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ABSTRACT
Recent advances in Graph Neural Networks (GNNs) have changed
the landscape of modern graph analytics. The complexity of GNN
training and the scalability challenges have also sparked interest
from the systems community, with efforts to build systems that
provide higher efficiency and schemes to reduce costs. However, we
observe that many such systems basically “reinvent the wheel” of
much work done in the database world on scalable graph analytics
engines. Further, they often tightly couple the scalability treatments
of graph data processing with that of GNN training, resulting in
entangled complex problems and systems that often do not scale
well on one of those axes.

In this paper, we ask a fundamental question: How far can we
push existing systems for scalable graph analytics and deep learning
(DL) instead of building custom GNN systems? Are compromises
inevitable on scalability and/or runtimes? We propose Lotan, the
first scalable and optimized data system for full-batch GNN training
with decoupled scaling that bridges the hitherto siloed worlds of
graph analytics systems and DL systems. Lotan offers a series of
technical innovations, including re-imagining GNN training as
query plan-like dataflows, execution plan rewriting, optimized data
movement between systems, a GNN-centric graph partitioning
scheme, and the first known GNN model batching scheme. We
prototyped Lotan on top of GraphX and PyTorch. An empirical
evaluation using several real-world benchmark GNN workloads
reveals a promising nuanced picture: Lotan significantly surpasses
the scalability of state-of-the-art custom GNN systems, while often
matching or being only slightly behind on time-to-accuracy metrics
in some cases. We also show the impact of our system optimizations.
Overall, our work shows that the GNN world can indeed benefit
from building on top of scalable graph analytics engines. Lotan’s
new level of scalability can also empower newML-oriented research
on ever-larger graphs and GNNs.

1 INTRODUCTION
Graph Neural Networks (GNNs) have drastically shifted the land-
scape of advanced graph analytics. GNNs can provide powerful
learned representations for graphs. In about a decade, GNNs have
dominated many graph analytics leaderboards [21] for tasks rang-
ing from lower-level ones, such as node classification and edge
prediction, to graph-level tasks like graph classification or even
graph generation. Applications span from video analytics [23], rec-
ommender systems [64, 70], drug discovery [34] and pandemic data
analysis [67], to even crime prediction [56] with spatial-temporal
graphs. Interest in GNNs is rising rapidly in many domains where

data are naturally represented as graphs, such as social networks
and molecular structures.

However, GNN models are tricky to scale [18, 63, 66], because
of the sheer amount of computation and the immense memory
pressure they exert on GPUs. A plethora of GNN systems was pro-
posed to tackle these challenges [12, 24, 35, 39, 50, 60, 62, 74]. They
express GNN workloads primarily as advanced matrix multipli-
cations and rely on GPUs for execution. When GPU memory is
insufficient to host the entire matrices and the intermediate results,
one either resorts to distributed processing [24, 74] and/or spilling
techniques [24, 60] that load/offload data from GPU accordingly.

What makes GNN training so hard to scale, and why do we
need these dedicated systems for GNNs? First, graph data are ir-
regularly shaped and non-IID, differentiating them from regular
IID data modalities such as text and images, for which the state-
of-art DL frameworks were designed. To tackle the data scalabil-
ity issues, most DL frameworks employ distributed data-parallel
schemes [1, 55]. However, data parallelism does not directly apply
to graph data: graph partitions are not independent, and the train-
ing process involves cross-partition communications, depending on
the input graph structure. Second, neural network backpropagation
requires caching intermediate data during forward propagation.
Depending on the graph data, these intermediates could be huge
in size. Unlike models such as CNNs or Transformers designed
for IID data, where input shape is often normalized and uniform,
GNNs are highly input-dependent. They are tough to accommodate,
as workloads are highly versatile and vary significantly in scale.
Third, the “neighborhood explosion” and the over-smoothing prob-
lems [7, 8, 41] are also tricky to bypass; data dependency grows
exponentially as the number of GNN layers grows, posing chal-
lenges to both scalability and efficiency.

In this paper, we make a critical observation thatmany of the
GNN’s challenges are, in fact, challenges of managing, mov-
ing, and handling the underlying graph data. Nonetheless,
existing custom GNN systems mix and couple the graph data and
DL challenges. We observe several shortcomings of this worldview:
first, many of these systems “reinvent the wheel” of much work
done in the database world on scalable graph analytics engines. Sec-
ond, they often tightly couple the scalability treatments of graph
data processing with that of GNN training, resulting in entangled,
complex problems and systems that often do not scale well on one
of those axes. GNN workloads, though drastically different from
regular DNNworkloads in data access patterns, are not too far away
from non-NN graph analytics such as PageRank. As pointed out by
prior work [39], most of the popular GNNs can be expressed under
extended versions of graph programming models such as Gather-
Apply-Scatter (GAS). Scaling “shallow” graph analytics is not a
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Figure 1: (A) Lotan bridges the gap between graph systems and DL systems. (B) The architecture of Lotan.

new topic: many graph data systems were designed for that pur-
pose [15–17, 40]. However, to our knowledge, none of these systems
provide general GNN support, nor do they handle DL operations,
which, nowadays, are better reserved for frameworks such as Ten-
sorFlow and PyTorch. It would be prohibitively labor-intensive to
build systems of their generality and performance from scratch. Fur-
thermore, implementing native NN support within graph systems
would lead to a similar problem of reinventing the wheel of DL sys-
tems research. Therefore, both stacks of software are needed: graph
systems for graph challenges and DL systems for DL challenges.
As Figure 1(A) explains, our work aims to bridge this gap.

System Desiderata. We envision a scalable GNN system with
the following desiderata: (1) Decoupled Scaling: Scale graph and
neural network parts by reusing existing industrial-strength tools.
(2) Usability: Retain the ease of specification APIs of both graph and
DL tools. (3) Non-disruptive Integration: No changes to the internal
code of those tools. (4) Speed and Accuracy: Fast runtimes without
sacrificing DL accuracy.

In this paper, we seek to answer a fundamental systems question:
How far can we go by pushing existing systems’ limits without modi-
fications? We propose a novel information system architecture for
scalable GNN training with the decoupling of graph and neural
network. Much like the famous decoupling of compute and
storage in cloud computing, this decoupling enables us to tackle
each side individually and allows them to scale independently. We
carefully pick apart the graph and neural network dataflows in
GNN training and re-imagine them as a “query plan” in our new
intermediate-level global operator graph. We dispatch the execution
plan to an existing graph analytics engine and a DL frameworkwith-
out modifying their internal code. We built a distributed prototype
system we call Lotan.

Overview of Lotan. Figure 1(B) illustrates our system architec-
ture. The user interacts with Lotan through the APIs to specify
their GNN workload. Our Planner then compiles it into graph and
neural network operations and dispatches them to their separate
execution Engines, which are existing graph and DL systems. Our

Messenger handles the coordination and communications between
the Engines. This way, Lotan can preserve all functionalities of the
execution Engines, especially the graph data management function-
alities such as graph manipulation, partitioning, and other non-NN
graph analysis methods.

Additionally, Lotan provides a series of system optimizations
to increase the runtime performance. The most important two are
GNN-centric graph partitioning and GNN model batching.

GNN-centric graph partitioning. Distributed graph processing
naturally comes with the problem of graph partitioning, which can
dramatically affect the efficiency as sub-optimal partitioning leads
to a huge amount of network communications. To this end, we
propose a GNN-centric graph partitioning scheme and the corre-
sponding Reverse Graph Propagation execution scheme for GNN
training. Our method works by taking account of the asymmetry
in data size between forward- and backward propagation. We will
describe it in detail in Section 5.1.

GNN model batching. GNNs, like other DL methods, require ex-
tensive hyperparameter tuning, which involves training multiple
models on the same dataset. These models overlap extensively in
their data access patterns, and opportunities exist because data
access is quite costly for GNNs. We propose the first GNN Model
Batching technique to improve GPU utilization and reduce runtime
for GNN model selection workloads. As far as we know, Lotan is
the first system to optimize for the GNN model selection/hyperpa-
rameter tuning workloads and the first to explore model batching
for GNNs. We will introduce it in Section 5.2.

Overall, this paper makes the following technical contributions:

• To the best of our knowledge, this is the first work to bridge
the gap between existing graph data systems and DL sys-
tems and the first to formally decouple the scaling of graph
and neural networks in GNN training. Lotan expands de-
sign freedom for GNN researchers and practitioners.

