
Tech Report: Design and Evaluation of an SQL-Based Dialect for
SpokenQuerying

Kyle Luoma
University of California, San Diego

La Jolla, California
kluoma@ucsd.edu

Arun Kumar
University of California, San Diego

La Jolla, California
arunkk@eng.ucsd.edu

ABSTRACT
As automatic speech recognition matures, there is growing inter-
est in speech-driven and multimodal database querying. In this
exploratory work we study the potential of a speech-first dialect
of SQL for more natural spoken querying with correctness guaran-
tees. We desire minimal deviation from SQL, less structural rigidity,
and an unambiguous context free grammar. We call our dialect
SpeakQL. We devise a series of features to satisfy the desiderata
and build a SpeakQL-to-SQL translator. We evaluate SpeakQL’s ease
of use against SQL for spoken querying with an A/B user study.
The quantitative results show that despite being slightly more ver-
bose, SpeakQL is not statistically significantly slower or faster than
SQL for dictation, but most participants find SpeakQL easier for
more complex queries. The qualitative feedback suggest an affinity
for some of our new features and an overall user experience that
validates SpeakQL’s potential to make spoken querying easier.

PVLDB Reference Format:
Kyle Luoma and Arun Kumar. Tech Report: Design and Evaluation of an
SQL-Based Dialect for Spoken Querying. PVLDB, 14(1): XXX-XXX, 2020.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/KyleLuoma/SpeakQL-Dialect/.

1 INTRODUCTION
The database community has long explored new interfaces to make
databases easier to access and query in various kinds of settings
for both data professionals and lay users. Typing SQL remains
the main form of usage for data professionals but many lines of
research have explored other new modalities: visually-oriented,
touchscreen-oriented (e.g., [12]), speech-oriented (e.g., [31]), and
natural language interfaces or NLIs (e.g., [10, 14, 30, 34]). In par-
ticular, our recent work on SpeakQL [31] showed that modern
automatic speech recognition (ASR) tools have matured enough to
combine the benefits of dictating regular SQL in conjunction with
touchscreen capabilities. Such speech-driven querying was shown
to make query specification significantly faster in tablet environ-
ments, which could offer more flexibility for anywhere-anytime
querying for data analysts and other data professionals.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

Figure 1: Bridging the gap between naturalness and de-
terminism in programming languages; extension of figure
from [31].

In this paper, we go further to ask a more radical exploratory
research question: If we are to design a structured query language for
the speech-first era, how should it look? At first blush, it may sound
odd to still study structured querying in the era of ChatGPT [6, 24,
27] and advances in NLIs [14]. Why bother with anything more
than mere English “prompting”? First off, there is a difference in
motivation: NLIs mainly target lay users, while our focus is on the
swathe of data professionals who are already familiar with SQL
and use it regularly. Second, AI models still do not offer the strong
guarantee of “correct-by-construction” that SQL-like languages do–
we know exactly what we get in response to a query. In contrast,
AI models suffer the “hallucination” problem [11] that can cause
insidious errors that may be hard to catch, especially on arbitrary
database schemas and more complex queries. Overall, we believe
exploiting ASR to make SQL-style querying easier could help data
professionals.

Desiderata. We start by describing some desirable properties
of a spoken structured query language motivated by balancing
usability for specification and practicality in design. (1) Minimal
deviation from SQL to ensure it is easy to pick up for people who
know SQL already. (2) Less rigid than SQL andmore natural English-
style flow in structure for the speech modality. (3) Unambiguous
context free grammar (CFG) to ensure a valid spoken query can be
translated to a semantically equivalent SQL query to enable use of
an RDBMS as is for query execution.

Our Approach. In this paper, we design and evaluate a new di-
alect of SQL for spoken querying in response to the above desiderata.
We call our dialect SpeakQL 2.0 or just the SpeakQL dialect. Figure 1
illustrates where SpeakQL 2.0 falls in the spectrum of naturalness
and determinism. Unlike NLIs that do not offer correctness guaran-
tees, SpeakQL 2.0 has an unambiguous CFG. But it is less rigid than
regular SQL although it is not multimodal (no touchscreen compo-
nent) like what SpeakQL 1.0 proposed [31]. We design the SpeakQL
dialect as an extension of the ANSI SQL grammar. It has several
features to help increase the “naturalness” of speaking queries in
the style of “stream of thought” instead of specifying everything
all at once.

https://doi.org/XX.XX/XXX.XX
https://github.com/KyleLuoma/SpeakQL-Dialect/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

Motivating Applications. Before explaining the dialect’s fea-
tures, we describe somemotivating application scenarios for spoken
structured querying with a dialect such as SpeakQL.

• On-the-go ad hoc database access. Data-driven operations
are now common in many domains. Organizations with
field-based assets who operate in remote or austere en-
vironments such as the military [9] and the oil-and-gas
industry [21] may face barriers to purely typing-based or
touch-based data access on the field. Such barriers could be
due to lack of workspace for keyboards, personal protective
equipment requirements impeding typing/touching, or on-
the-go working conditions such as a mobile headquarters.
Spoken querying boosts capabilities in such settings for
on-the-go ad hoc database access. As an example, suppose
a military cyber-defense team in the field that must wear
protective equipment detects anomalous behavior on some
client devices. Pre-built (canned) analytics dashboards may
not address all their unexpected querying needs. NLIs run
the risk of erroneous query translation. But dictating a pre-
cise structured query can empower the team to access and
analyze relevant network traffic data without compromis-
ing team security, agility, and query fidelity.

• Assistive technology for people with motor impairment. The
U.S. Bureau of Labor Statistics data shows that in 2020 in the
IT and engineering sectors, 18% of nonfatal injuries/illness
involving days away from work were in the upper extrem-
ities, viz., shoulders, arms, hands and wrists [1]. For such
people, as well as for many people with arm disabilities,
typing, clicking, or touchscreens may not be viable as a
modality but speech can be a powerful modality. Thus, spo-
ken structured querying can help data professionals with
such disabilities or injuries.

SpeakQL Design and Features. The SpeakQL dialect has 4 new
features with increasing sophistication, grouped into 2 categories:
smaller local changes to the grammar’s production rules and deeper
structural changeswithmore complex rules. Each feature is optional,
which means regular SQL syntax is also valid in SpeakQL. Section
3 dives into their details with examples but we summarize their
rationale here. The first category has the following two features.
(1) English synonyms for some SQL keywords such as SELECT and
FROM. (2) Natural functions to omit speaking of special character
symbols such as commas and parentheses in some contexts. These
two extensions make SpeakQL sound less like code and more like
English (compared to SQL). So, they enhance the “naturalness” of
the spoken query.

The second category has the following two features. (3) Clause
reordering. Specifically, the SELECT, FROM, and WHERE clauses
can be spoken in any order. Query modifier clauses such as GROUP
BY and ORDER BY too can be reordered. (4) Unbundling of complex
queries into per-table decomposed queries. This allows users to
reason about one table at a time instead of “all at once” like in SQL.
This is inspired by function-stitching style programming seen for
Python Pandas and Spark DataFrame. It can reduce the amount of
schema context to keep in mind when speaking, albeit at the cost
of raising verbosity and query token lengths. Overall, these two

features reduce query rigidity and offer more freedom for “stream
of thought” querying.

User Study-based Evaluation. In this paper, we focus primarily
on evaluating the usability of the SpeakQL dialect for spoken query-
ing compared to regular SQL.We leave more extensive comparisons
with other querying modalities or integration with multimodal in-
terfaces to future work. We implemented the SpeakQL dialect and
conducted a within-subjects A/B user study. We had 22 participants,
all UCSD students familiar with SQL and relational databases. They
were given a 6-table university database schema and asked to speak
12 queries, half designed to be simple and half, complex. The user
study was conducted over a span of 4 months. Performance was
measured in terms of both the time required to plan and specify a
full query in response to an English prompt posed and the number
of attempts till a fully correct query.

Overall, we find no statistically significant differences in the
total query specification time for SQL vs. the SpeakQL dialect. This
suggests that SpeakQL’s extra verbosity was compensated for by
lower thinking effort/time. Indeed, on average SpeakQL sees slightly
lower median specification times for planning the complex queries.
We also find that participants get better at speaking SpeakQL as
they become more familiar with its features. The mass of qualita-
tive textual feedback from the post-participation surveys also offer
numerous interesting insights into the strengths and current weak-
nesses of SpeakQL. We see both positive and negative feedback
on both the dialect and its individual features. But in aggregate,
participants reported that SpeakQL made it “much easier” or “some-
what easier” to use than SQL between half to four-fifths of the time
depending on the feature. Natural functions and unbundled queries
were the most highly liked and used features, while synonyms
were (perhaps surprisingly) deemed not that useful. In all, our user
study results and surveys suggest that the SpeakQL dialect is in-
deed user-friendly. We hope it spurs more research conversations
in the community on more design iterations, additional features,
and ultimately, fully fledged spoken querying for databases in more
contexts.

To summarize, this paper makes the following technical contri-
butions:

• To the best of our knowledge, this is the first paper to sys-
tematically study and evaluate an extension to SQL tailored
for spoken querying.

• We present the SpeakQL dialect with four new features
that raise naturalness and reduce rigidity compared to SQL,
while preserving correct-by-construction guarantees with
a context free grammar.

• We describe the implementation of the SpeakQL dialect,
including its grammar rules and our translator to convert
any SpeakQL query to regular SQL to ensure it can be used
for existing RDBMSs.

• We present an extensive user study-based evaluation of
SpeakQL vs. SQL for spoken querying. Our empirical find-
ings, both quantitative and qualitative, suggest the usability
of such a dialect and also offer avenues for more research
to improve it.

2

2 BACKGROUND
2.1 The Structured Query Language (SQL)

Origins and Purpose. Introduced in 1974 [8], SQL is nearing
its 50th birthday. Despite (or perhaps because of) its age, it re-
mains the de facto standard language for database quyering. SQL
(originally named SEQUEL) was intended for both application pro-
grammers and a non-programmer target audience of business pro-
fessionals and other laypersons requiring data access from rela-
tional databases [7]. Its initial design and following updates were
informed by a user-centric approach, and it is perhaps one of the
first programming languages for which human-computer interac-
tion considerations were deliberately studied [28, 29]. Due to its
high popularity, declarative nature, targeted purpose, structured
syntax, and human-centric design, SQL is a natural starting point
for a spoken query language.

Syntax Grammar and SQL Variants. Numerous variants of
SQL syntax exist from multiple vendors and open source projects.
While each variant tends to contain implementation-specific fea-
tures targeted at specific RDBMSs, most (if not all) generally adhere
to the ISO/IEC 9075-1:2016 information technology standard for
SQL [13]. Seven SQL grammars are available under various open
source licenses on the ANTLR parser Github repository including:
Hive, MySQL, PL-SQL, PostgreSQL, SQLite, Trino, and T-SQL [2].

Human Factors. Human factors evaluations were conducted as
part of the SEQUEL development effort. Usability experiments com-
prised of teaching SEQUEL to programmer and non-programmer
college students. The study yielded several results, including the
recommendation to make SEQUEL a layered system consisting of
three layers representing increasing levels of complexity, and the
recommendation to replace complicated correlation and computed
variable syntax with the join feature, which most SQL users are
familiar with now.

Reisner also discovered that sources of minor errors when con-
verting English statements into SEQUEL queries included ending
errors, spelling errors, and synonym errors. These discoveries re-
sulted in the recommendation to incorporate spelling correction,
introduce a synonym dictionary to the language syntax, and a cre-
ate stem-matching procedure as user aids that would enable users
to use keywords with various forms of conjugation. [28] In a later
study, Reisner also confirmed that query complexity has a directly
proportional effect on the likelihood of error occurrence during
query formulation [29].

A more recent SQL usability study revealed that user tendency
toward invalid syntax synonyms, omission of punctuation, and
the NL-like nature of some SQL keywords can be sources of pro-
gramming errors among novice users. Table joins, aliases, and sub-
queries were also identified as significant sources of programming
errors [20].

2.2 Natural and Controlled Natural Languages
Natural Language Interfaces. Natural language interfaces (NLIs),

such as the recently popular ChatGPT [6, 24, 27], show that NL-
based chatbots can be a viable tool for many purposes, including NL-
to-SQL querying, wherein users express their query intent in regular
English. NL-to-SQL is still an active area of research [6, 14, 30, 34],

and it has strong potential to lower the barrier to entry to lay users
(people without SQL knowledge). But NLIs still suffer from three
issues in technical applications such as database querying that data
professionals may be wary of: ambiguities, which can confound
user goals; out-of-vocabulary terms, common in database schemas
and predicate content, can hinder accurate translation; and lack of
correctness guarantees, compounded by the “hallucination” problem
of generative NLP models. That said, recent research suggests that
NLI with more restricted grammar and/or structure can improve
user experience for technically complex tasks [22].

Controlled Natural Languages. Controlled or restricted NL are
based on an NL such as English but more restrictive in their lexi-
con, syntax, and semantics. They retain a majority of its base NL
properties and are defined explicitly [16]. Most PLs (including SQL)
are not controlled NLs because their syntax deviates too much
from the NL and have many statements that do not exist in the
NL. Controlled NLs have been evaluated against linear keyword
languages such as SQL and found to be easier for novice users
for performing data retrieval tasks [32]. In contrast to NL-to-SQL
described previously, a controlled NL does offer the benefit of being
“correct-by-construction” at the cost of being less flexible.

Naturalness. Naturalness of a controlled NL can be evaluated by
how close an expression in it is to its base NL. This is evaluated in
terms of both readability and understandability. These criteria can
range from completely unnatural, where the controlled NL uses
symbols, characters, and unnatural keywords, to languages with
natural sentences where the controlled NL can yield expressions
that appear as if they were written in the base languages [16].

2.3 SpeakQL
A subset of the authors designed the SpeakQL speech+touch multi-
modal querying interface in prior work [31]. It was aimed at data
professionals such as data analysts, nurse informaticists, and DBAs
who desired ad-hoc on-the-go querying in settings without a regu-
lar computer but with mobile devices such as a tablet. That paper’s
user study showed that the SpeakQL interface reduced query speci-
fication times vs. typing SQL in such settings by 2.7x on average. But
conversations with such data professionals in that work revealed
a key functionality gap: people with SQL knowledge may want to
do a quick record retrieval or analytics query in an ad-hoc setting
where even touchscreens are unviable for query specification, let
alone keyboards, but voice is feasible. Speech-driven querying can
also help people with disabilities or temporary injuries and per-
haps also augment conversational assistants such as Alexa, Siri,
etc. to aid in database querying. That provided the basis for this
exploratory work on a spoken SQL dialect.

3 OUR SPEAKQL DIALECT
We now present our prototype speech-first dialect extension of
SQL. We overload the prior art interface name to call our dialect
SpeakQL too. It has four new features, all optional for usage:

• Keyword Synonyms and Optional Syntax
• Natural Functions
• Query Clause Ordering
• Complex Query Unbundling

3

SQL Keyword SpeakQL Synonyms

SELECT
Select, Find, Retrieve, Get, Show Me, Display,
Present, What Is, What Is The, What Are,
What Are The

FROM From, From table, From Tables, In Table, In
Tables

’ , ’ (Comma) ’ , ’ (Comma), And

JOIN
Join, Join Table, Join With Table, By Join-
ing, By Joining Table, By Joining With Table,
Joined With, Joined With Table

Table 1: Synonyms in SpeakQL for SQL keywords.

SpeakQL can be considered a controlled NL based on English
that extends SQL. Note that SQL is a constructed language rather
than a controlled NL. This distinction arises because the objective of
the SpeakQL dialect is to increase naturalness of specifying queries,
achieved via the introduction of English grammar features and
the reduction of special character (non-alphabet) symbol usage in
SpeakQL queries.

We defined the SpeakQL grammar by extending a big part of
the MySQL grammar from the Antlr4 repository [2]. We added
additional production rules within existing SQL rules to realize our
features. This means that SpeakQL is a superset of that chosen SQL
subset. That is, a query constructed using the regular SQL syntax
and keywords is a valid SpeakQL query too. So, users can “fall back”
on regular SQL if they desire to.

Due to space constraints, we only provide intuitive explanations
and examples of SpeakQL features in this paper. More rigorous
grammar details can be found in our full technical report [17].

3.1 Keyword Synonyms and Optional Syntax
This is a simple feature designed to increase the naturalness of
an SQL query by enabling more sentence-like expressions. The
intuition driving the development of these features is that speech
patterns may be more amenable to use NL-like behavior, e.g., omit-
ting syntax such as symbols and punctuation but including concepts
such as determinatives (e.g., THE) and prepositions (e.g., OF).

3.1.1 Synonyms. This feature ismotivated in-part by early human-
computer interface research performed on SQL users [28] that
recognized the benefit of syntax synonyms and optional word stem-
ming, as well as more recent observations on tendencies toward
synonyms [20]. We introduce SQL keyword-equivalent synonyms
for the most common DML syntax keywords: SELECT, FROM, and
JOIN, as well as for the comma as a column- or table-delimiter
within the SELECT and FROM clauses, respectively.

3.1.2 Optional Syntax. SpeakQL allows for the use of optional
THE and TABLE keywords when dictating a table expression. This
permits expressions such as SELECT everything FROM THE courseof-
fering TABLE, which can be more natural for speaking than the SQL
equivalent SELECT everything FROM courseoffering. Introducing the
THE keyword as a determinant clarifies the context of the subject of
the SpeakQL sentence, which is the courseoffering table. Appending

the TABLE keyword to the expression provides further context
and clarity that the referenced table is a tangible object within the
database. While neither keyword changes the expression’s mean-
ing, their usage improves the naturalness of the SELECT statement,
thus potentially improving the dictation experience.

