendall-Tau Correlations between Regular Identifier Proportion and Query f1.
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro -0.027036 0.417304 492 gemini-1.5-pro 0.062756 0.000573 1978
gpt-4o -0.064241 0.051686 512 gpt-40 0.036763 0.043163 2009
DINSQL -0.021415 0.517452 503 DINSQL 0.068013 0.000170 2007
gpt-3.5 -0.016076 0.623934 500 gpt-3.5 0.066247 0.000221 1998
Phnd-Llama2 -0.061160 0.059740 484 Phnd-Llama2 0.044565 0.012124 1936
CodeS 0.009374 0.771977 501 CodeS 0.075927 0.000017 2008

(a) Native schemas

(b) All schemas (native + modified)

Fig. 39. Kendall-Tau Correlations between Low Identifier Proportion and Query f1.

77:60 Kyle Luoma and Arun Kumar
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro -0.158945 0.000009 492 gemini-1.5-pro -0.147469 0.000000 1978
gpt-4o -0.095678 0.006756 512 gpt-40 -0.149285 0.000000 2009
DINSQL -0.136164 0.000124 503 DINSQL -0.175018 0.000000 2007
gpt-3.5 -0.243548 0.000000 500 gpt-3.5 -0.220154 0.000000 1998
Phnd-Llama2 -0.240116 0.000000 484 Phnd-Llama2 -0.263193 0.000000 1936
CodeS -0.244016 0.000000 501 CodeS -0.305808 0.000000 2008

(a) Native schemas (b) All schemas (native + modified)

Fig. 40. Kendall-Tau Correlations between Least Identifier Proportion and Query f1.

Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro 0.140165 0.000039 492 gemini-1.5-pro 0.063466 0.000685 1978
gpt-4o0 0.118622 0.000406 512 gpt-40 0.103105 0.000000 2009
DINSQL 0.070004 0.038987 503 DINSQL 0.110165 0.000000 2007
gpt-3.5 0.177250 0.000000 500 gpt-3.5 0.148501 0.000000 1998
Phnd-Llama2 0.220023 0.000000 484 Phnd-Llama2 0.196175 0.000000 1936
CodeS 0.174968 0.000000 501 CodeS 0.225452 0.000000 2008

(a) Native schemas (b) All schemas (native + modified)

Fig. 41. Kendall-Tau Correlations between Regular Identifier Proportion and Query Precision.
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro -0.025641 0.453269 492 gemini-1.5-pro 0.054467 0.003577 1978
gpt-4o -0.040198 0.232741 512 gpt-4o 0.034060 0.066693 2009
DINSQL 0.014076 0.679299 503 DINSQL 0.067157 0.000305 2007
gpt-3.5 0.003413 0.919671 500 gpt-3.5 0.056122 0.002463 1998
Phnd-Llama2 -0.060758 0.065561 484 Phnd-Llama2 0.041782 0.020555 1936
CodeS 0.028242 0.397195 501 CodeS 0.084470 0.000003 2008

(a) Native schemas

(b) All schemas (native + modified)

Fig. 42. Kendall-Tau Correlations between Low Identifier Proportion and Query Precision.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:61
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro -0.170160 0.000004 492 gemini-1.5-pro -0.135749 0.000000 1978
gpt-4o -0.097043 0.007088 512 gpt-4o -0.136779 0.000000 2009
DINSQL -0.093633 0.010346 503 DINSQL -0.170463 0.000000 2007
gpt-3.5 -0.248686 0.000000 500 gpt-3.5 -0.222732 0.000000 1998
Phnd-Llama2 -0.215408 0.000000 484 Phnd-Llama2 -0.247999 0.000000 1936
CodeS -0.248516 0.000000 501 CodeS -0.300108 0.000000 2008

(a) Native schemas (b) All schemas (native + modified)

Fig. 43. Kendall-Tau Correlations between Least Identifier Proportion and Query Precision.
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro 0.031553 0.402105 503 gemini-1.5-pro 0.051044 0.013769 2012
gpt-4o 0.117580 0.001612 513 gpt-4o 0.118405 0.000000 2022
DINSQL 0.050126 0.183182 503 DINSQL 0.055010 0.007940 2012
gpt-3.5 0.130571 0.000526 503 gpt-3.5 0.113802 0.000000 2012
Phnd-Llama2 0.133928 0.000376 503 Phnd-Llama2 0.156595 0.000000 2012
CodeS 0.100636 0.007539 503 CodeS 0.154301 0.000000 2012

(a) Native schemas (b) All schemas (native + modified)