• We re-imagine large-scale GNN training from a data man-
agement standpoint and unpack the dataflows into a “query
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plan” representation. We then devise novel query rewrit-
ing and optimization techniques to improve scalability and
efficiency.

• We propose one of the first GNN-centric graph partitioning
schemes to reduce graph node replication and communica-
tions during GNN training.

• Furthermore, Lotan is the first GNN system to treat model
selection workloads holistically and explore model batching
techniques to improve training throughput.

• We perform an extensive evaluation to compare Lotan with
prior industrial-strength systems and study the impact of
our optimizations. The empirical results validate our sys-
tem’s higher scalability and competitive time-to-accuracy
performance on multiple workloads.

2 BACKGROUND
2.1 Graph Neural Networks
Graph Neural Networks (GNNs) are neural networks on graph data.
In a nutshell, a GNN always tries to summarize the graph structure
and/or the graph properties into a compact numerical represen-
tation called embeddings. GNNs can be categorized into spectral-
based and spatial-based methods [66]. Spectral-based methods have
roots in graph signal processing and rely on the graph Laplacian
and Fourier transform for generating embeddings. Spatial-based
methods are typically the applications of neural networks such as
RNN, CNN, and GAN on graph data, with modifications to account
for graph structure. The spatial-based methods are the more pop-
ular of the two categories [66] and will be the main focus of our
system.

It is important to note that a GNN model can be ultimately ex-
pressed as a combination of graph processing (in the form of a
modified Gather-Apply-Scatter programming model [39]) and DL
operations. This is the basis of how our system attacks the prob-
lem; we compile a GNN training task into a global operator graph
composed of graph operators and neural network operators and
use existing systems for execution. More details on these concepts
are in Section 3.2 and Section 4.

2.2 Distributed Graph Processing
GNN workloads are still a form of graph processing/analytics be-
cause they resemble many classical problems and share very similar
data access patterns. To tackle the many similar challenges, non-
GNN graph data systems [4, 9, 15, 17, 38, 54, 59] rely on distributed
processing, and a critical problem is graph data partitioning.

There are two major graph partitioning schemes: edge-cut and
vertex-cut. It is beyond the scope of this paper to fully cover the
entire landscape of graph partitioning, sowe only introduce the bare
minimum background before we propose our own GNN-centric
graph partitioning scheme in Section 5.1. Interested readers are
directed to other literature on graph partitioning [5].

Edge-cut. Edge-cut partitioning affixes the location of vertices,
and the edges at partitioning boundaries are replicated (or need
to be remotely fetched when needed). Figure 2(A) illustrates this
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Figure 2: Two graph partitioning schemes.

Table 1: Comparison with prior art on key capabilities.

License GPU Distributed Sampling Memory Hierarchy
Lotan Open ✓ ✓ Full Disk-aware

DGL/DistDGL [62] Open ✓ ✓ Both GPU-only
AliGraph/graph-learn [75] Open ✓ ✓ Mini-batch GPU-only

PSGraph [25] N/A ✓ ✓ Mini-batch GPU-only
GraphScope [68] Open ✓ ✓ Mini-batch GPU-only

Sancus [50] Open ✓ ✓ Full GPU-only
PipeGCN [61] Open ✓ ✓ Full GPU-only
Dorylus [58] Open ✗ ✓(Serverless) Full N/A
ROC [24] Open ✓ ✓ Full DRAM-aware
P3 [13] N/A ✓ ✓ Mini-batch GPU-only

DeepGalois [20] N/A ✗ ✓ Full DRAM-only
Pytorch Geometric [12] Open ✓ ✗ Both GPU-only

NeuGraph [39] N/A ✓ ✗ Full DRAM-aware
PaGraph [3, 35] Open ✓ ✗ Mini-batch DRAM-aware
MariusGNN [60] Open ✓ ✗ Mini-batch Disk-aware

scheme. In Gather-Apply-Scatter workloads, the messages gener-
ated at vertices are sent across the partitioning boundary, resulting
in cross-partition communications.

Vertex-cut. Vertex-cut partitioning is the alternative to edge-cut;
it focuses on the edges and fixes their locations. As a trade-off, the
vertices at the boundaries need to be replicated or at least remotely
fetched when needed.

Note that a certain amount of cross-partition communication or
data replication is inevitable, depending on the quality of the graph
partitioning algorithm and the characteristics of the underlying
graph. Graphs typically have much more edges than vertices in
the real world. Therefore vertex-cut partitioning, which avoids
edge replications, sometimes are more favorable in practice [17,
38, 53] for non-GNN workloads. Although a plethora of graph
partitioning algorithms exists [5], they are seldom designed for
GNNworkloads. As a result, there is room for improvement.Wewill
dive deep into the characteristics of GNN workloads in Section 5.1
and subsequently propose our graph partitioning scheme on top of
the vertex-cut scheme.
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Figure 3: (A) An example input graph to a spatial-based GNN.
(B) Dataflow diagram of a message passing GNN.

2.3 GNN Training Systems
Plenty of systems have been proposed to tackle the efficiency and
scalability challenges brought by GNNs. Generally speaking, there
are two main camps within GNN system research: first is the scala-
bility camp, which aims to tackle the scalability issues of full-batch
GNNs [24, 58, 75]; they are usually distributed systems and focus
on providing the capability to run GNNworkloads that fail on other
systems. Second is the efficiency camp, which mainly focuses on
runtime speed and usually does not address scalability issues; they
often assume that the entire workload can comfortably fit in GPU
memory/main memory [35, 39, 42, 50].

We summarize the comparisons between these systems in Ta-
ble 1, and we will discuss them in more detail in Section 8. We
evaluate these systems by several axes: (1) License, whether the
system is open-source and usable for tests. (2) GPU, whether the
system has GPU support. (3) Distributed, whether the system sup-
port distributed processing. (4) Sampling, whether the system tar-
gets full-batch or mini-batch GNN training. (5) Memory Hierarchy,
whether the system is secondary storage aware.We leave the perfor-
mance tests and numbers to Section 7. In this paper, we argue that
many of these systems are reinventing the wheel with custom-built
graph data systems and are still facing scalability issues with larger
datasets or models. Lotan is more closely related to the scalability
camp, but it differs from the prior art in technical contributions
and our architecture design, which can utilize existing, established
systems.

3 GNN APIS AND PROGRAMMING MODEL
3.1 GNN Interface
The first system issue we need to address is how do we express a
GNN model in a standardized way? One of the most common and
general abstractions is known as the Message Passing interface [14].
It is also widely adopted in GNN system literature and the de-
facto standard. The Message Passing interface defines a GNN using
update rule, an equation that tells us how to update a graph node’s
embedding:

h𝑘𝑣 = 𝜓 (x𝑘𝑣 , Γ
𝑢∈N(𝑣)

𝜙 (h𝑘−1𝑣 , h𝑘−1𝑢 , x𝑒𝑣𝑢 )), (1)

where𝜓 , 𝜙 , Γ are potentially learnable and differentiable functions,
Γ is further required to be commutative and associative.𝜓 is called
the update function, 𝜙 the message function and Γ the aggregate
function. Note Equation 1 covers primarily spatial convolutional
GNNs, on which we focus. Some other forms of GNNs, such as
spectral-based methods [66], cannot be easily and efficiently ex-
pressed in the same framework. We leave the question of how to
support those GNNs in future work.

Equation 1 is the interface we expose to the user. They will
need to define the three functions𝜓 , 𝜙 , Γ using APIs and operators
provided by the system to be introduced next. Depending on the
nature of these functions, our system can do plan rewriting and
optimizations to boost performance. More details are in Section 4.2.
Figure 3(A) shows an example input graph and Figure 3(B) shows
the conceptual dataflow of a GNN being learned on it.

Batched Message Passing. In practice, we find it much more
beneficial to rewrite Equation 1 in a batched and vectorized format,
especially for better utilization of GPU:

H𝑘𝑣 = Ψ(X𝑘𝑣 ,
∗

ΓΦ(H𝑘−1𝑣 ,H𝑘−1𝑢 ,X𝑒𝑣𝑢 )), (2)

where H𝑘𝑣 ,X𝑘𝑣 ,H𝑘−1𝑣 ,H𝑘−1𝑢 , and X𝑒𝑣𝑢 are all matrices which are
batched forms of their corresponding vectors, they have shape
𝐵 × _, where 𝐵 is the batch size and _ is the dimension of the
respective vectors. Ψ,Φ, Γ∗ are the batched (vectorized) form of
functions𝜓 , 𝜙 , Γ.