3.1.3 Examples.
SQL: SELECT area, wheelchairspaces

FROM room WHERE floor = 2;

SpeakQL. Show me area and wheelchairspaces in the room table
where floor equals 2

SQL: SELECT COUNT(id) FROM course;

SpeakQL:. What is the count parenthesis id parenthesis in the
course table

3.2 Natural Functions
The SQL subset we support includes aggregator functions such
as SUM, AVG, and COUNT. In the prior work on the SpeakQL
interface, users had to verbalize the parentheses symbols, which
reduces the naturalness of dictation. While parentheses are often
essential for disambiguation, for the SpeakQL dialect we identified
a set of function references in which parentheses could be omitted
safely without affecting the query’s semantic meaning. Specifically,
our SpeakQL dialect permits the expression of functions naturally,
that is without verbalizing parenthesis, for functions that have a
single constant or column as an argument. This feature also permits
the optional syntax keywords THE and OF to surround the function
name, resulting in more NL-like sentence expressions.

However, if the query intent involves the inclusion of an ex-
pression as a function argument, the verbalization of parenthesis
remains a requirement. This allows the SpeakQL dialect to retain
SQL’s capability to pass mathematical, comparative, and subquery
expressions as function arguments within the boundaries of dic-
tated parentheses, ensuring we avoid ambiguity such as cases in
which neighboring SELECT clause elements get misinterpreted as
function arguments by the translator.

3.2.1 Examples.
SQL: SELECT COUNT(id) FROM course;

SpeakQL. Get the count of id from the course table

SQL: SELECT AVG(units), COUNT(title)
FROM course

SpeakQL:. Find the average units and the count of title in the
course table

3.3 Query Clause Ordering
This feature allows for optionally reordering the SELECT, FROM/JOIN,
and WHERE clauses, as well as the GROUP BY, HAVING, ORDER
BY, and LIMIT clauses. That is, these clauses may appear in any
order within a SpeakQL statement.

3.3.1 SELECT-FROM-WHERE Ordering. Intuitively, we recog-
nize that there are alternate paths to forming a SQL query. In some
instances, the SELECT, FROM, WHERE ordering of SQL syntax

4

Figure 2: Alternate Ordering

is the order a user may find most-useful when dictating a query.
In other cases, users may wish to reason about table sources and
joins prior to defining columns and functions; alternatively, users
may wish to establish restrictions using where predicates before
defining other aspects of a query. Additionally, alternate ordering
provides "second chances" for query recovery. For example, if a user
is dictating a query and defines the SELECT and WHERE clauses,
forgetting to state the table source, they may resolve this omission
by dictating the FROM clause at the end of the query rather than
starting over from the beginning.

3.3.2 Modifier Ordering. The modifier optional ordering fea-
ture (in this paper modifiers refer to the GROUP BY, HAVING,
ORDER BY, and LIMIT expressions) is partially motivated by the
observation that queries that require multiple modifier statements
such as GROUP BY and HAVING tend to be more complex than
simple single table queries or queries with a single modifier such
as GROUP BY [4]. SQL syntax requires that these clauses occur in
the strict order GROUP BY, HAVING, ORDER BY, and LIMIT. If
these clauses appear out of order within a query, it is invalid and
requires correction. While this is not a significant problem for typed
queries, as they can easily be rearranged in a text editor, if such
an error is introduced during the spoken querying process, more
sophisticaed error correction is required and the query speaker
must likely re-dictate the entire query.

3.3.3 Examples.
SQL: SELECT DISTINCT termperiod FROM term

WHERE year = 2022;

SpeakQL. From the term table show me distinct termperiod
where year equals 2022

SQL: SELECT facultyname, ondays
FROM courseoffering
WHERE capacity > 20
ORDER BY facultyname LIMIT 10;

SpeakQL:. In the courseoffering table where capacity is greater
than 20find facultyname and ondays limit 10 order by facultyname

3.4 Query Unbundling
This features aims to make it easier to formulate more complex
queries joining multiple tables. In SQL, the SELECT clause requires
the user to specify all columns, scalars, and functions from across all

tables in one go, followed by naming all table sources, subqueries,
and joins in one go, followed by expressing all constraints in the
form of WHERE predicates. Only after all that can the user add
modifiers such as LIMIT, ORDER BY, HAVING, and GROUP BY.
Basically, it is a “global” approach to using the full database’s schema
in query construction. It forces the retention of a lot of schema
details in the speaker’s working memory for the entire duration of
the query dictation, e.g., all non-aggregate columns that appeared
in the SELECT clause must reappear in the GROUP BY clause at
the end. While this may not be a big deal for typing, it can be a
hindrance for ease of spoken querying.

Query unbundling aims to directly reduce this cognitive load
based on the “stream of thought” philosophy inspired by functional
programming APIs such as Python Pandas and Spark DataFrames.
Basically, this is a “local-first” approach to using the database
schema in query construction. It is closer to the logical query plan
produced behind the scenes for SQL queries. We extend the gram-
mar to permit the expression of unbundled SELECT queries that
specify columns, table source, and WHERE predicates for one rela-
tion at a time. These unbundled relation can then be joined together
using separate join-with clauses where the speaker defines the join
predicate(s). Each unbundled query is delimited by the AND THEN,
THEN, or NEXT keywords. Modifier clauses can be specified to-
gether in a single expression or separately using multiple modifier
clauses. The order of the unbundled SELECT, JOIN-WITH, and mod-
ifier clauses remains optional, retaining the additional flexibility
for dictation that SpeakQL offers.

3.4.1 Unbundled Query Parts. There are 3 types of unbundled
query parts: a single-relation select-project, a join clause that spec-
ifies the join criteria between two single-relation queries, and a
modifier clause that enables specification of GROUP BY, HAVING,
LIMIT, and ORDER BY.

Within a single-relation select-project clause, a relation can be
defined as a table reference or a subquery. Projections are expressed
within the SELECT clause; and selections relating to the query’s
relation are defined within the WHERE clause as usual. As with
non-unbundled SpeakQL queries, the table expression, SELECT
expression, and WHERE expression may be dictated in any order.
Table items for unbundled query parts that contain joins are con-
solidated in the output SQL query as a combination of a FROM
clause for a single table and join expressions for the remaining
tables. Otherwise, table items for unbundled queries where join
conditions between tables are defined within a single-table part’s
WHERE clause are consolidated in the output SQL query’s WHERE
clause in the same fashion. We present two examples.

Unbundled SpeakQL query: SELECT a and b FROM table R AND
THEN GET c and d FROM S WHERE R.id = S.id

SQL: SELECT R.a, R.b, S.c, S.d FROM S, R WHERE R.id=S.id;

Unbundled SpeakQL query: SELECT a and b FROM table R AND
THEN GET c and d FROM S AND THEN JOIN R WITH S on R.id=S.id

SQL: SELECT R.a, R.b, S.c, S.d FROM S JOIN R on R.id=S.id;

All 4 queries above are logically equivalent, representable using
the relational algebra expression shown below. The first line lists

5

Figure 3: Query Unbundling

the individual unbundled queries in SpeakQL that perform the indi-
vidual projections on 𝑅 and 𝑆 first before adding the equi-join part.
(NB: We overload 𝜋 for non-deduplicating project in bag semantics
for brevity sake.)

[𝜋𝑎,𝑏 (𝑅)]&&[𝜋𝑐,𝑑 (𝑆)]&&[𝑅 ⊲⊳𝑃.𝑖𝑑=𝑆.𝑖𝑑 𝑆]
↦→ 𝜋𝑅.𝑎,𝑅.𝑏,𝑆.𝑐,𝑆 .𝑑 (𝑅 ⊲⊳𝑅.𝑖𝑑=𝑆.𝑖𝑑 𝑆) (1)

The above expression introduces two non-standard symbols
to represent unbundled queries: square brackets [and] encase
individual unbundled query parts, while the double ampersand
&& is the delimiter of the unbundled query parts, representing
the AND THEN keyword or equivalent synonyms in SpeakQL. No
other operations, say, relational algebra operations, are permitted
in between the individual unbundled parts.

3.4.2 Translating an UnbundledQuery to SQL. Our SpeakQL-
to-SQL translator consolidates the unbundled query parts to pro-
duce a holistic valid SQL query. Due to space constraints, we present
its precise algorithm in the appendix.We describe its basic workflow
succinctly next.

First, column projections, function calls, and function arguments
from all single-relation select-project unbundled parts are consol-
idated together into a single SELECT clause for the output SQL
query. To avoid ambiguity in column names from different tables
that are identical strings, every column reference in either a SE-
LECT clause or WHERE clause that is not already in table-prefixed
format (i.e., table.column) is prepended with its source table during
the translation. This is shown in the examples above in which the
translated SQL converts reference of column, say, “a” in SpeakQL
to “R.a” in SQL. If the column reference already prefixes the table,
our translator leaves it as is.

Second, selection predicates in the WHERE clauses of individual
single-relation select-project query parts are consolidated into a sin-
gle WHERE clause in the output SQL query using a boolean AND. A
complex situation arises for a cross-table selection predicate within
a boolean expression. In such cases, we only support conjunctive
relationships between single-relation components of the overall
boolean expression. That is, if a single-relation select-project query
part contains multiple selections, these selections are encapsulated
in parentheses prior to consolidation within the output SQL query.
We currently do not support cross-table disjunctive predicates due
to the additional complexity they add for speaking and anecdotally
such cases being rarer in practice. As such, users always have the
option of falling back on regular SQL syntax in SpeakSQL for such
cases.

Detailed Example. Figure 3 illustrates how an unbundled SpeakQL
query with two separate single-table WHERE clauses gets consoli-
dated into a single SQL query. The relational algebra representation
for both queries is given below.

[𝜋𝑎,𝑏 (𝜎𝑎>1 (𝑅))]&&[𝜋𝑐,𝑑 (𝜎𝑐<5 (𝑆))]&&[𝑅 ⊲⊳𝑅.𝑖𝑑=𝑆.𝑖𝑑 𝑆]
↦→ 𝜋𝑅.𝑎,𝑅.𝑏,𝑆.𝑐,𝑆 .𝑑 (𝜎 ((𝑎>1)∧(𝑐<5)) (𝑅 ⊲⊳𝑅.𝑖𝑑=𝑆.𝑖𝑑 𝑆)) (2)

3.4.3 Selections Without Projections. One tricky situation in
unbundling arises when a selection predicate (WHERE clause) is
applied to a relation from which no columns are returned, i.e., it
has no SELECT clause. This can lead to an “odd” impulse for a
query speaker when nothing is retrieved from a table despite it
having its own unbundled query part. To handle this situation, we
introduce the NOTHING keyword as a special token within the
selectExpression parser rule in the SpeakQL grammar.

SpeakQL:. FROM TABLE R SHOW ME a AND THEN GET NOTH-
ING FROM S WHERE b = 2 and R.id=S.id

SQL: SELECT R.a FROM R, S WHERE R.b=2 and R.id=S.id

3.4.4 Automatic Group By Aggregation. To help reduce pos-
sible errors from incorrect GROUP BY clauses, we introduce the
AUTOMATIC or AUTOMATICALLY keywords. The expression
GROUP BY AUTOMATICALLY lets the translator infer the output
SQL query’s GROUP BY clause directly from the SELECT clauses
of the unbundled query parts.

SpeakQL:. SELECT a AND THE SUM OF b FROM TABLE R AND
THEN GET c and d FROM S AND THEN JOIN R WITH S on R.id=S.id
AND THEN GROUP BY AUTOMATICALLY

SQL: SELECT R.a, SUM(R.b), S.c, S.d FROM R JOIN S
on R.id=S.id GROUP BY R.a, S.c, S.d

3.4.5 Verbosity vs. Brevity. In general, unbundled queries may
contain more tokens than their corresponding SQL query, which
means they may take slightly more time than reading the pure SQL
translation. So, the higher naturalness comes at the cost of higher
verbosity. This is an explicit tradeoffwemade based on the rationale
that perhaps less “think time” may be needed for the “local-first”
unbundled SpeakQL query than the “global” SQL query. We view
this tradeoff as reasonable to both reduce the chance of semantic
errors and raise the user’s overall query dictation experience.

Longer Detailed Example. The English prompt is as follows:
“What is the average room seating capacity of rooms in buildings
where the course with id ’CSE 232’ has ever been offered?” The
precise schema of this database is in the appendix.

SpeakQL. Get buildingname from building
and then from the room table where floor equals 3 show me the
average capacity
and then get nothing from courseoffering where courseid equals
quote CSE232 quote
then join courseoffering with room on courseoffering dot roomid
equals room dot id

6

next join roomwith building on room dot buildingid equals building
dot id
and then group by automatically

SQL: SELECT buildingname, AVG(capacity)
FROM courseoffering
JOIN room ON courseoffering.roomid = room.id
JOIN building ON room.buildingid = building.id
WHERE (courseoffering.courseid = 'CSE232')

AND (room.floor = 3)
GROUP BY buildingname;

4 IMPLEMENTATION
4.1 Language Specification
SpeakQL’s grammar is defined by extending the modified Backus-
Naur Form (BNF) of the MySQL grammar on the ANTLR GitHub
repository [2, 25]. We use a subset of rules nested beneath the
querySpecification parser rule, which are rules within the dmlState-
ment rule set. This is similar in size to the SQL subset supported in
SpeakQL 1.0 [31]. While the majority of the MySQL grammar in this
subset is reused as is, our major changes are within the selectState-
ment and querySpecification parser rules and their descendants.

Grammar Extension Strategy. Our general strategy is to add
intermediate rules between terminal token nodes and their parent
SQL parser rules in order to modularize the grammar in a way that
enables the SpeakQL-to-SQL translator to manipulate the abstract
syntax trees (ASTs). This results in deeper ASTs and may result in
a tradeoff between modularity and performance. Since SpeakQL
is meant for spoken querying, near-realtime performance is an
important design factor. To combat performance degradation due to
deeper ASTs, we pruned the sourceMySQL grammar to include only
DML parse rules. Within the DML parse rules, we further pruned
out rules that were unlikely to be used during speech dictation.

Grammar. Due to space constraints, the full SpeakQL gram-
mar in BNF is given in the appendix. We present an excerpt of
the grammar for the most complex feature of SpeakQL, query un-
bundling, in Figure 4. Symbols or tokens in double quotes mean
the content enclosed is a terminal symbol. The grammar contains
a subset of child and descendant rules relevant to the unbundling
feature. selExpr, and whereExpr grammar descendants are described
in additional figures in the appendix.The root query specification
rule, abbreviated as querySpec, is the point at which queries that
use the unbundling feature diverge.

Unbundled queries may lead with any of the three unbundled
query part type rules–multiJoinExpr, selModExpr, or unbdQryOrd-
Spc–followed by the exprDelim rule that contains the AND THEN,
THEN, and NEXT terminal tokens. Although unbundled and non-
unbundled SpeakQL queriesmay share the parser rules that describe
SELECT clauses and WHERE clauses, unbundled queries have dis-
tinct FROM clause rules. The tabExprNoJoin and fromClsNoJoin,
as their names suggest, omit any possible join expressions. That
ensures that individual unbundled query parts reference only one
table and leaves the join operations to the multiJoinExpr rule and
its descendants.

<qrySpec> ::= <qryOrdSpec> <selModExpr>
| (<multiJoinExpr exprDelim)? (<selMod-
Expr> <exprDelim>)? <ubndQryOrd-
Spc> (<exprDelim> (<ubndQryOrdSpc>
| <multiJoinExpr)) (<exprDelim>
<selModExpr)?

<ubndQryOrdSpc>
::=

<selExpr> <whereExpr>? <tabExprNo-
Join>
| <selExpr> <tabExprNoJoin> <where-
Expr>?
| <tabExprNoJoin> <selExpr> <where-
Expr>?
| <tabExprNoJoin> <whereExpr>? <sel-
Expr>

<tabExprNoJoin>
::=

<frmClsNoJoin>

<frmClsNoJoin> ::= <frmKW> <theKW>? <tblSrcNoJoin>
<tblKW>?

<tblSrcNoJoin> ::= <tblSrcItm> | "(" <tblSrcItm> ")"
<mltiJnExpr> ::= <mltiJnPrt> (<exprDelim> <mltiJnPrt>)*
<mltiJnPrt> ::= <mltiInnrJn> | <mltiOutJn> | <mlti-

NatJn>
<exprDelim> ::= "and then" | "then" | "next"
<mltiInnrJn> ::= <inJoinKW>? <joinKW> <tblSrcItm>

<withKW> <tblSrcItm> (<onKW>
<expr> | "using" "(" <uidLst> ")")?

<mltiOutJn> ::= <joinDir> <outJoinKW>? <joinKW>
<tblSrcItm> <withKW> <tblSrcItm>
(<onKW> <expr> | "using" "(" <uidLst>
")")

<mltiNatJn> ::= <natJoinKW> (<joinDir> <out-
JoinKW>)? <joinKW> <tblSrcItm>
<withKW> <tblSrcItm>

<withKW> ::= "with" | "with table" | "and"

Figure 4: SpeakQL Unbundled Query Grammar Excerpt

Figure 5: ASR to SpeakQL to SQL translation workflow.

4.2 SpeakQL to SQL Translation
Our translator takes a valid SpeakQL query as input and returns
a semantically equivalent SQL query. Figure 5 shows its place in
the overall workflow. The translator performs a series of steps
that we summarize next. A more detailed discussion is provided in
the appendix. The translator is implemented in a mix of Java and
Python.

Synonym Replacement. In this step performs a scan search of
all active nodes in the AST for rules that are a member of the key-
word and delimiter categories for which SpeakQL synonyms exist.

7

This includes selectKeyword, fromKeyword, selectElementDelimiter,
and more. When a keyword or delimiter rule is identified during
the search, the translator performs an update on the rule node that
replaces the terminal token representative of a SpeakQL synonym
with its corresponding SQL keyword. Optional keywords such as
THE and TABLE are identified in the same manner and removed
from the AST.

ClauseReordering. This step includes reordering SELECT, FROM,
WHERE, GROUP BY, ORDER BY, HAVING, and LIMIT clauses. The
translator takes advantage of AST structures that guarantee that all
children of the queryOrderSpecification, unbundledQueryOrderSpec-
ification, and selectModifierExpression parser rule nodes are rules
that require evaluation and reordering. Specifically, it is guaran-
teed that the query order clause parser rules will only contain the
children selectExpression, whereExpression, and tableExpression. We
also know that the selectModifierExpression has no more than four
children of type selectModifierItem, each of which may have a sin-
gle child of type groupByClause, havingClause, orderByClause, or
limitClause. With these guarantees, the translator simply collects
and reorders the AST’s parser rules’ children into the correct SQL
clause order.

