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ABSTRACT
Large Language Models (LLMs) have revolutionized Natural Lan-
guage to SQL (NL-to-SQL), dominating most NL-to-SQL bench-
marks. But LLMs still face limitations due to hallucinations, se-
mantic ambiguity, and lexical mismatches between an NL query
and the database schema. Naturally, a lot of work in the ML+DB
intersection aims to mitigate such LLM limitations. In this work,
we shine the light on a complementary data-centric question: How
should DB schemas evolve in this era of LLMs to boost NL-to-SQL?
The intuition is that more NL-friendly schema identifiers can help
LLMs work better with DBs. We dive deeper into this seemingly
obvious, but hitherto underexplored and important, connection
between schema identifier “naturalness” and the behavior of LLM-
based NL-to-SQL by creating a new integrated benchmark suite
we call SNAILS. SNAILS has 4 novel artifacts: (1) A collection of
real-world DB schemas not present in prior NL-to-SQL benchmarks;
(2) A set of labeled NL-SQL query pairs on our collection not seen
before by public LLMs; (3) A notion of naturalness level for schema
identifiers and a novel labeled dataset of modified identifiers; and
(4) AI artifacts to automatically modify identifier naturalness. Using
SNAILS, we perform a comprehensive empirical evaluation of the
impact of schema naturalness on LLM-based NL-to-SQL accuracy,
and present a method for improving LLM-based NL-to-SQL with
natural views. Our results reveal statistically significant correla-
tions across multiple public LLMs from OpenAI, Meta, and Google
on multiple databases using both zero-shot prompting as well as
more complex NL-to-SQL workflows: DIN SQL, and CodeS. We
present several fine-grained insights and discuss pathways for DB
practitioners to better exploit LLMs for NL-to-SQL.

1 INTRODUCTION
Natural language-to-SQL (NL-to-SQL) query generation capability
has been revolutionized by foundational large language models
(LLMs) [33, 45, 52]. This has made the integration of LLM-based
query tools into relational database workflows more viable, with
both established DBMS vendors and startups beginning to offer
commercial NL-to-SQL interfaces. However, challenges in the NL-
to-SQL space remain that can degrade the effectiveness of an LLM-
enabled data retrieval workflow in real-world databases [13]. Prin-
cipal among such challenges is schema linking, which is the as-
sociation of entities in NL utterances to elements in the database
schema.

While much work has studied making LLMs larger or more so-
phisticated, a more basic issue often underlies this challenge: lexical
mismatches between natural language and poorly-named tables
and columns in a schema. Intuitively, schema elements that are
“better named” could raise the accuracy of schema linking within

the NL-to-SQL setup. In this paper, we unpack and dive deeper into
this intuition to study how exactly the “naturalness” of schema
elements matters for NL-to-SQL by instituting a new benchmark
and performing extensive empirical analysis using that. One might
ask: Why bother formalizing a concept that seems obvious and intu-
itive? We believe this is important for 2 reasons. First, without a
more formalized–or at least automated way–to define, verify, and
compare “naturalness” researchers and practitioners alike will be
forced to grapple with ad hoc and inconsistent approaches. In turn,
this can lead to confounded conclusions by researchers on how
different LLMs behave on different schemas and mislead practition-
ers comparing different NLIs. This points to the need for a new
benchmark labeled dataset for this problem.

Second, practitioners need a way to efficiently and accurately
operationalize any insights about the impact of naturalness on their
schema elements for LLM-based NLIs. This points to the need for a
systematic evaluation of how naturalness affects different databases,
queries, and LLMs used for NL-to-SQL.

Our Focus. In this paper, we take the first steps toward deeper
understanding on this seemingly obvious, but hitherto underex-
plored and important, relationship between schema identifier nat-
uralness and LLM-based NL-to-SQL. Specifically, we ask the fol-
lowing three interconnected questions. (1) How do we quantify
“naturalness” of schema identifiers? (2) Does it really impact schema
linking accuracy in LLM-based NL-to-SQL and if so, by how much?
(3) How does that impact vary by complexity of the database and
query, as well as across different popular LLMs?

To answer the above questions, we create a novel integrated
benchmark suite we call SNAILS with new collections of real-world
databases and query pairs, a new labeled dataset of schema identi-
fiers, a set of evaluation metrics, and LLM prompting and other AI
artifacts.

1.1 Preliminaries and Setup
LLM-based NL-to-SQL. The most obvious way to seek LLM per-

formance improvements would be by increasing the power of the
language models themselves. But the cost of training and deploy-
ing LLMs continues to increase in concert with their complexities.
Additionally, many practitioners seek “plug and play” solutions by
employing already-available LLMs. Model training and finetuning
impose access barriers that may render such a pursuit untenable
for organizations that use databases but lack the requisite talent
such as data science and machine learning expertise.

The practice of prompt engineering can also help improve NL-
to-SQL performance, though dealing with schema complexity and
schema representations in LLM prompting is an ongoing challenge
in enterprise-level NL-to-SQL applications [13]. The majority of
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Figure 1: Databases with poorly named, or less natural, schema identifiers perform poorly in LLM-based NL-to-SQL interfaces,
and this project exposes the need for more natural schemas. We offer approaches and artifacts, including a naturalness
classification and modification workflow, that can aid in the naturalness assessment and modification processes required to
create a performance-enhancing natural view. In this way, the native schema remains as-is so that existing tools can continue
talking to it without modification, while an LLM-based NLI can be integrated into the existing stack via a natural view.

leading submissions on the popular Spider NL-to-SQL benchmark
leaderboard are LLM-based solutions [10, 15, 43] that employ a
variety of prompting strategies, some of which require multiple
successive API requests containing schema context and instructions.
These approaches can be costly and unintuitive for NLIDB end users,
and can incur excessive costs and overhead when deployed at scale.

A complementary line of work on realistic NL-to-SQL bench-
marking uses structural schema modification such as normalization,
flattening, and replacement to evaluate effects on LLM performance.
Making such structural changes to target schemas challenges model
robustness and increases error rates in NL-to-SQL performance [28],
and this recent work indicates that schema design is a viable target
for LLM-based NL-to-SQL accuracy improvements.

Schema Linking. Schema linking remains as a persistent chal-
lenge for LLMs. With the availability of capable LLMs that con-
sistently generate valid SQL statements, a larger proportion of
NL-to-SQL generation errors are now associated with incorrect or
ambiguous database identifier selection as opposed to incorrect
syntax [49]. Schema linking performance has been improved using
lexical matching heuristics [18, 59], joint relationally aware embed-
dings with attention [5, 55], the use of pre-trained language models
to perform schema probing [56], and multimodel pipelines with
ML models for pruning schema knowledge [24]. Some NL-to-SQL
methods address schema linking challenges by adding additional
context such as sample values or metadata [43] to schema knowl-
edge representations. These methods can improve performance
in some cases [31], and can be useful for schemas with obscurely-
named tables and columns, though they do so at the cost of much
larger schema knowledge representations.

Schema linking still often fails, even with the most capable LLMs
due to poorly-aligned schema identifier names with natural lan-
guage question contents, that could be due to the use of synonyms
or the obscurity of a database identifier. In the latter case, it can
be challenging for even a sophisticated linking solution to match
natural language words to schema elements that yield minimal
semantic meaning.

SchemaNamingConventions. Themajority of database schema
naming best practices originate from practitioners and are generally

published as software documentation, organization policies, tutori-
als, etc. We find that there is a gap in database and data integration
academic literature evaluating schema identifier naming practices
for any purpose. While the semantics of schema identifiers may not
have been considered as a necessary subject of database research in
the past, the increasing integration of natural language interfaces
to databases has elevated its importance.

Naming conventions for database schema identifiers vary by or-
ganization, database vendor, application, and purpose. A web search
for database table and column naming guidelines yields multiple re-
sources ranging from blog posts [6], StackOverflow responses [47],
DBMS vendor documentation [36], and tutorials [17]. Poor schema
identifier naming practices is considered a database code smell [46]
where meaningless identifier names should be avoided. Generally,
the most consistent best practices include selecting descriptive and
concise names that contain only commonly-understood abbrevia-
tions and acronyms, though some conventions suggest the use of
abbreviated prefix and suffix modifiers that describe application
associations, or entity purpose [37].

In our research, we identified several databases containing schemas
with varying levels of human-readability and understandability
(what we will call naturalness) which suggests that there can be
a tendency for database schema designers to choose shorter and
less descriptive identifier naming conventions. As we will see, such
naming shortcuts can negatively affect NL-to-SQL performance.

1.2 Our Benchmark Artifacts and Analyses
Given the above context of our benchmarking setup, we now ex-
plain the new artifacts in SNAILS, followed by a summary of our
empirical analysis.

Artifact 1: Real-World Database Schemas. The SNAILS benchmark
contains several new real-world database schemas that are not part
of existing NL-to-SQL benchmarks (Artifact 1). Our focus on schema
naming motivates the creation of a new novel benchmark dataset,
because existing benchmark naturalness levels are higher than
those of many real-world schemas, and other real-world schema
collections including SchemaPile [9] lack the necessary database
instances to enable NL-to-SQL evaluation. In our analysis of these
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real-world schemas, we discover that identifier naming variances
generally appear in the form of abbreviations and expansions; we
refer to these variances as identifier naturalness.

Artifact 2: Identifier Naturalness Classifications. Our analysis re-
veals that naturalness can be formalized categorically with the
help of finetuned language models and feature engineering. We
then hand-label the schema identifiers, with some ML assistance,
to classify their naturalness level and produce a new golden la-
beled dataset. We classify identifiers into one of 3 naturalness levels
(Regular, Low, and Least) (Artifact 2). This dataset, consisting of
over 17,000 labeled identifiers, serves as the training data for the
naturalness classifiers described next.

Artifact 3: Naturalness Classifiers. We experiment with various
classification approaches, and make available the models trained to
classify the naturalness of a database schema identifier (Artifact 3).

Artifact 4: Naturalness-Modified Identifiers. To better understand
the effect of schema identifier naturalness, and to enable within-
database experiments, we create alternate versions of each real-
world schema identifier at each naturalness level (Artifact 4). This
dataset serves two purposes: 1) Training data for ML-based nat-
uralness modifiers, and 2) Generation of schemas with varying
naturalness levels to analyze the impact of naturalness on NL-to-
SQL performance. We modify the identifiers with the assistance of
LLM prompting, finetuned models, and database metadata.

Artifact 5: Naturalness Modifier. We offer an in-context learning-
based prompting strategy for identifier naturalness reduction (or
abbreviation). We also provide an identifier naturalness increaser
(or expander) that leverages retrieval augmented generation, inter-
active few-shot example building, and database metadata parsing
methods to streamline the database naturalness improvement pro-
cess.

Artifact 6: NL-to-SQL Question Query Pairs. The SNAILS bench-
mark contains 503 NL question-SQL query pairs which we use for
NL-to-SQL performance analysis of 4 LLMs. We created this new
collection as another hand-labeled golden dataset without the use
of AI-based workflows (Artifact 6).

Experimental Evaluation. Using the SNAILS benchmark arti-
facts, we analyze and experiment with the effects of schema iden-
tifier naturalness on LLM NL-to-SQL performance. We select 5
publicly-available LLMs: OpenAI’s GPT-3.5, GPT-4o, a finetuned
variant of Meta’s Code-Llama, Google’s newest Gemini 1.5, and
CodeS finetuned for NL-to-SQL. We evaluate them using both ex-
ecution result set matching and a novel identifier set comparison
approach that pinpoints schema linking performance.

In this paper we focus primarily on a simple zero-shot prompting
of the LLM for our experiments. We recognize that this may not
be the best for overall execution accuracy, but it helps us isolate
the impact of schema identifier naturalness in this first work on
this problem. As such, more complex workflows will create con-
founding effects while not necessarily providing more insights into
schema linking performance. However, for completeness sake, we
also compare two illustrative complex workflows: DIN SQL for
task-specific prompt chaining [43], and CodeS [25] for NL-to-SQL
finetuning.

We find that schema identifier naturalness by and large does
have a meaningful effect on NL-to-SQL accuracy and schema link-
ing performance. Specifically, identifier naturalness is moderately
and positively correlated with both schema linking and execution
accuracy. Identifiers of low naturalness yield lower performing
NL-to-SQL inferences in terms of both schema linking (identifier
recall) and execution accuracy. These findings have implications for
practitioners who are either designing new databases intended for
LLM-based applications, or seeking to augment existing RDBMSs
with an LLM-based NL-to-SQL interface.

In summary, this paper makes the following contributions:

• We propose a novel measure of naturalness of a database
schema identifier and demonstrate through extensive ex-
periments that naturalness has a significant effect on LLM
schema linking performance in the context of NL-to-SQL.

• We provide a hybrid LLM-generated and human-curated
training dataset (Artifact 2) and language model (Artifact
3) for schema naturalness classification.

• We offer a new multi-domain NL-to-SQL evaluation bench-
mark collection consisting of 9 real-world relational databases
(Artifact 1) and 503 unpublished NL-to-SQL query pairs (Ar-
tifact 6) that do not exist in any LLM training corpora.

• We create a novel labeled dataset of alternate naturalness
levels that map the identifiers fromArtifact 1 to hybrid LLM-
human curated identifiers of different naturalness levels
(Artifact 4), and methods for expanding and abbreviating
identifiers to change their naturalness (Artifact 5).

• We conduct an extensive empirical analysis of the perfor-
mance of 5 popular foundational LLMs over our benchmark
using a novel schema linking metric for NL-to-SQL.

• We propose a realistic workflow that enables the preserva-
tion of existing database integrations while offering LLM-
based NLIs a natural view of a target schema.

2 SCHEMA IDENTIFIER NATURALNESS
Intuitively, naturalness can be thought of as the degree to which
a phrase, or word, resembles natural language. Naturalness is a
concept and target of research in field of controlled natural lan-
guages [23], where controlled language syntax is evaluated in terms
of naturalness levels. Recent NL-to-SQL research also defines and
measures naturalness [28] for the purpose of evaluating the natural-
ness of natural language question utterances, but avoids measuring
the naturalness of schema elements.

To the best of our knowledge, no prior attempts have been made
to definitively measure the naturalness of a database schema’s
identifiers. In order to achieve this goal, we propose a three-category
naturalness classification scheme in order to measure the effects of
naturalness on NL-to-SQL performance.

2.1 Naturalness Categories
As the first work on this topic of how schema identifier natural-
ness affects LLMs, we seek to define a preliminary metric–one
that is consistent and descriptive enough to differentiate between
naturalness levels and to measure their effects.
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Figure 2:Mean Token in Dictionary, the proportion of tokens
in an identifier that match a word in an English dictionary,
generally aligns with the SNAILS 3-class naturalness catego-
rization approach.

Regular Low Least
airbag AccountChk AdCtTxIRWT
AdaptiveCruiseControl IsueFrDate COGM_Act
ModelYear RecvAsst DfltSlp
service_name UsrQuery FNDAbs
Research_Staff ValueOfT CSI22

Table 1: Example identifiers and their naturalness levels,
from the SNAILS naturalness labeled dataset (Artifact 2).

To gain insights into naturalness-related trends in the SNAILS
datasets, we create amean token-in-dictionary measurement that de-
scribes the proportion of tokens in an identifier that exactly match
a word in a comprehensive English word list. Figure 2 reveals differ-
ences between each naturalness category where Least naturalness
identifiers contain fewer in-dictionary tokens, and Regular natural-
ness identifiers are more likely to consist of in-dictionary tokens.
This distribution suggests that because the bulk of the training
corpora of LLMs is human-generated natural language text, what
humans consider “natural” for such identifiers generally aligns with
how LLMs react to them.

Examples of schema identifiers and their naturalness categories
are displayed in Table 1. We define these categories with the under-
lying assumption that the identifiers are named as some semantic
representation of the data, and that naming-related problems of in-
terest are related how an identifier is codified. That is, identifiers are
assumed to not be random character sequences or random words
that do not correspond to the content of the database entities they
represent. With this assumption in mind, we categorize naturalness
into 3 discrete levels as follows:

• Regular: The identifier contains complete English words
with no abbreviations or acronyms, or contains only acronyms
in common usage (e.g., ID or GPS).