3.2 Lotan’s Internal Programming Model
It is not obvious how to parallelize Equation 1, mainly due to the
neighborhood aggregation steps that are only native to graph pro-
cessing systems. Some prior work re-cast the equation into bulk
linear algebra [12, 62, 74, 75]. However, they often encounter huge
scalability issues due to the potentially colossal graph size and the
resulting sizes of matrix multiplications. On the other hand, it is not
unfamiliar to see existing GNN systems using Gather-Apply-Scatter
(GAS) abstraction or its extension [39] to translate Equation 1 into
an executable plan. However, none of these abstractions capture
the potentially costly data transfer operations between the graph
and DL execution Engines that Lotan relies on. We need to account
for these operations correctly so that we can better understand
the problem. Toward this goal, we propose a new programming
model that roots in the decoupling of compute and storage and
the decoupling of graph and NN. Our abstraction involves three
main stages: (1) Graph propagation with Scatter-Gather-Collect, (2)
DL propagation with ApplyEdge-Aggregation-ApplyVertex, and (3)
Pipe and Join. To implement these operators, we build them upon
existing operators in the Graph and DL Engines.

Scatter-Gather-Collect. During this stage, the Graph Engine does
a regular Scatter and Gather as in GAS for the graph propagation
portion of a GNN. Instead of Apply in GAS, here it is followed by
a Collect operation, where the Graph Engine, depending on the
specifications of the GNN, collects and packs relevant data to hand
over to the DL Engine. This arises because GNN operations are
placed on two different Engines in our system. The DL Engine
operations (such as aggregation) have data dependencies up to the
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Graph Engine to resolve. The Graph Engine then needs to collect
all the data from each graph node and their neighboring nodes and
sends them to the DL Engine. Conceptually, this stage is primarily
for implementing the neighborhood scope 𝑢 ∈ N (𝑣) in Equation 1.

ApplyEdge-Aggregation-ApplyVertex. In this stage, the DL En-
gine receives data from the Graph Engine and applies the GNN
functions on the data. ApplyEdge implements the per-edge function
𝜙 ; similarly, ApplyVertex implements the per-vertex function 𝜓 .
Aggregation implements the neighborhood aggregation function Γ.

Pipe and Join. We need operations for data transfer at the Graph
and DL Engine’s boundary. From the Graph Engine to DL Engine,
we need a Pipe operation that, as the name suggests, pipes data
to the DL Engine and the results back to the Graph Engine. Then
within the Graph Engine, a Join operation is needed to incorporate
the data, as the order of data may not be preserved during the Pipe.
We will cover these in detail in Section 4.3.

One important note is that this separation of stages is not fixed;
some operations can be eliminated, some can be re-ordered, and
some can be pushed down. We will explore all these opportunities
for optimizations in Section 4.2.

3.3 Global Operator Graph and Execution
With all the introduced abstractions, we can now compile an entire
GNN training workload into a global operator graph with the oper-
ators mentioned above. A Planner, to be discussed in Section 4.2,
will generate this graph from the user input expressed in the GNN
message-passing interface.

Figure 4 shows the full operator graph for end-to-end GNN train-
ing, using the operators defined in Section 3.2. Data (embeddings
during the forward-propagation, and gradients during the back-
propagation) is sent back and forth between the Graph Engine and
DL Engine. The Graph Engine is in charge of the graph aggregation
by running Gather-Scatter-Apply under the hood for both forward-
and back-propagation and collects all the necessary data for the DL
Engine to consume, represented by the Collect operator. During
the forward-propagation, the DL Engine handles the ApplyEdge,
Aggregation, and ApplyVertex functions and subsequently does

back-propogation with their AutoGrad capabilities. Both Engines
run independently and are unaware of each other. They can run
on the same set of machines, and the operators are parallelized
independently. To coordinate the Engines and to provide a bridge
for data transfer, we build a Messenger component for our system,
to be introduced in Section 4.3.

4 SYSTEM ARCHITECTURE
Lotan has 3 main components: (1) External Engines, which are
existing graph processing systems and DL frameworks without
modifications. (2) Planner, where Lotan creates and optimizes
the execution plan of a GNN training workload. (3) Messenger,
where Lotan reconciles the Graph Engine and the DL Engine and
facilitates efficient data transmission between them.

4.1 External Engines
These engines are what Lotan relies on and improves on for tackling
many scalability challenges of GNN training. We only use these
engines’ public interfaces and treat them as black boxes. This way,
we use them without modifications and drastically increase the
portability and generality of Lotan while preserving all the features
provided by both Engines.

Graph Engine. The Graph Engine is an external graph data system
that Lotan relies on for graph-related operations and scalability
challenges. It can be a graph processing system or a graph DBMS,
as long as it provides public interfaces for (1) Gather-Apply-Scatter
(GAS) operators. (2) Operations that export data to external systems.
Additionally, it should provide scalable solutions for large-scale
graph analytics. Often, such Engines conveniently provide various
data system features such as data partitioning and distribution, fault
tolerance, memory management, and disk spilling. Most of today’s
graph analytics systems/graph DBMS meet these criteria. Examples
include Spark’s GraphX [17], Giraph [15], TigerGraph [9], and
Neo4j [49]. We choose GraphX for our prototype because, first, it
is open-source software and has an active user community. Second,
it is easy to use and piggybacks on the popular and familiar Spark
ecosystem. Our approach is general and easily applicable to other
graph analytics engines.

Deep Learning Engine. To handle the challenge from the neural
network part of a GNN, we adopt an external DL system/framework.
We use this system for forward propagation activation computing
and back-propagation gradient computing with their autograd capa-
bilities. By using an existing DL framework, we automatically make
available the rich DL libraries and GPU support such a framework
comes with. Furthermore, these systems can offer an out-of-box
solution for distributed model training via their data-parallel ca-
pabilities [32, 55]. TensorFlow and PyTorch are both prominent
examples of such systems and both are applicable. We pick PyTorch
due to its dominant popularity in the GNN community.

4.2 Planner
At the heart of Lotan is the Planner, inspired by query planners in
database research. Close to the concept of a DBMS query optimiz-
er/planner, we need to weigh the potential query plans and choose
the optimal one. The general idea is to assign relative costs for each
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Figure 5: An example of plan rewrites. Note the Collect oper-
ator is rewritten with ApplyEdge and Aggregation.

stage of the execution and then determine the final cost estimate.
However, in this case, the plan search space is much more limited,
and it is favorable to do operator pushdowns whenever possible.
Therefore, we find simple heuristics sufficient and no sophisticated
cost estimation is needed. To complete the study, we still try to
model the costs, but primarily for curiosity and a deeper understand-
ing of the problem. We will also verify some of the observations
from our cost models with experiments in Appendix.

Plan Generation and Rewrites. Plan generation is usually trivial,
as GNN training comprises mostly sequential stages, as Figure 4
shows. Opportunities for optimization exist; depending on the na-
ture of the GNNmodel, the execution plan can be rewritten.We only
consider the two most obvious cases of plan rewriting: operator
reordering and pushdown.

Equation 1 gives the most general definition of a GNN, and
Figure 3(B) is the most stringent ordering of the three functions
from the Message function to the Aggregation function to the Up-
date function. However, because all these functions can be neural
networks, they can only be handled by the DL Engine. Both the
Message and Aggregation functions require neighbor information;
we will also have to collect all the edges, features, and embeddings
in the Graph Engine and ship them to the DL Engine. For this gen-
eral case, our operator graph writes as Figure 4. This is an expensive
plan due to the Collect operator and the size of data movement
between the two Engines. However, if the Message and Aggregation
functions are both unparameterized and therefore do not require
training, we can push down these functions to the Graph Engine
and drastically save costs. Figure 5 illustrates this scheme. We will
test plan rewrites with experiments in Section 7.2.1 and see that it
contributes to substantial performance gains.