Natural Function Transformation. Translating natural func-
tions to valid SQL function clauses involves locating and removing
the optional keyword parser rules and inserting parentheses for all
occurrences of the noParenAggregateWindowedFunction parse rule
in the AST.

Query Bundling. This is a series of up to 5 steps to consolidate a
set of unbundled query parts into a valid SQL query. The number of
steps varies by query and is dependent on the presence of WHERE
clauses, JOIN clauses, and aggregate function calls. The steps in
order are:

(1) Infer GROUP BY clause, if any.
(2) Bundle SELECT clauses.
(3) Bundle WHERE clauses, if any.
(4) Bundle JOIN clauses, if any.
(5) Bundle all tables, if more than one.

Due to space constraints, we defer more details on the imple-
mentation of bundling to the appendix.

5 USER STUDY
To evaluate the utility of the SpeakQL dialect, we perform an apples-
to-apples comparative A/B user study of dictating SpeakQL vs. dictat-
ing regular SQL. Our goal is to understand the role of our dialect’s
features on how efficiently one can dictate a syntactically valid
query. So, we use a “Wizard of Oz” strategy to simulate a speech-
based interface to allow us to focus only on the dialect’s role. We do
not want to confound this evaluation with orthogonal factors such
as interface specifics, auxiliary additional modalities such as touch,
etc. Thus, our goal here is different from the user study conducted
for the SpeakQL 1.0 system [31], which compared typing SQL on a
tablet against speech+touch modality on their multimodal tablet
interface. We leave it to future work to study how to integrate the
SpeakQL dialect into such multimodal interfaces.

5.1 Study Objectives
5.1.1 Research Questions and Hypotheses. The user study
is motivated by three main research questions. We also posit our
hypothesis alongside each question.

Q1: Effectiveness of alternate syntax. To what extent, if any, do
syntax synonyms and symbol reduction improve user experience
during spoken querying?

H1: Synonyms and reduction in special characters improve user
experience.We expect that syntax synonyms and avoiding the need
to dictate special characters such as comma, parentheses, or asterisk
can make the process feel more natural and reduce number of errors
and time taken to dictate simple queries.

Q2: Effectiveness of alternate ordering. To what extent, if any, does
relaxing structure through alternate clause ordering reduce chances
of errors during spoken querying?

H2: Alternate ordering reduces errors. We expect that relaxing
the ordering requirement among clauses can reduce number of
ordering-related syntax errors and reduce the amount of time and
number of attempts required to dictate a simple or complex query.

Q3: Effectiveness of unbundling. To what extent, if any, does un-
bundling a complex query into smaller single-relation parts reduce
chances of errors during spoken querying?

H3: Unbundling reduces burden on working memory.We expect
that unbundling a complex multi-table query into single-table query
parts can reduce the speaker’s working memory burden, reduce
chances of errors when speaking the whole query, and reduce the
number of attempts to craft a fully correct query.

5.2 Study Protocol and Design
Participants. We recruited participants from UCSD academic

programs that teach SQL and data analytics. Since the SpeakQL
dialect is primarily aimed at data professionals who already know
SQL (not lay users), we also required participants to be familiar
with SQL. They had to complete a short SQL screening test. Those
who passed the test were invited to join the user study and offered
up to $30 as compensation. It was structured as a flat rate of $6 for
joining and $2 per query prompt completed (both SQL and SpeakQL
conditions) for up to 12 query prompts.

Managing the Learning Effect. We applied a latin squares
approach using counterbalancing to counteract the learning effect
that is known to be inherent in within-subjects studies of two or
more treatments [19]. Specifically, participants are divided into two
groups: a SpeakQL-to-SQL group and a SQL-to-SpeakQL group. All
participants in one group answered all 12 questions in one dialect
first and then switch to the other dialect.

Database Schema and Queries. We use a 6-table university
course database schema for our user study. It is a snowflake schema
with a course offerings table at its center with three foreign keys ref-
erencing tables on courses, rooms, and terms. The course and room
tables have foreign keys referencing tables on departments and
buildings, respectively. For practice we created 3 realistic queries of

8

increasing complexity: a single-table project, a single-table aggre-
gate, and a 3-table join. The study itself uses 6 simple and 6 complex
queries, with all the simple queries being single-table queries, while
the complex ones join between 2 and 5 tables each. Due to space
constraints, we provide the full details of the schema and all queries
(as prompts, SQL, and SpeakQL) in the appendix.

Logistics. Study sessions were conducted over Zoom with a sim-
ple browser-based web interface. The interface enables the speaker
to see the database schema, receive query prompts, dictate queries
through their device’s microphone, and see the live ASR transcrip-
tion of their dictation.We use the state-of-the-artWhispermodel for
ASR [26]. The study administrator employed a separate “Wizard of
Oz” control panel to evaluate correctness of the spoken query, to of-
fer feedback in realtime (i.e., identify errors and ask for re-dictation
if needed), to answer general questions on SQL or SpeakQL, and to
manage the overall progression of the study session.

Quantitative Analyses. We evaluate performance using the
following dependent variables: planning time (time from seeing
query prompt to starting recording which accounts for schema
review, note taking, questions, and verbal rehearsals), number of
attempts till a fully correct query, completion time per attempt, and
total completion time for all attempts. Independent variables are
based on query prompt attribute and feature usage. Prompt attribute
is the complexity of the correct SQL query, binarized as simple
or complex (more details below). Feature usage determination is
based on post-participation transcription of recordings and further
analyses. We briefly explain both aspects next but due to space
constraints, we present a more in-depth description in the appendix.

Measuring Query Complexity. We use a series of weighted
criteria: number of relations, number of projection terms (columns,
functions and constants in SELECT clause), number of functions,
number of predicates (in WHERE clause), number of joins, and
number of modifiers (GROUP BY, HAVING, ORDER BY, and LIMIT).
We use these to derive both raw and standardized query complexity
scores.

Determining Feature Usage. For each query attempt, we ana-
lyze feature usage post-hoc based on both the ASR transcription
and the raw audio recordings. We used syntax-focused heuristics
on the ASR output text to make this process easier for us, e.g., to
check if unbundling was used, we performed a search for at least
one “AND THEN” in the transcript and coded the attempt based on
the presence or absence of that keyword.

Study Session Overview. Each session was for 90 minutes, and
began with a 22 minute training video that provided an overview of
SpeakQL features and usage examples. Following the video was a
brief question and answer session and user interface demonstration.
Participants then answered up to 15 prompts using both dialects (3
practice and 12 measured). They dictated in one dialect (SpeakQL
or SQL) and then repeated the same queries in the same order for
the other dialect. They were encouraged to use as many SpeakQL
features as possible. The study administrator was available to an-
swer questions about the schema or language syntax. The online
context made a note taking prohibition unenforceable. As such, we
deemed that a complete restriction would result in a temptation to

take notes covertly. Participants were advised that they should try
to perform without using notes, but if they did, they were required
to discard them after the first dialect to mitigate learning effect bias.

6 RESULTS AND DISCUSSION
Our recruiting efforts elicited 35 prospective participants, of which
only 30 completed the SQL filtering test. Of those, 29 were invited
to participate and 23 ultimately did. Data from one participant was
omitted from analysis due to a violation of the note transfer policy.
19 participants completed all 12 prompts; 3 answered at least 7
prompts in both dialects before opting to end the session.

6.1 Quantitative Results and Hypotheses Tests
The plots in Figure 6 present the key quantitative results for each
query: the distributions of the total time to finish each prompt, as
well as the planning time for the first attempt, and the number of
attempts till correct query. We explain these next.

Feature Usage Impact. Hypotheses H1 and H2 are feature-
focused tests to analyze the impact of specific SpeakQL features.
But since SpeakQL feature usage was optional, it turned out that
participants did not consistently use many SpeakQL features across
many prompts. Feature usage was also not consistent between par-
ticipant groups (SpeakQL-first vs. SQL-first) and participants who
had SQL as their first condition were less likely to use SpeakQL
features as often as participants who had SpeakQL as their first con-
dition. Due to this unexpected imbalanced voluntary usage rate for
some features, we are unable to make any significant observations
of feature usage effects on dependent variables.

Planning Time. Planning time is a part of H1 and H2. We ana-
lyzed total number of attempts to reach a correct query, as well as
the planning time for the first attempt. We measure first attempt
planning time as opposed to the planning time for the final attempt
because our observation was that for second and third attempts,
participants generally performed no additional planning. Thus, the
time participants take to digest the prompt, analyze the schema, and
plan the query is reflected within the first attempt planning time.
Figure 6b shows the distribution for each query. The median plan-
ning time for simple queries ended up longer for SpeakQL than SQL:
38.5s vs. 31.5s, although this difference is not statistically significant
(p = 0.14). (The p-values are derived using the Mann-Whitney U
Test.) For complex queries, the median planning time is shorter
for SpeakQL than SQL: 66.0s vs. 72.0s, but again this difference
is not statistically significant (p = 0.295). We also compared these
results for each individual query and find no statistically significant
difference in median planning times for SpeakQL vs. SQL for any
query (p-values between 0.07 and 0.48). The per-query statistics are
listed in the appendixfor completeness.

Number of Attempts. This is a part of all three hypotheses.
Figure 6c shows the distributions. Overall, we do not see any sta-
tistically significant differences in either mean or median numbers
of attempts between SQL and SpeakQL. But we observed that as
queries become more complex, more second and third attempts are
required. However, as the session progressed, first attempt correct
answers increased, suggesting that participants gained a familiarity

9

1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

300

400

500

600

700

To
ta

l T
im

e

(a) Total Time, All Attempts, By Individual Query

1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

300

400

500

Fi
rs

t A
tte

m
pt

 P
la

nn
in

g
Ti

m
e

language
sql (L)
speakql (R)

(b) Planning Time, First Attempts, By Individual Query

(c) Number of Attempts By Individual Query

Figure 6: Quantitative results from the user study.

with the query dictation process and that counteracted the increas-
ing query complexity. Additionally, we observe a slightly higher
improvement advantage for SpeakQL over SQL from queries Q9 to
Q12, i.e., the frequency of first attempt correct answers is higher
for SpeakQL and that keeps going up.

6.2 Feature Usage and Usefulness
Analysis of feature usage shows varying levels of popularity for
SpeakQL features. Since feature usage was optional, some partici-
pants relied more heavily on regular SQL syntax than others even
for the SpeakQL condition. Figure 7a shows a significant disparity
in popularity of the four main features. Natural functions are the
most popular, followed by unbundling and synonyms; clause and
modifier reordering are the least popular. Figure 7b shows the fre-
quency of the self-reported reasons for not using a given feature. As
expected, SQL familiarity is a top reason that dissuaded some partic-
ipants from using SpeakQL features. In particular, clause/modifier
reordering were not used due to that reason the most. Some also
could not remember how to use unbundling or natural functions,
perhaps due to their novelty.

We also asked participants who used a feature to rate its use-
fulness. Figure 8 shows the results for all features. These results
reveal interesting nuances on the low-popularity synonym feature:
participants preferred punctuation and join synonyms but they did
not care for SELECT or FROM synonyms. The other ratings are
consistent with the feature usage observations.

6.3 Qualitative Survey Feedback
Thematic Analysis. We categorized the survey feedback and

sentiment into three thematic categories: positive, negative, and
improvement suggestion. 13 participants provided at least one posi-
tive feedback. 9 provided at least one negative feedback. 5 provided
at least one improvement suggestion. Table 2 lists the number of

(a) SpeakQL Feature Usage - Observed

(b) Participant Reasons for Not Using a Feature

Figure 7: Feature Usage Observations and Avoidance Reasons

participants who gave each type of feedback, including the key
content within each category.

Positive Comments. 8 participants made positive comments
that were not feature-specific. These included general impressions
of their experience using SpeakQL, a comment that using SpeakQL
was easier than using SQL for dictation, and 4 comments that
SpeakQL had a natural feel and was easy to use. We present some
quote verbatim.

10

Much
easier

Some-
what

easier

About
the

same

Did
not
use

0
2
4
6
8

10
Natural functions - the of keywords

Much
easier

Some-
what

easier

About
the

same

Did
not
use

Natural functions - no parens

Much
easier

Some-
what

easier

About
the

same

Did
not
use

0
2
4
6
8

10
From Synonyms

Much
easier

Some-
what

easier

About
the

same

Did
not
use

Select Synonyms

Much
easier

Some-
what

easier

About
the

same

Some-
what
more

difficult

Did
not
use

0
2
4
6
8

10
Comma Synonym

Much
easier

Some-
what

easier

About
the

same

Some-
what
more

difficult

Did
not
use

Join Synonyms

Much
easier

Some-
what

easier

About
the

same

Did
not
use

0
2
4
6
8

10
Simple clause ordering

Much
easier

Some-
what

easier

About
the

same

Did
not
use

Complex clause ordering

Much
easier

Some-
what

easier

About
the

same

Did
not
use

0
2
4
6
8

10
Modifier ordering -three mods

Much
easier

Some-
what

easier

About
the

same

Did
not
use

Modifier ordering - two mods

Much
easier

Some-
what

easier

About
the

same

Some-
what
more

difficult

Did
not
use

0
2
4
6
8

10
Unbundling - two tables

Much
easier

Some-
what

easier

About
the

same

Some-
what
more

difficult

Did
not
use

Unbundling - three or more tables

Figure 8: SpeakQL feature usefulness compared to SQL.

"SpeakQL definitely makes dictation of queries more natural with-
out worrying a lot about the syntax (which would include the orders)
and even the parentheses." - Participant 10.

What I like the most is that it is almost like thinking out loud. You
just think about what you want to do, and say the query, which makes
it way more convenient. - Participant 16.

Unbundling received the most feature-specific positive feedback,
from 7 participants. They reported that unbundling required less
planning time, feels faster, enables focus on one table at a time,
makes complex queries easier, and is generally easy or useful.

"Since I did not have to worry about ambiguous column names, I
could write the bundles separately faster and join them all later on." -
Participant 19.

4 participants reported that natural functions were useful and
easier to use than speaking SQL functions with parentheses. One
participant said the modifier reordering was useful.

Negative Comments. The most common ones related to syntax
difficulty, with 9 participants reporting dislike of different aspects of
SpeakQL syntax. 4 participants reported difficulty with unbundling
for complex queries. 3 reported that using the unbundling join syn-
tax or non-unbundled queries that used join synonyms was difficult.
One participant said that the GROUP BYAUTOMATICALLY feature
was not intuitive and felt less natural. 5 participants had negative
comments on the naturalness of some SpeakQL features. One said
that SpeakQL actually gave them a false impression of naturalness
that made it difficult to discern when a natural language-like state-
ment was a valid SpeakQL query. Some participants specifically
noted that there were too many synonyms. They said they were
unsure of how expressive SpeakQL was and that the language had
too much flexibility, with synonyms being unbalanced between
expression types, or that it was too nuanced.

"[I] Was afraid of saying the incorrect synonym. Do we really need
all these synonyms? How many do we need? Too many synonyms
might create the perception of natural language which will cause
them to create incorrect queries." - Participant 1.

7 participants said that they did not have enough time to gain
enough familiarity with all the SpeakQL features and wanted more
practice.

"Though complex query bundling was easier, it takes a lot of time
to go from creating individual table queries, and then joins and then
grouping them, and so because I was querying the columns from all
the tables together first and then making all the joins in one go, I felt
it a little inconvenient. However, I missed the fact that I can simply
query 2 tables and join and then go to the next table would have been
easier." - Participant 2.

Improvement Suggestions. Most comments focused on simple
syntax improvements, including allowing “THE” before TABLE (e.g.,
FROM THE TABLE building GET buildingname), making generation
of the GROUP BY expression fully automatic (i.e., without needing
to speak GROUP BY AUTOMATICALLY), and adding RETRIEVE
as an additional SELECT synonym. 4 participants also said they
disliked dictating special characters such as quotes, commas, and
parentheses and suggested a reduction of the need to speak these
symbols, especially quotes.

11

Participants
– Positive – 13
General Positive Impressions 8
Positive Unbundling Impressions 7
Positive Natural Function Impressions 4
Positive Ordering Impressions 1
– Negative – 9
Syntax Difficulty 6
Unfamiliar Language, Needs Practice 7
Faux Natural Language 5
– Improvement Ideas – 5
Minimize Punctuation 4
Syntax Improvements 3
Table 2: Thematic Category and Code Frequencies

6.4 Discussion of Results and Implications
Overall, although we did not find any statistically significant gaps
in quantitative metrics, we do find several encouraging pieces of
evidence that SpeakQL, despite being a new and slightly more
verbose dialect of SQL, takes comparable time to dictate but with a
higher ease of use as per self-reported feedback. We also note that
as the user study session progressed, user performance rose faster
often for SpeakQL than SQL in terms of both planning time and
number of attempts.

Synonyms. Although the simplest feature, they were only the
third-most popular feature in the actual usage data. They also at-
tracted the most negative feedback, with the crux being they caused
more uncertainty about the valid keywords. We plan to drop some
synonyms in future implementations of SpeakQL.

Clause reordering. This ended up the most non-used feature,
mainly because participants had high enouguh familiarity with SQL
to not need such reordering. But we plan to retain this feature as it
did not elicit negative feedback.

Natural functions. This was the most popular feature and
universally liked by participants. We plan to expand this feature to
reduce the need to speak other special characters such as quotes
around string literals in predicates.

Unbundling. This was the second most popular feature and
it received majority positive feedback. Many participants were
particularly enthusiastic about how unbundling enabled them to
approach query formulation in a “stream of thought” manner that
made speaking queries easier. We plan to retain this feature as is.