• Low: The identifier contains abbreviated English words and
less common acronyms that are usually recognizable by
non-domain experts (e.g., UTM or CPI). The meaning of
the identifier can be inferred without consulting external
documentation.

• Least: The identifier’s meaning cannot be inferred by non-
experts due to indecipherable acronyms or abbreviations,

and external metadata or other documentation must be
consulted in order to determine its purpose.

While we recognize that naturalness can also be treated as a
continuous spectrum, between the choices of continuous scoring
and discrete categories, we select the latter as an initial approach to
naturalness evaluation. The primary factors underlying this choice
are the level of effort required to conduct human-based scoring of
a large set of database identifiers, and the difficulty of consistently
scoring naturalness on a continuous range over a large set of data.
Therefore, we use an intuitive and easily-verifiable discrete 3-class
taxonomy in the first work on this topic.

2.2 Naturalness Classification
To consider naturalness as a factor in NL-to-SQL performance, we
derive naturalness scores of the target schemas’ identifiers. We
use this score to consider effects of individual identifier natural-
ness, schema naturalness, and query identifier naturalness. Because
manual naturalness classification can be a time consuming task
for large schemas, we automate the process by training a machine
learning-based classifier. This effort is beneficial in multiple situa-
tions. First, it can ease some manual effort of the labeling process
and make the process of scaling to more databases in the future
less labor intensive. Second, it can help practitioners efficiently and
consistently evaluate the naturalness of their own database schema
identifiers prior to NLI integration.

To train a classifier to perform identifier naturalness scoring, we
employ the 3-class set of naturalness categories described in Section
2.1, and a list of database identifiers drawn from the SNAILS real-
world database schemas (Artifact 1). We categorize the naturalness
of each identifier to generate the SNAILS identifier naturalness
classification labeled data (Artifact 2) which we use for ML-based
naturalness classifier training, evaluation and testing.

We evaluatemultiple classification approaches including heuristic-
based word matching, few-shot LLM prompting with GPT-3.5 and
GPT-4, and LLM finetuning. The GPT-4 few-shot approach achieves
74 percent accuracy and an f1 score of .77. We experiment with mul-
tiple finetuning collections, first using a hand-labeled collection of
1,648 naturalness classifications and then leveraging the initial clas-
sifier along with weak supervision to generate a larger collection
of 17,226 labeled identifiers. Finetuning using the second collection
outperforms all few-shot approaches, with the two best-performing
classifiers fine-tuned GPT 3.5 and BERT-based CANINE [7] models
performing at 89 percent accuracy, and 0.89 f1 score.

Figure 3 provides a visual comparison between the SNAILS
schema collection and common NL-to-SQL benchmarks including
Spider, Spider Realistic, and BIRD. Additionally, we compare the
SNAILS collection to the real-world SchemaPile collection and find
that SNAILS collection proportions generally align to SchemaPile
naturalness, more so than other existing benchmarks, which creates
a more realistic and challenging benchmark in terms of schema
naturalness.

To better understand the magnitude of naming practices in real-
world schemas, we use the CANINE-based classifier to classify
the naturalness of the SchemaPile collection: a large volume of
real-world database schemas [9] that contains over 22,000 database
schemas, 198,000 tables, and 1 million columns. We find that in over
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Figure 3: Comparison of the SNAILS database collection (Arti-
fact 1) described in Section 3.1 to other real-world and bench-
mark schema collections. SNAILS naturalness proportions
are generally biased toward less natural identifiers and is
more consistent with the real-world SchemaPile collection
than other existing benchmarks including Spider and Spider
Realistic.
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Figure 4: Schema identifiers are classified (Artifact 2) and
modified to increase or decrease naturalness as appropriate.
Modified identifiers comprise the schema crosswalks used
for schema modification during NL-to-SQL experimentation
(Artifact 3).

7,500 schemas (32 percent of the collection) Least natural identi-
fiers make up at least 10 percent of the schema identifier names.
Additionally, over 5,000 schemas register a combined naturalness
of 0.7 or below–an indicator that the schema contains a high level
of Low and Least naturalness identifiers. We examined the natu-
ralness category distribution for these 5,000 schemas, and found
that for this subset of schemas Low and Least naturalness iden-
tifiers outnumber Regular naturalness identifiers. These findings
reinforce the importance of the naturalness problem by confirming
that, although a reasonable majority of schemas are already natural,
there still exist many schemas with lower naturalness levels in
the real-world–enough to motivate the formalization of schema
naming quality measures.

2.3 Identifier Schema Naturalness Mapping
In addition to measuring the effects of identifier naturalness in
existing schemas, we also seek to evaluate the effects of modify-
ing schema naturalness. For this purpose, we create Artifact 4,
naturalness-modified identifiers. This artifact enables schema mod-
ification during prompt generation and query inference, which

provides a within-schema assessment of naturalness level effects
on NL-to-SQL accuracy.

Identifier Mapping. In addition to the ground truth, or Native,
naturalness of the 9 schemas in the SNAILS real-world database
collection, the naturalness-modified identifier collection contains 3
additional sets of identifiers: Regular, Low, and Least. That is, each
native identifier is mapped to 2 additional, semantically equivalent,
identifiers of higher or lower naturalness, and mapped to itself for
its own naturalness level (i.e., we do not generate new identifiers
of the same naturalness as its native form).

Figure 4 provides a visual example of the Native identifier Veg-
Height which is classified as Low naturalness. With this naturalness
classification as a starting point, we abbreviate it further to generate
a corresponding Least naturalness identifier VgHt. We also expand
it to generate the corresponding Regular naturalness version vege-
tation_height. We map the Native VegHeight identifier to itself in
the Low naturalness category.

Naturalness Modification. For more natural to less natural
modifications (the abbreviator in Figure 4), we employ in-context
learning (few-shot) prompt strategies with GPT-3.5 turbo to gener-
ate naturalness-modified identifiers (e.g., Regular to Low, Low to
Least, and Regular to Least). We favor this approach over model
finetuning, as simple instructions to abbreviate the identifier cou-
pled with several examples prove more effective and less prone to
poor results (e.g., presence of unwanted characters in the modified
identifier).

Automating the reverse less natural to more natural naturalness
modification (the expander in Figure 4) requires additional context
and external knowledge from data description sources. Though
a recent project describes a promising identifier expansion strat-
egy [60] without external knowledge, it requires finetuning over
a large dataset, and is likely susceptible to overfitting; therefore
we opt for our own approach that incorporates the use of an LLM
augmented with schema metadata lookup capability. To accomplish
this, we create a Python program with GPT interaction that takes as
input metadata describing a schema’s native identifiers, and outputs
an identifier with regular naturalness. More details of this process
are available in the appendix.

3 BASE COLLECTIONS
Given the recency of the LLMs selected for evaluation in this project,
and the relative maturity of existing NL-to-SQL benchmarks, we
believe that foundational LLMs have been exposed to existing
benchmark training and development NL questions and queries
in their training corpora. NL-to-SQL performance differences be-
tween queries over seen vs. unseen schema are significant [49],
and we seek to avoid as much bias as possible due to intentional or
unintentional pre-training on existing benchmark datasets.

We also find that existing benchmarks including Spider [58], and
BIRD [26], do not match the identifier naturalness distribution of
real-world schema collections such as SchemaPile [9]. Although
SchemaPile is a very large representation of real-world schemas,
it does not contain database instances necessary for benchmark
performance evaluations; so, we are not able to leverage its dataset
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Database Tables Columns Questions Org
ASIS 36 245 40 NPS
ATBI 28 192 40 NPS
CWO 13 71 40 NPS
KIS 18 157 40 NPS
NPFM 27 190 40 NPS
NTSB 40 1611 100 NHTSA
NYSED 27 423 63 NYSED
PILB 21 196 40 NPS
SBOD 2588 90,477 100 SAP

Table 2: SNAILS Real-World Database Schemas

in the creation of a new benchmark. To reduce bias due to bench-
mark data exposure, and to create a benchmark more representative
of real-world schema naming, SNAILS contains two artifacts for
NL-to-SQL benchmarking: Artifact 1, which is a collection of 9
publicly-available database schemas and data; and Artifact 6, a
human-generated set of 503 NL question - gold query pairs.

3.1 Datasets
Native Schemas. The SNAILS real-world database schema col-

lection (Artifact 1) consists of 9 databases sourced from multiple
locations. We refer to the schema identifier names as they exist
in the source databases as Native, and we classify each schemas’
Native naturalness level (see Figure 5). Domain diversity facilitates
a more thorough evaluation [12]; so, SNAILS database collections
span multiple domains. Domain coverage includes scientific na-
ture observation records, vehicle safety statistics, primary school
performance data, and business resource planning.

The U.S. National Parks Service’s IRMA Portal [1] is the source
of the scientific observation databases which include the Field Data
for the Inventory of Amphibians and Reptiles of Assateague Island
National Seashore (ASIS) [8], Great Smoky Mountains All Taxa
Biodiversity Inventory (ATBI) Plot Vegetation Monitoring Data-
base [11], Wildlife Observations Database: Craters of the Moon Na-
tional Monument and Preserve 1921-2021 (CWO) [48], Exotic and
Invasive Plants Monitoring Database (KIS) [21], Northern Plains
FireManagement (NPFM) [30] and Pacific Island Network Landbird
Monitoring Dataset (PILB) [22].

The National Transportation Safety Bureaus 2021 safety sam-
pling dataset [32, 44] is the source of SNAILSNTSB safety statistics
database. We source school performance data (NYSED) from the
New York State Education Department [4].

The business resource planning database SBOD is a training
example of the popular SAP Business One system, and is publically
available in MS SQL server backup format [42]. The SBOD schema
consists of an extremely large number of tables and columns; so
pruning is required to fit the schema within the context window of
the LLMs we compared. We reduce the schema knowledge token
requirements by segmenting the SBOD schema into submodules
and further reducing tables through data profiling. Additional infor-
mation on the SBOD schema knowledge management is available
in the appendix.

Each database was migrated from its source format into an MS
SQL Server database. Several databases contained identifiers with
whitespace characters, which is uncommon in most schemas. To
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Figure 5: Proportion of identifiers in each naturalness cate-
gory within the SNAILS real-world database collection (Arti-
fact 1). Horizontal linemarkers indicate calculated combined
naturalness as described in the appendix

mitigate whitespace-related inference failures as a confounder, we
modify the native identifiers by replacing whitespace characters
with underscore characters. In total, 148 out of over 19,000 total
identifiers (less than .01 percent) contained at least 1 whitespace
character.

Native Schema Naturalness Levels. Since the intent of this
project is to measure the effect of schema naturalness, we first
check if there is sufficient distribution of naturalness levels across
the collection. We employ the GPT-3.5-based classifier described
in Section 2.2 to evaluate the naturalness of the native schema
identifiers.

In addition to measuring the proportion of identifiers in each
naturalness category, we also derive a combined naturalness score.
Combined naturalness is the weighted average of category propor-
tion values, where scores range from 0.0 to 1.0 with 1.0 representing
a schema containing only Regular naturalness identifiers. A more
detailed description of its calculation is available in the appendix.

Figure 5 displays the proportions of identifiers in each natural-
ness category, as well as the combined naturalness, in each native
schema. From the chart, we can see that the schemas in the SNAILS
collection described in Section 3.1 represent a heterogeneous selec-
tion of naturalness combinations.

Modified (Virtual) Schemas. To control for confounding fac-
tors such as schema structure, normalization levels, and constraint
variances between native schemas, we perform within-database
evaluations of naturalness. To accomplish this, we generate 3 addi-
tional virtual schemas using the naturalness-modified identifiers
(Artifact 4) described in Section 2.3. Each virtual schema is repre-
sentative of a naturalness category, where schema identifiers are
replaced with a semantically equivalent identifier of a different
naturalness level. This results in 4 schema versions per database in
the base collection: Native, Regular, Low, and Least.
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Database Qs Top Function Join CK Join Exists Subquery Where Negation Group By Order By Having

ASIS 40 1 24 13 1 0 2 18 0 17 1 0
ATBI 40 5 20 18 0 1 7 21 2 16 7 1
CWO 40 2 18 5 1 5 10 34 7 12 2 1
KIS 40 8 26 15 0 0 2 25 1 11 8 0
NPFM 40 5 27 21 0 0 1 29 0 16 5 0
NTSB 100 8 82 23 21 0 6 62 4 42 23 4
NYSED 63 10 36 10 4 1 21 55 1 16 10 1
PILB 40 6 25 23 0 0 3 20 0 16 11 2
SBOD 100 2 33 44 0 0 0 82 0 17 2 1

Table 3: Gold query clause counts for each SNAILS database. Columns represent a count of gold queries that contain the listed
clause types. Qs is the count of question-query pairs for each database. CK Join is the subset of joins that require a composite
key. Note: MS SQL Server dialect replaces the common LIMIT clause with an equivalent TOP clause that precedes select items
in the SELECT clause.

The modified schemas are virtual because we do not create data-
base instances that can be queried directly. Rather, we query vir-
tual schemas via identifier replacement in prompts and generated
queries using processes described in Section 4. This approach re-
duces storage overhead. It also enables possible future schema
variations of different naturalness proportions without the need to
instantiate additional database instances.

SNAILS Database Selection and Extension Processes. The ini-
tial 9 datasets and schemas are included because they were (1) pub-
licly available, (2) not included in any prior NL-to-SQL benchmarks,
(3) contained relational tables with dependencies and database in-
stances with values, (4) had available table and columnmetadata, (5)
represented a diversity of application domains, and (6) contain data
potentially useful for real-world data analysis or data science appli-
cations. Databases are not selected or pre-screened using perceived
naturalness as criteria.

We view the initial 9 schemas as a starting point from which
the SNAILS dataset can grow. Researchers who wish to extend the
SNAILS collection should use the same selection criteria. In addition,
the extension process must ensure that new databases: (1) can be
represented as MS SQL Server instances, (2) each native identifier’s
naturalness is classified according to defined criteria using the
SNAILS naturalness classifier, and (3) that native identifiers are
modified using the SNAILS modification artifacts to create alternate
naturalness levels.

3.2 NL Question - SQL Query Pairs
To evaluate SQL inference performance over the Native and mod-
ified schemas in the SNAILS real-world database collection, we
create a new set of 503 NL-question and SQL gold query pairs (Arti-
fact 6). Schema identifier naturalness are the primary considerations
for NL question and gold query composition. During question and
query formulation we track schema coverage to ensure that the
distribution of identifier naturalness within a set of gold queries
generally matches the naturalness distribution of target schemas.

To enable accuracy measurements at the identifier level, gold
queries contain the minimum identifiers (tables and columns) re-
quired to answer its corresponding question. For this reason, for

questions that require the count aggregation function, where ap-
propriate, we use the COUNT(*) clause (as opposed to selecting an
arbitrary column). This approach eliminates incorrect penalties to
recall if a generated query fails to project an arbitrary column as a
function argument.

Gold queries contain only native identifiers, such that all gold
queries return valid non-null results from target databases in the
real-world database collection (Artifact 1). We measure query com-
plexity as a count of its clauses and identifiers. Gold queries span a
range of complexities, from very simple single table projections, to
multi-table joins and nested subqueries (see Table 3).

Adding New NL-SQL Pairs to the SNAILS Collection. For
researchers interested in extending the SNAILS collection, it is
necessary to create new ground truth NL-SQL pairs for evaluation.
While we employed a fully manual approach for question writing,
and this approach may be used for future additions, they may also
consider the use of new approaches such as using a template-based
approach for generating question-query pairs with relational data as
input [39]. Regardless of NL-SQL pair creation method, researchers
should ensure adequate schema coverage and minimum essential
identifier selection as described in the preceding section.