Fig. 44. Kendall-Tau Correlations between Regular Identifier Proportion and Execution Accuracy.
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro 0.067135 0.075780 503 gemini-1.5-pro 0.065896 0.001482 2012
gpt-4o -0.050377 0.178385 513 gpt-40 0.044061 0.032993 2022
DINSQL 0.005675 0.880684 503 DINSQL 0.069761 0.000767 2012
gpt-3.5 -0.013996 0.711227 503 gpt-3.5 0.059034 0.004410 2012
Phnd-Llama2 -0.051436 0.173713 503 Phnd-Llama2 0.025475 0.219203 2012
CodeS 0.007070 0.851558 503 CodeS 0.036122 0.081613 2012

(a) Native schemas

(b) All schemas (native + modified)

Fig. 45. Kendall-Tau Correlations between Low Identifier Proportion and Execution Accuracy.

77:62 Kyle Luoma and Arun Kumar
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro -0.170360 0.000027 503 gemini-1.5-pro -0.153130 0.000000 2012
gpt-4o -0.114226 0.004359 513 gpt-40 -0.171591 0.000000 2022
DINSQL -0.092923 0.021956 503 DINSQL -0.141735 0.000000 2012
gpt-3.5 -0.209644 0.000000 503 gpt-3.5 -0.193995 0.000000 2012
Phnd-Llama2 -0.167881 0.000035 503 Phnd-Llama2 -0.210597 0.000000 2012
CodeS -0.185003 0.000005 503 CodeS -0.221692 0.000000 2012

(a) Native schemas (b) All schemas (native + modified)

Fig. 46. Kendall-Tau Correlations between Least Identifier Proportion and Execution Accuracy.
Model Kendall-Tau P Value n Model Kendall-Tau P Value n
gemini-1.5-pro 0.077353 0.038579 503 gemini-1.5-pro 0.095640 0.000002 2012
gpt-4o 0.115466 0.001818 513 gpt-4o 0.154441 0.000000 2022
DINSQL 0.059435 0.111967 503 DINSQL 0.096971 0.000001 2012
gpt-3.5 0.161218 0.000016 503 gpt-3.5 0.156622 0.000000 2012
Phnd-Llama2 0.151421 0.000051 503 Phnd-Llama2 0.195768 0.000000 2012
CodeS 0.136525 0.000259 503 CodeS 0.196615 0.000000 2012

Fig. 47. Kendall-Tau Correlations between Query Combined Naturalness and Execution Accuracy.

(a) Native schemas

(b) All schemas (native + modified)

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:63

ASIS | gemini-1.5-pro ASIS | gpt-40 ASIS | DINSQL ASIS | gpt-3.5 ASIS | Phnd-Llama2 ASIS | CodeS
) TI T T - TH Tﬂ -
) T ? I I
T os -
B . '
=1 04 ¢ + + : +
G * * + + (3 (3 + +
¢ ‘ . . ‘ I
. : 4 4 : . . :
02 * 5 -
‘+
00 . + + + . . + .
Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level
ATBI | gemini-1.5-pro ATBI | gpt-40 ATBI | DINSQL ATBI | gpt-3.5 ATBI | Phnd-Llama2 ATBI | CodeS
10
??? HT F HEE.L & n
Los =
3 3
G o+ : . . R
+ *
+
0.2 +
00 + . €
Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level
CWO | gemini-1.5-pro CWO | gpt-40 CWO | DINSQL CWO | gpt-3.5 CWO | Phnd-Llama2 CWO | CodeS
: : : l%l l%l l%l |
" ‘. IEI IEI IEI IEI
0.8 + +
‘ ‘
- . " "
L 08 ¥
z . .
&os ‘ +
.
02 +
00 . + + . . + L + .
Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level
KIS | gemini-1.5-pro KIS | gpt-40 KIS | DINSQL KIS | gpt-3.5 KIS | Phnd-Llama2 KIS | CodeS
? = ?@??? el I HHT
h |‘|?| %I ?
. "
oL 06 B + ‘.
=1 . N ‘ ‘4 ‘
Go+ . + + . + + . . " ‘ . .
* ' N + +
02 . !
00 . + . . + .
Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level
NPFM | gemini-1.5-pro NPFM | gpt-40 NPFM | DINSQL NPFM | gpt-3.5 NPFM | Phnd-Llama2 NPFM | CodeS
10 l;l I I%I Tn “ ‘ ! ‘ ‘ —_ I—‘—El
" I T T ‘ ‘
. £
- . ‘ ‘ .
L 06y 0
2 i ! . . T . . ! P
g I
e} 04 + + + + +
02 . -
0.0 + + + —t
Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level

Fig. 48. Schema linking performance (F1 score) changes across database naturalness levels.