7 RELATEDWORK
Natural Language Interfaces. Section 2.2 discussed NLIs in

detail and their relationship with SpeakQL. In particular, note that
while we envision future integration of SpeakQL with NLIs for
databases, the primary focus of this paper is the new dialect for
spoken querying, not building a new NLI. We describe how our
features can help improve ease of use, while preserving a context
free grammar and correct-by-construction guarantees of regular
SQL. In contrast, NL-to-SQL and chat-based interfaces today are
primarily aimed at NL typing-based interactions, which lack such
correctness guarantees.

Speech-Based Database Interaction. EchoQuery [18] is a state-
ful query-by-voice system that allows users to interact with a rela-
tional database in a conversational manner. It only presents a tool
demonstration though, without a rigorous grammar or thorough
user study evaluation. It does use a speech-friendly dialect, but its
syntax represents a subset of SQL expressiveness, e.g., joins are not
explicitly defined at all and disjunctive predicates are not possible
at all. In contrast, our work formalizes SpeakQL as a new dialect
of SQL for spoken querying and defines its grammar. We extend
a non-trivial subset of SQL and retain its full expressive power,
including on joins and predicates, because SpeakQL subsumes that
SQL subset. We also evaluate the ease of use of the SpeakQL dialect
using a thorough A/B user study.

Our own prior work on SpeakQL 1.0 [31] is a speech+touch
multimodal query interface that allows users to modify query intent
using a novel SQL touch keyboard. SpeakQL 1.0 also targets a non-
trivial subset of SQL. In contrast, SpeakQL 2.0 (this paper) proposes
and evaluates a new dialect of SQL designed for spoken querying,
not a new multimodal interface with touchscreen focus.

CiceroDB [33] uses Google Assistant to infer user query intent
from NL statements and vocalizes query result sets using computer-
generated voice. It is orthogonal to both the general goals of the
SpeakQL line of work and this paper’s specific goals of a new
speech-first dialect of SQL. One can use both SpeakQL and Ci-
ceroDB together to enable fully speech-based interactions with
databases to both query data and to consume results.

Spoken Programming as Assistive Technology. Spoken pro-
gramming systems have been considered and evaluated as assistive
technologies for programmers with motor impairments. Much prior
art in this space ended up as ultimately unconvincing due to weak
ASR capabilities [5]. But the recent wave of highly accurate deep
learning-based ASR has rekindled interest in this space. Usability
interviews with motor impaired programmers suggested a promis-
ing future for an NL-based programming system that can avoid
dictation of symbols and variables [23]. The SpeakQL dialect is
inspired by a similar vision and our user study survey responses
support a similar conclusion, viz., a desire for more natural-feeling
constructs to avoid dictating symbols.

8 CONCLUSIONS AND FUTUREWORK
Motivated by the growing success of ASR-based interactions, this
work takes a step toward more natural spoken structured query-
ing for databases. We design and evaluate a prototype dialect of
SQL we call SpeakQL that we believe represents a promising direc-
tion for improving speech-based access that preserves correct-by-
constructions guarantees of SQL. Our user study suggests the utility
of many of our features, while also offering avenues for refinement
of other features. As for future work, we envision integrating the
SpeakQL dialect into a fully fledged stateful and interactive system
to allow users to conversationally clarify and refine their query. We
will also study the interplay of SpeakQL-like features with “prompt
engineering” constructs in emerging NL chatbots such as ChatGPT.
Finally, we also plan to study the use of SpeakQL as an intermediate
representation in NL-to-SQL translations to enables user to offer
feedback on translation correctness by being in the loop.

12

REFERENCES
[1] U.S. Bureau of Labor Statistics 2020. Survey of Occupational Injuries and Illnesses

Data. U.S. Bureau of Labor Statistics. Retrieved November 14, 2022 from
https://www.bls.gov/iif/nonfatal-injuries-and-illnesses-tables.htm

[2] 2022. grammars-v4. https://github.com/antlr/grammars-v4.
[3] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases.

Addison-Wesley.
[4] Alireza Ahadi, Julia Prior, Vahid Behbood, and Raymond Lister. 2015. A Quan-

titative Study of the Relative Difficulty for Novices of Writing Seven Differ-
ent Types of SQL Queries. In Proceedings of the 2015 ACM Conference on In-
novation and Technology in Computer Science Education (Vilnius, Lithuania)
(ITiCSE ’15). Association for Computing Machinery, New York, NY, USA, 201–206.
https://doi.org/10.1145/2729094.2742620

[5] A. Begel and S.L. Graham. 2006. An Assessment of a Speech-Based Programming
Environment. In Visual Languages and Human-Centric Computing (VL/HCC’06).
116–120. https://doi.org/10.1109/VLHCC.2006.9

[6] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
https://doi.org/10.48550/ARXIV.2005.14165

[7] D. D. Chamberlin, M. M. Astrahan, K. P. Eswaran, P. P. Griffiths, R. A. Lorie, J. W.
Mehl, P. Reisner, and B. W. Wade. 1976. SEQUEL 2: A Unified Approach to Data
Definition, Manipulation, and Control. IBM J. Res. Dev. 20, 6 (Nov. 1976), 560–575.
https://doi.org/10.1147/rd.206.0560

[8] Donald D. Chamberlin and Raymond F. Boyce. 1974. SEQUEL: A Structured Eng-
lish Query Language. In Proceedings of the 1974 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control (Ann Arbor, Michigan) (SIG-
FIDET ’74). Association for Computing Machinery, New York, NY, USA, 249–264.
https://doi.org/10.1145/800296.811515

[9] LTC Jason Crist. 2021. From the Server to the Battlefield, How data Scientists are
Key to Winning Future Conflicts. https://www.army.mil/article/249036/from_
the_server_to_the_battlefield_how_data_scientists_are_key_to_winning_
future_conflicts. Accessed: 2023-01-20.

[10] Yujian Gan, Xinyun Chen, Jinxia Xie, Matthew Purver, John R. Woodward, John
Drake, and Qiaofu Zhang. 2021. Natural SQL: Making SQL Easier to Infer from
Natural Language Specifications. In Findings of the Association for Computational
Linguistics: EMNLP 2021. Association for Computational Linguistics, Punta Cana,
Dominican Republic, 2030–2042. https://doi.org/10.18653/v1/2021.findings-
emnlp.174

[11] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii,
Yejin Bang, Andrea Madotto, and Pascale Fung. 2022. Survey of Hallucination in
Natural Language Generation. ACM Comput. Surv. (nov 2022). https://doi.org/
10.1145/3571730 Just Accepted.

[12] Lilong Jiang, Michael Mandel, and Arnab Nandi. 2013. GestureQuery: A Multi-
touch Database Query Interface. Proc. VLDB Endow. 6, 12 (aug 2013), 1342–1345.
https://doi.org/10.14778/2536274.2536311

[13] Brad Kelechava. 2020. The SQL standard - ISO/IEC 9075:2016 (ANSI
X3.135). https://blog.ansi.org/2018/10/sql-standard-iso-iec-9075-2016-ansi-
x3-135/#gref

[14] Hyeonji Kim, Byeong Hoon So, Wook Shin Han, and Hongrae Lee. 2020. Natural
language to SQL: Where are we today? Proceedings of the VLDB Endowment 13
(6 2020), 1737–1750. Issue 10. https://doi.org/10.14778/3401960.3401970

[15] Amy J. Ko, Thomas D. LaToza, and Margaret M. Burnett. 2015. A Practical
Guide to Controlled Experiments of Software Engineering Tools with Human
Participants. Empirical Softw. Engg. 20, 1 (feb 2015), 110–141. https://doi.org/10.
1007/s10664-013-9279-3

[16] Tobias Kuhn. 2014. A Survey and Classification of Controlled Nat-
ural Languages. Computational Linguistics 40, 1 (03 2014), 121–170.
https://doi.org/10.1162/COLI_a_00168 arXiv:https://direct.mit.edu/coli/article-
pdf/40/1/121/1812691/coli_a_00168.pdf

[17] Kyle Luoma and Arun Kumar. Accessed January 31, 2023. Tech Report: Design
and Evaluation of an SQL-Based Dialect for Spoken Querying. https://adalabucsd.
github.io/papers/TR_2023_SpeakQL_Dialect.pdf.

[18] Gabriel Lyons, Vinh Tran, Carsten Binnig, Ugur Cetintemel, and Tim Kraska.
2016. Making the case for query-by-voice with echoquery. Proceedings of the
ACM SIGMOD International Conference on Management of Data 26-June-2016,
2129–2132. https://doi.org/10.1145/2882903.2899394

[19] I. Scott MacKenzie. 2013. Human-Computer Interaction: An Empirical Research
Perspective (1st ed.). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

[20] Daphne Miedema, Efthimia Aivaloglou, and George Fletcher. 2022. Identifying
SQL Misconceptions of Novices: Findings from a Think-Aloud Study. ACM
Inroads 13, 1 (feb 2022), 52–65. https://doi.org/10.1145/3514214

[21] Mehdi Mohammadpoor and Farshid Torabi. 2020. Big Data analytics in oil
and gas industry: An emerging trend. Petroleum 6, 4 (2020), 321–328. https:
//doi.org/10.1016/j.petlm.2018.11.001 SI: Artificial Intelligence (AI), Knowledge-
based Systems (KBS), and Machine Learning (ML).

[22] Jesse Mu and Advait Sarkar. 2019. Do We Need Natural Language? Explor-
ing Restricted Language Interfaces for Complex Domains. In 37th Annual
ACM Conference Extended Abstracts on Human Factors in Computing Sys-
tems (CHI ’19 Extended Abstracts). ACM. https://www.microsoft.com/en-
us/research/publication/do-we-need-natural-language-exploring-restricted-
language-interfaces-for-complex-domains/

[23] Sadia Nowrin, Patricia OrdóñEz, and Keith Vertanen. 2022. Exploring Motor-
Impaired Programmers’ Use of Speech Recognition. In Proceedings of the 24th
International ACM SIGACCESS Conference on Computers and Accessibility (Athens,
Greece) (ASSETS ’22). Association for Computing Machinery, New York, NY,
USA, Article 78, 4 pages. https://doi.org/10.1145/3517428.3550392

[24] OpenAI. [2022]. ChatGPT: Optimizing Language Models for Dialogue. https:
//openai.com/blog/chatgpt/.

[25] Terence Parr, Sam Harwell, and Kathleen Fisher. 2014. Adaptive LL(*) Parsing:
The Power of Dynamic Analysis. In Proceedings of the 2014 ACM International
Conference on Object Oriented Programming Systems Languages and Applications
(Portland, Oregon, USA) (OOPSLA ’14). Association for Computing Machinery,
New York, NY, USA, 579–598. https://doi.org/10.1145/2660193.2660202

[26] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey,
and Ilya Sutskever. 2022. Robust Speech Recognition via Large-Scale Weak
Supervision. https://doi.org/10.48550/ARXIV.2212.04356

[27] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. 2018.
Improving Language Understanding by Generative Pre-Training. OpenAI (2018).

[28] P. Reisner. 1977. Use of Psychological Experimentation as an Aid to Development
of a Query Language. IEEE Transactions on Software Engineering SE-3, 3 (May
1977), 218–229. https://doi.org/10.1109/TSE.1977.231131

[29] Phyllis Reisner, Raymond F. Boyce, and Donald D. Chamberlin. 1975. Human
Factors Evaluation of Two Data Base Query Languages: Square and Sequel. In
Proceedings of the May 19-22, 1975, National Computer Conference and Exposition
(Anaheim, California) (AFIPS ’75). Association for Computing Machinery, New
York, NY, USA, 447–452. https://doi.org/10.1145/1499949.1500036

[30] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD: Pars-
ing Incrementally for Constrained Auto-Regressive Decoding from Language
Models. In Proceedings of the 2021 Conference on Empirical Methods in Natu-
ral Language Processing. Association for Computational Linguistics, 9895–9901.
https://aclanthology.org/2021.emnlp-main.779

[31] Vraj Shah, Side Li, Arun Kumar, and Lawrence Saul. 2020. SpeakQL: Towards
Speech-driven Multimodal Querying of Structured Data. Proceedings of the ACM
SIGMOD International Conference on Management of Data (2020), 2363–2374.
https://doi.org/10.1145/3318464.3389777 School: UCSD.

[32] Kil Soo Suh and A. Milton Jenkins. 1992. A Comparison of Linear Keyword and
Restricted Natural Language Data Base Interfaces for Novice Users. Informa-
tion Systems Research 3, 3 (1992), 252–272. https://doi.org/10.1287/isre.3.3.252
arXiv:https://doi.org/10.1287/isre.3.3.252

[33] Immanuel Trummer. 2020. Demonstrating the Voice-Based Exploration of Large
Data Sets with CiceroDB-Zero. Proc. VLDB Endow. 13, 12 (sep 2020), 2869–2872.
https://doi.org/10.14778/3415478.3415496

[34] Tianbao Xie, Chen Henry Wu, Peng Shi, Ruiqi Zhong, Torsten Scholak, Michi-
hiro Yasunaga, Chien-Sheng Wu, Ming Zhong, Pengcheng Yin, Sida I. Wang,
Victor Zhong, Bailin Wang, Chengzu Li, Connor Boyle, Ansong Ni, Ziyu
Yao, Dragomir Radev, Caiming Xiong, Lingpeng Kong, Rui Zhang, Noah A.
Smith, Luke Zettlemoyer, and Tao Yu. 2022. UnifiedSKG: Unifying and Multi-
Tasking Structured Knowledge Grounding with Text-to-Text Language Models.
https://doi.org/10.48550/ARXIV.2201.05966

13

https://www.bls.gov/iif/nonfatal-injuries-and-illnesses-tables.htm
https://github.com/antlr/grammars-v4
https://doi.org/10.1145/2729094.2742620
https://doi.org/10.1109/VLHCC.2006.9
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.1147/rd.206.0560
https://doi.org/10.1145/800296.811515
https://www.army.mil/article/249036/from_the_server_to_the_battlefield_how_data_scientists_are_key_to_winning_future_conflicts
https://www.army.mil/article/249036/from_the_server_to_the_battlefield_how_data_scientists_are_key_to_winning_future_conflicts
https://www.army.mil/article/249036/from_the_server_to_the_battlefield_how_data_scientists_are_key_to_winning_future_conflicts
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.18653/v1/2021.findings-emnlp.174
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.14778/2536274.2536311
https://blog.ansi.org/2018/10/sql-standard-iso-iec-9075-2016-ansi-x3-135/#gref
https://blog.ansi.org/2018/10/sql-standard-iso-iec-9075-2016-ansi-x3-135/#gref
https://doi.org/10.14778/3401960.3401970
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1162/COLI_a_00168
https://arxiv.org/abs/https://direct.mit.edu/coli/article-pdf/40/1/121/1812691/coli_a_00168.pdf
https://arxiv.org/abs/https://direct.mit.edu/coli/article-pdf/40/1/121/1812691/coli_a_00168.pdf
https://adalabucsd.github.io/papers/TR_2023_SpeakQL_Dialect.pdf
https://adalabucsd.github.io/papers/TR_2023_SpeakQL_Dialect.pdf
https://doi.org/10.1145/2882903.2899394
https://doi.org/10.1145/3514214
https://doi.org/10.1016/j.petlm.2018.11.001
https://doi.org/10.1016/j.petlm.2018.11.001
https://www.microsoft.com/en-us/research/publication/do-we-need-natural-language-exploring-restricted-language-interfaces-for-complex-domains/
https://www.microsoft.com/en-us/research/publication/do-we-need-natural-language-exploring-restricted-language-interfaces-for-complex-domains/
https://www.microsoft.com/en-us/research/publication/do-we-need-natural-language-exploring-restricted-language-interfaces-for-complex-domains/
https://doi.org/10.1145/3517428.3550392
https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://doi.org/10.1145/2660193.2660202
https://doi.org/10.48550/ARXIV.2212.04356
https://doi.org/10.1109/TSE.1977.231131
https://doi.org/10.1145/1499949.1500036
https://aclanthology.org/2021.emnlp-main.779
https://doi.org/10.1145/3318464.3389777
https://doi.org/10.1287/isre.3.3.252
https://arxiv.org/abs/https://doi.org/10.1287/isre.3.3.252
https://doi.org/10.14778/3415478.3415496
https://doi.org/10.48550/ARXIV.2201.05966

A BACKGROUND
A.1 SQL Grammar
All SQL grammars include syntax rules for both data definition
language (DDL) and data manipulation language (DML) statements.
DDL statements are intended to enable specification of data struc-
ture; and DML statements enable data access and update functions
[3]. Data analysts, informaticists, and other data consumers gener-
ally make use of DML statements to fulfill data requirements. DDL
statements are generally expressed by database administrators and
software developers responsible for designing, implementing, and
maintaining data models within database management systems.

B DIALECT
B.1 Synonyms
Keyword synonyms are listed in Figure 9.

B.2 Natural Functions
Natural function syntax and examples are portrayed in Figure 10.

B.3 Unbundling
B.3.1 Additional Unbundling Example.

Query Prompt. Find the titles of all courses offered in terms with
the year 2022.

SpeakQL. join the term table with the room table on term dot
id equals courseoffering dot termid
and then join the courseoffering table with the course table on
courseoffering dot courseid equals course dot id
and then show me title in the course table
and then from room where floor equals 3 select average capacity
and then get nothing from term where year equals 2022

SQL: Select title from course
join courseoffering

on course.id = courseoffering.courseid
join term

on courseoffering.termid = term.id
where year = 2022;

C IMPLEMENTATION
C.1 Grammar
Figures 19 and 18 are excerpts of SpeakQL and SQL select statement
grammar in a modified BNF format. The ’?’ symbol appended to
a rule indicates that the rule is optional. The ’*’ symbol indicates
that 0 to many occurences of a rule are allowed. Symbols or tokens
surrounded by double quotes indicate that the content enclosed
within the quotes is a terminal symbol. Both figures contain only a
subset of child and descendant rules and both are limited to two
levels of depth below the selectStatement rule, and certain SQL
rules including union, window, and into are omitted for the sake of
brevity. Figure 20 is an example of a child expression to the SpeakQL
select statement grammar defined in figure 19 and is provided as an
example implementation of the extension strategy that facilitates
SpeakQL to SQL translation. Additional examples are available in
this paper’s corresponding technical report.