4 NL-TO-SQL BENCHMARKING SETUP

Denaturalize 
Query

NL 
Question

 Schema

Generate 
Prompt

Modify 
Schema 

Identifiers 

NL-to-SQL
Inference

Predicted 
Query

Generate & 
Map 

Identifiers

Naturalness-
modified 
identifiers

Data

Process

Figure 6: Experiment setup workflow from NL question and
schema as input to predicted query as output.

To evaluate the impact of naturalness on NL-to-SQL accuracy,
we build a benchmarking setup pipeline as shown in Figure 6. NL
question and gold query pairs, database schemas, and naturalness
crosswalk mappings are inputs into subprocesses. The subprocesses
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include prompt generation, schema identifier naturalness modifi-
cation, identifier naturalness classification, LLM-based NL-to-SQL
inference, and predicted query “denaturalization” (i.e., converting
table and column identifiers to native schema identifiers prior to
query execution). The output of the experiment setup is a predicted
query, which along with its gold query counterpart, is executed
against a target database. This predicted query is passed into a
parser analysis tool as initial steps of the Performance Evaluation
and Results Classification phase of the experiment described in Sec-
tion 5.

4.1 Prompt Generation
The design space for LLM-based NL-to-SQL prompting is quite
large, with options ranging from zero-shot instructions to sequen-
tial prompting broken into discrete tasks such as schema subsetting
and error handling. Although we evaluate 2 complex NL-to-SQL
workflows, to maintain consistency across the LLMs compared in
this study, our performance comparisons focus on a single prompt-
ing strategy: zero-shot prompting with schema knowledge.

Prompting Strategy. SNAILS prompts consist of zero-shot in-
structions with schema knowledge (denoted as ZS in results fig-
ures) in a format similar to OpenAI’s Text-to-SQL demonstration
prompt [15] for completions. The prompt begins with task instruc-
tions and database information:

For the database described next, provide only a sql query.
do not include any text that is not valid SQL.
#Database: NTSB
#MS SQL Server tables, with their properties:

Target database system tables provide schema knowledge, which
is represented as a list of tables and their column names with data
types in the format:

#TableName (Col1Name Type, Col2Name Type, ...)

The prompt ends with the instruction:

### a sql query, written in the MS SQL Server dialect,
to answer the question: <Question>

Where <Question> is replaced with an NL question directed at
the given schema.

To evaluate naturalness effects on more complex NL-to-SQL
prompting workflows, we also implement DIN SQL [43] which
uses prompt chaining with GPT-4, and CodeS [25]–a multi-step
NL-to-SQL system (schema filtering and SQL inference) based on
StarCoder [27] and finetuned for the NL-to-SQL translation task.

Prompt Schema Identifier Modification. For inference on
virtual schemas with modified naturalness levels, we replace Na-
tive identifiers with corresponding identifiers of the target vir-
tual schema’s naturalness level. We accomplish this step using the
naturalness-modified identifier collection (Artifact 4) described in
Section 2.3. We use a SQL parser to encase identifiers within tags
to improve identifier replacement accuracy and eliminate errors
due to substring matching between identifiers.

4.2 NL-to-SQL Inference
Language Models. Foundational LLMs continue to grow in

capability at a rapid pace. Despite this growth, not all NLI im-
plementations can avail of the most-capable LLMs, often due to
organizational policy constraints (e.g., organizational security con-
cerns [16]). Additionally, we seek to understand if schema naming
effects generalize across model architectures and sizes. Thus, we
consider several LLMs, both open and closed source, to capture as
many use profiles as possible including OpenAI’s GPT-3.5 Turbo
and GPT-4o [33, 34]; Google’s Gemini 1.5 Ultra [50, 51]; and Phind-
CodeLlama-34B-v2 [41] which is a finetuned variant of Meta’s
CodeLlama 2 [45].

CodeS and DIN SQL Implementation. For the more complex
DIN SQL and CodeS NL-to-SQL workflows, we provide additional
versions of the SNAILS schema artifacts to conform to the input
requirements of the target systems. Additionally, we add data log-
ging between agents to document the schema filtering step for
additional analysis. For consistency between approaches, we use
GPT-4o for all steps in the prompting chain. For CodeS inference,
we execute the schema filtering and NL-to-SQL inference using the
CodeS codebase and finetuned models.

Generated Query Denaturalization. For queries targeted at
virtual schemas and generated using modified schema identifiers,
we perform reverse modifications prior to query execution on the
native database schema. Using a purpose-built Antlr [40]-based
parser, we extract table and column identifiers, and generate a
tagged query with identifier tags encasing table and column names.
The tags guide the replacement algorithm, ensuring accurate re-
placement of naturalness-modified identifiers with their Native
naturalness counterparts.

5 NL-TO-SQL BENCHMARKING RESULTS
This section describes the process of evaluating the generated SQL
query output from the prior section. We evaluate performance in
terms of execution accuracy (result set comparison and manual
evaluation) and schema linking (recall, precision, and F1).
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Query

Query 
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Pred Results

Query 
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Linking 
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Accuracy 
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Performance 
Metrics:
Execution 
Accuracy
Precision
Recall
F1

Figure 7: Benchmark results evaluation includes generated
and gold query execution on target schemas, parser-based
analysis, and identifier set comparisons. We evaluate perfor-
mance in terms of execution accuracy and schema linking
(precision, recall, and F1).

Key Takeaways. Overall, there is a model-dependent statis-
tically significant correlation between identifier naturalness and
execution accuracy, with smaller models exhibiting higher correla-
tions between naturalness and performance. The presence of Least
naturalness identifiers has the largest negative effect on schema
linking. Additionally, while the performance difference between
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Regular and Low is visible, it is less impactful. So, modifying Least
naturalness identifiers should be a higher priority than modifying
Low naturalness identifiers.

5.1 Execution Accuracy
Execution Result Set Comparison. Execution accuracy is the

standardmeasure of performance inmost NL-to-SQL benchmarks [26,
58] where accuracy is determined using result set comparisons
between gold and generated queries executed over one or more
database instances. A drawback of existing methods is that strict
set or bag comparisons risk increased false-negatives when a gen-
erated query includes additional fields that are not required, but
do not render the result incorrect in terms of the natural language
question [13, 59].

To reduce false negatives, the SNAILS approach to execution
accuracy evaluation adopts 2 aspects of relaxed execution match-
ing as described in [13]; it accounts for: (1) The possibility that
a predicted query may contain additional columns beyond those
retrieved by a gold query; and (2) That unless specified in the NL
question, tuples may appear in any order. To achieve this, we per-
form result set-superset comparisons to ensure that the predicted
result set column set is a superset of the gold result set column
set. That is, a generated query is considered incorrect if it does not
contain all gold query columns; but it is not considered incorrect
(at this stage) if it includes columns not present in the gold query
result. A more detailed description of this approach is available in
the appendix.

Manual Evaluation. Execution result set comparison cannot
prove query correctness; so we rely on it only to rule out true
negatives from further consideration. To validate correctness, the
authors manually review generated queries that pass execution
result set-superset comparison checks. We streamline this process
by creating a Python-based manual validation user interface that
makes the process of comparing gold and generated queries more
user-friendly. Manual validation steps include ensuring the gen-
erated query answers the NL question, matches the gold query
in terms of semantic structure, and does not contain semantically
incorrect predicates, projections, or clauses.

Naturalness Effect on Execution Accuracy. Figure 8 shows
execution accuracy for each LLM and naturalness level. There is a
clear difference in overall performance between LLMs, most likely
due to model size. We find that generally more natural database
schemas yield more correct queries. Databases with more natural
native schemas did not benefit from identifier renaming, though we
observe that altering a schema to become less natural degrades ac-
curacy in most cases. We find that for databases with Native schema
combined naturalness scores less than 0.69, modifying the schema
identifiers to increase naturalness improves execution accuracy.

Statistical Significance. The Kendall-Tau correlation between
the naturalness of identifiers in a query and execution accuracy
ranges from low (𝜏 = 0.09, 𝑝 < 0.0001) for Gemini 1.5, to moderate
(𝜏 = 0.19, 𝑝 < 0.0001) for Phind-CodeLlama2 and CodeS. The most
impactful relationship is between the presence of Least naturalness
identifiers and performance, with Kendall-Tau correlations between

the proportion of Least identifiers in a query and execution ac-
curacy between 𝜏 = −.15 and 𝜏 = −.22 with 𝑝 < 0.0001 for all
models.

5.2 Schema Linking Evaluation
We make schema linking a “first class citizen” of our analysis, and
study schema linking performance in queries irrespective of other
aspects of correctness. Thus, we propose query-level and identifier-
level schema linking measurements. We propose an approach simi-
lar to the Spider benchmark exact set matching system [58] in which
we employ a schema linking-specific evaluation method using recall
scoring of gold and generated query pairs. Other schema linking-
focused research measure effects of schema linking improvements
using ablation [5, 49, 55, 56]. In other cases, schema linking is de-
scribed in post-hoc analysis of NL-to-SQL model performance, with
schema linking accounting for roughly 30% of failures [10, 43].

Query-Level Linking Analysis. The set of all schema identi-
fiers (table and column names) present in gold queries represents
the minimum identifiers required to correctly answer an NL ques-
tion. Our purpose-built ANTLR4-based [40] query parser extracts
identifiers from gold and generated queries. With a set 𝑄𝐼𝑔 of iden-
tifiers present in the gold query and a set of identifiers 𝑄𝐼𝑝 present
in the generated (or predicted) query, we calculate recall, as well as
F1 and precision.

𝑄𝑢𝑒𝑟𝑦𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑄𝐼𝑔 ∩𝑄𝐼𝑝 |

|𝑄𝐼𝑔 |
(1)

𝑄𝑢𝑒𝑟𝑦𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑄𝐼𝑔 ∩𝑄𝐼𝑝 |

|𝑄𝐼𝑝 |
(2)

𝑄𝑢𝑒𝑟𝑦𝐹1 =
2(𝑄𝑢𝑒𝑟𝑦𝑅𝑒𝑐𝑎𝑙𝑙 ∗𝑄𝑢𝑒𝑟𝑦𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
𝑄𝑢𝑒𝑟𝑦𝑅𝑒𝑐𝑎𝑙𝑙 +𝑄𝑢𝑒𝑟𝑦𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (3)

We exclude 137 linking score calculations from analysis in situa-
tions where the predicted query contains invalid SQL that prevents
query parsing and identifier extraction. We use recall as the pri-
mary measure for schema linking, as it does not penalize generated
queries that contain extra identifiers that do not render an answer
incorrect in our setting, such as cases when an arbitrary column is
referenced in a count function. Charts and tables depicting F1 and
precision scores are available in the appendix.

Identifier-Level Linking Analysis. For an identifier-focused
(rather than query-focused) metric, we perform identifier-level
linking analysis. We derive recall linking scores for each Native
schema identifier 𝐼 as follows. 𝐼𝑚𝑎𝑡𝑐ℎ is the count of instances when
𝐼 is correctly present in a predicted query. 𝐼𝑔𝑜𝑙𝑑 is the count of gold
queries that contain 𝐼 .

𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐼𝑚𝑎𝑡𝑐ℎ

𝐼𝑔𝑜𝑙𝑑
(4)

Both DIN SQL and the CodeS complex NL-to-SQL workflows are
sensitive to changes in naturalness, suggesting that these more com-
plex workflows by themselves do not overcome schema naturalness
effects. We also see that execution accuracy differences between
the GPT-4o zero-shot prompting method and the DINSQL prompt
chaining method suggest that applying more complex workflows to
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Figure 8: Execution accuracy (proportion of correct queries)
by model. There is slight accuracy improvement from na-
tive schemas to schemas modified to regular naturalness.
Accuracy drops significantly for schemas modified to low
naturalness.
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Figure 9: Native identifier recall scores by model and natural-
ness level. Error bars set with confidence interval of 0.95. For
all models, identifiers in lower naturalness categories yield
lower recall scores.
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Figure 10: Schema linking performance across database
schema naturalness levels generally yields equal or bet-
ter performance for higher levels of naturalness, with
open source models Phind-CodeLlama2 (Ph-CdLlm2-ZS) and
CodeS as well as OpenAI’s GPT-3.5 (GPT-3.5-ZS) exhibit-
ing higher sensitivity to changes in naturalness. Zero-shot
prompting NL-to-SQL methods are denoted as (ZS).
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Figure 11: Schema linking performance (QueryRecall score)
changes across 3 example databases’ native and virtual
schemas. We selected these 3 examples to showcase the diver-
sity of the databases in our collection. PILB Native is a more
natural schema with 65 percent Regular, 22 percent Low, and
13 percent Least; NTSB Native contains 42 percent Regular,
34 percent Low, and 24 percent Least; and SBOD Native is
the lowest naturalness schema with 24 percent Regular, 49
percent Low, and 27 percent Least.

high-performing LLMs may be counterproductive for more recent
SoTA LLMs.

Naturalness Effect on Schema Linking. Overall, we find that
schema naturalness has a model-dependent and significant effect on
schema linking performance with the highest correlations between
QueryRecall and query naturalness occurring with the open-source
CodeLlama and CodeS models, and the lowest (though still signif-
icant) correlations occurring with Google’s SoTA Gemini 1.5 Pro
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and OpenAI’s GPT-4o models. The more complex DIN SQL and
CodeS workflow QueryRecall results are also significantly affected
by naturalness level differences.

Figure 9 visualizes IdentifierRecall of Native identifiers in each
naturalness level, and for each LLM. The chart indicates an observ-
able difference in IdentifierRecall scores for each naturalness level,
with IdentifierRecall increasing for higher naturalness levels. These
results remain consistent relative to overall model performance
across all 5 LLMs and various workflows.

Figure 10 illustrates QueryRecall across schema naturalness lev-
els, and for each LLM. For GPT 3.5, Phind-CodeLlama2, and CodeS,
we observe an improvement to QueryRecall when converting identi-
fiers in a Native schema to Regular naturalness. This improvement
did not manifest for Gemini and GPT-4o when observing the data
in aggregate (i.e., between databases) due to their overall high per-
formance relative to the other models, but improvements within
databases of lower naturalness are still present (see Figure 11). The
recall drop (approximately 20 percent decrease) associated with
a modification from both Regular and Low to Least naturalness
remains consistant across all LLMs.

Naturalness changes within specific SNAILS database schemas
paints a clearer picture of the impact of naturalness. Figure 11 pro-
vides a drill-down view of the effect of schema modification on
the PILB, SBOD, and NTSB schemas in terms of QueryRecall, and
for each LLM and schema naturalness level. The center example
(PILB) is a highly natural Native schema where schema naturalness
modification would not be required. The leftmost example (NTSB)
indicates linking performance improvement across all models for a
native schema of lower naturalness converted to a higher natural-
ness schema, and presents a case where naturalness modification
will improve NLI performance. The rightmost database (SBOD)
represents a Least naturalness schema, and transformation from
Native to Regular yields significant improvements for all models.
In all cases, we see that reducing naturalness to the Least level
consistently degrades QueryRecall.

Statistical Significance. Kendall-Tau correlations between the
proportion of Least identifiers and QueryRecall range from 𝜏 =

−0.16 (Gemini) to 𝜏 = −0.28 (Phind-CodeLlama2), with 𝑃 < 0.001
for all models. Both Regular and Low identifier proportions are sig-
nificantly correlated with improved outcomes in terms of QueryRe-
call. Identifiers with Regular naturalness show the highest positive
Kendall-Tau correlations ranging from 𝜏 = 0.07 (Gemini) to 𝜏 = 0.20
(Phind-CodeLlama2). Low naturalness identifier proportions cor-
relate positively, but to a lesser degree, with Kendall-Tau values
ranging from 𝜏 = 0.05 (Phind-CodeLlama2) to 𝜏 = 0.07 (Gemini).

Naturalness Effects on Schema Subsetting. We measure the
schema subsetting (also known as schema filtering, or table re-
trieval) in terms of recall, precision, and f1 score, and present the
results in Figure 12. We find that for the CodeS finetuned classifier
approach, schema naturalness level differences result in observable
differences in f1. For the DIN SQL LLM-based approach, naturalness
effects are less pronounced, though still present, particularly for
Least level schemas.