Cost Estimation. To calculate the costs of a plan, we first evaluate
the costs of individual stages respectively, then aggregate them
together. A stage is defined as the sub-operator graph between two
boundaries of data movement. The costs are estimated using: (1) the
data graph’s information, such as the number of nodes and vertices
and the average degree. (2) specifications of the GNN, such as the
number of layers and the number of parameters involved in the
neural network. (3) The DRAM and GPU RAM limit, network/disk
bandwidth, and the number of concurrent CPU threads available

(degree of parallelism). Due to space constraints, we will highlight
themain observations in Section 6, but leave the details to Appendix.
Within the cost models, a few factors are situation-dependent and,
therefore, cannot be very well estimated. One can resort to logs of
past runs of the same model and graph for more accurate costs.

4.3 Micro-batch Processing and Messenger
One critical question of utilizing existing systems is how to recon-
cile them; each comes with its input/output interfaces, data formats,
memory layouts, and other specifications. Further, the DL Engine
heavily favors batched data input for higher utilization and through-
put, while the data comes off the Graph Engine as streams to reduce
memory footprint. This means we must convert the data stream
to and from data batches. We also need to keep the order of data
consistent during both the forward pass and backward pass stages.

To our best knowledge, this is the first time the data movement is-
sues between graph data systems and DL systems are being studied.
We adopt and synthesize existing techniques and optimizations to
solve the novel problems mentioned above. We build a component
called Messenger. We apply a series of system optimizations to the
Messenger: It uses non-blocking, async sockets and shared memory
to communicate with the DL Engine for overlapping computation
with communication and to reduce throttling. The details of this
component can be found in Appendix.

5 SYSTEM OPTIMIZATIONS
5.1 GNN-centric Graph Partitioning and

Reverse Graph Backpropgation
Graph partitioning is a vital part of distributed graph processing, as
it dramatically impacts the volume of data replication and communi-
cations. Most existing graph partitioning schemes are not designed
with GNNs in mind, resulting in suboptimal performance. We pro-
pose a novel graph partitioning and training execution scheme for
GNNs, named Reverse Graph Backpropagation (RGB). This tech-
nique applies to vertex-cut-based Graph Engines [16, 17] such as
GraphX, which we use for prototying. Our method is based on
two key observations: first, neural network training consists of a
forward- and a back-propagation phase; the two phases have in-
verted dataflow. Second, during GNN training, graph node data are
updated, and the data size changes between phases, which leads to
an asymmetry in replication costs.

We start from the well-accepted hash-based 1D edge partition-
ing [53], where we hash partition all the nodes and then colocate
all edges based on their sources. Figure 6 illustrates the strategy.
During forward propagation, each node’s property and messages it
sends are its node embeddings, which are 1-dimensional vectors.
No node replication happens, but two cross-partition messages take
place. During the back-propagation, the data flow is inverted. How-
ever, each node updates its properties to gradients returned from
the DL Engine (such updates happen in-partition and do not incur
cross-partition communications). These gradients are hash maps
of vectors and, compared to the embeddings, are 𝑑 (node degree)
times larger. For a realistic graph, the average degree can easily be
around 100. Because dataflow is inverted and the partitioning is
not, heavy cross-partition communications would occur.
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Figure 6: Regular 1D source hash partitioning and dataflow.

To address this performance issue caused by the asymmetry, we
propose our novel GNN-centric Graph Partitioning scheme and the
way to backpropagate through it, described as follows:

(1) Create a reverse graph (each edge reversed) from the origi-
nal graph.

(2) Do a regular hash partitioning on the reverse graph: first,
hash partition all the nodes and place them; second, par-
tition the edges based on their sources so that all edges
originating from the same source colocate in the same par-
tition.

(3) Finally, we partition the original graph’s edges in the same
manner but keep the node partitions generated from the
reverse graph.

(4) We run the forward propagation as usual on the original
graph. However, we run the back-propagation on the re-
verse graph.

This way, there is drastically reduced communication during
back-propagation, where the most significant bottleneck could arise.
Depending on the circumstances, communication costs might in-
crease for forward propagation but are offset by back-propagation
savings. We keep the node placements consistent between phases,
otherwise extra cross-partition communication will occur. Figure 7
illustrates our approach. Regarding cross-partition communications,
we only have single vectors instead of hashmaps of vectors. The
example shows a directed graph, but the same logic still applies to
undirected graphs.

5.2 GNN Model Batching
GNNs, like any other neural network, rely on careful and extensive
hyperparameter tuning for the best accuracy performance. Con-
sequently, the workloads are often multiple-model explorations.
Each model has its different set of neural network hyperparameters.
When running hyperparameter tuning workloads, existing systems
take a sequential approach: training them one-by-one. Figure 8(A)
shows it. There is wasted potential for improvements: First, models
in a hyperparameter search workload share identical data access
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Figure 8: (A) Sequential training (B) Model Batching.

patterns, and re-using these routines can amortize the overheads.
Second, many GNN workloads have relatively low neural network
components, often leaving the GPU underutilized. For DL methods
on IID and Euclidean data, many systems [46, 72] have been devel-
oped to optimize for model selection workloads. However, these
techniques do not apply as they assume IID data.

To address these issues, we propose GNNModel Batching. Model
batching [48] is a technique to increase GPU utilization for IID
models. To our best knowledge, we are the first to explore the
same possibility for GNNs. We devise a model batching scheme
to combine the models within a hyperparameter search workload.
Figure 8(B) depicts it. We run multiple models simultaneously on
the model-batched version of the regular graph and NN operators.
All data transmitted between the Graph Engine and DL Engine are
also batched together. The models can then share all the data access
operations to amortize costs.

6 ANALYSIS OF COST MODELS
To better understand the problem, we model the various costs of
GNN training: replication, computational, memory, and overheads.
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Figure 9: Learning curves for the chosen model on the test set. (A) ogbn-products-GCN. (B) ogbn-products-GIN. (C) ogbn-arxiv-
GCN. (D) ogbn-arxiv-GIN. Corresponding learning curves on the validation set are presented in Appendix.

As mentioned earlier in Section 4.2, these models are not used in the
Planner and only for deeper understanding and further experiment
evaluation. Due to space constraints, we leave the tedious details
and equations to Appendix. We present a summary of two key
observations about our cost model that we will validate empirically
later.

Effect of Number of Partitions. The number of data partitions in-
terplays with system performance in two ways: First, for large-scale
dataset, more partitions are required to reduce memory pressure.
Second, increasing the number of partitions will also increase the
degree of parallelism and utilization because our Graph Engine
uses one thread per partition.

To put it into an equation. We have the total computational cost
for an execution plan with partitions:

𝑊𝑃 =
𝑊

𝑃
max( 𝑃

𝑀𝐿
, 1) + 𝑓𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 (

𝑃

𝑀𝐿
), (3)

where𝑊 is the total amount of work (unit: time), 𝑊
𝑃

is each par-
tition’s amount of work, 𝑃

𝑀
is the total amount of tasks each ma-

chine gets,max( 𝑃
𝑀𝐿

, 1) is the total amount of rounds each machine
executes. Without losing generality, assume 𝑓𝑜𝑣𝑒𝑟ℎ𝑒𝑎𝑑 follows a
monotonic increase along with 𝑃 . We can then reason that as the
number of partitions 𝑃 increases; the overall runtime would first
decrease and then increase.

We see precisely this behavior in our tests. Due to space con-
straints, the experiment details are moved to Appendix. Due to
the intertwined effects of this one parameter, the runtime behav-
ior becomes non-linear and difficult to capture with simple cost
models. Instead, we use rule-based heuristics to tune the number
of partitions: we set it to be the same as the total number of CPU
cores of the entire cluster unless more partitions are required to
alleviate the memory pressure. Fortunately, GNN workloads are
highly predictable in runtime and resource consumption. If neces-
sary, one can always do test runs (for 1 or 2 epochs of training is
more than sufficient) to figure out the optimal config setting.

Effect of Model Batching. The intermediate embedding/gradient
size of a GNNmodel greatly impacts runtime performance. Because
of GNN Model Batching, Lotan can have inflated intermediates
sizes. To be precise, the intermediate sizes will be multiplied by the
model batching size. Consequently, for model batching, we expect

to see a scaling up when increasing model batching size due to
higher utilization until the returns diminish due to overheads. We
run experiments and show the results in Section 7.2.3 and will see
the expected behavior.