77:64

NTSB | gemini-1.5-pro

NTSB | gpt-40

NTSB | DINSQL

NTSB | gpt-3.5

Kyle Luoma and Arun Kumar

NTSB | Phnd-Llama2

NTSB | CodeS

Nat Reg Low Lst
Naturalness Level

NYSED | gemini-1.5-pro

Nat Reg Low Lst
Naturalness Level

NYSED | gpt-40

Nat Reg Low Lst
Naturalness Level

NYSED | DINSQL

Nat Reg Low Lst
Naturalness Level

NYSED | gpt-3.5

Nat Reg Low Lst
Naturalness Level

NYSED | Phnd-Llama2

Nat Reg Low Lst
Naturalness Level

NYSED | CodeS

:

e

L 06
>
[}
804 J_ J_
0.2 = = = = -
g - P £
0.0
Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level
PILB | gemini-1.5-pro PILB | gpt-40 PILB | DINSQL PILB | gpt-3.5 PILB | Phnd-Llama2 PILB | CodeS
10 —
L1 li 11 L1
o os
> . . ’
s ! . ©
004

1

1

1

Nat Reg Low Lst

Naturalness Level
SBOD | gemini-1.5-pro

Nat Reg Low Lst
Naturalness Level

SBOD | gpt-40

Nat Reg Low Lst
Naturalness Level

SBOD | DINSQL

Nat Reg Low Lst
Naturalness Level

SBOD | gpt-3.5

Nat Reg Low Lst
Naturalness Level

SBOD | Phnd-Llama2

Nat Reg Low Lst
Naturalness Level

SBOD | CodeS

Nat Reg Low Lst
Naturalness Level

Nat Reg Low Lst
Naturalness Level

Nat Reg Low Lst
Naturalness Level

Nat Reg Low Lst
Naturalness Level

Nat Reg Low Lst
Naturalness Level

Nat Reg Low Lst
Naturalness Level

Fig. 49. Schema linking performance (F1 score) changes across database naturalness levels.

Technical Report - SNAILS: Schema Naming Assessments for Improved LLM-Based SQL Inference 77:65

ASIS | gemini-1.5-pro

0 ey

L
08 :.
- b
< . . .
3o
ﬂé . . .
g 04
3 . . .
.
0.2
3
00 .
Nat Reg Low Lst
Naturalness Level
ATBI | gemini-1.5-pro
10 | m— —
I
0 4 .
.
T .]
5 06 R
B
Qoe
a .
0.2
0.0
Nat Reg Low Lst
Naturalness Level
CWO | gemini-1.5-pro
10 |
 —
0.8
‘ ‘
= . .
é 06 N
< . .
% 0.4
€]
02
00 .
Nat Reg Low Lst
Naturalness Level
KIS | gemini-1.5-pro
10 | m— —
08+
T . .
g os
ﬂé f
g 04 +
[¢]
0.2
0.0 +
Nat Reg Low Lst
Naturalness Level
NPFM | gemini-1.5-pro
10 | —
. '
08 ¢ .
= .
S 0s .
% .
3 04 + +
3 .

Nat Reg Low Lst
Naturalness Level

ASIS | gpt-40 ASIS | DINSQL ASIS | gpt-3.5 ASIS | Phnd-Llama2 ASIS | CodeS
— E
? F i
¢ ¢
. . .
3 +
" " . . ‘.
" . . "
" : " .
0 0 0 0 0
"
+ + + . . +
Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level
ATBI | gpt-40 ATBI | DINSQL ATBI | gpt-3.5 ATBI | Phnd-Llama2 ATBI | CodeS
— — = —
‘+ ‘+
i $ ¢ ¢ ¢
‘. ‘. . . .
" " . . .
+ +
"
. .
+ .
' *
+ +
Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level
CWO | gpt-40 CWO | DINSQL CWO | gpt-3.5 CWO | Phnd-Llama2 CWO | CodeS
‘ ‘ ‘ ’ ‘ ‘ ‘ +
. . " . . . " .
+
. " " . . . " .
. "
+
+ + . . + + +
Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level
KIS | gpt-40 KIS | DINSQL KIS | gpt-3.5 KIS | Phnd-Llama2 KIS | CodeS
-_— e T T — — s
‘ . ‘ z z : 9 ? ? : ; F :
+ + e e - + :
‘ ’ .
b ‘
‘ + ‘ . . * + . ‘ ‘. ‘ *
. .
0 0 0
‘ + * * . ‘ ‘ * * * + + ‘ *
0 0 N M 0
. "
+
+ + + + + +
Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level
NPFM | gpt-40 NPFM | DINSQL NPFM | gpt-3.5 NPFM | Phnd-Llama2 NPFM | CodeS
D — | F = — =
‘ , ! | ? F ? ? ; : :
‘ *
‘ ‘ ‘ [} ‘ + ‘ * *
:
[$ ‘
‘. . . . " " " . . .
. ‘.
+ + + + ‘ N N
. " . ‘
+
¢
+ + +
Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level