Figure 12: Schema subsetting performance, measured with
recall, precision, and f1 score, varies by naturalness levels
for both DIN SQL and CodeS. Measurement Score is Recall,
Precision, or f1 respectively.
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Figure 13: QueryRecall and Execution Accuracy differences
over the Spider [58] dev set modified using SNAILS renaming
artifacts.

Performance Over Modified Spider Schemas. Figure 13 shows
that with the SNAILS schema renaming artifacts applied to the Spi-
der NL-to-SQL benchmark dev dataset [58], naturalness effects are
the most significant between Low and Least levels of naturalness.
Performance differences across naturalness levels for the highly nat-
ural Spider schemas resemble performance over similarly-natural
schemas in the SNAILS collection.

Additional Charts and Figures. The appendix also provides
additional fine-grained results: a more detailed tabular breakdown
of execution accuracy by schema and LLM; Precision- and F1-based
results; token ratio correlations; and more granular QueryRecall
correlations and box plots;
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6 DISCUSSION AND LIMITATIONS
The ability to assess the naturalness of existing schemas can inform
the feasibility of “hooking up” an NL query interface to an existing
database. We believe that practitioners who are considering the
integration of an LLM into their database interaction workflows
would benefit from naturalness-focused schema analysis a key step
in their integration process.

Other Naming Patterns in Real-World Schemas. To examine
naming practices in the real-world, we classified the identifiers of
SchemaPile dataset [9] with our CANINE-based classifier, and eval-
uated the identifiers for other LLM-unfriendly patterns. We observe
that whitespace characters within schema identifiers contributes to
identifier mutation during inference. That is, rather than encasing
whitespace-containing identifier with brackets or quotes, the LLM
hallucinates the identifier into snake or camel case format. We find
that in the SchemaPile collection, though whitespace is uncommon
(less than 1 percent for both tables and columns), it appears in 808
columns and 63 tables, and is comparable to the proportions in the
SNAILS dataset.

Another naming practice that yields disproportionate failures
with some LLMs is the presence of the word table in the identifier
name. In these instances, we find that the LLM tends to drop the
word table from the name (e.g., table_employee becomes employee).
There are over 700 identifiers (less than 1 percent of all identifiers)
in the SchemaPile collection that employ this naming pattern.

These observations suggest that although these naming pat-
terns are not necessarily a common occurrence in many real-world
schema designs, they do appear. We suggest that practitioners
would benefit from assessing the naming patterns of their data-
base schemas.

Variations in LLM Sensitivity to Naturalness. There are
many LLMs to select from for NLIDBs, and we can see even within
the select 5 models in our work large variations in NL-to-SQL per-
formance as well as the degree of sensitivity to schema naturalness.
The Google Gemini and GPT-4o models demonstrate the highest
overall performance, as well as the lowest sensitivity to naturalness
differences between Regular and Low levels. Without access to the
underlying model architectures and weights, it remains as a black
box in our research, and we can merely speculate the reasons why it
is not as affected by naturalness as the other 3 models in our study.
Generally, we observe that the these models have an overall higher
performance, and are less prone to linking errors such as selecting
the incorrect identifier from the schema knowledge representation
or committing a typo-like hallucination.

Though selecting the most performant model would seem to
be an obvious course of action, competing factors such as an or-
ganization’s policies, budget, or existing vendor contracts, may
require the selection of a model that is more sensitive to schema
naturalness differences. Thus, we believe that naturalness-aware
NLI integration will remain important for at least the practitioners
who use LLMs other than Gemini in the set that we have studied.

Modifying Existing Schemas. For already-existing schemas,
renaming identifiers is generally a non-trivial effort, particularly for
those databases for which documentation has been published and
application interfaces have been integrated. Schema modifications

may not be necessary (or helpful), if a schema is already classified
as highly natural. DBAs should assess current naturalness levels
prior to committing to naming modifications. At a minimum, we
recommend that any Least identifier be modified to a Regular nat-
uralness level and, if feasible, Low identifiers as well. If renaming
a less natural schema’s identifiers is not feasible due to integra-
tion constraints, we suggest one of two approaches: 1) adopting
a naturalness-as-a-view strategy by mapping Native identifiers to
Regular naturalness identifiers using SQL views, or 2) a middleware
approach that modifies schema knowledge in LLM prompts gener-
ated queries prior to execution on the database. We sketch a rough
design of both options in the appendix.

We demonstrate a natural schema view proof of concept with
our SNAILS database collection and their MS SQL Server instances.
For each table and column in the collection’s database schemas,
we map the Native table or column to its Regular counterpart in
the naturalness modified identifier dataset using SQL view cre-
ation DDL and a db_nl schema. This enables schema information
retrieval for LLM-based NL-to-SQL prompting without prompt or
generated query modification while still retaining the underlying
Native schema naming patterns required for existing integrations.

In lieu of schemamodificaftion, practitionersmay elect to employ
prompting techniques that augment schema representations with
additional metadata or value samples. While these methods may
improve schema linking performance in some contexts [31], they
greatly increase schema representations on a per-identifier basis.
Thus, the cost to do so is high in terms of token efficiency, latency,
and implementation complexity, especially for very large schemas.

Designing New Schemas. For new schema development, our
results show that making schema identifiers more natural from the
start can make databases work better with LLMs. Specifically, data-
base designers should try to avoid Least naturalness identifiers and
would likely also benefit from limiting Low naturalness identifiers.
Database practitioners can evaluate the naturalness of identifiers
using the identifier naturalness classification techniques and model
artifacts described in this paper and released publicly by us as part
of the SNAILS collection.

Limitations. LLM research is advancing rapidly, and the LLMs
represented in this paper may get superseded by newer versions or
newer models (e.g., DBRX [53], Arctic [54]). But it does not negate
our work’s core value–the first in-depth characterization of how
schema naturalness affects LLM-based NL-to-SQL–and our new
labeled datasets, AI artifacts, and benchmarking framework can be
used for future LLMs too. We leave it to future work to also include
such very recent LLMs for further benchmark analyses.

We recognize that the correlation statistics indicate a moderate
(in some cases only a weak) correlation between naturalness and
IdentifierRecall. This suggests that other undiscovered factors also
influence linking performance; and further research may reveal
additional schema- and language-related correlations.

Our selection of 9 database schemas is of course not fully repre-
sentative of all types of schemas available in the real-world. The
SNAILS collection will benefit from continued growth in terms
of both databases and NL-SQL pairs. We hope our open source
datasets and artifacts can be built upon by the database and NLP
communities to keep improving LLM-based NL-to-SQL.
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Future Work. In addition to extending the SNAILS benchmark
artifacts to include additional datasets and artifacts, we identify
several NLP+DB directions for future work. First, we wish to ask
why and how exactly do different naturalness levels alter schema
linking performance so much? Is it due to the tokenization and
embedding mechanics? If so, where in the latent space do these
altered tokens end up, and how do the encoders make use of them?
Second, why do the different foundational LLMs behave so differ-
ently? Is it related to their architectures, tokenization, (pre)training
data, post-training finetuning process, or some other factors? We
believe these open questions have the potential to lead to several
interesting new lines of research at the DB and NLP intersection.

7 RELATEDWORK
Ontology Mapping. Schema modifications and intermediate

representations to enhance performance in a specific context ex-
tend beyond NL-to-SQL applications. Mapping relational database
schemas to ontologies is an approach used to improve schema-
to-schema integration and web application application-database
interfaces [57]. This improves the semantic description of underly-
ing data, which is often a desirable feature in web applications that
interact within the semantic web [19]. While ontological mapping
of a relational database can improve performance in this context;
we see less evidence that such an approach is useful or necessary
in NL-to-SQL applications, though this may serve as a compelling
opportunity for future research.

NL-to-SQL Benchmarks. Spider [58], soon to be superseded
by a more challenging benchmark for the LLM era, was a popu-
lar NL-to-SQL benchmark that still offers a publically-available
dataset consisting of 166 multi-table databases and 1,034 NL ques-
tions and gold queries over the databases in a development dataset.
Spider-Syn [14] and Spider-Realistic [14] are extensions of the Spi-
der benchmark that perform NL question synonym replacement to
reduce the occurrences of lexical matching between NL question
keywords and schema identifiers. BIRD [26] is an emergent bench-
mark containing 95 large databases over 37 domains that seeks to
better replicate real-world databases in order to better challenge
highly capable LLM-based NL-to-SQL systems. While Spider and its
variants as well as BIRD intend to better-replicate real-world data-
base designs, our naturalness-focused analysis indicates that their
schema identifiers are more natural than those we encountered
in our real-world database selection process (see the statistics in
Figure 3). Additionally, Spider and BIRD both evaluate performance
using either exact set matching or execution result set compari-
son while we use the more pragmatic set-superset matching as
proposed in [13] and schema linking-specific recall metrics.

Archerfish [13] is a benchmarking framework that relaxes execu-
tion matching and accounts for semantic ambiguity in NL questions
by allowing for multiple correct answers derived from candidate
key analysis. This framework relies on the binary “correct, or not”
evaluation approach common to other benchmarks, whereas in
addition to relaxed execution matching, SNAILS evaluates target
schema linking performance via query identifier recall. Overall, we
find that our benchmark and findings complement this existing
and ongoing research by enhancing our ability to target specific

schema-related aspects of NL-to-SQL performance in future NLI
development.

Impacts of Schema onNL-to-SQLPerformance. Spider-Syn [14]
demonstrates degraded NL-to-SQL performance of language mod-
els trained for NL-to-SQL tasks when the occurrence of lexical
matching between NL questions and schema identifiers is reduced.
This approach differs from our experiments in that it evaluates a LM
specifically trained on NL-to-SQL tasks using the Spider training
set as opposed to the more general-purpose foundational LLMs
evaluated in this work. They also make no apparent attempt to
reduce the naturalness of database schema identifiers.

Semantics-preserving schema transformation is a design feature
of MT-teql [28], an NL-to-SQL evaluation framework that modifies
natural language utterances and schema properties to stress LM
robustness. MT-teql provides a holistic view of the effect of NL utter-
ance variances and schema design on LM performance. However, it
does not address the question of schema identifier naturalness, nor
does it make modifications to schema elements that are necessary
for answer generation.

Some recent work has examined the effects of schema ambiguity,
where semantically different tables or columns have identical or
synonymous names. Schema ambiguity, where a schema contains
one or more semantically similar pairs of elements, degrades seman-
tic parsing (i.e., NL-to-SQL) performance by recalling undesired
tables or columns in response to a NL question that contains pat-
terns or keywords that align with more than one schema element in
the latent space [38]. Documentation, combined with agent-based
column selection, can improve Text-to-SQL performance in the
presence of data and schema ambiguity [20]. Though we did not fo-
cus on ambiguity in our work, identifier naturalness and ambiguity
are complementary efforts that provide a potential future direction
for the expansion of the SNAILS benchmark artifacts.
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A SOURCE DATABASES AND QUERIES IN
SNAILS

The SNAILS database collection (Artifact 1) contains 9 real-world
schemas sourced from several different organizations and domains.
In this section, we describe the technical details of each schema
and its associated NL question-SQL query pairs. The bar charts in
each data source section visually portray the clause compositions
of the gold queries in Artifact 6–the NL question-SQL query pairs.

A.1 Data Sources
A.1.1 Field Data for Assateague Island National Seashore Amphibian
and Reptile Inventory (ASIS).

Data Description. The ASIS database [8] is sourced from the
National Parks Service (NPS) Irma portal [1] and contains scien-
tific observation data of wildlife in the Assateague Island National
Seashore preserve.

Figure 14: Gold query clause composition - ASIS database

ASIS Database Technical Details.
• Data source format: Microsoft Access
• Migration method: SQL Server Migration Assistant
• Table count: 36
• Column count: 245
• Mean columns per table: 6.125
• NL Questions: 40
• Combined naturalness level: 0.77

A.1.2 Great SmokyMountains All Taxa Biodiversity Inventory (ATBI)
Plot Vegetation Monitoring Database.

Data Description. The ATBI database [11] contains scientific
observations of vegetation within the Great Smoky Mountains
national park.

Figure 15: Gold query clause composition - ATBI database

ATBI Database Technical Details.
• Data source format: Microsoft Access
• Migration method: SQL Server Migration Assistant
• Table count: 28
• Column count: 192
• Mean columns per table: 6.857
• NL Questions: 40
• Combined naturalness level: 0.70
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A.1.3 Klamath Inventory and Monitoring Network (KIS).

Data Description. TheKlamath Invasive Species (KIS) database [21]
contains scientific observations of exoctic and invasive plants ob-
served in Klamath Falls, Oregon.

Figure 16: Gold query clause composition - KIS database

KIS Database Technical Details.
• Data source format: Microsoft Access
• Migration method: SQL Server Migration Assistant
• Table count: 18
• Column count: 157
• Mean columns per table: 8.72
• NL Questions: 40
• Combined naturalness level: 0.79

A.1.4 Pacific Island Network Landbird Monitoring Dataset.

Data Description. Pacific island landbirds (PILB) database [22]
contains scientific observations of bird observations in various
Pacific islands within the US states and territories.

Figure 17: Gold query clause composition - PILB database

PILB Database Technical Details.
• Data source format: Microsoft Access
• Migration method: SQL Server Migration Assistant
• Table count: 21
• Column count: 196
• Mean columns per table: 9.33
• NL Questions: 40
• Combined naturalness level: 0.75

A.1.5 Wildlife Observations Database: Craters of the Moon National
Monument and Preserve 1921-2021.

Data Description. The Craters Wildlife Observation (CWO) data-
base [48] contains observations of wildlife spotted at the Craters of
the Moon national monument and preserve. It is the smallest and
most natural database in the benchmark data set.

Figure 18: Gold query clause composition - CWO database

CWO Database Technical Details.

• Data source format: Microsoft Access
• Migration method: SQL Server Migration Assistant
• Table count: 13
• Column count: 71
• Mean columns per table: 5.461
• NL Questions: 40
• Combined naturalness level: 0.84

A.1.6 Northern Great Plains Fire Management: FFI Database.

Data Description. The NPFM database [30] contains observations
of various overstory and other flora within the Northern Plains
region of the Nationa Parks Service.

Code-Bison Evidence of Familiarity. With this dataset, we observe
some indications of exposure to the Code-Bison language model.
We note that we no longer report performance results of Code-Bison
inference in our main report.

When prompted with the NL question "How many overstory’s
have a codominant canopy position?", it generated the query:

SELECT COUNT(*)
FROM tbl_Overstory
WHERE CanPos = 2;

Which is a correct reference to the canopy position (CanPos)
lookup code of 2, which corresponds to the codominant canopy posi-
tion. The LLMwas not provided code lookup information within the
prompt, which suggests that some reference to the NPFM schema
was included in its training data.
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Figure 19: Gold query clause composition - NPFM database

NPFM Database Technical Details.
• Data source format: Microsoft Access
• Migration method: SQL Server Migration Assistant
• Table count: 27
• Column count: 190
• Mean columns per table: 7.037
• NL Questions: 40
• Combined naturalness level: 0.70

A.1.7 2021 Crash Investigation Sampling System.

Data Description. The crash investigation sampling system [44]
is sourced from the National Transportation Safety Board, and
referred to as NTSB in this paper. It contains sampled data of crash
and vehicle statistics from 2021. The data is organized such that
composite key joins are required for most multi-relation queries.

Additional Implementation Details. This is the only database
in our collection that required deliberate migration from a non-
database format to the target MS SQL Server environment. We
acquired the data in .csv form, with a single .csv per table. Analysis
of the files confirmed that although not in database form, the data
was relational in nature, and migration involved SQL-based inges-
tion from .csv files into the target schema. The .sql scripts used to
generate the database schema and insert table values are available
in the project repository.