7 EXPERIMENTS AND EVALUATION
Prior Art. Out of the distributed GNN training systems discussed
in Section 2.3, we show comparisons to the SOTA: DistDGL [74],
AliGraph [75], and Sancus [50]. We excluded all systems that do
not support distributed training and those without public release.
Despite the best effort, we could not set up and use ROC [24], with
a similar situation reported in [58]. Sancus [50] and PipeGCN [61]
should be comparable systems, both with approximated processing,
while others (including ours) are with exact processing, and we
pick the former for benchmarking. Note that both DistDGL and Ali-
Graph are primarily mini-batch GNN systems. Although DistDGL
can run full-batch training, it fails almost all our workloads. There-
fore, we use it with the mini-batch setting. Mini-batch training is
mathematically different from full-batch training. But we put in
our best effort for a fair comparison by tuning the mini-batch size
to their advantage and using standard benchmark metrics agnostic
of the training scheme.

Datasets.We use three of the standard benchmarking datasets from
OGB [21], which has become the go-to place for graph datasets
for benchmarking. We use ogbn-products, ogbn-arxiv, and ogbn-
papers100M. Additionally, we also include datasets reddit [18] and
amazon [19], the original amazon dataset is not shipped in graph
form, and we converted it to graph after acquiring a recipe from the
authors of [24, 58]. The prior art also commonly use these datasets
in their published papers. Table 2 first column shows brief statistics
about the datasets.

Workloads.We define a GNN training workload with hyperparam-
eter tuning factored in, which is an inevitable part of the end-to-end
development of a GNN model. We primarily focus on two model
architectures: GCN [26] and GIN [69] with various hyperparameter
configurations. DistDGL and AliGraph have the batch size to tune
additionally. In the corresponding literature, we found a batch size
from 128 to 8192 is common. We tried as much as possible to make
the comparison apples-to-apples and tune the batch size beforehand

8



Table 2: End-to-end test results. TLE: time limit exceeded (48 hrs per model). ∗For these tests, all models within the workload
learned too slowly and got terminated too soon. To not understate the system’s capability, we make an exception and include a
separate run for a fixed 500 epochs and then pick the best valid accuracy checkpoint. †These tests would take an unreasonable
amount of time to finish. Therefore, we did not train them to converge and only reported the throughput numbers.

Dataset Summary Dataset Model System Test Acc.
(%)

Total Runtime
(hr)

Throughput
(epoch/hr)

CPU
Util. (%)

GPU
Util. (%)

Disk R/W
(GB/hr)

Network
(GB/hr)

ogbn-arxiv

GCN

Lotan 69.28 1.90 924.85 18.47 5.79 4294.66 4203.44
DistDGL 68.49 0.33 1912.50 21.39 15.80 3.45 5959.28
AliGraph 68.60 171.44 1.59 5.35 6.73 3.48 44.46

#Nodes: 169.3K *Sancus *55.23 *0.79 1855.67 5.98 89.97 3.00 19706.78
#Edges: 1.1M

GIN

Lotan 71.22 3.71 557.38 18.11 5.93 3123.74 4959.36
Avg. Degree: 13.7 DistDGL 43.64 0.15 1035.97 20.13 16.65 4.13 6109.54

*DistDGL *69.26 *2.76 - - - - -
AliGraph Fail - - - - - -

reddit

GCN

Lotan 94.50 16.81 77.82 30.80 0.85 6173.45 4154.67
DistDGL Fail - - - - - -
AliGraph Fail - - - - - -

#Nodes: 232.9K Sancus 92.67 0.04 1408.69 5.89 75.38 113.57 14160.26
#Edges: 114.6M

GIN

Lotan 94.91 23.15 50.16 30.47 0.83 6366.86 4083.77
Avg. Degree: 492.9 DistDGL Fail - - - - - -

AliGraph Fail - - - - - -

ogbn-products

GCN

Lotan 75.59 63.82 16.22 49.58 1.75 6779.44 4989.52
DistDGL 75.32 365.53 0.34 8.01 27.94 3.6 4548.72
AliGraph TLE - - - - - -

#Nodes: 2.4M Sancus 54.76 1.84 350.83 6.33 89.50 3.31 23086.58
#Edges: 61.8M GCN-Large Lotan 75.89 178.11 6.41 48.77 1.54 5917.79 3876.79

Avg. Degree: 50.5 Sancus Fail - - - - - -

GIN
Lotan 75.75 104.68 9.43 47.30 1.89 6735.52 4832.47

DistDGL Fail - - - - - -
AliGraph Fail - - - - - -

amazon

GCN

Lotan 82.22 50.99 4.56 44.16 1.18 5451.33 3428.30
DistDGL 86.14 261.58 0.02 10.66 51.19 4.48 4863.49
AliGraph Fail - - - - - -

#Nodes: 8.6M Sancus Fail - - - - - -
#Edges: 243.9M

GIN

Lotan 91.79 252.84 2.26 39.37 1.08 4934.63 2230.87
Avg. Degree: 28.2 DistDGL Fail - - - - - -

AliGraph Fail - - - - - -

ogbn-papers100M

GCN

†Lotan †- †- 0.08 25.03 0.22 2499.20 801.93
DistDGL Fail - - - - - -

#Nodes: 111.1M AliGraph Fail - - - - - -
#Edges: 1.6B Sancus Fail - - - - - -

Avg. Degree: 29.1
GIN

†Lotan †- †- 0.04 24.16 0.11 2530.61 811.36
DistDGL Fail - - - - - -
AliGraph Fail - - - - - -

for them. To not understate their performance, we set the batch
size to be as large as they could handle before failing to enable the
maximum possible throughput. This means mini-batch size 8 for
DistDGL on Amazon, 128 for DistDGL on ogbn-products+GCN and
8192 on ogbn-arxiv+GIN. And mini-batch size 128 for AliGraph
on ogbn-arxiv+GCN. For Sancus, we can only test it on the GCN
workloads as it does not have an existing implementation for GIN.

Experiment Setup. We use one cluster on CloudLab [52] with
8 worker nodes. Each node has two Intel Xeon 10-core 2.20 GHz
CPUs, 192GB memory, and 10 Gbps network. Each worker node
also has an Nvidia P100 GPU, which has 12 GB memory. We tried
to get GPUs with larger memory but such resources are scarce
and costly to obtain, especially for the long-running tests we do.
Nevertheless, it is not a showstopper as Lotan’s scalability gain is
agnostic to the underlying hardware. Furthermore, even with larger
GPUs, workloads can still scale beyond GPU memory capacity and
would not change our observations about Lotan’s scalability. All
nodes run Ubuntu 20.04. We use Spark 3.2.0, Pytorch 1.10, and
CUDA 11.0.

7.1 End-to-end Performance Study
We use a 3-layer GCN with a hidden layer size of 256, as described
in [21], dubbed GCN.We also include a variant of it with hidden size
512, which we call GCN-Large, to further distinguish between Lotan
and Sancus. We skipped DistDGL and AliGraph with GCN-Large
due to their crashes or much longer runtimes, and these tests would
not provide extra insights. For GIN, we use one from [69] that is
4-layer. For the MLPs in GIN, we use a 2-layer MLP with dimensions
{128, 256} for the end-to-end study. For the GCNs, their ApplyVer-
tex functions are single-layer perceptions, while the GIN model
uses the MLP described above. All of these models do not employ
an ApplyEdge function and use a summation as the Aggregation.

Following the standard practices [21, 26, 69], we use an early
termination of 10 epochs based on the validation set; we terminate if
the validation accuracy does not increase for 10 consecutive epochs
(with a tolerance of 0.01%). Further, we put a hard time limit of 48
hrs for each model config. We also combine the hyper-parameters
used in the papers above to form a grid search: learning rate in
{0.05, 0.01}, optimizer in {𝐴𝑑𝑎𝑚,𝐴𝑑𝑎𝑔𝑟𝑎𝑑}, and dropout in {0, 0.5}.