C.2 SpeakQL to SQL Translation
The translator performs translation through a series of steps. The
first step takes a valid SpeakQL query as input, where correctness
is determined upstream of this task, and sends it to the Java-based
SpeakQL parser via anHTTP post request. The parser respondswith
a Lisp-formatted abstract syntax tree AST that the Python-based
translator transforms into an editable AST. The translator performs
operations on the SpeakQL AST in order to transform it into a valid
SQL query which include finding and replacing SpeakQL synonyms
with SQL syntax, reordering expressions, reordering modifier items,
and transforming unbundled queries into a single SQL select state-
ment. The unbundling transformation step includes additional sub-
steps including inference of a group by expression, consolidation
of select elements (i.e. columns, functions, and scalars), consolida-
tion of where statements, consolidation of join expressions, and
finally consolidation of any table sources not included within join
expressions.

C.3 Parser Performance
A comparison of the SQL and SpeakQL grammar implementations
reveals that SpeakQL feature implementation results in deeper trees
with additional branches. Naturally, this increase in complexity
will result in a corresponding increase in time required to parse a
query. A performance comparison between three parsers, a MySQL
grammar-based parser, a full SpeakQL parser that extends the entire
MySQL grammar, and a simple SpeakQL parser that extends only
a DML subset of the MySQL grammar was conducted to validate
assumptions about parser performance improvements for smaller
grammars.

We measured parse time for each parser using a set of 8,946 SQL
queries (see Figure 11). The full SpeakQL parser, on average, exhib-
ited a 5.9x slowdown compared to the MySQL parser, suggesting
that the modularity-based rule extensions negatively impact parser
performance. On the other hand, the simple SpeakQL parser ex-
tending only a DML subset of MySQL rules exhibited a 2.6x speedup
compared to the MySQL parser and a 15.1x speedup compared to
the full SpeakQL parser. This performance increase is achieved by
sacrificing certain SQL features including window and union. This
rule omission is mitigated using a fallback strategy where SpeakQL
queries identified by the translator as containing syntax not covered
by the Simple SpeakQL parser are passed back to the full SpeakQL
parser for processing.

C.4 SpeakQL to SQL Translation

Translating Unbundled Queries. The translator uses the same
approach for each bundling step, which is to identify the first ex-
pression parser rule node in the AST for a given expression and use
it as a migration target for additional expression parser rule nodes
that may exist in the AST. For example, if a query contains two
separate unbundled select-from-where queries connected with a
join query, the translator will designate the first of the two selectEx-
pression parser rules in the AST as selectExpression’ and will migrate
the selectElements that are children of the second selectExpression
rule node to become children of selectExpression’. Parser rule node
migration is accomplished by appending the migrated parser rule

14

Figure 9: SpeakQL Synonyms

Figure 10: Natural Functions

Figure 11: Grammar Parser Performance Comparison

Algorithm 1 Find and Replace Synonyms

𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 ← 𝑝𝑎𝑟𝑠𝑒𝑆𝑝𝑒𝑎𝑘𝑄𝐿(𝑞𝑢𝑒𝑟𝑦)
𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝐾𝑤𝑅𝑢𝑙𝑒𝑠𝑒𝑡 ← {𝑠𝑒𝑙𝑒𝑐𝑡𝐾𝑊 , 𝑓 𝑟𝑜𝑚𝐾𝑊 , 𝑗𝑜𝑖𝑛𝐾𝑊 , ...}
𝑠𝑦𝑛𝑡𝑎𝑥𝑆𝑢𝑔𝑎𝑟𝑅𝑠 ← {𝑡ℎ𝑒𝐾𝑊 , 𝑡𝑎𝑏𝑙𝑒𝐾𝑊 ,𝑜 𝑓 𝐾𝑊 , 𝑖𝑠𝐾𝑊 }
𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝐻𝑎𝑠ℎ𝑀𝑎𝑝 ← {(𝑠𝑒𝑙𝑒𝑐𝑡𝐾𝑊 : 𝑆𝐸𝐿𝐸𝐶𝑇), (𝑓 𝑟𝑜𝑚𝐾𝑊 :
𝐹𝑅𝑂𝑀), ...}
for all 𝑛𝑜𝑑𝑒𝑠 such that 𝑛𝑜𝑑𝑒 ∈ 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 do

if 𝑛𝑜𝑑𝑒.𝑟𝑢𝑙𝑒 ∈ 𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝐾𝑤𝑅𝑢𝑙𝑒𝑠𝑒𝑡 then
𝑛𝑜𝑑𝑒.𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝐾𝑊 (𝑠𝑦𝑛𝑜𝑛𝑦𝑚𝐻𝑎𝑠ℎ𝑀𝑎𝑝 [𝑛𝑜𝑑𝑒.𝑟𝑢𝑙𝑒])

end if
if 𝑛𝑜𝑑𝑒.𝑟𝑢𝑙𝑒 ∈ 𝑠𝑦𝑛𝑡𝑎𝑥𝑆𝑢𝑔𝑎𝑟𝑅𝑠 then
𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑟𝑒𝑚𝑜𝑣𝑒𝑁𝑜𝑑𝑒 (𝑛𝑜𝑑𝑒)

end if
end for

node’s ID to the migration target rule node’s child list and removing
the migrated parser rule node’s ID from the migration source rule
node’s child list.

Inferring the group by expression. A feature of the SpeakQL trans-
lator is its ability to infer a group by expression using the presence
of aggregator functions and column references within multiple
selectExpression parser rules. A user can instruct the translator to
perform group by expression inference using the group by auto-
matically keyword within either a single-table SpeakQL query or a
multi-table unbundled query.

15

Algorithm 2 Reorder Select, From and Where Expressions

𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 ← 𝑝𝑎𝑟𝑠𝑒𝑆𝑝𝑒𝑎𝑘𝑄𝐿(𝑞𝑢𝑒𝑟𝑦)
for all 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒𝑠 such that 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒 ∈ 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 do

if 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒 == 𝑞𝑟𝑦𝑂𝑟𝑑𝑆𝑝𝑒𝑐 then
𝑒𝑥𝑝𝑟 ← 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛

𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐸𝑥𝑝𝑟 ← [∅]
𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐸𝑥𝑝𝑟 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑥𝑝𝑟 .𝑠𝑒𝑙𝐸𝑥𝑝𝑟)
𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐸𝑥𝑝𝑟 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑥𝑝𝑟 .𝑡𝑎𝑏𝐸𝑥𝑝𝑟)
𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐸𝑥𝑝𝑟 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑒𝑥𝑝𝑟 .𝑤ℎ𝑒𝑟𝑒𝐸𝑥𝑝𝑟)
𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐸𝑥𝑝𝑟

end if
end for

Algorithm 3 Reorder Select Modifier Items

𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 ← 𝑝𝑎𝑟𝑠𝑒𝑆𝑝𝑒𝑎𝑘𝑄𝐿(𝑞𝑢𝑒𝑟𝑦)
for all 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒𝑠 such that 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒 ∈ 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 do

if 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒 == 𝑠𝑒𝑙𝑀𝑜𝑑𝐸𝑥𝑝𝑟 then
𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐼𝑡𝑚𝑠 ← [∅]
𝑔𝑟𝑝𝐵𝑦𝐶𝑙𝑠 ← 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒.𝑔𝑒𝑡𝐶ℎ𝑖𝑙𝑑𝐵𝑦𝑅𝑢𝑙𝑒 (𝑔𝑟𝑝𝐵𝑦𝐶𝑙𝑠)
ℎ𝑎𝑣𝑖𝑛𝑔𝐶𝑙𝑠 ← 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒.𝑔𝑒𝑡𝐶ℎ𝑖𝑙𝑑𝐵𝑦𝑅𝑢𝑙𝑒 (ℎ𝑣𝑖𝑛𝑔𝐶𝑙𝑠)
𝑜𝑟𝑑𝑟𝐵𝑦𝐶𝑙𝑠 ← 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒.𝑔𝑒𝑡𝐶ℎ𝑖𝑙𝑑𝐵𝑦𝑅𝑢𝑙𝑒 (𝑜𝑟𝑑𝑟𝐵𝑦𝐶𝑙𝑠)
𝑙𝑖𝑚𝑖𝑡𝐶𝑙𝑠 ← 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒.𝑔𝑒𝑡𝐶ℎ𝑖𝑙𝑑𝐵𝑦𝑅𝑢𝑙𝑒 (𝑙𝑖𝑚𝑖𝑡𝐶𝑙𝑠)
𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐼𝑡𝑚𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑔𝑟𝑝𝐵𝑦𝐶𝑙𝑠)
𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐼𝑡𝑚𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (ℎ𝑎𝑣𝑖𝑛𝑔𝐶𝑙𝑠)
𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐼𝑡𝑚𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑜𝑟𝑑𝑟𝐵𝑦𝐶𝑙𝑠)
𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐼𝑡𝑚𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑙𝑖𝑚𝑖𝑡𝐶𝑙𝑠)
𝑠𝑒𝑙𝑀𝑜𝑑𝐸𝑥𝑝𝑟 .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑟𝑒𝑜𝑟𝑑𝑒𝑟𝑒𝑑𝐼𝑡𝑚𝑠

end if
end for

Algorithm 4 Natural Function Transformation

𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 ← 𝑝𝑎𝑟𝑠𝑒𝑆𝑝𝑒𝑎𝑘𝑄𝐿(𝑞𝑢𝑒𝑟𝑦)
𝑠𝑦𝑛𝑡𝑎𝑥𝑆𝑢𝑔𝑎𝑟𝑅𝑠 ← {𝑡ℎ𝑒𝐾𝑊 ,𝑜 𝑓 𝐾𝑊 }
for all 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒 ∈ 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑛𝑜𝑑𝑒𝑠𝑊 𝑖𝑡ℎ𝑁𝑎𝑚𝑒 (𝑛𝑎𝑡𝐹𝑢𝑛) do
for all 𝑐ℎ𝑖𝑙𝑑 ∈ 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 do

if 𝑐ℎ𝑖𝑙𝑑.𝑟𝑢𝑙𝑒 ∈ 𝑠𝑦𝑛𝑡𝑎𝑥𝑆𝑢𝑔𝑎𝑟𝑅𝑠 then
𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑟𝑒𝑚𝑜𝑣𝑒𝑛𝑜𝑑𝑒 (𝑐ℎ𝑖𝑙𝑑)

end if
end for
𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐴𝑟𝑔𝑠 ← 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒.𝑔𝑒𝑡𝐶ℎ𝑖𝑙𝑑𝑊 𝑖𝑡ℎ𝑁𝑎𝑚𝑒 (𝑓 𝑢𝑛𝐴𝑟𝑔𝑠)
𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑠𝑢𝑟𝑟𝑜𝑢𝑛𝑑𝑁𝑜𝑑𝑒𝑊 𝑖𝑡ℎ𝑃𝑎𝑟𝑒𝑛𝑠 (𝑓 𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝐴𝑟𝑔𝑠)

end for

When the translator encounters the group by automatically in-
struction, it proceeds as depicted in algorithm 6. It makes use of
AST helper functions nodeWithName which returns a list of all
nodes with a given rule name, and getAllTablesAndElements which
returns a Python dictionary ({ table name : [selectElements]}) that
contains a list of select elements and function calls for each table
referenced within the SpeakQL query. The translator uses the exist-
ing groupByExpression parser rule node that contains the auomat-
icGroupByKeyword parser rule and replaces the automaticGroup-
byKeyword rule with a groupByItems parse rule. The groupByItems
parse rule node serves as the parent node for individual groupByItem

Algorithm 5 Transform Unbundled Query (High Level)

𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 ← 𝑝𝑎𝑟𝑠𝑒𝑆𝑝𝑒𝑎𝑘𝑄𝐿(𝑞𝑢𝑒𝑟𝑦)
Require: ∃𝑢𝑛𝑏𝑛𝑑𝑄𝑟𝑦𝑂𝑟𝑑𝑆𝑝𝑐 ∈ 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡
𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑖𝑛𝑓 𝑒𝑟𝐺𝑟𝑜𝑢𝑝𝐵𝑦 ()
𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑏𝑢𝑛𝑑𝑙𝑒𝑆𝑒𝑙𝑒𝑐𝑡𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ()
𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑏𝑢𝑛𝑑𝑙𝑒𝑊ℎ𝑒𝑟𝑒𝑆𝑡𝑎𝑡𝑒𝑚𝑒𝑛𝑡𝑠 ()
𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑏𝑢𝑛𝑑𝑙𝑒 𝐽𝑜𝑖𝑛𝑃𝑎𝑟𝑡𝑠 ()
𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑏𝑢𝑛𝑑𝑙𝑒𝑇𝑎𝑏𝑙𝑒𝑠 ()
for all 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒𝑠 such that 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒 ∈ 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 do
if 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒 ∈ {𝑞𝑟𝑦𝑂𝑟𝑑𝑆𝑝𝑒𝑐,𝑚𝑢𝑙𝑡𝑄𝑟𝑦𝑂𝑟𝑑𝑆𝑝𝑒𝑐, 𝑒𝑥𝑝𝑟𝐷𝑒𝑙𝑖𝑚}
then
𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑟𝑒𝑚𝑜𝑣𝑒𝑁𝑜𝑑𝑒 (𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒)

end if
end for

Algorithm 6 Unbundled Function: Infer GroupBy

𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 ← 𝑝𝑎𝑟𝑠𝑒𝑆𝑝𝑒𝑎𝑘𝑄𝐿(𝑞𝑢𝑒𝑟𝑦)
Require: ∃𝑔𝑟𝑝𝐵𝑦𝐶𝑙𝑠 ∈ 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 ∧ ∃𝑎𝑢𝑡𝑜𝑀𝑡𝑐𝐾𝑊 ∈
𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡

𝑎𝑢𝑡𝑜𝐾𝑤𝑠 ← 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑛𝑜𝑑𝑒𝑠𝑊 𝑖𝑡ℎ𝑁𝑎𝑚𝑒 (𝑎𝑢𝑡𝑜𝑀𝑡𝑐𝐾𝑊)
for all 𝑎𝑢𝑡𝑜𝐾𝑤 ∈ 𝑎𝑢𝑡𝑜𝐾𝑤𝑠 do
𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑟𝑒𝑚𝑜𝑣𝑒𝑁𝑜𝑑𝑒 (𝑎𝑢𝑡𝑜𝐾𝑤)

end for
𝑔𝑏𝑁𝑜𝑑𝑒 ← 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑛𝑜𝑑𝑒𝑊 𝑖𝑡ℎ𝑁𝑎𝑚𝑒 (𝑔𝑟𝑝𝐵𝑦𝐶𝑙𝑠)
𝑒𝑙𝑚𝑡𝑠𝐵𝑦𝑇𝑏𝑙 ← 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑔𝑒𝑡𝐴𝑙𝑙𝑇𝑎𝑏𝑙𝑒𝑠𝐴𝑛𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ()
𝑔𝑏𝐼𝑡𝑚𝑠 ← [∅]
for all 𝑠𝑒𝑙𝐸𝑙𝑚𝑡 ∈ 𝑒𝑙𝑚𝑡𝑠𝐵𝑡𝑇𝑏𝑙 do

if 𝑠𝑒𝑙𝐸𝑙𝑚𝑡 is 𝑐𝑜𝑙𝑢𝑚𝑛 then
𝑔𝑏𝐼𝑡𝑒𝑚𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑠𝑒𝑙𝐸𝑙𝑚𝑡)
𝑔𝑏𝐼𝑡𝑒𝑚𝑠.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑑𝑒𝑙𝑖𝑚)

end if
end for
𝑔𝑏𝑁𝑜𝑑𝑒.𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑔𝑏𝐼𝑡𝑚𝑠

and groupByItemDelimiter nodes generated from non-function se-
lectElement nodes registered in the table-element python dictionary.
Because the groupByItems parse rule already exists beneath the se-
lectModifierExpression parse rule, no further AST transformations
are required; and the group by inference operation is complete
after the generation of the groupByItems parse rule and its children
groupByItem and groupByItemDelimiter parse rules.

Bundling select elements. Select element bundling is a required
step for any SpeakQL query that makes use of the unbundling fea-
ture. Because any SpeakQL query that uses unbundling must have
at least two selectExpression parse rules, select element bundling is
a mandatory step of the bundling process.

As shown in algorithm 7 as selElmtsRlNd’, which abbreviates
selectElementsRuleNode, the translator uses the first selectElements
parser rule as a migration target for all other select elements within
the SpeakQL query. Also depicted in the same algorithm is a preemp-
tive method for avoiding ambiguity where the translator prepends
each migrated select element with its associated table, resulting
in a dotted id in the format tableName.columnName. This step is

16

Algorithm 7 Unbundled Function: bundleSelectElements

𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 ← 𝑝𝑎𝑟𝑠𝑒𝑆𝑝𝑒𝑎𝑘𝑄𝐿(𝑞𝑢𝑒𝑟𝑦)
for all 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒 ∈ 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑛𝑜𝑑𝑒𝑠𝑊 𝑖𝑡ℎ𝑁𝑎𝑚𝑒 (𝑛𝑜𝑡ℎ𝑖𝑛𝑔𝐸𝑙𝑚𝑡)
do
𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒.𝑟𝑒𝑛𝑎𝑚𝑒 (𝑠𝑒𝑙𝐸𝑙𝑚𝑡)

end for
𝑒𝑙𝑚𝑡𝑠𝐵𝑦𝑇𝑏𝑙 ← 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑔𝑒𝑡𝐴𝑙𝑙𝑇𝑎𝑏𝑙𝑒𝑠𝐴𝑛𝑑𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠 ()
𝑠𝑒𝑙𝐸𝑙𝑚𝑡𝑠𝑅𝑙𝑁𝑑′ ← 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑛𝑜𝑑𝑒𝑠𝑊 𝑖𝑡ℎ𝑁𝑎𝑚𝑒 (𝑠𝑒𝑙𝐸𝑙𝑚𝑡𝑠) [0]
𝑛𝑒𝑤𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← [∅]
for all 𝑡𝑏𝑙𝐼𝑡𝑚 ∈ 𝑒𝑙𝑚𝑡𝑠𝐵𝑦𝑇𝑏𝑙 do

for all 𝑠𝑒𝑙𝑒𝑐𝑡𝐸𝑙𝑚𝑡 ∈ 𝑒𝑙𝑚𝑡𝑠𝐵𝑦𝑇𝑏𝑙 [𝑡𝑏𝑙𝐼𝑡𝑚] do
𝑛𝑒𝑤𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑏𝑙𝐼𝑡𝑚.𝑠𝑒𝑙𝑒𝑐𝑡𝐸𝑙𝑚𝑡)

end for
end for
𝑠𝑒𝑙𝐸𝑙𝑚𝑡𝑠𝑅𝑙𝑁𝑑′ .𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 ← 𝑛𝑒𝑤𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛

for all 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒 ∈ 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑛𝑜𝑑𝑒𝑠𝑊 𝑖𝑡ℎ𝑁𝑎𝑚𝑒 (𝑠𝑒𝑙𝐸𝑙𝑚𝑡𝑠)
such that 𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒! = 𝑠𝑒𝑙𝐸𝑙𝑚𝑡𝑠𝑅𝑙𝑁𝑑′ do
𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑟𝑒𝑚𝑜𝑣𝑒𝑁𝑜𝑑𝑒 (𝑟𝑢𝑙𝑒𝑁𝑜𝑑𝑒)

end for

performed for both standalone column references and column ref-
erences as arguments within function expressions. After iterating
through each selectElementExpression parser rule and migrating
their associated selectElements children to selectElementsRuleNode’,
a cleanup operation removes them from the AST leaving a single
selectElementsExpression in the AST that contains all column and
function references present in the original SpeakQL unbundled
query.