Figure 20: Gold query clause composition - NTSB database

NTSB Database Technical Details.
• Data source format: Comma Separated Value (CSV) files

• Migrationmethod: SQL database creation and Python-based
ETL scripting

• Table count: 40
• Column count: 1,611
• Mean columns per table: 40.275
• NL Questions: 100
• Combined naturalness level: 0.59

A.1.8 New York State Education Department Report Card Database
2021-22.

Data Description. The NYSED database [4] is sourced from the
New York State Education Department. It contains standardized
testing and demographic data for all public elementary, middle, and
high schools in New York State.

Figure 21: Gold query clause composition - NYSED database

NTSB Database Technical Details.

• Data source format: Microsoft Access
• Migration method: SQL Server Migration Assistant
• Table count: 27
• Column count: 423
• Mean columns per table: 15.67
• NL Questions: 63
• Combined naturalness level: 0.68

A.1.9 Localized Demo Databases Now Available for SAP Business
One.

Data Description. The SBOD database [42] is sourced from a
publically available SAP demonstration and training database. It is
the largest, and least natural, database within our dataset. Given
its schema size, we divided it based on SAP module, and further
reduced the schemas used in our benchmark based on the training
database cardinality (e.g. we removed most tables containing 0
tuples).
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Figure 22: Gold query clause composition - SBOD database
module example

SBOD Database Technical Details.
• Data source format: MS SQL Server backup (.bak) file
• Migration method: MS SQL Server backup recovery
• Table count: 2,588
• Column count: 90,477
• Mean columns per table: 34.96
• NL Questions: 100
• Combined naturalness level: 0.49

Module Tables Columns Questions
Banking 40 1720 10
Business Partners 40 1443 10
Finance 61 1988 10
General 71 1035 10
Human Resources 28 440 20
Inventory and Prod. 65 1942 10
Reports 40 734 10
Sales Opportunities 20 283 10
Service 40 875 10

Table 4: SBO Demo Module Schemas

SAP Business One Additional Details. Business One is an enter-
prise resource planning (ERP) system created by the German soft-
ware systems developer SAP. It is a common platform in govern-
ment and commercial domains where large-scale business man-
agement solutions are required. The SBOD database contains a
significant number of tables and columns. Such a schema size poses
a problem for generating schema knowledge representations in
zero shot prompts, even for large context window variations of
evaluated LLMs. To overcome this constraint, we divide the SBOD
schema into 9 sub-modules based on schema descriptions published
by an online community of SAP practicioners [2]. We further prune
the SBOD schemas using the cardinality of the training database,
where tables without data entries were excluded from NL questions
and prompt schema knowledge.

A.2 NL Questions and Gold Queries
The NL question - SQL query pair artifact consists of 9 .sql files
containing between 40 and 100 entries each. Question and query

pairs are written in executable .sql files. Natural language questions
are written as SQL comments; and SQL is written in the T-SQL
dialect employed in MS SQL Server. For public repositories storing
the questions, we store them in .zip files in order to reduce the
possibility of inclusion in language model training material. Each
file is associated with a database in the SNAILS schema collection.
Some NL questions contain hint and note entries annotated as HINT
and NOTE in lines that follow the NL query. We used neither the
hints nor columns in any of the experiments described in this paper,
but retain them for possible use in future research.

While we store the data in .sql file format for readability and ease
of use, we also offer aNL question loading script (load_nl_questions.py)
in our repository. This script performs rudimentary parsing of the
.sql files and returns a Pandas DataFrame and optional .xlsx format-
ted spreadsheet.

NL Question - Query Example 1, ASIS Database Question 8. The
focus of this benchmark dataset is on the evaluation of schema
linking. As such, we were generous with value descriptions, pro-
viding literal value strings (e.g. ASIS_HERPS_20H location code in
example 1) in the prompt.

-- 8: show how many minnows of each stage were counted
at the location ASIS_HERPS_20H

SELECT stage, sum(count) minnowCountSum
FROM tblFieldDataMinnowTrapSurveys
WHERE locationID = 'ASIS_HERPS_20H'
GROUP BY stage
;

NL Question - Query Example 2, NTSB Database Question 13.
Example 2 shows additional code value hints provided in the NL
question. In order to enable the recall evaluation statistic, we limited
the use of columns and tables in gold queries to the minimum
necessary to form a correct query. In the cases where any arbitrary
column as an argument in the count function will yield the same
result as the ∗, we use only the ∗ symbol. This eliminates the recall
penalty for models selecting an arbitrary column within the count
function.

-- 13: How many vehicles are there where drugs were present
(presence code value is 1) and the vehicle was towed
for a reason not due to disabling damage (towed code is 3)

SELECT COUNT(*) VEHCOUNT
FROM GV
WHERE PARDRUG = 1 AND TOWED = 3
;

NL Question - Query Example 3, SBOD Database Human Resources
Module Question 18. Questions vary in their complexity. This exam-
ple shows one of the more complex questions that require multiple
projections and joins as well as a selection.

-- 18: Show the professional status and educational
statuses as well as the home and work street
numbers of employees on the purchasing team.

SELECT StatusOfP, StatusOfE, StreetNoW, StreetNoH
FROM OHEM employees
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Figure 23: Spider [58] and Bird [26] benchmarks classified
with theDavinci-based classifier reveals that both benchmark
databases have highly natural identifiers even compared to
themost natural of the databases in our proposed benchmark.
Our benchmark more closely aligns with the naturalness of
the real-world schema collection SchemaPile [9]

.

JOIN HTM1 teamMembers
ON employees.empId = teamMembers.empID

JOIN OHTM emplTeams
ON teamMembers.teamID = emplTeams.teamID

WHERE emplTeams.name = 'Purchasing'
;

A.3 Benchmark Naturalness Comparisons
Though we believe the quality of existing benchmarks is excellent,
and the hard work of researchers associated with those projects has
resulted in significant improvements in NL-to-SQL system design,
we find that a large proportion of these benchmark schemas are
canonical, small in composition, and highly natural compared to
databases and data sets often encountered in real world scenarios.
Using our naturalness classifier described in the main report and
the appendix section B, we determine the naturalness levels of the
Spider [58] and Bird-SQL [26]. Our classifier model indicates that
both Spider and Bird database schemas are highly natural, moreso
than any real-world schema we acquired for our benchmark (see
Figure 23 for a visual comparison). Additionally, we evaluate the nat-
uralness of the real-world schema identifiers in the SchemaPile [9]
and find that the SNAILS naturalness better-aligns with SchemaPile
than the previously-mentioned benchmarks. Figure 5

B NATURALNESS CLASSIFICATION
B.1 Heuristics-based scoring
Prior to experimenting with ML classifiers, we used a set of heuris-
tics to score the naturalness of each identifier. Comparisons between
the heuristics-based scoring approach and ML classification reveals
that ML is superior in terms of recall, precision, and F1. We include
a description of the heuristics here for completeness, but exclude
them from the main body of the report.

• Vectorize an English word vocabulary as frequency counts
of letters in the word.

• With a given database identifier, vectorize the identifier as
frequency counts of letters in the identifier and downsam-
ple to the English word vocabulary to words that have a
superset of the letters in the identifier.

• Further downsample the candidate words to words where
the letters appear in the same order as the words in the
identifier.

• For eachword in the downsampled vocabulary, compute the
Levenshtein distance between the word and the identifier.
This number is called the edit distance.

• For each word, count the number of possible word candi-
dates within 1 and 2 Levenshtein distance from the word.
We call this number candidate ambiguity.

• The distribution of candidate ambiguity across our vocabu-
lary is highly skewed, so we take the log of the candidate
ambiguity to normalize the distribution.

• We then calculate the naturalness score as the weighted
mean of the inverse of the edit distance and the inverse
of the log of the candidate ambiguity. This yields values
ranging from 0 to 1, where 0 is least natural and 1 is most
natural.

B.2 Dataset Naturalness Classifications
Identifier naturalness within each dataset is categorized using the
𝑁1 (Regular), 𝑁2 (Low), and 𝑁3 (Least) categories. Naturalness
of table and column identifiers are cataloged both separately, and
in consolidated form (i.e. tables and columns together). Addition-
ally, we calculate a combined naturalness score for consolidated
identifiers using category weights.

CombinedNaturalness = 1.0*Regular + 0.5*Low + 0.0*Least

(5)

where 𝑅𝑒𝑔𝑢𝑙𝑎𝑟 , 𝐿𝑜𝑤 , and 𝐿𝑒𝑎𝑠𝑡 are proportions of schema identi-
fiers in each respective category within the total count of identifiers
in the identifier’s source schema.

B.3 Training Data Collections
For finetuning tasks, we train language models using database
identifiers extracted from the schemas in the SNAILS real-world
database collection. We begin with a human-classified collection
(Collection 1); then we employ classifier models trained on Collec-
tion 1 to generate a larger set (Collection 2) of machine-classified
and human-curated identifier classifications.

Collection 1 The full dataset contains 1,648 manually classified
unique schema identifiers. The identifiers are hand labeled as one
of 3 naturalness levels (Regular, Low, Least). We randomly divide
the data into a training, validation, and test set. This resulted in a
distribution of 959 identifiers used for training, 356 for validation,
and 333 for testing.

Collection 2 The labeled data set contains 13,722 distinct col-
umn identifiers and 3,504 distinct table identifiers for a total size
n = 17,226. We employ GPT’s Davinci model finetuned on Collec-
tion 1 to generate the preliminary naturalness scores. The authors
reviewed, and where necessary, modified the model-generated iden-
tifier scores to affirm the accuracy of the naturalness classifications.
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Figure 24: At the individual database schema level, the SNAILS database collection has a diverse arrangement of naturalness
levels.

Of the 17,223 identifiers reviewed, 15,527 naturalness scores, or
90.1 percent, were accurately predicted by the Davinci-based model.
We manually scored the incorrectly-predicted 1,696 identifiers. For
model finetuning, we randomly split the resulting data into training
(n = 10,327), validation (n = 3,457), and test (n = 3,457).

B.4 ML Classifier-based scoring
The use of pre-trained language models is a SoTA approach for
classification problems [29], and we experiment with various at-
tempts at model-based scoring, including few-shot learning via the
GPT API, and finetuning several BERT-like language models on our
dataset of database identifiers to create a second larger collection
of identifier naturalness scores. Since the presence of acronyms
and abbreviations is a significant determining factor of identifier
naturalness, a primary consideration for our naturalness scoring
task is the granularity of the tokenizer output. For this reason, we
use models that employ either character-level tokenization, word
part tokenization, or byte pair tokenization techniques. We select
2 approaches: 1) Use of a foundational LLM in various capacities;
and 2) Finetuning of a character-level token language model.

Model Accuracy Precision Recall F1
GPT-3.5-
FewShot

0.646 0.623 0.638 0.630

CANINE-Seq
C1

0.719 0.699 0.727 0.712

GPT-4-
FewShot

0.742 0.742 0.792 0.766

CANINE-
Seq+TG C1

0.829 0.829 0.838 0.833

GPT-3.5-
FineTune

0.899 0.878 0.877 0.878

GPT-3.5-
FineTune+TG

0.896 0.896 0.897 0.896

CANINE-
Seq+TG C2

0.896 0.896 0.898 0.897

Table 5: Performance comparison of different language mod-
els for classifying a database identifier’s naturalness
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Figure 25: Schema identifiers in our benchmark dataset are classified into a naturalness category and modified to increase or
decrease naturalness as appropriate. Modified identifiers comprise the schema crosswalks used for schema modification during
experiment query inference.

B.5 Character Tagging Feature
We include a pre-processing step that generates a sequence of
special characters that correspond to the type of characters of the
identifier to be classified. The sequence is then concatenated with
the identifier and passed to the language models during training
and inference. We refer to this approach as character tagging, and
models employing tagging are labeled with TG in Table 5. Both
GPT- and CANINE-based models exhibit improvement in F1 scores
using character tagging.

There are intuitive structural differences between abbreviated
words and their complete counterparts. Specifically, we observe
that word abbreviations generally contain more consonants than
vowels, as vowels seem more likely to be removed during abbre-
viation. We are unsure of a language model’s ability to make use
of this observation, so we offer some assistance in the form of a
pre-processing step that generates a sequence of special characters
that correspond to the type of characters of the identifier to be
classified. We concatenate the tag sequence to the identifier and
pass it to the language models for training and inference. Special
characters include:

• ^: Vowels
• +: Consonants
• #: Numbers
• $: Special characters
• ∗: Any character not in the above categories

We refer to this approach as character tagging, and models employ-
ing tagging are labeled with TG in Table 5.

For example, the identifier AuthorID_5 would be pre-processed
as follows:

AuthorID_5 ^^++^+^+$#

Both GPT- and CANINE-based models exhibit improvement in
F1 scores when using the character tagging feature.

B.6 GPT 3.5/4 Turbo Few-Shot-Based Scoring
We experiment with the effectiveness of few-shot prompting to
classify identifier naturalness. We opt to provide one set of instruc-
tions followed by a series of 25 randomly selected human-validated
examples of naturalness levels. We perform text replacement on the
trailing row by replacing the _IDENTIFIER_ text with the identifier
to be classified. This approach does not require model pre-training;
but this convenience is paid for in terms of the number of tokens
in the prompt, and classifying a large schema with this method can
incur rather high LLM usage costs.

The following is a list of database identifiers and
labels that indicate how closely they resemble
natural english words:
N1: most natural english words
N2: second most natural english words
(e.g. abbreviations or combinations of
natural words and acronyms)
N3: third most natural english words
(e.g. very short abbreviations with obscured
meaning or acronyms)

identifier: CASENO Label: N1
identifier: BENTHOS_TotalAreaSampled_m2 Label: N2
identifier: CAUSE3 Label: N1
identifier: MT_RIVPACS_2011_OTU Label: N3
identifier: ACTIVATE Label: N1
identifier: MotorcycleChassisTypeId Label: N1
identifier: First_Name Label: N1
identifier: IPCAREA_2ND Label: N2
identifier: INJNO Label: N2
identifier: tbl_MicroHabitat Label: N2
identifier: EMSGCSEYE Label: N3
identifier: HEADRESTDAM Label: N2
identifier: AutoPedestrianAlertingSound Label: N1
identifier: ModelTest Label: N1
identifier: tlu_topo_position Label: N2
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identifier: Understory_Comp Label: N1
identifier: BAGDAMAGE Label: N1
identifier: HARNESSDESIGN Label: N1
identifier: Coord_Syst Label: N2
identifier: CINJSEV Label: N2
identifier: JKWGT12 Label: N3
identifier: _IDENTIFIER_ Label:

B.7 GPT Davinci Fine Tuning
We train the Davinci-based completion models using the OpenAI
command line API. We generated models with character tagging,
as well as models without tagging. Below is an excerpt from the
tagging-based training data.

{"prompt":"ADDRESS ^+++^++ ->","completion":" N1"}
{"prompt":"AIS ^^+ ->","completion":" N3"}
{"prompt":"AISCODE ^^++^+^ ->","completion":" N3"}
{"prompt":"BACKBPILL +^++++^++ ->","completion":" N2"}
{"prompt":"ALIGNMENT ^+^+++^++ ->","completion":" N1"}
{"prompt":"ARRMEDICAL ^+++^+^+^+ ->","completion":" N2"}

Inference using charager tagged models requires appending the
tag to the identifier in the same format as the training data.

B.8 CANINE Fine Tuning
CANINE [7] is a BERT-based language model that tokenizes in-
puts at the character level. We trained a sequence classification
head using both generation 1 and generation 2 data sets using a
single NVIDIA GTX 1080 GPU. We employed the HuggingFace
Transformers library, CUDA 12.1, and Torch 2.0.1 to fine tune the
’google/canine-s’ model. Hyperparameter tuning was conducted
using the optuna library, which resulted in the parameter settings:

• Optimizer: adamw hf
• Learning rate: 4.910828967396573e-05
• Per device training batch size: 24
• Per device evaluation batch size: 12
• Number of epochs: 15
• Weight decay: 0.04168784348465411

Models were trained both with, and without, the character tag-
ging feature. We offer the evaluated models in our project reposi-
tory. The snails_naturalness_classifier.py Python file contains the
CanineIdentifierClassifier class. This class provides a simple clas-
sify_identifier method for using the CANINE model to classify
identifier naturalness with or without character tagging.