Table 2 summarizes the results of our end-to-end tests. On the
ogbn-products + GCNworkload, Lotan achieves 47x higher through-
put than DistDGL while providing the same level of accuracy. There
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is no consensus from the GNN model research community on
whether full-batch or mini-batch training is superior. Further, note
some of the models and systems adopted mini-batch training partly
due to the scalability issues of full-batch training [6, 18]. Lotan
is designed to mitigate the said issues. Our finding of full-batch
training achieving the same or slightly higher accuracy than mini-
batch training is in line with prior work [24, 61]. Sancus, though
it runs fast, has severe issues in accuracy during our test, likely
due to its approximate nature. Furthermore, it starts to fail on the
GCN-Large workload, but Lotan can still scale. Lotan is also the
only system to be able to handle GIN training, and all other systems
fail due to GPU memory issues. Increasing GPU memory might
fix their problems on these specific workloads. Still, it would not
resolve the fundamental issues these systems have and would not
change the argument that Lotan has better scalability to handle
large workloads.

On the tiny ogbn-arxiv dataset, while Lotan can still provide the
highest accuracy on both GNNs, it no longer offers higher through-
put than DistDGL. On the reddit dataset, which, despite having
a similar number of nodes to ogbn-arxiv, has more edges, both
DistDGL and AliGraph fail, likely due to the density of the graph.
Sancus is still capable of operating and appears not affected much,
but as other experiments showed, it offers lower accuracy due to its
approximate nature. On the amazon dataset, Lotan and DistDGL are
the only systems able to run the GCN workloads, and only Lotan
for the GIN workloads. Lotan can provide a higher throughput
than DistDGL. On the ogbn-papers100M dataset, one of the largest
benchmark datasets available, Lotan is the only system able to run
the workload. As far as we know, this is the first time for a GNN
system to demonstrate full-graph GCN with a hidden size as large
as 256 on this dataset. However, the execution is heavily bottle-
necked, and a huge amount of disk spills happen. Consequently, we
could not run the workload to converge in any reasonable amount
of time. We only report the throughput numbers.

Figure 9 shows the learning curves for the best model out of
some of the hyperparameter tuning workloads. On all workloads,
Lotan converges fast and reaches the same level of accuracy as
the SOTA. Regarding resource utilization, Lotan has high CPU
utilization but generally lower GPU utilization across the workloads.
This is because Lotan puts neural network operations on GPU and
graph operations on CPU, while other systems put both on GPU.
Except for Lotan, all other systems showed little to no disk R/W
because they are not secondary-storage-aware, whereas Lotan can
utilize the disk for spilling. Sancus and DistDGL further utilize GPU
for communications, resulting in seemingly higher GPU utilization.

7.2 Drill-down Experiments
To dig into the runtime figures, we also break down Lotan’s runtime
and investigate each portion’s time costs in Figure 11(A). The Graph
Engine costs dominate, especially on the larger dataset. DL Engine
and Pipe-Join costs are not as significant. This composition will
change when we try scaling the model in Section 7.2.2.

7.2.1 Ablation Study.
To inspect each component’s performance, we conduct an ablation
study where we add our innovations to a naively implemented
version of Lotan. We pick the ogbn-arxiv+GCN workload for this
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Figure 11: (A) Runtime breakdowns. (B) Ablation study.

test. Figure 11(B) shows the results. We separate our technical
innovations into four modules: (1) Reverse Graph Backprop (RGB)
and the coupled GNN-centric partitioning scheme, as described in
Section 5.1. (2) The execution plan rewrites by our Planner outlined
in Section 4.2. (3) The various efforts we put into optimizing our
Messenger architecture as described in Section 4.3. (4) Finally, our
GNN Model Batching scheme proposed in Section 5.2.

All of the components have substantial contributions to perfor-
mance gains; Reverse Graph Backprop can boost the performance
by 2x without any plan rewrites or other optimizations. With Plan-
ner rewrites introduced, we get another 5x speed-up due to the sheer
amount of communication and computation saved. Furthermore,
our Messenger optimizations boost the performance by another
40% by reducing overheads in I/O, IPC, and synchronization. Last
but not least, GNN Model Batching contributes a more than 5x
speed-up due to amortized graph data access overheads. Overall,
our technical innovations can boost the throughput of GNN model
training by 76x, compared to a naively implemented system.
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7.2.2 Model Scalability.
We now test Lotan’s capability of scaling to larger neural network
models. In practice, there are two primary ways to scale up a model:
make it deeper by addingmore (GNN) layers, or increase the number
of neurons in each layer. We call the first type depth scaling and
the latter type width scaling. Since Lotan disaggregates the graph
operations from neural network operations, it has very different
behavior for the two types of scaling. To thoroughly test it, we use
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two different workloads based on the GIN model used earlier and
train them on the ogbn-products dataset. For the depth scaling test,
we test with different numbers of GNN layers ranging from 4 to 16.
For the width scaling test, we fixed the model to be a 4-layer, and
we varied the size of the MLP in GIN from 128 to 217 (131072); we
kept the embedding size also fixed as 256. This results in various
models with hugely different sizes.

Depth Scaling. Figure 12 shows the results: Lotan can easily
achieve almost linear scaling to 16 layers and even beyond, and
there is minimal fluctuation in the processor utilizations. Note that
the scaling is linear but not proportional; when the number of
layers doubles, the runtime does not; this is because the scaling
follows 𝑦 = 𝑘𝑥 + 𝑏 with a non-zero intercept. It is to be expected as
the amount of work grows linearly in this case, and Lotan shows
resilience at scale. To the best of our knowledge, Lotan is the first
system to demonstrate scale to 10+ layer GNNs with full batch
training. It is important to note that the systems we compared all
failed at 4 or more layers, as already discussed in Section 7.1.

Width Scaling. We show the width scaling results in Figure 13.
Increasing the MLP size will not increase the amount of work on
the Graph Engine, and since the GPU was under-utilized when the
NN is small, we see an almost constant scaling of Lotan. In this case,
we see a dramatic increase in GPU utilization and almost constant
CPU utilization. Thanks to the decoupling of graph and neural net-
works, scaling one side does not necessarily affect the other. Lotan
can provide independent scaling and frees the user from scalability
issues. It enables the user to design the GNN components sepa-
rately and more freely. Furthermore, Lotan can gracefully handle
a GNN model with 140M+ parameters with full batch training. To
put it into perspective, this is the number of parameters of some
early Transformer DL models have: BERT (110M) [10], and GPT-1
(117M) [51]. To our knowledge, Lotan is the first system to be able to
handle this scale among the GNN systems. As shown in Section 7.1,
other systems all failed at the very beginning.

7.2.3 Model Batching.
We now inspect the effect of model batching on the workloads.
For this test, we take the same ogbn-arxiv+GCN models used in
Section 7.1 and create workloads with various degrees of model
batching. Figure 14 shows the results. We first notice that the time
costs scaling is all linear with constant overheads (manifested as
the intercept), per our cost model described in Section 6. There is

also a substantial gain in throughput, especially at the low degree
of the model batching regime. The SGC and AAA costs scale far less
steeply than the SGC costs; therefore, as the model batching size
increases, the SGC costs become more and more dominant. This
indicates that the biggest challenge is on graph data processing.

At a low degree of model batching (< 10), the time costs are
dominated by their respective constant parts and not scaling as
much with the model batch size. Therefore, the time costs only
increase around 3x while the model batching size rises from 1 to
10, resulting in throughput gains. However, as the degree of model
batching increases, the scaling parts of time costs dominate, and we
see 2x increase in time costs when batch size increases from 10 to
20 (2x increase). Consequently, the throughput scaling plateaus out
as 2x model batched would mean 2x more runtime in this realm.

8 RELATEDWORK
GNN Systems. Many systems have been proposed to tackle the
efficiency and scalability challenges of GNN training. Our work
differs from them in our fundamental architecture design of sep-
aration of graph and neural network and our technical innova-
tions. We have also conceptually compared them in Section 2.3
and tested against some of the most related and state-of-art sys-
tems in Section 7. Most of their techniques are complementary to
our work. DGL [62, 74], and PyG [12] are prominent examples of
all-purpose GNN frameworks designed for generality and usabil-
ity. AliGraph [75], GraphScope [68], and PSGraph [25] are GNN
systems designed for industry-scale usage with an emphasis on
sampling-based GNN training, which differs from Lotan’s focus on
full-batch training. NeuGraph [39] is one of the first systems to in-
corporate GNNs into an extended Gather-Apply-Scatter framework.
It provides a scheduling scheme for shipping models/data in and
out of multiple GPUs; its techniques are largely complementary to
our work.