Bundling where expressions. The where expression bundling step
is optional, and is only invoked if at least one bundled query expres-
sion contains awhereExpression parse rule. When performing where
expression bundling, the SpeakQL translator makes the following
assumptions:

• All cross-table predicates are conjunctive (and)
• Multiple predicate expressions within a single unbundled

query should be encased in parentheses before consolida-
tion

Given these assumptions, where expression bundling proceeds
as depicted in algorithm 8.

Similar to the select element bundling step, the first occurence
of a whereExpression parse rule, whereExpression’, within the query
AST and designates it as the target for additional whereExpression
parse rulemigration. Becausewhere expressions are optional within
selectStatement parser rules, it is possible that whereExpression’ is
not a member of the first selectStatement parse rule, selectStatement’,
in the query. Because of this possibility, the translator may perform
an additional migration step where it migrates whereExpression’ to
become a child of selectStatement’.

The translator takes advantage of the recursive nature of the
where expression grammar (see figure ??) by designating where
expressions that exist in selectStatement parse rules that are not
selectStatement’ as children of whereExpression’. During this migra-
tion process, the translator employs helper functions to surround
migrated expressions with parentheses and deliminating the mi-
grated expressions with andKeyword parser rules. The end result

Algorithm 8 Unbundled Function: bundleWhereStatements

𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 ← 𝑝𝑎𝑟𝑠𝑒𝑆𝑝𝑒𝑎𝑘𝑄𝐿(𝑞𝑢𝑒𝑟𝑦)
Require: ∃𝑤ℎ𝑒𝑟𝑒𝐸𝑥𝑝𝑟 ∈ 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡
𝑢𝑛𝑏𝑑𝑙𝐸𝑥𝑝𝑟𝑠 ← 𝑠𝑝𝑒𝑎𝑘𝑄𝑙𝐴𝑠𝑡 .𝑛𝑜𝑑𝑒𝑠𝑊 𝑖𝑡ℎ𝑁𝑎𝑚𝑒 (𝑢𝑛𝑏𝑑𝑙𝑄𝑟𝑦𝑂𝑟𝑑𝑆𝑝𝑐)

𝑢𝑛𝑏𝑑𝑙𝐸𝑥𝑝𝑟 ′ ← 𝑢𝑛𝑏𝑑𝑙𝐸𝑥𝑝𝑟𝑠 [0]
𝑤ℎ𝑒𝑟𝑒𝐸𝑥𝑝𝑟 ′ ← 𝑢𝑛𝑏𝑑𝑙𝐸𝑥𝑝𝑟 ′ .𝑛𝑜𝑑𝑒𝑊 𝑖𝑡ℎ𝑁𝑎𝑚𝑒 (𝑤ℎ𝑒𝑟𝑒𝐸𝑥𝑝𝑟)
for all 𝑒𝑥𝑝𝑟𝑁𝑜𝑑𝑒 ∈ 𝑢𝑛𝑏𝑑𝑙𝐸𝑥𝑝𝑟𝑠 [1 :] do
𝑡𝑏𝑙𝑁𝑎𝑚𝑒 ← 𝑒𝑥𝑝𝑟𝑁𝑜𝑑𝑒.𝑛𝑜𝑑𝑒𝑊 𝑖𝑡ℎ𝑁𝑎𝑚𝑒 (𝑡𝑏𝑙𝑁𝑎𝑚𝑒)
𝑒𝑥𝑝𝑟𝑊ℎ𝑒𝑟𝑒𝐸𝑥𝑝𝑟 ← 𝑒𝑥𝑝𝑟𝑁𝑜𝑑𝑒.𝑛𝑜𝑑𝑒𝑊 𝑖𝑡ℎ𝑁𝑎𝑚𝑒 (𝑤ℎ𝑒𝑟𝑒𝐸𝑥𝑝𝑟)

𝑒𝑥𝑝𝑟𝑊ℎ𝑒𝑟𝑒𝐾𝑤 ← 𝑒𝑥𝑝𝑟𝑊ℎ𝑒𝑟𝑒𝐸𝑥𝑝𝑟 .𝑛𝑜𝑑𝑒𝑊 𝑖𝑡ℎ𝑁𝑎𝑚𝑒 (𝑤ℎ𝑒𝑟𝑒𝐾𝑊)

𝑒𝑥𝑝𝑟𝑊ℎ𝑒𝑟𝑒𝐸𝑥𝑝𝑟 .𝑟𝑒𝑚𝑜𝑣𝑒𝑁𝑜𝑑𝑒 (𝑒𝑥𝑝𝑟𝑊ℎ𝑒𝑟𝑒𝐾𝑤)
end for

of this process is a single cross-table conjunctive whereExpression
parser rule that contains all other whereExpression parser rules
specified in other unbundled queries within the SpeakQL query.

Bundling join parts. Join part bundling collects all multiJoinEx-
pression parse rules and aggregates them in an arbitrary order to
form a valid SQL join expression. Join part bundling is an optional
feature because an alternate form of relation joining where all table
sources are specified within fromExpression parse rules, and join
conditions between each table source are specified within where-
Expression predicates (e.g. from table one, table two where one.id =
two.id), is also possible. Currently, because join order in the result-
ing SQL query is arbitrary within the bounds of its implementation
rules, join part bundling is limited to allowing only inner joins.
Queries that require outer join expressions may still be expressed
using other SpeakQL features; but may not employ the unbundling
feature. Outer join capability is a future SpeakQL feature develop-
ment objective.

The join part bundling process begins when the translator creates
a list of all multiJoinExpession parse rule nodes within the AST.
Given this list, it performs iterative analysis on each expression
to determine if a subquery exists as a table item within any of
the multiJoinExpression nodes, and if so, substitutes the subquery
with a subquery masking rule and alias in the join expression. The
translator then checks the left and right table reference parse rules
within the join expression to determine if an alias exists for each
table, or if the table is referenced in the join expression by its
alias. If an alias association is encountered, it creates asKeyword
and multiJoinTableAlias parse rules and adds them as children to
the target joinExpression parser rule that represents the objective
SQL-correct join expression.

After analyzing all multiJoinExpression and making modifica-
tions toward SQL-correct syntax, the translator begins the join
consolidation process by designating the first table referenced in
the queries first selectStatement’ as the base table upon which the
SQL-correct join statement will be built. In order to ensure valid
join expression chaining, the translator determines a table join
order that ensures that each subsequent table added to a join ex-
pression references a table in its join condition that already exists
within the objective join expression. In other words, while building

17

the SQL-correct join expression, a multiJoinExpression will not be
added to the target joinExpression until all tables referenced in its
join condition have been added to the target joinExpression. The
process will continue iterating over remainingmultiJoinExpressions
until the table existence constraint can be satisfied and all expres-
sions have been added to the objective SQL-correct expression,
or it is determined that multiJoinExpressions exist in the SpeakQL
query that cannot be chained and the translator responds with an
error condition. The translator then performs an additional safety
check to ensure that all tables referenced in the query’s unbun-
dledQueryOrderSpecification parser rules are also referenced in a
corresponding multiJoinExpression parser rule, and throws an error
if a violation is encountered.

After the join bundling process is completed, all join expressions
consolidated within a singlemultiJoinExpression are migrated to the
first tableExpressionNoJoin parse rule. The tableExpressionNoJoin
parse rule name is then updated to tableExpression and becomes a
valid SQL from + join expression; and join bundling is complete.

Bundling table expressions. The final step of the bundling process
involves collection of all tableExpressionNoJoin parse rule nodes
within the AST. This is only required in cases where an unbun-
dled query contains multiple table references but has no associated
multiJoinExpression parser rules. In this case the first tableExpres-
sionNoJoin, designated as tableExpressionNoJoin’, is established as
the expression migration target, and additional tableExpressionNo-
Join rules that exist as children of additional selectStatement rules
are added to tableExpressionNoJoin’. If a where expression exists
in any (selectStatement) that defines a join condition between two
tables within the query, the expression consolidation occurs dur-
ing the previously described where expression bundling step. If no
where condition is defined between two tables within the query, the
translator still performs table expression bundling, and the result
is a SQL statement that produces a cartesian product of the two
tables.

Syntax tree cleanup. After all relevant bundling steps are com-
plete, the translator performs syntax tree cleanup by removing parse
rules from which their child sub expressions have been migrated.
Upon completion of tree cleanup, the SpeakQL to SQL translation
process is complete, and serialization of the abstract syntax tree’s
terminal nodes results in a valid SQL statement equivalent to the
input SpeakQL query.

D USER STUDY
D.1 Initial Design and Protocol
D.1.1 Quantitative Analysis. We evaluated performance using the
dependent variables:

• Total-Time-to-Completion: Lower is better. Total time (in
seconds) from when the participant is presented with the
question prompt to when they press the submit button for
their final query submission.

• First Attempt Planning Time: Lower is better. Time (in
seconds) from when the participant is presented with the
question for the first time to when they press the record
button.

<selExpr> ::= <selKW> <selSpec>* <selElmts>
<selKW> ::= "select" | "find" | "retrieve" | "get" | "show

me" | "display" | "present" | "what is" |
"what is the" | "what are" | "what are the"

<tabExpr> ::= <frmKW> <tblSrcs>
<frmKW> ::= "from" | "from table" | "from tables" | "in

table" | "in tables"
<joinKW> ::= "join" | "join table" | "by joining" | "by

joining table" | "joined with" | "join with"
| "joined with table" | "join with table" |
"by joining with table"

<onKW> ::= "on"
<theKW> ::= "the"
<tblKW> ::= "table"

Figure 12: SpeakQL Synonym Keywords Grammar Excerpt

<qrySpec> ::= <qryOrdSpec> <selModExpr>
| (<multiJoinExpr exprDelim)? (<selMod-
Expr> <exprDelim>)? <ubndQryOrd-
Spc> (<exprDelim> (<ubndQryOrdSpc>
| <multiJoinExpr)) (<exprDelim>
<selModExpr)?

<ubndQryOrdSpc>
::=

<selExpr> <whereExpr>? <tabExprNo-
Join>
| <selExpr> <tabExprNoJoin> <where-
Expr>?
| <tabExprNoJoin> <selExpr> <where-
Expr>?
| <tabExprNoJoin> <whereExpr>? <sel-
Expr>

<tabExprNoJoin>
::=

<frmClsNoJoin>

<frmClsNoJoin> ::= <frmKW> <theKW>? <tblSrcNoJoin>
<tblKW>?

<tblSrcNoJoin> ::= <tblSrcItm> | "(" <tblSrcItm> ")"
<mltiJnExpr> ::= <mltiJnPrt> (<exprDelim> <mltiJnPrt>)*
<mltiJnPrt> ::= <mltiInnrJn> | <mltiOutJn> | <mlti-

NatJn>
<exprDelim> ::= "and then" | "then" | "next"
<mltiInnrJn> ::= <inJoinKW>? <joinKW> <tblSrcItm>

<withKW> <tblSrcItm> (<onKW>
<expr> | "using" "(" <uidLst> ")")?

<mltiOutJn> ::= <joinDir> <outJoinKW>? <joinKW>
<tblSrcItm> <withKW> <tblSrcItm>
(<onKW> <expr> | "using" "(" <uidLst>
")")

<mltiNatJn> ::= <natJoinKW> (<joinDir> <out-
JoinKW>)? <joinKW> <tblSrcItm>
<withKW> <tblSrcItm>

<withKW> ::= "with" | "with table" | "and"

Figure 13: SpeakQL Unbundled Query Grammar Excerpt

18

<whereExpr> ::= <whereKW> <expr>
<whereKW> ::= "where"
<expr> ::= ("not" | "!") <expr>

| <expr> <logicOp> <expr>
| <predicate> "is" "not"? ("true" | "false" |
"unknown")
| <predicate>

<logicOp> ::= "and" | "xor" | "or"
<predicate> ::= <predicate> "not"? "is" "in" <leftParen>

<selStmt> <rightParen>
| <predicate> "is" "not" "null"
| <predicate> <compareOp> <predicate>
| <predicate> <compareOp> ("all" | "any"
| "some") <leftParen> <selStmt> <right-
Paren>
| <predicate> "not"? "between" <predi-
cate> "and" <predicate>
| <predicate> "not"? "like" <predicate>
| (expressionAtom)

Figure 14: SpeakQL Where Expression Grammar Excerpt

<tabExpr> ::= <frmKW> <tblSrcs>
<frmKW> ::= "from" | "from table" | "from tables" | "in

table" | "in tables"
<tblSrcs> ::= <theKW>? <tblSrc> <tabKW>? (<delim>

<theKW>? <tblSrc> <tblKW>?)*
<tblSrc> ::= <tblSrcItm> <joinPart>*

| "(" <tblSrcItm> <joinPart> ")"
<tblSrcItm> ::= "(" <slctStmt> ")"

| <tblName> <tblAlias>?
| "(" <tblSrcs> ")"

<joinPart> ::= <inJoin> | <outJoin> | <natJoin>
<inJoin> ::= <inJoinKW>? <joinKW> <tblSrcItm>

(<onKW> <expr>)
<inJoinKW> ::= "inner" | "cross"
<outJoin> ::= <joinDir> <outJoinKW>? <joinKW>

<tblSrcItm> (<onKW> <expr>)
<joinDir> ::= "left" | right
<outJoinKW> ::= "outer"
<natJoin> ::= <natJoinKW> (<joinDir> <out-

JoinKW>)? <joinKW> <tblSrcItm>
<natJoinKW> ::= "natural"
<joinKW> ::= "join" | "join table" | "by joining" | "by

joining table" | "joined with" | "join with"
| "joined with table" | "join with table" |
"by joining with table"

<onKW> ::= "on"
<theKW> ::= "the"
<tblKW> ::= "table"

Figure 15: SpeakQL Table (From) Expression Grammar Ex-
cerpt

<selModExpr> ::= <selModItm>? <selModItm>? <selMod-
Itm>? <selModItm>?

<selModItm> ::= <grpByCls> | <havingCls> | <orderBy-
Cls> | <limitCls>

<grpByCls> ::= <grpByKW> <grpByItm> (<delim> <grp-
ByItm>)* ("with" "rollup")?

<grpByKW> ::= "group by" | "group"
<grpByItm> ::= <grpByExpr> <order> | <autoMtcKW>
<autoMtcKW> ::= "automatic" | "automatically"
<grpByExpr> ::= "not" <grpByExpr>

| <predicate> "is" "not"? ("true" | "false" |
"unknown")
| "predicate"

<delim> ::= "," | "and"
<havingCls> ::= <havingKW> <expr>
<havingKW> ::= "having"
<ordrByCls> ::= "order by" <ordrByExpr> (<delim> <or-

drByExpr>)
<ordrByExpr> ::= <expr> <order>?
<order> ::= <ascKW> | <descKW>
<ascKW> ::= "asc" | "ascending"
<descKW> ::= ’desc’ | ’descending’
<limitCls> ::= ’limit’ <limitClsAtm>
<limitClsAtm> ::= (decimalLiteral | simpleId)

Figure 16: SpeakQL Select Modifier Expression Grammar
Excerpt

<funCall> ::= <aggrFun> | <noParAggrFun> | <nonAg-
grWinFun> | <sclrFunNam>

<aggrFun> ::= <theKW>? ("avg" | "average" | "max" |
"min" | "sum") <ofKW>? "(" ("all" | "dis-
tinct")? <funArg> ")"
| <theKW>? "count" <ofKW>? "(" ("*" |
"all"? <funArg> | "distinct" <funArg>)
")"
("std" | "std dev" | "std dev pop" | "std dev
samp" | "var pop" | "var sample" | "vari-
ance") "(" "all"? <funArg> ")"
"group concat" "(" "distinct"? <funArg>
("order by" <ordByExp> (<delim> <ord-
ByExp>)*) ")"

<funArg> ::= (<constant> | <colName> | <funCall>
| <expr>) (<delim> (<constant> | <col-
Name> | <funCall> | <expr>))*

<noParAggrFun> ::= <theKW>? ("avg" | "average" | "max" |
"min" | "sum") <ofKW>? ("all" | "dis-
tinct")? (<constant> | <colName>)
| <theKW>? "count" <ofKW>? ("*" | "all"?
<funArg> | "distinct" (<constant> | <col-
Name>))

Figure 17: SpeakQL Natural Function Expression Grammar
Excerpt

19

<selStmt> ::= <qrySpec>
<qrySpec> ::= "select" <selSpec>* <selElmts> <from-

Cls>? <grpByCls>? <havingCls>? <ordr-
ByCls>? <limitCls>?