B.9 Tokenizers
We examine the relationship between tokenization and naturalness
by generating token counts, character counts, and a character-to-
token ratio of each identifier. As expected, due to the unabbreviated
nature of the identifiers, more natural identifiers have more charac-
ters (see Figure 26). Perhapsmore surprising, token count is not very
sensitive to naturalness levels, mainly due to the general behavior
where more abbreviated identifiers will have character sequences
not found in the LLM tokenizer’s vocabulary. When a character
sequence is not present in the vocabulary, the tokenizer will split
the sequence into multiple subtokens.

0 20 40 60 80
Character Count

0.0

0.2

0.4

0.6

0.8

1.0

Pr
op

or
tio

n

Naturalness Level
Least
Low
Native
Regular

Figure 26: Cumulative distribution of schema identifier char-
acter counts by naturalness level. More natural (less abbrevi-
ated) identifiers logically have more characters.

𝑇𝐶𝑅 =
|𝐼𝑡𝑜𝑘𝑒𝑛𝑠 |

|𝐼𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 |
(6)

Because there is not a clear relationship between token count
and naturalness, we derive a token-to-character ratio metric (see
6) which is the count of identifier tokens 𝐼𝑡𝑜𝑘𝑒𝑛𝑠 divided by the
count of identifier characters 𝐼𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠 . What we see in Figure
28 is a fairly strong differentiation between naturalness levels and
TCR, where more natural identifiers have lower TCR than less
natural identifiers. We believe that this hints at the effects of in- vs.
out-of-vocabulary character sequences and the strength of their
semantic meaning in latent space. However, the relationship is not
so strong that TCR alone can serve as a useful classification method
for identifier naturalness. We leave additional exploration of this
topic to future research.

C NATURALNESS-MODIFIED IDENTIFIERS
Naturalness modification is the process of changing an identifier
in such a way that it assumes a naturalness category that is not
its original classification (see Figure 25). Modifying an identifier to
become less natural is useful for creating benchmark schemas of
varying naturalness levels. The same benefit applies to the process
of modifying less natural identifiers to become more natural; this
direction of modification also generally yields improved NL-to-SQL
performance, as is demonstrated in the experiment and evaluation
sections of this report.

Naturalness-modified identifiers generated by the ML-based ap-
proaches described next are human-validated and, when necessary,
modified. Once validated, the identifiers are added to our ground
truth dataset and used for the prompt and query naturalness modi-
fication processes described elsewhere in this report.
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Figure 27: Token count CDF, by naturalness level, for each language model.
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Figure 28: Token counts to character count ratio, by naturalness level, for each language model. More natural identifiers
generally contain fewer tokens-per-character than less natural identifiers, suggesting a higher presence of in-vocabulary
keywords for more natural identifiers.

C.1 Decreasing Naturalness (Abbreviation)
Decreasing naturalness generally involves the removal of characters
from an identifier in a manner that shortens the length while retain-
ing some structure that still allows for some measure of readability.
This cannot be achieved by randomly removing characters from an
identifier; so we elect to use machine learning-based approaches
to decrease identifier naturalness. As with our classification ap-
proaches, we experiment with both engineered few shot prompts
targeted at a general purpose foundational LLM (GPT), and a fine
tuning approach (GPT Davinci).

FPT Davinci Fine Tuning Abbreviation. Seperate models are
trained for converstion tasks from one naturalness level to a model-
specific alternative naturalness level. This resulted in the following
fine tuned models:

• Regular to Low
• Regular to Least
• Low to Least

Each fine tune dataset consists of 176 randomly selected iden-
tifiers and human-created naturalness modifications. Below is an
example of Regular to Least model training data:
{"prompt":"Plot ->","completion":" p\n"}
{"prompt":"Metals ->","completion":" mt\n"}
{"prompt":"Station_ID ->","completion":" S_ID\n"}
{"prompt":"FUELEAK ->","completion":" F_Lk\n"}

The outputs of these finetuned models require significant adjust-
ment by human researchers; so we elect to employ an alternative
approach described next.

GPT Few Shot Abbreviation. GPT 3.5-based few shot prompt-
ing (see example below) resulted in the most consistent outputs,
with a reasonably low prompt token count. Rather than explaining
the different categories followed by an instruction to convert an
identifier to a specific category, we find that providing a simple
instruction to abbreviate the database schema identifier to make it
slightly shorter followed by several examples is more effective.

Abbreviate the database schema identifier
to make it slightly shorter:
Protocol_Name -> Protcl_Nm

Abbreviate the database schema
identifier to make it slightly shorter:
WaterTemperature -> WaterTemp

Abbreviate the database schema
identifier to make it slightly shorter:
Customer -> Custmr

Abbreviate the database schema
identifier to make it slightly shorter:
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_IDENTIFIER_ ->

C.2 Increasing Naturalness (Expansion)
Increasing naturalness requires the expansion of an abbreviated
identifier. A recent attempt at performing this task with model fine
tuning [60] was made during our research; and it appears to be a
promising direction for research. However, we elect to enrich our
process with external database metadata.

Expansion Process. In order to accomplish this, we engineered
a solution that employs a database metadata reader capable of
reading .pdf, .xml, and .csv formatted metadata. Metadata is read
and indexed at the word level, where an array of file locations (page
and line numbers for pdf, line numbers for xml and csv) where
words occur are mapped to each word. When a user keys in an
identifier to modify, file locations where the identifier exists in the
document are returned via index lookup. These index locations
are used as the centerpoints of context windows that retrieve the
surrounding content. This content is added to a fewshot prompt to
provide the language model with document content that is likely
to contain references to, and definitions of, the provided identifier.

The fewshot prompt for generating an expanded identifier ad-
heres to the template:
Using the following text extracted from a
data dictionary:
__CONTEXT__

In the response, provide only the old identifier
and new identifier (e.g. "old_identifier,
new_identifier").
Create a meaningful and concise database identifier
using SQL compatible complete words to represent
abbreviations and acronyms for only
the identifier __IDENTIFIER__:

The __CONTEXT__ placeholder is replaced with up to ten con-
text window-length excerpts from the database metadata. This is
an example of a completed prompt using the NYSED .pdf based
data manual with context window of 200 characters:
Using the following text extracted from a data dictionary:
r school Text 255
YEAR Reporting Year (2021 for 2020 -21; 2022 for 2021 -22)
Number 4
NUM_TEACH Number of teachers as reported
in the Student Information Repository System
(SIRS) Number 12
NUM_TEACH_INEXP Number of teachers with fewer
than four years of experience in their positions
Number 12
PER_TEACH_INEXP Percent of teachers with
fewer than four years of experience in their posi

In the response, provide only the old identifier
and new identifier (e.g. "old_identifier, new_identifier").
Create a meaningful and concise database identifier
using SQL compatible complete words to represent
abbreviations and acronyms for

only the identifier num_teach_inexp:

num_teach_inexp, number_of_teachers_inexperienced

In this successful example, we see that the identifier num_teach_inexp
has been expanded to amore natural number_of_teachers_inexperienced.
This is despite the observation that the data retrieved from the .pdf
file is quite unstructured and contains document artifacts. A suffi-
ciently wide context window coupled with the retrieval of multiple
occurences of the identifier in the document generally results in
valid expansions.

Prompt Building. In order to generate few shot prompts over
an arbitrarymetadata source, some prompt engineering is necessary.
Generally, hand-crafted prompt building is suitable approach; but
it does not scale nor does it lend itself to an automated solution
that can be deployed beyond a research lab. To make this process
more portable, we introduce a command line-based subroutine that
enables the automatic build of a five example few shot prompt. In
this process:

(1) User enters an identifier
(2) Zero shot prompt -> expanded identifier
(3) User reviews and validates identifier
(4) Correct: identifier added to example list
(5) Incorrect: User tries again with different identifier
(6) User enters another identifier
(7) Few shot prompt (with prior successes as examples) -> ex-

panded identifier
(8) Correct: identifier added to example list
(9) Incorrect: User tries again with different identifier
(10) Process repeats until five successful examples are generated
Once a fewshot prompt has been created for a given database’s

metadata, the prompt is stored for any future program runs. This
particular aspect of our project was built to support our research
efforts; and we did not perform any experiments to evaluate its over-
all accuracy and usability. We leave these tasks as future research
opportunities.

D NL-TO-SQL BENCHMARKING SETUP
D.1 Prompting
Prompts are generated dynamically during inference runtime and
include schema knowledge, task and syntax instructions, and a
natural language question. Schema information is extracted from
the target database system tables and encoded into relational dia-
gram format as schema knowledge. Instructions include SQL dialect
type, and answer format (e.g. provide only a SQL query without
explanation).

D.2 Prompt Naturalness Modification
Prompt naturalness modification is necessary when generating SQL
queries over schemas with modified identifiers. In order to prevent
producing additional database instances with renamed identifiers,
we employ a middleware approach where modified identifiers are
retrieved from a mapping of native identifiers to the target natural-
ness level. The prompt is generated using native schema identifiers,
and table and column names are encased in XML-like opening and
closing <TABLE_NAME> and <COLUMN_NAME> tags. Native
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identifiers and their tags are replaced with modified identifiers
using standard Python string replacement (e.g. str.replace(target,
value)).

Prompt naturalness conversion example. The objective is to mod-
ify the naturalness of the Klamath Invasive Species (KIS) schema to
the least natural form. The first step is to generate a tagged prompt
which is formed using the database metadata accessed via system
tables. A tagged prompt table with columns and datatypes takes on
the form:
#<TABLE_NAME>tlu_Species_WHIS</TABLE_NAME>
(

<COLUMN_NAME>Species</COLUMN_NAME> nvarchar,
<COLUMN_NAME>SampleYear</COLUMN_NAME> nvarchar,
<COLUMN_NAME>Park</COLUMN_NAME> nvarchar

)

Each table and its columns occupies a single line within the prompt.
The resulting prompt after string replacement appears as the fol-
lowing in the final prompt:
#TSW( Sp nvarchar, S_Yr nvarchar, Pk nvarchar)

The modified schema knowledge is presented to the LLM as
though it is the native schema.

D.3 NL-to-SQL Prediction
Four LLMs are integrated into the experiment pipeline: GPT 3.5
Turbo, GPT 4o, Gemini 1.5 Pro, and Phind Code Llama. In earlier
experiments, we also used CodeLlama 34b, CodeLlama 7b, and
Google Bison. Due to these models being superseded by more-
capable variants, we exclude them from the results in our main
report.

GPT3.5 Turbo andGPT 4o. GPT-based [33] generations use the
gpt-3.5-turbo-16k model accessed using OpenAI’s API services [34].
GPT-based models employ BPE using tiktoken [35] to tokenize
inputs and decode model outputs.

Due to the size of larger schema knowledge prompts, we make
use of the GPT 3.5 model [33] with a context window of 16,000
tokens gpt-3.5-turbo-16k. For consistency, all queries were gener-
ated with a 0 temperature, 1 top p, 0 frequency penalty, 0 presence
pentalty. Responses are fetched from the OpenAI Python ChatCom-
pletion class’ create method with a single message (prompt) passed
in the user role.

Phind Code-Llama. Phind Code-Llama [41] is a fine-tuned ver-
sion of the 34b parameter Code Llama model. We used the Togeth-
erAI API to access this model. We find that the finetuning appears
to have improved its performance as compared to the baseline Code
Llama 34b version, and as such we replace our prior analysis using
Code Llama 34b with the results generated using the Phind model.

Gemini 1.5 Pro. During the course of our research, Google
released Gemini 1.5 Pro [50], and we quickly integrated it into
our existing workflows using the Google generative AI Python
library. The remarkable faced of the Gemini 1.5 model is its context
window size if 1 million tokens, which negates the need to reduce
schema knowledge representations in order tomeet context window
constraints.

D.4 Query Naturalness Modification
When a query is formed against a schemawith naturalness-modified
identifiers, it is necessary to replace the modified identifiers with
the native identifiers prior to executing the query over the target
database. Simple string replacement is not sufficient in this case,
because some identifier names may sometimes be substrings of
other identifiers within a query; and replacing one may corrupt the
other. We employ a Java-based parser and AST generator [3, 40] to
build a parser system for tagging table and column identifiers in a
query.

Query naturalness modification example. To answer the question
For each location type, show a count of locations in shasta county, GPT
3.5 generated the query with lowest naturalness schema knowledge:

SELECT LcTp, COUNT(*) AS LocationCount
FROM Locs
WHERE Cty = 'Shasta County'
GROUP BY LcTp

This query is converted to all capital characters and passed to
the query parser tagger via API. The tagger traverses the AST using
a listener class to encase tables and columns with identifier opening
and closing tags. The parser also returns a list of aliases generated
within the query. This allows consuming systems to ignore tagged
aliases within the tagged query:

@BEGINTAGGEDQUERY
SELECT

<COLUMN_NAME> LCTP </COLUMN_NAME> ,
COUNT ( * ) AS LOCATIONCOUNT

FROM <TABLE_NAME> LOCS </TABLE_NAME>
WHERE

<COLUMN_NAME> CTY </COLUMN_NAME>
= 'SHASTA COUNTY'

GROUP BY
<COLUMN_NAME> LCTP </COLUMN_NAME>

@ENDTAGGEDQUERY
@BEGINALIASES
<COLUMN_ALIASES>LOCATIONCOUNT</COLUMN_ALIASES>
@ENDALIASES

With the tagged query and aliases, the query is converted into
a form that is compatible with the target native schema. This is
accomplished using the schema identifier mapping dataset and stan-
dard Python string operations (e.g. str.replace("<TABLE_NAME>
LOCS </TABLE_NAME>", "TBL_LOCATIONS")).

@DENATURALIZED RESPONSE:
SELECT

[LOC_TYPE],
COUNT (*) AS LOCATIONCOUNT

FROM [TBL_LOCATIONS]
WHERE [COUNTY] = 'SHASTA COUNTY'
GROUP BY [LOC_TYPE]

This completes the query modification step. The modified query
is then used to extract results from the target database for result
set matching evaluation.
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E PERFORMANCE EVALUATION
E.1 Query Execution
Predicted and gold queries are executed over target databases with
native schemas using the PyOdbc Python library. Valid result sets
are stored as Pandas Dataframes for comparison.

E.2 Execution Result Set-Subset Matching
Result set and subset comparison consisted of a comparison of
the columns and rows returned by the two queries. Because it is
possible for semantically equivalent query results to differ in terms
of column ordering, column and aggregate function aliasing, row
ordering (when an order is not specified in the question), and even
the number of columns returned (as long as the predicted column
set is a superset of the gold column set), result set comparison was
performed using a series of rules implemented in Python.

Result cardinality The number of tuples, denoted as |𝐶𝐺 | and
|𝐶𝐶 | in the predicted result 𝑅𝑃 and the gold result 𝑅𝐺 must be equal,
and must be greater than 0:

∀𝐶𝐺 ∈ 𝑅𝐺 ,𝐶𝑃 ∈ 𝑅𝑃 ( |𝐶𝐺 | = |𝐶𝑃 |) ∧ (|𝐶𝐺 | > 0 ∧ |𝐶𝑃 | > 0)
Empty sets are tagged as undetermined and retained for syntactic
comparison. Non-empty, non-equal-size sets are tagged as non-
matches and witheld from further analysis.