Other GNN systems proposed techniques ranging from memory
management, communication reduction, approximated processing,
and disk spilling. PaGraph [35] utilizes spare GPU memory for
data caching to boost speed when the workload is relatively small.
P3 [13] separates the graph metadata and graph properties and
places them in a way to reduce communications. Sancus [50] pro-
poses a communication reduction scheme via historical gradient
caching and update skipping. Similarly, PipeGCN [61] uses pipeline
parallelism with stale updates to speed up GNN training. They
largely focus on the efficiency of GNN training via approximated
processing and assumes the model and data can comfortably fit
in GPU memory. PaGraph, P3, and Sancus are largely orthogo-
nal to our work as Lotan is designed for large workloads, we do
not assume an abundance of GPU memory. Dorylus [58] employs
serverless functions to explore monetary cost-efficiency; our sys-
tem is still for provisioned clusters, and we rely on existing data
systems instead of custom-built ones used in Dorylus. Roc [24] uses
main memory as swapping space to offload over-the-size data from
GPU. MariusGNN [60] further proposes disk-spilling to increase the
effective memory size. These techniques complement Lotan, and
by employing a secondary-storage-aware graph data system, Lotan
can naturally piggyback on its disk spilling capability. ALG [71]
is designed for active learning setup which is largely orthogonal
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to our work. G3 [36] proposes to substitute DL frameworks with
GPU-based graph operations; it can potentially be a candidate for
the DL Engine in Lotan and is complementary to our work.

Graph Analytics Systems. Prior to the GNN era, large-scale sys-
tems were built for non-GNN graph analytical workloads and data
management. Ranging from graph DBMS [9, 11, 29, 49], to classical
graph analytics systems [2, 15–17, 27, 40, 57], and Graph Embed-
ding learning (not to be confused with GNN) systems [30, 42, 65].
They are generally orthogonal to our work, as they target very dif-
ferent sets of workloads, and they seldom work with GNNs. Most
techniques are workload-specific and not directly applicable to
GNN training, but some may be complementary.

Faster andMore Scalable GNNs. Ever since the first wave of GNN
models arrived, algorithmic research has been active in tackling
some of the scalability issues of GNNs by approximated processing
and simplified architectures. This line of research is orthogonal to
our work, as our goal is not to propose any new GNN model archi-
tecture but instead focus on the fundamental system challenges that
will not be fixed by GNNmodel research alone. GraphSage [18] pro-
poses mini-batch training and neighborhood sampling to reduce the
data dependencies. FastGCN [6] runs even more aggressively IID
sampling on the graph by directly controlling the number of nodes
involved. SGC [63] challenges GNNs by proposing trivial two-layer
architectures that reportedly could offer a similar accuracy perfor-
mance. EIGNN [37] further extends SGC to an infinite depth model
and uses eigendecomposition to boost efficiency. Graph coarsening
techniques [22] have also been explored to preprocess and down-
sample the input data.

9 LIMITATIONS, DISCUSSION, AND FUTURE
WORK

Conclusions and limitations. By carefully abstracting, optimiz-
ing, and testing, we have demonstrated that it is possible to bridge
the gap between graph analytics systems and DL systems with high
scalability and without modifying their internal code. Currently,
Lotan has two major limitations: (1) Lotan currently is only opti-
mized for full-batch training. Mini-batch training would require
efficient graph sampling and filtering, posing another scalability
challenge and potential query optimization questions. (2) Lotan is
meant for large workloads with large graphs and/or models. There

is still some room for improvement on smaller workloads that do fit
inmemory, wheremore leeway for caching and batching techniques
exists. Furthermore, GNN algorithmic research has accelerated in
recent years, and more sophisticated architectures, some with over
a thousand layers and some with Large Language Models (LLMs)
baked in have been studied [31, 73]. More work is needed to see
how Lotan or other GNN systems would fare for those models. We
leave it to future work to mitigate these limitations.

Discussion. Our results showed that the graph data system bot-
tlenecked many of our tests (see Figure 11(A)). There are many
sync barriers, costly data replications, and frequent garbage collec-
tions. Graph data systems need to evolve to better support GNN
workloads and property-rich graphs with high dimensional dense
vectors. Furthermore, GNN systems such as Lotan can be extended
to adopt recent advances in ML systems research for optimizing
model selection workloads [28, 33, 45, 46, 72], fine-tuning and trans-
fer learning workloads [44], and large model scaling [43, 47]. It is
non-trivial to extend their techniques designed for IID data to graph
data. However, with suitable adaptation, they could further amor-
tize some runtime overheads to make GNNs more efficient at scale.

ACKNOWLEDGMENTS
This work was supported in part by an NSF CAREER Award under
award number 1942724 and a gift from VMware. The content is
solely the responsibility of the authors and does not necessarily
represent the views of any of these organizations. We thank the
members of UC SanDiego’s Database Lab and Center for Networked
Systems for their feedback on this work.

REFERENCES
[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray,
B. Steiner, P. A. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng.
Tensorflow: A system for large-scale machine learning. In OSDI, pages 265–283.
USENIX Association, 2016.

[2] S. Aridhi, A. Montresor, and Y. Velegrakis. BLADYG: A graph processing frame-
work for large dynamic graphs. Big Data Res., 9:9–17, 2017.

[3] Y. Bai, C. Li, Z. Lin, Y. Wu, Y. Miao, Y. Liu, and Y. Xu. Efficient data loader for
fast sampling-based gnn training on large graphs. IEEE Transactions on Parallel
& Distributed Systems, (01):1–1, 2021.

[4] M. Besta, E. Peter, R. Gerstenberger, M. Fischer, M. Podstawski, C. Barthels,
G. Alonso, and T. Hoefler. Demystifying graph databases: Analysis and taxonomy
of data organization, system designs, and graph queries. CoRR, abs/1910.09017,
2019.

12



[5] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. Recent advances in
graph partitioning. In Algorithm Engineering, volume 9220 of Lecture Notes in
Computer Science, pages 117–158. 2016.

[6] J. Chen, T. Ma, and C. Xiao. Fastgcn: Fast learning with graph convolutional
networks via importance sampling. In ICLR (Poster). OpenReview.net, 2018.

[7] J. Chen, J. Zhu, and L. Song. Stochastic training of graph convolutional networks
with variance reduction. In ICML, volume 80 of Proceedings of Machine Learning
Research, pages 941–949. PMLR, 2018.

[8] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li. Simple and deep graph con-
volutional networks. In ICML, volume 119 of Proceedings of Machine Learning
Research, pages 1725–1735. PMLR, 2020.

[9] A. Deutsch, Y. Xu, M. Wu, and V. E. Lee. Tigergraph: A native MPP graph
database. CoRR, abs/1901.08248, 2019.

[10] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: pre-training of deep
bidirectional transformers for language understanding. In NAACL-HLT (1),
pages 4171–4186. Association for Computational Linguistics, 2019.

[11] X. Feng, G. Jin, Z. Chen, C. Liu, and S. Salihoğlu. Kùzu graph database manage-
ment system. In CIDR, 2023.

[12] M. Fey and J. E. Lenssen. Fast graph representation learning with pytorch
geometric. CoRR, abs/1903.02428, 2019.

[13] S. Gandhi and A. P. Iyer. P3: distributed deep graph learning at scale. In OSDI,
pages 551–568. USENIX Association, 2021.

[14] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural message
passing for quantum chemistry. In ICML, volume 70 of Proceedings of Machine
Learning Research, pages 1263–1272. PMLR, 2017.

[15] Giraph. Apache Giraph, Accessed Nov 2, 2022. https://giraph.apache.org/.
[16] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Dis-

tributed graph-parallel computation on natural graphs. In OSDI, pages 17–30.
USENIX Association, 2012.

[17] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.
Graphx: Graph processing in a distributed dataflow framework. In OSDI, pages
599–613. USENIX Association, 2014.

[18] W. L. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on
large graphs. In NIPS, pages 1024–1034, 2017.

[19] R. He and J. J. McAuley. Ups and downs: Modeling the visual evolution of fashion
trends with one-class collaborative filtering. In J. Bourdeau, J. Hendler, R. Nkam-
bou, I. Horrocks, and B. Y. Zhao, editors, Proceedings of the 25th International
Conference on World Wide Web, WWW 2016, Montreal, Canada, April 11 - 15, 2016,
pages 507–517. ACM, 2016.