<fromCls> ::= ("from" <tblSources>?) ("where" <expres-
sion>)?

<grpByCls> ::= "group by" <grpByItm> ("," <grpBy-
Itm>)?

<havingCls> ::= "having" <expression>
<ordrByCls> ::= "order by" <ordrByExpr> ("," ordrBy-

Expr)
<ordrByExpr> ::= <expression> ("asc" | "desc")
<limitCls> ::= "limit" (<limitClsAtom> ",")? <limit-

ClsAtom>
| "limit" <limitClsAtom> "offset" <limit-
ClsAtom>

Figure 18: SQL Select Statement Grammar Excerpt

<selStmt> ::= <qrySpec>
<qrySpec> ::= <qryOrdSpec> <selModExpr>

| (<multiJoinExpr exprDelim)? (<selMod-
Expr> <exprDelim>)? <ubndQryOrd-
Spc> (<exprDelim> (<ubndQryOrdSpc>
| <multiJoinExpr)) (<exprDelim>
<selModExpr)?

<qryOrdSpec> ::= <selExpr> <whereExpr>? <tabExpr>
| <selExpr> <tabExpr> <whereExpr>?
| <tabExpr> <selExpr> <whereExpr>?
| <tabExpr> <whereExpr>? <selExpr>

<ubndQryOrdSpc>
::=

<selExpr> <whereExpr>? <tabExprNo-
Join>
| <selExpr> <tabExprNoJoin> <where-
Expr>?
| <tabExprNoJoin> <selExpr> <where-
Expr>?
| <tabExprNoJoin> <whereExpr>? <sel-
Expr>

Figure 19: SpeakQL Select Statement Grammar Excerpt

<selExpr> ::= <selKW> <selSpec>* <selElmts>
| <selKW> <nothingElmt>

<selKW> ::= "select" | "find" | "retrieve" | "get" | "show
me" | "display" | "present" | "what is" |
"what is the" | "what are" | "what are the"

<selSpec> ::= "all" | "distinct" | "distinctrow
<selElmts> ::= ("*" | <selElmt>) (<delim> <selElmt>)*
<delim> ::= "," | "and"
<selElmt> ::= "*" | <colName> | <funCall>
<nothingElmt> ::= <nothingKW>
<nothingKW> ::= "nothing"

Figure 20: SpeakQL Select Expression Grammar Excerpt

• Dictation (recording) Time: Lower is better. Time (in sec-
onds) from when the participant presses the record button
to when they press the stop button.

• Number of Attempts: Lower is better. Discrete (1, 2, 3) ini-
cating how many attempts the participant made to form a
correct query.

And the independent variables:
• Query Complexity: Continuous positive real number de-

rived from the presence and quantity of columns, tables,
joins, functions and predicates.

• Query is Complex: Discrete (0, 1) simpler method for indi-
cating if a query is complex. Based on complexity threshold
defined below.

• Query Attributes: Number of projections, number of ta-
bles, number of selections, number of joins, and number of
modifiers required to answer the question.

• Features Used: One-hot encoded vector representing the
SpeakQL features actually used by a participant for a given
SpeakQL query.

D.1.2 Determining Query Complexity. Query complexity was de-
fined using a set of weights associated with query attributes in-
cluding number of tables and joins, number of column references,
number of function calls, and number of modifiers (i.d. limit, order
by, etc.).

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑐𝑜𝑟𝑒 =

𝑛∑︁
𝑛=1

𝐴𝑡𝑡𝑟𝐶𝑡𝑛 ∗𝐴𝑡𝑡𝑟𝑊 𝑡𝑛

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒 (𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑐𝑜𝑟𝑒) = 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑐𝑜𝑟𝑒 − 𝜇𝑆𝑐𝑜𝑟𝑒𝑠
𝜎𝑆𝑐𝑜𝑟𝑒𝑠

𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒 (𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝑆𝑐𝑜𝑟𝑒)
Where 𝐴𝑡𝑡𝑟𝑊 𝑡 is a vector length 𝑛 of weights (see Table 3) as-

sociated with values in vector 𝐴𝑡𝑡𝑟𝐶𝑡 of length 𝑛 and the stan-
dardization function computes a value between -1 and 1 using the
complexity score of a query minus the mean divided by the standard
deviation of all query complexity scores.

D.2 Interface
D.2.1 Data Collection. Data generated by the study included time
to plan (time from updating the query prompt until pressing record),
time to record (time from pressing record to stopping the record-
ing), number of attempts per query, dictation transcript, and audio
recordings of each dication attempt. All data was captured within
participants’ browser sessions and uploaded to a web server and
database for processing and analysis during the session. In an effort
to add explanatory power to our quantitative results, we asked
participants to complete a voluntary post-participation survey.

D.3 Session Sequence
The objective time to complete a study session was 90 minutes.
Participants were informed prior-to beginning that it was possible
that a session may exceed 90 minutes, and that they could opt to
end the session prior to completing all queries.

The objective session schedule:
20

• 0-23: Training video
• 23-25: Q&A + UI orientation
• 25-35: Practice
• 35-61: Q 1-12 Dialect 1
• 61-64: Intermission
• 64-90: Q 1-12 Dialect 2
• 90+: Debrief and survey

We employed a latin squares counterbalancing strategy to miti-
gate learning effect by randomly assigning participants to one of
two groups (i.e. SpeakQL first, then SQL or SQL first, then SpeakQL).

D.3.1 Training. Participants received SpeakQL dialect training by
way of a 22 minute video that introduced the four SpeakQL features
under evaluation as well as the schema used for all study questions.

The video is hosted at:
https://www.youtube.com/watch?v=JEtoFtjNqew.

D.4 Schema
The database schema referenced in all study query prompts was de-
signed to represent a likely data model used for scheduling classes.
We elected to employ a simple university catalogue model because
our target participant population was university students who
would be familiar with the concepts represented in the schema.

Figure 21: User Study Schema

The schema (Figure 21) consists if six tables:
• department(id, departmentName)
• course(id, deptId, title, code, units)
• courseoffering(id, courseId, termId, roomId, facultyName,

onDays, startTime, endTime, capacity)
• room(id, buildingId, roomNumber,

floor, area, capacity, wheelchairSpaces)
• term(id, startDate, endDate, termPeriod, year)
• building(id, buildingNumber, buildingName)

The university data model resembles a snowflake schema where
the courseoffering table joins together course, term, and room to
represent a course offering during a specific term (e.g. Fall 2021),
and the room and building in which it is offered.

D.5 Queries
The query prompts, possible correct answers, and complexity (raw
weighted scores and standardized scores) can be viewed in tables
12 and 13.

Attribute Weight
Number of Tables 0.8

Number of Columns 0.25
Number of Functions 1.0

Number of Selections (Where Predicates) 0.8
Number of Joins 1.2

Number of Modifiers 1.0
Table 3: Query Complexity Attribute Weights

21

https://www.youtube.com/watch?v=JEtoFtjNqew

E SURVEY FEEDBACK
E.1 Survey Feedback With Coding
This section contains all survey free-text comments by participant.
Coding annotations were added during analysis and are preceded
by the # symbol.

E.1.1 Participant 1. Was there anything else that you liked
about your experience using the SpeakQL dialect?
The localized predicates and projections made it easier to start
speaking stuff rather than just think for too long;

#userstudy-unbundling-less-planning-needed
whereas for SQL had to think and collect items for different

tables.
#userstudy-sql-planning-burden
For SpeakQL could just look at a table and collect items and then

move onto another table.
#userstudy-unbundling-one-table-at-a-time
The count of/ the average of is much easier than count(),avg()

when we are talking.
#userstudy-natural-functions-easier-when-talking
Was there anything else that you DID NOT like about your

experience using the SpeakQL dialect?
All the synonyms was daunting, too many synonyms.
#userstudy-too-many-synonyms
Was afraid of saying the incorrect synonym. Do we really need

all these synonyms? How many do we need? Too many synonyms
might create the perception of natural language which will cause
them to create incorrect queries.

#userstudy-false-natural-language-problem
When there are more than two tables to join, the unbundling

syntax is hard to use.
#userstudy-complex-unbundling-syntax-difficult

E.1.2 Participant 2. Do you have any suggestions for other
expression reordering features that would make dictating
queries easier?

I am curious if we can reorder the groupby, having and order by
statements just like the initial select.

#userstudy-suggest-modifier-reordering
Do you have any suggestions for other function dictation

features that would make dictating queries easier?
None, I felt this was really good.
#userstudy-natural-functions-easier-when-talking
Do you have any suggestions for other complex query un-

bundling features that would make dictating queries easier?
Though complex query bundling was easier,
#userstudy-complex-unbundling-easier
it takes a lot of time to go from creating individual table queries,

and then joins and then grouping them, and so because I was query-
ing the columns from all the tables together first and then making
all the joins in one go, I felt it a little inconvenient.

#userstudy-complex-unbundling-syntax-difficult
However, I missed the fact that I can simply query 2 tables and

join and then go to the next table would have been easier. Definitely
would suggest to pass this instruction to the next participant.

#userstudy-unbundling-order-options-good
#userstudy-need-practice

What changes could make you more likely to use the mod-
ifier ordering feature?

I didn’t realize this existed. One of my previous suggestions is
the same as this. So I am glad that SpeakQL has this feature as well.

#userstudy-modifier-reording-good
Was there anything else that you liked about your experi-

ence using the SpeakQL dialect?
It is easier to create queries if construction can happen from

Natural Language,
#userstudy-general-positive-feedback
I really like this project. And also [the research facilitator] was

patient and I felt the entire flow was good.
Was there anything else that you DID NOT like about your

experience using the SpeakQL dialect?
Yes, using the JOIN WITH
#userstudy-join-synonyms-difficult
and mentioning the QUOTES when comparing string fields.
#userstudy-dislike-punctuation-dictation -dictation

E.1.3 Participant 3. Was there anything else that you liked
about your experience using the SpeakQL dialect?

Much cooler way of using SQL
#userstudy-general-positive-feedback
Was there anything else that you DID NOT like about your

experience using the SpeakQL dialect?
At times speaking the exact words like comma was a bit confus-

ing, but comes easy with practice
#userstudy-dislike-punctuation-dictation
#userstudy-need-practice

E.1.4 Participant 4. #userstudy-nofeedback

E.1.5 Participant 5. What changes couldmake youmore likely
to use the natural function feature?

I think it’s a very useful feature
#userstudy-natural-functions-useful
and I missed using it because of unfamiliarity with SpeakQL and

strong familiarity/usage in SQL
#userstudy-sql-familiarity-less-speakql-use

E.1.6 Participant 7. #userstudy-nofeedback

E.1.7 Participant 8. Do you have any suggestions for other
keywords that would make dictating queries easier?

Sometimes I tend to say "THE TABLE course" for example, in-
stead of "THE course TABLE".

#userstudy-suggestion-synonym-the-table
What changes could make you more likely to use the ex-

pression ordering feature?
Not really, I guess it’s just I’m used to the SQL syntax.
#userstudy-sql-familiarity-less-speakql-use
Do you have any suggestions for other function dictation

features that would make dictating queries easier?
Omit left/right for cases without nested parenthesis, which I’d

say happens much more often? But maybe this provides too little
benefit.

#userstudy-dislike-punctuation-dictation
#userstudy-suggestion-punctuation-no-leftright-paren

22

Do you have any suggestions for other complex query un-
bundling features that would make dictating queries easier?

Is it possible to make "GROUP BY automatically" automatically?
#userstudy-suggestion-syntax-groupby-automatically-automatic
Doyouhave any suggestions for other expressionmodifier-

related features that would make dictating queries easier?
Maybe move having clauses into where clauses, especially in

unbundled queries, and then auto-detect it and move to a SQL
HAVING clause, if possible.

#userstudy-suggestion-syntax-unbundling-having-with-where
Was there anything else that you liked about your experi-

ence using the SpeakQL dialect?
No particular things, but I guess just in general the feel of using

it in spoken context is much easier and natural.
#userstudy-general-positive-feedback
#userstudy-natural-feel-easier
Was there anything else that you DID NOT like about your

experience using the SpeakQL dialect?
I tend to get used to language syntax, especially well-designed

languages, and thus I don’t like having too much flexibility in
the case of JOIN for example. But I guess this was done for NLP
purposes, so I’m not objecting it 100

#userstudy-too-much-flexibility
#userstudy-join-synonyms-difficult

E.1.8 Participant 6. Do you have any suggestions for other
keywords that would make dictating queries easier?

Select synonyms - Retrieve
#userstudy-suggestion-synonym-retrieve
What changes could make you more likely to use the ex-

pression ordering feature?
If i use it more frequently that i have optional order i might start

using it
#userstudy-need-practice
or atleast don’t have to worry about ordering especially in bigger

queries
#userstudy-ordering-might-use-with-practice
Do you have any suggestions for other function dictation

features that would make dictating queries easier?
It seems intuitionally correct. So, good work capturing that
#userstudy-natural-functions-useful
Do you have any suggestions for other complex query un-

bundling features that would make dictating queries easier?
Although it was helpful everytime to use ’And then’ but i found

it repetitive so not sure how to include this feedback to suggestion
#userstudy-unbundling-and-then-repetitive
#userstudy-complex-unbundling-syntax-difficult
Doyouhave any suggestions for other expressionmodifier-

related features that would make dictating queries easier?
Automatically is great option but felt less intuitional when speak-

ing naturally
#userstudy-automatically-less-intuitive-less-natural
Was there anything else that you liked about your experi-

ence using the SpeakQL dialect?
It’s certainly great step towards being intuitional speaking-wise

in the basic SQL utlities.
#userstudy-general-positive-feedback

Was there anything else that you DID NOT like about your
experience using the SpeakQL dialect?

Not sure if things like quotes, distinct , other joins (left,right,full
outer) are handled already. From experience pvov, Quotes if not
handled is a bit of a major issue if not handled already.

#userstudy-unsure-of-expressiveness

E.1.9 Participant 10. Was there anything else that you liked
about your experience using the SpeakQL dialect?

SpeakQL definitely makes dictation of queries more natural with-
out worrying a lot about the syntax (which would include the or-
ders) and even the parentheses.

#userstudy-general-positive-feedback
#userstudy-natural-feel-easier
Was there anything else that you DID NOT like about your

experience using the SpeakQL dialect?
Found the usage of quote unnecessary, it would be great if

SpeakQL takes care of this as well.
#userstudy-dislike-punctuation-dictation

E.1.10 Participant 12. #userstudy-nofeedback

E.1.11 Participant 11. Do you have any suggestions for other
keywords that would make dictating queries easier?

The join synonyms can use some structural changes. Coming
from SQL to SpeakQL, the join statement took me the longest to
get used to.

#userstudy-join-synonyms-difficult
Was there anything else that you liked about your experi-

ence using the SpeakQL dialect?
I liked how it is highly structured similar to the SQL syntax,

many features such as unbundling definitely improved the ease of
usage compare to SQL.

#userstudy-structure-good
#userstudy-unbundling-ease-of-use
#userstudy-easier-than-sql
#userstudy-easy-to-use
Was there anything else that you DID NOT like about your

experience using the SpeakQL dialect?
It takes quite a bit to get used to.
#userstudy-need-practice
Some statement seems a little out of place compare to the com-

monly used statement (ex: SELECT has many synonyms I can use,
while LIMIT, GROUP BY doesn’t, so I struggled to find the correct
wording)

#userstudy-synonym-imbalance

E.1.12 Participant 13. Was there anything else that you liked
about your experience using the SpeakQL dialect?

It is easy to use
#userstudy-easy-to-use
and provides an efficient unbundling feature to break down

complex queries.
#userstudy-unbundling-ease-of-use

E.1.13 Participant 14. Was there anything else that you liked
about your experience using the SpeakQL dialect?

Complex queries became easier
#userstudy-complex-querying-easier

23

Was there anything else that you DID NOT like about your
experience using the SpeakQL dialect?

Slight worries about the language nuances
#userstudy-language-nuance-concern

E.1.14 Participant 16. Was there anything else that you liked
about your experience using the SpeakQL dialect?

What I like the most is that it is almost like thinking out loud.
You just think about what you want to do, and say the query, which
makes it way more convenient.

#userstudy-thinking-out-loud
#userstudy-unbundling-less-planning-needed
The ungrouping feature is particularly useful.
#userstudy-unbundling-useful

E.1.15 Participant 17. #userstudy-nofeedback

E.1.16 Participant 19. Was there anything else that you liked
about your experience using the SpeakQL dialect?

I could really understand the need for the bundling feature while
using the SpeakQL dialect when I was formulating queries with
multiple joins and same columns in multiple tables.

#userstudy-unbundling-no-ambiguous-columns
Since I did not have to worry about ambiguous column names, I

could write the bundles separately faster and join them all later on.
#userstudy-unbundling-feels-faster
Using SQL, I would need to be more aware of the aliases of the

columns and the tables while writing the query.
#userstudy-complex-unbundling-easier

E.1.17 Participant 20. Was there anything else that you liked
about your experience using the SpeakQL dialect?

Interesting to speak SQL
#userstudy-general-positive-feedback
Was there anything else that you DID NOT like about your

experience using the SpeakQL dialect?
Unbundling is slightly difficult to interpret in the first time
#userstudy-need-practice
#userstudy-complex-unbundling-syntax-difficult

24

F USER STUDY RESULTS
F.1 Statistical Analysis
Based on the non-parametric properties of our results, we used
the Mann-Whitney U test to evaluate statistical significance of the
experiment.

For three dependent variables first planning time, total time, num-
ber of attempts, we separate the data into simple and complex query
results in table 4.

P Val SQL Me-
dian

SpeakQL
Median

First Planning Time
- Simple

0.144 31.5 38.5

First Planning Time
- Complex

0.295 72.0 66.0

Recording Time -
Simple

0.214 13.5 15.5

Recording Time -
Complex

0.122 32.0 34.0

Total Time - Simple 0.222 55.5 55.8
Total Time - Com-
plex

0.336 137 131

Table 4: Mann Whitney U Test Results for Simple and Com-
plex Queries

We provide a query-level view of the same dependent variables
in tables 5, 6, and 7.