Projection completeness The columns in the predicted result
𝑅𝑃 must be a superset of the columns in the gold result𝑅𝐺 . Columns
𝐶𝑃 and 𝐶𝐺 equivalence is determined by value comparisons be-
tween tuples 𝑇𝐺 and 𝑇𝑃 of the columns’ contents:

∀𝐶𝐺 ∈ 𝑅𝐺 , ∃𝐶𝑃 ∈ 𝑅𝑃 such that ∀𝑇𝐺 ∈ 𝐶𝐺 ,𝑇𝐺 ∈ 𝐶𝑃

Column match candidates are determined via pairwise comparison
of the sorted values in each column in 𝑅𝐺 to each column in 𝑅𝑃 .
Full result sets 𝑅𝐺 and 𝑅𝑃 are sorted by corresponding column
match candidates, with columns containing the most unique values
serving as the primary sort key. With both 𝑅𝐺 and 𝑅𝑃 sorted by
column match candidates, the two sets are compared row-wise
for all columns in the set of column match candidates. If the two
sets are not equal, the result sets are considered semantically non-
equivalent.

E.3 Human Evaluation
Predicted queries that pass execution result set-subset matching are
further evaluated by a human researcher to rule out false positives.
Predictions that fail result set comparison are pre-classified as also
failing manual matching. Predictions that pass set comparison are
classified as ungraded until reviewed by a human researcher. Once
reviewed using the Python-based GUI evaluation tool (see Figure
29), the predicted query receives its final matching score. Human
evaluation resulted in scoring as incorrect 41 predictions that passed
result set matching which is approximately two percent of all result
set matched queries.

E.4 Schema Linking End-to-end Example
To better pinpoint schema linking performance, we devise a new
approach for evaluating NL-to-SQL generation. In this approach,
performance is measured using set comparisons between sets of
identifiers within gold and predicted SQL queries. Recall is the

Figure 29: Screenshot of the query manual validation tool.
This example depicts a query that passed set-subsetmatching,
and is currently classified as ungraded. Helper information
indicates that although the results matched, the incorrect
tablewas selected during inference (AHEM instead of OHEM).
This example was classified as incorrect.

primary metric. Precision and F1 are available, but less helpful, due
to penalization for additional predicted columns that do not cause
a query to be incorrect. The formulae for deriving linking metrics
are printed in subsection 5.2 of the main report.

Linking Evaluation Example (ATBIQuestion 30, CodeLlama-
34b). This is an example of a predicted query that fails result set
match comparison.

Natural Language Question. Which tree species were recorded
as mature overstory but not as saplings? Include the species name
and common name.

Gold Query. The gold query is quite complex, where using EX-
ISTS clauses is a possible approach for solving.

SELECT species, CommonName
FROM tlu_PlantSpecies sp

WHERE EXISTS(
SELECT overstory_id
FROM tbl_Overstory
WHERE SpCode = sp.SpeciesCode

) AND NOT EXISTS (
SELECT Seedlings_ID
FROM tbl_Seedlings
WHERE SpCode = sp.SpeciesCod

)

Predicted Query (Code Llama 34b). As we can see below, Code
Llama 34b did not provide a correct solution. However, failure
of result set matching does not preclude us from gleaning useful
information from the result.
SELECT DISTINCT
tlu_PlantSpecies.genus,
tlu_PlantSpecies.subgenus,
tlu_PlantSpecies.species,
tlu_PlantSpecies.subspecies,
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tlu_PlantSpecies.SpeciesCode,
tlu_PlantSpecies.CommonName
FROM
tlu_PlantSpecies
LEFT JOIN tbl_Overstory

ON tbl_Overstory.SpCode
= tlu_PlantSpecies.SpeciesCode

LEFT JOIN tbl_Saplings
ON tbl_Saplings.SpCode

= tlu_PlantSpecies.SpeciesCode
WHERE
tbl_Overstory.SpCode IS NOT NULL
AND tbl_Saplings.SpCode IS NULL
ORDER BY
tlu_PlantSpecies.genus,
tlu_PlantSpecies.subgenus,
tlu_PlantSpecies.species,
tlu_PlantSpecies.subspecies,
tlu_PlantSpecies.SpeciesCode,
tlu_PlantSpecies.CommonName

Identifier Set Extraction. Using the purpose-built T-SQL parser,
we extract a set of identifiers from the gold and predicted queries.
Note that we do set comparison; so although columns are referenced
in multiple clauses in the predicted query, we only measure the
presence of a column or table once.

With a set 𝑄𝐼𝑔 of identifiers present in the gold query and a set
of identifiers 𝑄𝐼𝑝 present in the generated (or predicted) query, we
calculate recall, as well as f1 and precision.

Gold query identifiers 𝑄𝐼𝑔 :=
{
'TLU_PLANTSPECIES', 'TBL_OVERSTORY', 'TBL_SEEDLINGS',
'SPECIES', 'SPECIESCODE', 'COMMONNAME', 'SPCODE',
'OVERSTORY_ID', 'SEEDLINGS_ID'
}

Predicted query identifiers 𝑄𝐼𝑝 :=
{
'TLU_PLANTSPECIES', 'TBL_OVERSTORY', 'TBL_SAPLINGS'
'SPECIES', 'SPECIESCODE', 'COMMONNAME', 'SPCODE',
'GENUS', 'SUBSPECIES', 'SUBGENUS'
}

Identifier Set Comparisons. True positives are the intersection
𝑄𝐼𝑔 ∩𝑄𝐼𝑝 =

{
'TLU_PLANTSPECIES', 'TBL_OVERSTORY',
'SPECIES', 'SPECIESCODE', 'COMMONNAME', 'SPCODE'
}

𝑄𝑢𝑒𝑟𝑦𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑄𝐼𝑔 ∩𝑄𝐼𝑝 |

|𝑄𝐼𝑔 |
=

6
9
= 0.667

𝑄𝑢𝑒𝑟𝑦𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑄𝐼𝑔 ∩𝑄𝐼𝑝 |

|𝑄𝐼𝑝 |
=

6
10

= 0.60

𝑄𝑢𝑒𝑟𝑦𝐹1 =
2(𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

= 0.632

So we see that although the predicted query failed in terms of
execution result set comparison, we can still grade it in terms of
linking performance. In other words, we can assign partial credit
to predicted queries where correct schema identifiers are recalled.

F RESULTS
F.1 Execution Accuracy
In this section, we provide a more fine-grained analysis of execution
accuracy by examining NL-to-SQL accuracy within databases by
schema naturalness level. Figure 30 provides a detailed view of ac-
curacy performance while reminding the reader of the naturalness
scores of each Native schema. With one exception (Llama-34b over
NTSB), databases with native schema scores less than 0.69 exhibit
improvement with schemas modified to Regular level naturalness.
We also note that for databases with higher naturalness scores,
Native schemas generally perform the best.

F.2 Schema Linking
Naturalness effect on schema linking. A Kendall-Tau distri-

bution study (Tables 32a–46b ) of correlation between naturalness
and schema linking suggests a moderate and statistically significant
relationship between the two for most combinations of language
model, and schema type (modified or unmodified). Generally, we
see that more natural query identifiers result in higher schema
linking outcomes.

Tables 35a–46b indicate that proportions of a naturalness cate-
gory within a set of query identifiers also have an effect on linking
performance. Specifically, as the proportion of Regular naturalness
identifiers increases, so does schema linking. We also observe that
in most cases, as the proportion of Low increases, schema linking
generally improves, but not to the same degree as for Regular iden-
tifiers. The most striking effect comes from the proportion of Least
identifiers, where as the proportion of Least naturalness increases,
schema linking performance decreases.

Mean token to character ratio effect on schema linking. The
Kendall-Tau correlation mean token-to-character ratio correlations
(Tables 31a and 31b) indicates that there is significant evidence that
for GPT and Code Llama tokenizers over both native and modified
schemas, that as the token-to-character ratio increases, schema
linking performance decreases. This same observation does not
hold for the Code Bison tokenizer ober the native schemas. Because
of the inconsistent power of the token-character ratio measurement,
we believe it may not serve as a viable proxy for naturalness in all
cases.

G RELATEDWORK
Ontology Mapping. Schema modifications and intermediate

representations to enhance performance in a specific context ex-
tend beyond NL-to-SQL applications. Mapping relational database
schemas to ontologies is an approach used to improve schema-
to-schema integration and web application application-database
interfaces [57]. This improves the semantic description of underly-
ing data, which is often a desirable feature in web applications that
interact within the semantic web [19]. While ontological mapping
of a relational database can improve performance in this context;
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Database
(Score)

ASIS
(0.77)

ATBI
(0.70)

CWO
(0.84)

KIS
(0.79)

NPFM
(0.70)

NTSB
(0.59)

NYSED
(0.68)

PILB
(0.75)

SBOD
(0.49)

Model Category

gemini-1.5-pro Native 0.53 0.65 0.60 0.70 0.72 0.17 0.33 0.55 0.30
Regular 0.53 0.62 0.65 0.42 0.42 0.29 0.35 0.70 0.57
Low 0.57 0.62 0.62 0.78 0.60 0.25 0.30 0.55 0.49
Least 0.42 0.33 0.60 0.62 0.42 0.22 0.19 0.33 0.20

gpt-4o Native 0.62 0.72 0.80 0.80 0.82 0.29 0.33 0.82 0.57
Regular 0.65 0.68 0.80 0.80 0.82 0.39 0.37 0.78 0.69
Low 0.55 0.65 0.75 0.80 0.72 0.29 0.32 0.72 0.68
Least 0.28 0.47 0.62 0.62 0.68 0.28 0.21 0.42 0.33

DINSQL Native 0.57 0.55 0.62 0.53 0.55 0.27 0.29 0.57 0.43
Regular 0.50 0.62 0.62 0.47 0.50 0.28 0.32 0.55 0.56
Low 0.62 0.55 0.62 0.53 0.55 0.29 0.33 0.57 0.54
Least 0.25 0.35 0.55 0.47 0.35 0.27 0.21 0.33 0.25

gpt-3.5 Native 0.62 0.55 0.72 0.62 0.60 0.13 0.19 0.55 0.35
Regular 0.62 0.53 0.65 0.53 0.60 0.26 0.24 0.50 0.48
Low 0.62 0.45 0.70 0.57 0.60 0.13 0.24 0.47 0.42
Least 0.20 0.25 0.50 0.50 0.35 0.08 0.11 0.25 0.20

Phind CodeLlama Native 0.28 0.33 0.62 0.62 0.40 0.07 0.13 0.42 0.16
Regular 0.28 0.45 0.62 0.60 0.42 0.15 0.16 0.50 0.38
Low 0.17 0.28 0.30 0.53 0.53 0.14 0.08 0.33 0.31
Least 0.12 0.12 0.05 0.30 0.12 0.12 0.00 0.12 0.07

CodeS Native 0.42 0.38 0.53 0.47 0.50 0.11 0.05 0.45 0.21
Regular 0.45 0.55 0.57 0.45 0.68 0.16 0.10 0.47 0.47
Low 0.28 0.40 0.30 0.55 0.62 0.14 0.05 0.42 0.30
Least 0.10 0.12 0.23 0.23 0.33 0.06 0.02 0.23 0.05

Figure 30: Execution accuracy by database and language model. Databases with native schema scores less than 0.69 exhibit
improvement with schemas modified to Regular level naturalness. We also note that for databases with higher naturalness
scores, Native schemas generally perform the best.

we see less evidence that such an approach is useful or necessary
in NL-to-SQL applications, though this may serve as a compelling
opportunity for future research.

H PRACTICAL APPLICATIONS
It is clear that naturalness has an effect on multiple NL-to-SQL per-
formance measurements, but what is less clear is what should be
done about it. Adopting good schema naming practices, including
the use of natural words, can be easily applied when designing new
schemas, which makes the application of naturalness-based per-
formance improvements relatively straightforward in these cases.
For existing schemas, the challenge is much greater, as it is likely
that external interfaces and documentation have coalesced around
the database schema, making it difficult (or impossible) to change
without overhauling external systems and artifacts.

H.1 For New Databases
We refer the reader to Section 2.1 for the descriptions of Regular,
Low, and Least category criteria. Additionally, Table 1 provides
some examples of database identifiers at each naturalness level.

When creating a new database schema, we recommend that
designers apply the Regular definition criteria, where the iden-
tifier contains complete English words with no abbreviations or
acronyms, or contains only acronyms in common usage. We also
recommend avoiding the use of whitespace characters, as well as
identifier type labels (e.g., table or column), as we observe that some
LLMs tend to drop these words during NL-to-SQL inference.

H.2 For Existing Databases
Modifying existing database schemas directly is infeasible for a
myriad of reasons ranging from external integrations to constraint
management within the database. As such, we offer two viable ap-
proaches to making database interactions more natural: 1) schema
and query modification middleware, and 2) a within-database natu-
ral view.

Schema Modification Middleware. This approach is the more
complex of the two, but may be necessary in cases where prac-
ticioners do not have write access to the target database. This
approach contains the following pre-processing steps:

(1) Classify schema identifiers using Artifact 3.
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(2) For Low and Least identifiers classified in step 1: create
Regular representations using Artifact 5.

(3) Create a Native-to-Regular map (or crosswalk) for all iden-
tifiers using the output of step 2 (see Artifact 4 for an exam-
ple).

The output of the preprocessing steps is the Native-to-Regular
map that maps every Native database identifier to a Regular rep-
resentation. In the case where the Native identifier has a Regular
classification, it should be mapped to itself.

The next step involves the development of a middleware that
modifies schema knowledge during NL-to-SQL inference so that
the LLM receives a Regular naturalness schema representation. It
contains the following steps:

(1) Modify prompt schema knowledge by replacing Low and
Least identifiers with Regular representations drawn from
the identifier map.

(2) Incorporate modified schema knowledge into the NL-to-
SQLworkflows involving schema representations (e.g., schema
filtering and SQL generation steps).

(3) After SQL generation, modify the SQL query by replacing
Regular naturalness representations of lower naturalness
Native identifiers to enable compatibility with the Native
schema.

The output of the inference-time steps is a SQL query that can
be executed over the target Native database.

The SNAILS project repository contains a prototype of such
a middleware system, which is incorporated into the NL-to-SQL
workflow used in our experimental design.
The nl_to_sql_inference_and_prompt_generation.py file employs the
naturalize_prompt() and denaturalize_query() functions to enable
NL-to-SQL inference over natural schemas. While this is not an
easily portable and standalone system, we encourage interested
readers to trace the processes in these scripts for an example of a
middleware solution.

Schema naturalization for LLM prompting is a fairly straight-
forward map lookup task. On the other hand, query “denatural-
ization” presents a more technical challenge due to the large va-
riety of SQL queries that can be generated for a given NL ques-
tion. To consistently replace identifiers in SQL queries, we cre-
ate a Java-based SQL parser that supports both Sqlite and T-SQL
syntax. This parser and query analyzer provides two important
services: 1) query clause extraction, which we use for measuring
query complexity; and 2) schema identifier tagging, which we use
for query denaturalization. The latter feature (tagging) takes a
SQL query as input, and returns the same query where all table
and column names are encased within XML-like tags (e.g., <TA-
BLE_NAME>Customers</TABLE_NAME>).We discuss this inmore
detail in Section D.4.

Natural Views. The natural view concept is simple, but also
very powerful. Rather than incorporating a relatively complex
middleware strategy, for databases that support multiple schemas
within an instance such as MS Sql Server we can create views
that map a Regular naturalness representation of tables and their
columns to their Native identifier counterparts within the base data-
base schema. This approach is suitable when 2 main criteria can be

met: 1) the user has schema and view creation privileges, and 2) the
database supports multiple schemas for a database instance (e.g., a
base dbo schema and a natural db_nl schema). Seperate schemas
are required to avoid collisions between a natural view and a na-
tive schema where the native schema tables already have Regular
naturalness levels.

The SNAILS project repository contains a prototype end-to-end
natural view creation example that generates natural views for the
SNAILS databases in a db_nl schema, which can be viewed and
used by downloading the SNAILS real-world database collection
(artifact 1). The classify_rename_and_build_view.py demonstrates
the process of schema classification, identifier modification, and
view creation over a target MS SQL Server database.