Fig. 50. Schema linking performance (Recall score) changes across database naturalness levels.

77:66 Kyle Luoma and Arun Kumar

NTSB | gemini-1.5-pro NTSB | gpt-40 NTSB | DINSQL NTSB | gpt-3.5 NTSB | Phnd-Llama2 NTSB | CodeS
10 —_
0.8
¥
g os
14
5
S 04
g
0.2
00 4
Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level
NYSED | gemini-1.5-pro NYSED | gpt-40 NYSED | DINSQL NYSED | gpt-3.5 NYSED | Phnd-Llama2 NYSED | CodeS
10 -_ -_
08
3
@ 0.6
14
>
Coe
(€]
0.2
0.0 —— —t
Nat Reg Low Lst Nat Reg Low Nat Reg Low Lst Nat Reg Low Nat Reg Low Lst Nat Reg Low
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level
PILB | gemini-1.5-pro PILB | gpt-40 PILB | DINSQL PILB | gpt-3.5 PILB | Phnd-Llama2 PILB | CodeS
W= — = I S
o : i + f * * *
1 " i D
= . ‘ " N
.
. "
ool ¢ .
=]
€] N M
. . ' " "
02
. ‘
00+ . . + + . + -4 + .
Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level
SBOD | gemini-1.5-pro SBOD | gpt-40 SBOD | DINSQL SBOD | gpt-3.5 SBOD | Phnd-Llama2 SBOD | CodeS
10 -— -_
"
os i
— !
T ‘ "
g os * + + .
% : * ‘. ‘ ;
s o4 | . i + . .
* ‘ + : M :
0.2 +
"
00 . +
Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst Nat Reg Low Lst
Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level Naturalness Level

Fig. 51. Schema linking performance (Recall score) changes across database naturalness levels.

	Abstract
	1 Introduction
	1.1 Preliminaries and Setup
	1.2 Our Benchmark Artifacts and Analyses

	2 Schema Identifier Naturalness
	2.1 Naturalness Categories
	2.2 Naturalness Classification
	2.3 Identifier Schema Naturalness Mapping

	3 Base Collections
	3.1 Datasets
	3.2 NL Question - SQL Query Pairs

	4 NL-to-SQL Benchmarking Setup
	4.1 Prompt Generation
	4.2 NL-to-SQL Inference

	5 NL-to-SQL Benchmarking Results
	5.1 Execution Accuracy
	5.2 Schema Linking Evaluation

	6 Discussion and Limitations
	7 Related Work
	Acknowledgments
	References
	A Source Databases and Queries in SNAILS
	A.1 Data Sources
	A.2 NL Questions and Gold Queries
	A.3 Benchmark Naturalness Comparisons

	B Naturalness Classification
	B.1 Heuristics-based scoring
	B.2 Dataset Naturalness Classifications
	B.3 Training Data Collections
	B.4 ML Classifier-based scoring
	B.5 Character Tagging Feature
	B.6 GPT 3.5/4 Turbo Few-Shot-Based Scoring
	B.7 GPT Davinci Fine Tuning
	B.8 CANINE Fine Tuning
	B.9 Tokenizers

	C Naturalness-modified Identifiers
	C.1 Decreasing Naturalness (Abbreviation)
	C.2 Increasing Naturalness (Expansion)

	D NL-to-SQL Benchmarking Setup
	D.1 Prompting
	D.2 Prompt Naturalness Modification
	D.3 NL-to-SQL Prediction
	D.4 Query Naturalness Modification

	E Performance Evaluation
	E.1 Query Execution
	E.2 Execution Result Set-Subset Matching
	E.3 Human Evaluation
	E.4 Schema Linking End-to-end Example

	F Results
	F.1 Execution Accuracy
	F.2 Schema Linking

	G Related Work
	H Practical Applications
	H.1 For New Databases
	H.2 For Existing Databases

	I Additional Tables and Figures