Query P Val SQL Median SpeakQL Median

1 0.247740 20.5 22.0
2 0.348923 10.5 11.0
3 0.336262 53.0 58.5
4 0.069565 51.5 66.5
5 0.380095 45.5 48.5
6 0.340583 69.5 68.5
7 0.481270 79.0 65.0
8 0.420244 105.0 96.0
9 0.175026 52.0 50.0
10 0.470904 73.0 68.0
11 0.330556 37.0 42.0
12 0.330713 147.0 119.0

Table 5: Mann Whitney U Test Results by Query - First Plan-
ning Time

Query P Val SQL Median SpeakQL Median

1 0.495315 34.5 32.5
2 0.420752 20.0 20.5
3 0.259258 78.5 93.5
4 0.012856 78.0 115.5
5 0.319349 83.5 91.0
6 0.140103 113.5 137.5
7 0.148052 115.0 130.5
8 0.329868 160.0 192.0
9 0.046561 137.0 115.0
10 0.206796 142.0 116.0
11 0.206694 92.0 89.0
12 0.476718 260.0 270.0

Table 6: MannWhitney U Test Results by Query - Total Time

Query P Val SQL Median SpeakQL Median

1 0.002310 10.0 7.5
2 0.001484 10.0 6.0
3 0.179456 16.5 19.0
4 0.147531 24.0 24.0
5 0.302412 21.0 20.0
6 0.318916 26.0 25.0
7 0.012078 29.0 38.5
8 0.224763 32.0 34.0
9 0.385004 34.0 34.0
10 0.488340 33.0 35.0
11 0.447685 30.0 32.0
12 0.047982 66.0 79.0

Table 7: Mann Whitney U Test Results by Query - Recording
Time

For recording time, the statistically significant differences in
the first two queries are likely due to the use of natural functions,
as both query prompts require a function reference to derive the
correct answer. Recording time for query 12 is likewise significant
because the query requires at least four join expressions to form a
correct answer. This means that the verbosity of unbundling results
in longer recording times for this query.

F.2 Learning Effect
We employed a latin squares method with counterbalanced groups.
Group one answered all 12 queries using SpeakQL first, then an-
swered the same 12 queries using SQL. Group two answered using
SQL first, then SpeakQL.

Observations. We analyzed the dependent variable results to
assess any learning effect that may have occurred in the results and
observe convergent learning between the first and second half of
the session for both dialects, suggesting that some dialect-specific
asymmetric learning occurred [19] that affected planning time. The
intersection of SpeakQL and SQL lines in Figure 23 suggest that
participants whowere in the group that used SpeakQL in the second

25

Figure 22: Simple and Complex Query Planning Time

Figure 23: Learning Effect - SpeakQL Planning Time Perfor-
mance Improvement

half of the experiment benefitted from some learning factor present
in the first half of the experiment that participants who were in the
opposite group did not.

Analysis. Figures 27 and 28 are reproductions of Figures 6b
and 6a from the main body of the report. For both dependent vari-
ables, we see evidence of a SpeakQL dialect learning curve (leftmost,
blue boxes) that lessens as the session progresses. We also observe
that group 2 (SQL first) performed better overall in both dialects
for almost all queries, and the SpeakQL learning curve is less evi-
dent. When we further break the data down into attempts where
unbundling was used or avoided (See figure 29) we can see that
second half performance of group 2 (using SpeakQL in the second
half) is somewhat affected by unbundling usage, but that the ef-
fect is query-dependent where for some queries, using unbundling
seems advantageous (query 12), disadvantageous (queries 4, 5, 6, 7,
and 11), or had no effect (8, 9, 10). Generally, as the second half of

Figure 24: Imbalance Between SpeakQL->SQL (Group 1) and
SQL->SpeakQL (Group 2) first planning time performance.
Group 1 median: 62.0; Group 2 median: 44.5; Mann-Whitney
U Test P Value: 0.00007

Figure 25: Learning Effect - SpeakQL Attempt Number Per-
formance Improvement

group 2’s session progressed, the non-unbundling advantage seems
to diminish.

Discussion. Though it is uncertain exactly why this effect oc-
curred, we believe that participant familiarity with SQL allowed
them to become more comfortable with the general query dictation
process using the study interface, which may have lead to a more

26

1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

300

400

500

600

To
ta

l T
im

e

(a) First half - Total Time, All Attempts, By Individual Query

1 2 3 4 5 6 7 8 9 10 11 12
0

100

200

300

400

500

Fi
rs

t A
tte

m
pt

 P
la

nn
in

g
Ti

m
e

language
sql (L)
speakql (R)

(b) First half - Planning Time, First Attempts, By Individual Query

(c) First half - Number of Attempts By Individual Query

Figure 26: Quantitative results from the first half.

Simple Complex

MWU-test P Val 0.004 0.006
median SQL 32 80
median SpeakQL 58 112

Table 8: First half MannWhitney U Test Results by Complex-
ity - First attempt planning time

rapid adoption of the process. Conversely, participants who were in
the SpeakQL first groupmay have had a harder time becomingmore
comfortable with the general dictation process while they were
also grappling with the use of the relatively unfamiliar SpeakQL
dialect features.

Another possible explanation of the asymmetric learning ob-
served in Figure 23 is the tendency for participants in the SQL first
group to be more avoidant of SpeakQL features. In these avoid-
ance situations, participants would have been more likely to benefit
from the practice gained in the first half of the session because their
SpeakQL queries would have more closely resembled a standard
SQL query.

Besides counterbalancing, another asymmetric learning avoid-
ance strategy is to perform a between subjects study [15] where
participants are randomly assigned to only one treatment group.
In our post-hoc analysis, we evaluated first half performance using
the same measurements present in the main body of the paper, as-
suming that this may approximate the results of a between subjects
experiment.

Tables 8 and 9 reveal significant differences between SQL and
SpeakQL dialects for both simple and complex queries, where
SpeakQL users took longer during first attempt planning as well
as for their entire attempt. Associated box and whisker plots and

Simple Complex

MWU-test P Val 0.035 0.013
median SQL 60 153
median SpeakQL 89 191

Table 9: First half MannWhitney U Test Results by Complex-
ity - Total attempttime

barcharts from the main body of the report are also reproduced for
only the first half (See Figure 26). A limitation of this reproduction
is the asymmetry in observations due to an imbalanced dropout rate
between groups, where two participants from group 1 completed
fewer than 12 queries and one participant from group 2 completed
fewer than 12 queries. We see significant differences by query for
queries 4 and 5 for first attempt planning time, and queries 4, 6, 7
and 12 for total time. All significant differences in both variables
favored SQL performance. Numbers of attempts required to form a
correct query favored SQL for simple queries; but in the second of
the session, excepting query 7, results favor SpeakQL where users
required fewer attempts (queries 9, 10, and 11) or the same num-
ber of attempts (queries 8, and 12). Other aspects of study design
including amount of training, dropout policies to maintain sample
balances between dialects, and number of practice queries were
not set up to facilitate a between subjects experiment. Should we
perform a between subjects follow-up study in the future, these
design considerations must be incorporated in order to lend validity
to our post-hoc analysis observations.

27

1 2 3 4 5 6 7 8 9 10 11 12

MWU-test P Val 0.078 0.146 0.188 0.003 0.033 0.065 0.100 0.085 0.196 0.196 0.244 0.135
median SQL 24.0 13.0 70.0 52.0 45.0 72.0 81.0 133.0 60.5 83.5 35.5 156.5
median SpeakQL 33.0 17.0 75.0 88.0 74.0 111.0 113.0 217.0 89.0 100.0 52.0 252.0

Table 10: Mann Whitney U Test Results by Query for attempts in the first dialect used per group - First attempt planning time

1 2 3 4 5 6 7 8 9 10 11 12

MWU-test P Val 0.187 0.422 0.311 0.000 0.225 0.013 0.006 0.085 0.244 0.484 0.451 0.019
median SQL 34.0 20.0 92.0 80.0 78.0 127.0 117.0 195.0 158.5 160.0 100.0 261.0
median SpeakQL 42.0 23.0 108.0 130.0 104.0 203.0 158.0 268.5 122.0 143.0 90.0 356.0

Table 11: Mann Whitney U Test Results by Query for attempts in the first dialect used per group - Total attempt time

1 2 3 4 5 6 7 8 9 10 11 12

0

100

200

300

400

500

600

700

To
ta

l T
im

e Group + Language
group1 speakql
group1 sql
group2 sql
group2 speakql

Figure 27: Dialect performance measured by total time and separated by group. Group 1: SpeakQL-first, Group 2: SQL-first

1 2 3 4 5 6 7 8 9 10 11 12

0

100

200

300

400

500

Fi
rs

t A
tte

m
pt

 P
la

nn
in

g
Ti

m
e

Group + Language
group1 speakql
group1 sql
group2 sql
group2 speakql

Figure 28: Dialect performance measured by first attempt planning time and separated by group. Group 1: SpeakQL-first, Group
2: SQL-first

28

4 5 6 7 8 9 10 11 12

0

100

200

300

400

500

Fi
rs

t A
tte

m
pt

 P
la

nn
in

g
Ti

m
e

Group + Language + Used Unbundling
group1 speakql Yes
group1 speakql No
group1 sql No
group2 sql No
group2 speakql Yes
group2 speakql No

Figure 29: Dialect performance measured by first attempt planning time and separated by group and unbundling usage. Group
1: SpeakQL-first, Group 2: SQL-first

Figure 30: Thematic Analysis

29

No. Prompt SQL Example SpeakQL Example Complexity
P-1 which term years are

present in the database?
SELECT DISTINCT year FROM term in the term table get distinct year W: 1.05

S: -1.28
P-2 how many rooms have

at least two wheelchair
spaces?

select count(*) as "Number of Rooms"" from
room where wheelchairSpaces >= 2"

find the count of roomNumber where
wheelchairSpaces >= 2

W: 2.85
S: -0.69

P-3 during which terms
is the course with
id ’anth1’ taught by
faculty named ’Jane
Doe’? Include the term
year and term period in
the result.

SELECT term.id, term.termPeriod,
term.year FROM term INNER JOIN
courseOffering ON term.id = course-
Offering.termId INNER JOIN course
ON courseOffering.courseId = course.id
WHERE course.id = ’anth1’ AND faculty-
Name = ’Jane Doe’

get year and termperiod from the term table
AND THEN get nothing from the course ta-
ble where id = ’anth1 AND THEN get noth-
ing from the courseoffering table where
facultyname = ’Jane Doe’ AND THEN join
course with courseoffering on course.id =
courseoffering.id AND THEN join course-
offering with the term table on term.it =
courseoffering.termid

W: 8.50
S: 1.29

Q-1 how many buildings
does UCSD have?

SELECT COUNT(*) FROM building what is the count of buildingNumber in the
building table

W: 2.05
S: -0.95

Q-2 How many deparments
does UCSD have?

SELECT COUNT(*) FROM department get the count of distinct departmentname
from the department table

W: 2.05
S: -0.95

Q-3 make a list of courses of-
fered by the CSE depart-
ment that includes the
course title and units
columns. The CSE de-
partment ID is ’CSE’.

SELECT course.title, course.units FROM
course WHERE course.deptId = ’CSE’

find title and units in the course table where
deptId = ’CSE’

W: 2.10
S: -0.94

Q-4 Display the building
names for buildings
that have a room with
roomnumber 2001.

SELECT building.buildingName
FROM building JOIN room ON build-
ing.id = room.buildingId WHERE
room.roomNumber = ’2001’

from the room table get nothing where
roomnumber = 2001 AND THEN from the
buildingtable get buildingname AND THEN
join room with building on room.buildingid
= building.id

W: 3.85
S: -0.94

Q-5 How many buildings
have a room with at
least three wheelchair
spaces?

SELECT COUNT(DISTINCT buildingId)
FROM room WHERE wheelchairSpaces >=
3

what is the count of buildingname in the
building table joined with the room ta-
ble on room.buildingid = building.id where
wheelchairspaces >= 3

W: 2.85
S: -0.69

Q-6 what is the sum total
number of wheelchair
spaces in each build-
ing? Show the building
name and the number
of spaces in each build-
ing in the result.

SELECT buildingName,
SUM(wheelchairSpaces) AS total-
WheelchairSpaces FROM building JOIN
room ON building.id = room.buildingId
GROUP BY buildingName ORDER BY
totalWheelchairSpaces DESC

show me the sum of wheelchair spaces in
the room table AND THEN in the build-
ing table get buildingname AND THEN join
room with building on room.buildingid =
building.id ANDTHEN group automatically

W: 5.05
S: 0.02

Q-7 Find the titles of all
courses offered in terms
with the year 2022.

SELECT title FROM course JOIN course-
Offering ON course.id = courseOffer-
ing.courseId JOIN term ON courseOffer-
ing.termId = term.id WHERE year = 2022

get title from course AND THEN get noth-
ing from term where year = 2022 AND
THEN join course with courseoffering on
course.id = courseoffering.id AND THEN
join courseoffering with the term table on
term.it = courseoffering.termid

W: 5.85
S: 0.28

Q-8 Find the five depart-
ments that have the
the highest count of
courses and display
them in descending or-
der. Include department
name in the result.

SELECT departmentName,
COUNT(courseId) FROM courseOffer-
ing JOIN department ON department.id =
courseOffering.deptId GROUP BY depart-
mentName ORDER BY COUNT(courseId)
DESC LIMIT 5

what is the count of id in the course table
AND THEN show me departmentName in
department AND THEN join department
with course on course.deptID = depart-
ment.id AND THEN group automatically
limit 5 order by departmentName descend-
ing

W: 6.05
S: 0.35

W: Weighted
S: Standardized

Table 12: User Study Queries (Practice - Query 8)

30

No. Prompt SQL Example SpeakQL Example Complexity
Q-9 Generate a list of

departments that offer
more than 100 courses.
Include the count of all
courses associated with
the department, and
the department name
in the result.

SELECT departmentName, COUNT(*)
AS numCourses FROM department JOIN
course ON department.id = course.deptId
GROUP BY departmentName HAVING
COUNT(*) > 100

from department get departmentname AND
THEN from course get the count of id AND
THEN group automatically having count
of course.id >= 100 AND THEN join the
course table with the department table on
course.deptid = department.id

W: 6.05
S: 0.35

Q-10 Make a list that shows
the building name,
building number, and
average room area for
buildings that have
rooms with an average
area that is greater than
1000

SELECT building.buildingName, build-
ing.buildingNumber, AVG(room.area)
FROM building JOIN room ON building.id
= room.buildingId GROUP BY building.id
HAVING AVG(room.area) > 1000

show me buildingName and buildingNum-
ber in the building table AND THEN get
nothing from room AND THEN group auto-
matically having average room.area > 1000
AND THEN join building with room on
building.id = room.buildingId

W: 6.30
S: 0.43

Q-11 list the three buildings
with the highest aver-
age room area. Include
the building name and
building number in the
result.

select buildingNumber, buildingName,
avg(area) as avgArea from building join
room on building.id = room.buildingId
group by buildingNumber, buildingName
order by avgArea desc limit 3

showme buildingname in the building table
ANDTHEN showme the average area in the
room table AND THEN join the room table
with the building table on room.buildingid
= building.id AND THEN order by average
area descending limit 3 group automatically

W: 7.30
S: 0.75

Q-12 what are the titles of the
classes being held in the
building ’York Hall’ in
room with room num-
ber 2622 during the fall
2020 term? Include the
course title in the result.
NOTE: the termPeriod
column in the term ta-
ble contains the values
’fall’, ’spring’, ’winter’,
and ’summer’.

SELECT title FROM courseOffering INNER
JOIN course ON courseOffering.courseId =
course.id INNER JOIN room ON courseOf-
fering.roomId = room.id INNER JOIN build-
ing ON room.buildingId = building.id IN-
NER JOIN term ON courseOffering.termId
= term.id WHERE building.buildingName
= ’York Hall’ AND room.roomNumber =
’2622’ AND term.termPeriod = ’Fall’ AND
term.year = 2020

from the course table show me title AND
THEN show me nothing in the room ta-
ble where roomnumber = 2622 AND THEN
show me nothing in the building table
where buildingName = ’York Hall’ AND
THEN join the course table with the course-
offering table on course.id = courseoffer-
ing.courseID AND THEN join courseoffer-
ing with the term table on term.id = course-
offering.termid AND THEN join the course-
offering table with the room table on course-
offering.roomid = room.id and then join
room with building on room.buildingid =
building.id

W: 12.25
S: 2.36

W: Weighted
S: Standardized

Table 13: User Study Queries (Query 9 - 12)

31

	Abstract
	1 Introduction
	2 Background
	2.1 The Structured Query Language (SQL)
	2.2 Natural and Controlled Natural Languages
	2.3 SpeakQL

	3 Our SpeakQL Dialect
	3.1 Keyword Synonyms and Optional Syntax
	3.2 Natural Functions
	3.3 Query Clause Ordering
	3.4 Query Unbundling

	4 Implementation
	4.1 Language Specification
	4.2 SpeakQL to SQL Translation

	5 User Study
	5.1 Study Objectives
	5.2 Study Protocol and Design

	6 Results and Discussion
	6.1 Quantitative Results and Hypotheses Tests
	6.2 Feature Usage and Usefulness
	6.3 Qualitative Survey Feedback
	6.4 Discussion of Results and Implications

	7 Related Work
	8 Conclusions and Future Work
	References
	A Background
	A.1 SQL Grammar

	B Dialect
	B.1 Synonyms
	B.2 Natural Functions
	B.3 Unbundling

	C Implementation
	C.1 Grammar
	C.2 SpeakQL to SQL Translation
	C.3 Parser Performance
	C.4 SpeakQL to SQL Translation

	D User Study
	D.1 Initial Design and Protocol
	D.2 Interface
	D.3 Session Sequence
	D.4 Schema
	D.5 Queries

	E Survey Feedback
	E.1 Survey Feedback With Coding

	F User Study Results
	F.1 Statistical Analysis
	F.2 Learning Effect