We first begin with the same pre-processing steps as the middle-
ware approach where we:

(1) Classify schema identifiers using Artifact 3.
(2) For Low and Least identifiers classified in step 1: create

Regular representations using Artifact 5.
(3) Create a Native-to-Regular map (or crosswalk) for all iden-

tifiers using the output of step 2 (see Artifact 4 for an exam-
ple).

At this point, with the naturalness map (or crosswalk) as input,
we generate a set of SQL view creation queries–one for each table
in the schema. The resulting view query appears as follows:

CREATE VIEW db_nl.[table_deadwood] AS
SELECT

[Data_ID] AS [Data_ID],
[Event_ID] AS [Event_ID],
[OldPlot] AS [OldPlot],
[Module] AS [Module],
[Decay] AS [Decay],
[MPD] AS [Midpoint_Diameter],
[Length] AS [Length],
[X_coord] AS [x_coordinate],
[Y_coord] AS [y_coordinate]

FROM dbo.[tbl_Deadwood];

We make note of a few important aspects of the natural view:
1) Many identifiers map to themselves, as their Native naturalness
is already Regular. 2) to avoid table name collisions, the views are
mapped from the dbo schema to the db_nl schema. 3) This particular
transformation contains an example of a poor naming habit (the
word table in table_deadwood), and serves to remind us that we
should typically review the output of the schema renamer and make
necessary changes.

I ADDITIONAL TABLES AND FIGURES
The remaining pages contain several figures and tables of fine-
grained analysis of dataset distributions and performance correla-
tions.

Kendall-Tau Correlation Experiment Result Tables. Figures 31a-
34b provide Kendall-Tau experiment results for naturalness and
token ratio correlations with linking performance (F1, Recall, and
Precision).

• Figure 31a: Token-Character ratio–Recall
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• Figures 32a–34b: Combined naturalness–[Recall, F1, Preci-
sion]

• Figures 35a–37b: [Regular, Low, Least] naturalness–recall
• Figures 38a–40b: [Regular, Low, Least] naturalness–F1
• Figures 41a–43b: [Regular, Low, Least] naturalness–precision
• Figures 44a–34b: [Combined, Regular, Low, Least] naturalness–

execution accuracy

Database-level Schema Linking Box andWhisker Plots. Figures 48-
51 show additional database-level box and whisker plots depicting
schema linking performance over individual database schemas and
their naturalness levels for each LLM.
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Model Kendall-Tau P Value n

gemini-1.5-pro -0.142596 0.000023 492
gpt-4o -0.125236 0.000182 512
DINSQL -0.155634 0.000003 503
gpt-3.5 -0.259029 0.000000 500
Phind-CodeLlama-34B-v2 -0.269220 0.000000 484
CodeS -0.218149 0.000000 501

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro -0.130732 0.000000 1978
gpt-4o -0.136292 0.000000 2009
DINSQL -0.131631 0.000000 2007
gpt-3.5 -0.170698 0.000000 1998
Phind-CodeLlama-34B-v2 -0.263657 0.000000 1936
CodeS -0.270844 0.000000 2008

(b) All schemas (native + modified)

Figure 31: Kendall-Tau Correlations between theMean Token-to-Character Ratio and Query Recall.

Model Kendall-Tau P Value n

gemini-1.5-pro 0.137770 0.000066 492
gpt-4o 0.146350 0.000020 512
DINSQL 0.182666 0.000000 503
gpt-3.5 0.209031 0.000000 500
Phind-CodeLlama-34B-v2 0.254438 0.000000 484
CodeS 0.199335 0.000000 501

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro 0.113625 0.000000 1978
gpt-4o 0.154416 0.000000 2009
DINSQL 0.151862 0.000000 2007
gpt-3.5 0.171700 0.000000 1998
Phind-CodeLlama-34B-v2 0.250113 0.000000 1936
CodeS 0.285891 0.000000 2008

(b) All schemas (native + modified)

Figure 32: Kendall-Tau Correlations between Query Combined Naturalness and Query Recall.

Model Kendall-Tau P Value n

gemini-1.5-pro 0.151056 0.000005 492
gpt-4o 0.130006 0.000069 512
DINSQL 0.137414 0.000027 503
gpt-3.5 0.214360 0.000000 500
Phind-CodeLlama-34B-v2 0.253227 0.000000 484
CodeS 0.216096 0.000000 501

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro 0.110138 0.000000 1978
gpt-4o 0.141699 0.000000 2009
DINSQL 0.147045 0.000000 2007
gpt-3.5 0.185058 0.000000 1998
Phind-CodeLlama-34B-v2 0.249083 0.000000 1936
CodeS 0.285834 0.000000 2008

(b) All schemas (native + modified)

Figure 33: Kendall-Tau Correlations between Query Combined Naturalness and Query f1.

Model Kendall-Tau P Value n

gemini-1.5-pro 0.165627 0.000001 492
gpt-4o 0.117021 0.000444 512
DINSQL 0.084476 0.012116 503
gpt-3.5 0.213515 0.000000 500
Phind-CodeLlama-34B-v2 0.240645 0.000000 484
CodeS 0.222640 0.000000 501

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro 0.099675 0.000000 1978
gpt-4o 0.130333 0.000000 2009
DINSQL 0.149127 0.000000 2007
gpt-3.5 0.193870 0.000000 1998
Phind-CodeLlama-34B-v2 0.240081 0.000000 1936
CodeS 0.279425 0.000000 2008

(b) All schemas (native + modified)

Figure 34: Kendall-Tau Correlations between Query Combined Naturalness and Query Precision.
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Model Kendall-Tau P Value n

gemini-1.5-pro 0.117594 0.000720 492
gpt-4o 0.139545 0.000053 512
DINSQL 0.162703 0.000002 503
gpt-3.5 0.179904 0.000000 500
Phind-CodeLlama-34B-v2 0.214458 0.000000 484
CodeS 0.155772 0.000003 501

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro 0.069195 0.000265 1978
gpt-4o 0.113739 0.000000 2009
DINSQL 0.098608 0.000000 2007
gpt-3.5 0.122796 0.000000 1998
Phind-CodeLlama-34B-v2 0.198193 0.000000 1936
CodeS 0.229038 0.000000 2008

(b) All schemas (native + modified)

Figure 35: Kendall-Tau Correlations between Regular Identifier Proportion and Query Recall.

Model Kendall-Tau P Value n

gemini-1.5-pro -0.020559 0.555850 492
gpt-4o -0.033719 0.330627 512
DINSQL -0.027539 0.424527 503
gpt-3.5 -0.012805 0.704874 500
Phind-CodeLlama-34B-v2 -0.031016 0.359014 484
CodeS 0.019808 0.553404 501

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro 0.073173 0.000115 1978
gpt-4o 0.044010 0.020955 2009
DINSQL 0.084950 0.000006 2007
gpt-3.5 0.073867 0.000058 1998
Phind-CodeLlama-34B-v2 0.055309 0.002677 1936
CodeS 0.073957 0.000049 2008

(b) All schemas (native + modified)

Figure 36: Kendall-Tau Correlations between Low Identifier Proportion and Query Recall.

Model Kendall-Tau P Value n

gemini-1.5-pro -0.165916 0.000010 492
gpt-4o -0.154217 0.000032 512
DINSQL -0.207309 0.000000 503
gpt-3.5 -0.239186 0.000000 500
Phind-CodeLlama-34B-v2 -0.285738 0.000000 484
CodeS -0.255086 0.000000 501

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro -0.158525 0.000000 1978
gpt-4o -0.174026 0.000000 2009
DINSQL -0.198730 0.000000 2007
gpt-3.5 -0.212258 0.000000 1998
Phind-CodeLlama-34B-v2 -0.279290 0.000000 1936
CodeS -0.310967 0.000000 2008

(b) All schemas (native + modified)

Figure 37: Kendall-Tau Correlations between Least Identifier Proportion and Query Recall.

Model Kendall-Tau P Value n

gemini-1.5-pro 0.131560 0.000074 492
gpt-4o 0.139678 0.000022 512
DINSQL 0.123802 0.000172 503
gpt-3.5 0.182707 0.000000 500
Phind-CodeLlama-34B-v2 0.226842 0.000000 484
CodeS 0.173666 0.000000 501

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro 0.070395 0.000111 1978
gpt-4o 0.109530 0.000000 2009
DINSQL 0.104732 0.000000 2007
gpt-3.5 0.137642 0.000000 1998
Phind-CodeLlama-34B-v2 0.201929 0.000000 1936
CodeS 0.231121 0.000000 2008

(b) All schemas (native + modified)

Figure 38: Kendall-Tau Correlations between Regular Identifier Proportion and Query f1.
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Model Kendall-Tau P Value n

gemini-1.5-pro -0.027036 0.417304 492
gpt-4o -0.064241 0.051686 512
DINSQL -0.021415 0.517452 503
gpt-3.5 -0.016076 0.623934 500
Phind-CodeLlama-34B-v2 -0.061160 0.059740 484
CodeS 0.009374 0.771977 501

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro 0.062756 0.000573 1978
gpt-4o 0.036763 0.043163 2009
DINSQL 0.068013 0.000170 2007
gpt-3.5 0.066247 0.000221 1998
Phind-CodeLlama-34B-v2 0.044565 0.012124 1936
CodeS 0.075927 0.000017 2008

(b) All schemas (native + modified)

Figure 39: Kendall-Tau Correlations between Low Identifier Proportion and Query f1.

Model Kendall-Tau P Value n

gemini-1.5-pro -0.158945 0.000009 492
gpt-4o -0.095678 0.006756 512
DINSQL -0.136164 0.000124 503
gpt-3.5 -0.243548 0.000000 500
Phind-CodeLlama-34B-v2 -0.240116 0.000000 484
CodeS -0.244016 0.000000 501

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro -0.147469 0.000000 1978
gpt-4o -0.149285 0.000000 2009
DINSQL -0.175018 0.000000 2007
gpt-3.5 -0.220154 0.000000 1998
Phind-CodeLlama-34B-v2 -0.263193 0.000000 1936
CodeS -0.305808 0.000000 2008

(b) All schemas (native + modified)

Figure 40: Kendall-Tau Correlations between Least Identifier Proportion and Query f1.

Model Kendall-Tau P Value n

gemini-1.5-pro 0.140165 0.000039 492
gpt-4o 0.118622 0.000406 512
DINSQL 0.070004 0.038987 503
gpt-3.5 0.177250 0.000000 500
Phind-CodeLlama-34B-v2 0.220023 0.000000 484
CodeS 0.174968 0.000000 501

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro 0.063466 0.000685 1978
gpt-4o 0.103105 0.000000 2009
DINSQL 0.110165 0.000000 2007
gpt-3.5 0.148501 0.000000 1998
Phind-CodeLlama-34B-v2 0.196175 0.000000 1936
CodeS 0.225452 0.000000 2008

(b) All schemas (native + modified)

Figure 41: Kendall-Tau Correlations between Regular Identifier Proportion and Query Precision.

Model Kendall-Tau P Value n

gemini-1.5-pro -0.025641 0.453269 492
gpt-4o -0.040198 0.232741 512
DINSQL 0.014076 0.679299 503
gpt-3.5 0.003413 0.919671 500
Phind-CodeLlama-34B-v2 -0.060758 0.065561 484
CodeS 0.028242 0.397195 501

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro 0.054467 0.003577 1978
gpt-4o 0.034060 0.066693 2009
DINSQL 0.067157 0.000305 2007
gpt-3.5 0.056122 0.002463 1998
Phind-CodeLlama-34B-v2 0.041782 0.020555 1936
CodeS 0.084470 0.000003 2008

(b) All schemas (native + modified)

Figure 42: Kendall-Tau Correlations between Low Identifier Proportion and Query Precision.
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Model Kendall-Tau P Value n

gemini-1.5-pro -0.170160 0.000004 492
gpt-4o -0.097043 0.007088 512
DINSQL -0.093633 0.010346 503
gpt-3.5 -0.248686 0.000000 500
Phind-CodeLlama-34B-v2 -0.215408 0.000000 484
CodeS -0.248516 0.000000 501

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro -0.135749 0.000000 1978
gpt-4o -0.136779 0.000000 2009
DINSQL -0.170463 0.000000 2007
gpt-3.5 -0.222732 0.000000 1998
Phind-CodeLlama-34B-v2 -0.247999 0.000000 1936
CodeS -0.300108 0.000000 2008

(b) All schemas (native + modified)

Figure 43: Kendall-Tau Correlations between Least Identifier Proportion and Query Precision.

Model Kendall-Tau P Value n

gemini-1.5-pro 0.031553 0.402105 503
gpt-4o 0.117580 0.001612 513
DINSQL 0.050126 0.183182 503
gpt-3.5 0.130571 0.000526 503
Phind-CodeLlama-34B-v2 0.133928 0.000376 503
CodeS 0.100636 0.007539 503

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro 0.051044 0.013769 2012
gpt-4o 0.118405 0.000000 2022
DINSQL 0.055010 0.007940 2012
gpt-3.5 0.113802 0.000000 2012
Phind-CodeLlama-34B-v2 0.156595 0.000000 2012
CodeS 0.154301 0.000000 2012

(b) All schemas (native + modified)

Figure 44: Kendall-Tau Correlations between Regular Identifier Proportion and Execution Accuracy.

Model Kendall-Tau P Value n

gemini-1.5-pro 0.067135 0.075780 503
gpt-4o -0.050377 0.178385 513
DINSQL 0.005675 0.880684 503
gpt-3.5 -0.013996 0.711227 503
Phind-CodeLlama-34B-v2 -0.051436 0.173713 503
CodeS 0.007070 0.851558 503

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro 0.065896 0.001482 2012
gpt-4o 0.044061 0.032993 2022
DINSQL 0.069761 0.000767 2012
gpt-3.5 0.059034 0.004410 2012
Phind-CodeLlama-34B-v2 0.025475 0.219203 2012
CodeS 0.036122 0.081613 2012

(b) All schemas (native + modified)

Figure 45: Kendall-Tau Correlations between Low Identifier Proportion and Execution Accuracy.

Model Kendall-Tau P Value n

gemini-1.5-pro -0.170360 0.000027 503
gpt-4o -0.114226 0.004359 513
DINSQL -0.092923 0.021956 503
gpt-3.5 -0.209644 0.000000 503
Phind-CodeLlama-34B-v2 -0.167881 0.000035 503
CodeS -0.185003 0.000005 503

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro -0.153130 0.000000 2012
gpt-4o -0.171591 0.000000 2022
DINSQL -0.141735 0.000000 2012
gpt-3.5 -0.193995 0.000000 2012
Phind-CodeLlama-34B-v2 -0.210597 0.000000 2012
CodeS -0.221692 0.000000 2012

(b) All schemas (native + modified)

Figure 46: Kendall-Tau Correlations between Least Identifier Proportion and Execution Accuracy.
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Model Kendall-Tau P Value n

gemini-1.5-pro 0.077353 0.038579 503
gpt-4o 0.115466 0.001818 513
DINSQL 0.059435 0.111967 503
gpt-3.5 0.161218 0.000016 503
Phind-CodeLlama-34B-v2 0.151421 0.000051 503
CodeS 0.136525 0.000259 503

(a) Native schemas

Model Kendall-Tau P Value n

gemini-1.5-pro 0.095640 0.000002 2012
gpt-4o 0.154441 0.000000 2022
DINSQL 0.096971 0.000001 2012
gpt-3.5 0.156622 0.000000 2012
Phind-CodeLlama-34B-v2 0.195768 0.000000 2012
CodeS 0.196615 0.000000 2012

(b) All schemas (native + modified)

Figure 47: Kendall-Tau Correlations between Query Combined Naturalness and Execution Accuracy.
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Figure 48: Schema linking performance (F1 score) changes across database naturalness levels.
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Figure 49: Schema linking performance (F1 score) changes across database naturalness levels.
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Figure 50: Schema linking performance (Recall score) changes across database naturalness levels.
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Figure 51: Schema linking performance (Recall score) changes across database naturalness levels.
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