[20] L. Hoang, X. Chen, H. Lee, R. Dathathri, G. Gill, and K. Pingali. Efficient distribu-
tion for deep learning on large graphs. In MLSys GNNSys Workshop. mlsys.org,
2021.

[21] W. Hu, M. Fey, M. Zitnik, Y. Dong, H. Ren, B. Liu, M. Catasta, and J. Leskovec.
Open graph benchmark: Datasets for machine learning on graphs. In NeurIPS,
2020.

[22] Z. Huang, S. Zhang, C. Xi, T. Liu, and M. Zhou. Scaling up graph neural networks
via graph coarsening. In KDD, pages 675–684. ACM, 2021.

[23] A. Jain, A. R. Zamir, S. Savarese, and A. Saxena. Structural-rnn: Deep learning
on spatio-temporal graphs. In CVPR, pages 5308–5317. IEEE Computer Society,
2016.

[24] Z. Jia, S. Lin, M. Gao, M. Zaharia, and A. Aiken. Improving the accuracy, scala-
bility, and performance of graph neural networks with roc. In I. S. Dhillon, D. S.
Papailiopoulos, and V. Sze, editors, Proceedings of Machine Learning and Systems
2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020. mlsys.org, 2020.

[25] J. Jiang, P. Xiao, L. Yu, X. Li, J. Cheng, X. Miao, Z. Zhang, and B. Cui. Psgraph:
How tencent trains extremely large-scale graphs with spark? In ICDE, pages
1549–1557. IEEE, 2020.

[26] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolu-
tional networks. In ICLR (Poster). OpenReview.net, 2017.

[27] S. Ko and W. Han. Turbograph++: A scalable and fast graph analytics system. In
SIGMOD Conference, pages 395–410. ACM, 2018.

[28] A. Kumar, S. Nakandala, Y. Zhang, S. Li, A. Gemawat, and K. Nagrecha. Cerebro:
A Layered Data Platform for Scalable Deep Learning. In CIDR. www.cidrdb.org,
2021.

[29] A. G. Labouseur, J. Birnbaum, P. W. Olsen, S. R. Spillane, J. Vijayan, J. Hwang, and
W. Han. The g* graph database: efficiently managing large distributed dynamic
graphs. Distributed Parallel Databases, 33(4):479–514, 2015.

[30] A. Lerer, L. Wu, J. Shen, T. Lacroix, L. Wehrstedt, A. Bose, and A. Peysakhovich.
Pytorch-biggraph: A large scale graph embedding system. In MLSys. mlsys.org,
2019.

[31] G. Li, M. Müller, B. Ghanem, and V. Koltun. Training graph neural networks
with 1000 layers. In M. Meila and T. Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pages 6437–6449.
PMLR, 2021.

[32] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J.
Shekita, and B.-Y. Su. Scaling Distributed Machine Learning with the Parameter
Server. In OSDI, 2014.

[33] S. Li and A. Kumar. Towards an optimized GROUP BY abstraction for large-scale
machine learning. Proc. VLDB Endow., 14(11):2327–2340, 2021.

[34] X. Li, X. Liu, L. Lu, X. Hua, Y. Chi, and K. Xia. Multiphysical graph neural
network (MP-GNN) for COVID-19 drug design. Briefings Bioinform., 23(4), 2022.

[35] Z. Lin, C. Li, Y. Miao, Y. Liu, and Y. Xu. Pagraph: Scaling GNN training on large
graphs via computation-aware caching. In R. Fonseca, C. Delimitrou, and B. C.
Ooi, editors, SoCC ’20: ACM Symposium on Cloud Computing, Virtual Event, USA,
October 19-21, 2020, pages 401–415. ACM, 2020.

[36] H. Liu, S. Lu, X. Chen, and B. He. G3: when graph neural networks meet parallel
graph processing systems on gpus. Proc. VLDB Endow., 13(12):2813–2816, 2020.

[37] J. Liu, K. Kawaguchi, B. Hooi, Y. Wang, and X. Xiao. EIGNN: efficient infinite-
depth graph neural networks. In NeurIPS, pages 18762–18773, 2021.

[38] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.
Graphlab: A new framework for parallel machine learning. In UAI, pages 340–349.
AUAI Press, 2010.

[39] L. Ma, Z. Yang, Y. Miao, J. Xue, M. Wu, L. Zhou, and Y. Dai. Neugraph: Parallel
deep neural network computation on large graphs. In USENIX Annual Technical
Conference, pages 443–458. USENIX Association, 2019.

[40] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and
G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD
Conference, pages 135–146. ACM, 2010.

[41] X. Miao, W. Zhang, Y. Shao, B. Cui, L. Chen, C. Zhang, and J. Jiang. Lasagne:
A multi-layer graph convolutional network framework via node-aware deep
architecture (extended abstract). In ICDE, pages 1561–1562. IEEE, 2022.

[42] J. Mohoney, R. Waleffe, H. Xu, T. Rekatsinas, and S. Venkataraman. Marius:
Learning massive graph embeddings on a single machine. In OSDI, pages 533–
549. USENIX Association, 2021.

[43] K. Nagrecha and A. Kumar. Saturn: An Optimized Data System for Multi-Large-
Model Deep Learning Workloads. https://adalabucsd.github.io/papers/TR_2023_
Saturn.pdf, 2023. [Tech report].

[44] S. Nakandala and A. Kumar. Nautilus: An optimized system for deep transfer
learning over evolving training datasets. In Z. G. Ives, A. Bonifati, and A. E.
Abbadi, editors, SIGMOD ’22: International Conference on Management of Data,
Philadelphia, PA, USA, June 12 - 17, 2022, pages 506–520. ACM, 2022.

[45] S. Nakandala, Y. Zhang, and A. Kumar. Cerebro: Efficient and Reproducible Model
Selection on Deep Learning Systems. In Proceedings of the 3rd International
Workshop on Data Management for End-to-End Machine Learning, pages 1–4,
2019.

[46] S. Nakandala, Y. Zhang, and A. Kumar. Cerebro: A Data System for Optimized
Deep Learning Model Selection. Proc. VLDB Endow., 13(11):2159–2173, 2020.

[47] D. Narayanan, A. Harlap, A. Phanishayee, V. Seshadri, N. R. Devanur, G. R. Ganger,
P. B. Gibbons, and M. Zaharia. Pipedream: generalized pipeline parallelism for
DNN training. In SOSP, pages 1–15. ACM, 2019.

[48] D. Narayanan, K. Santhanam, A. Phanishayee, and M. Zaharia. Accelerating
deep learning workloads through efficient multi-model execution. In NeurIPS
Workshop on Systems for Machine Learning, December 2018.

[49] Neo4j. Neo4j, Accessed October 12, 2021. https://neo4j.com/.
[50] J. Peng, Z. Chen, Y. Shao, Y. Shen, L. Chen, and J. Cao. SANCUS: staleness-aware

communication-avoiding full-graph decentralized training in large-scale graph
neural networks. Proc. VLDB Endow., 15(9):1937–1950, 2022.

[51] A. Radford and K. Narasimhan. Improving language understanding by generative
pre-training. 2018.

[52] R. Ricci, E. Eide, and CloudLabTeam. Introducing Cloudlab: Scientific Infrastruc-
ture for Advancing Cloud Architectures and Applications. ; login:: the magazine
of USENIX & SAGE, 39(6):36–38, 2014.

[53] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream: edge-centric graph process-
ing using streaming partitions. In SOSP, pages 472–488. ACM, 2013.

[54] S. Sakr, A. Bonifati, H. Voigt, A. Iosup, K. Ammar, R. Angles,W. G. Aref, M. Arenas,
M. Besta, P. A. Boncz, K. Daudjee, E. D. Valle, S. Dumbrava, O. Hartig, B. Haslhofer,
T. Hegeman, J. Hidders, K. Hose, A. Iamnitchi, V. Kalavri, H. Kapp, W. Martens,
M. T. Özsu, E. Peukert, S. Plantikow, M. Ragab, M. Ripeanu, S. Salihoglu, C. Schulz,
P. Selmer, J. F. Sequeda, J. Shinavier, G. Szárnyas, R. Tommasini, A. Tumeo, A. Uta,
A. L. Varbanescu, H. Wu, N. Yakovets, D. Yan, and E. Yoneki. The future is
big graphs: a community view on graph processing systems. Commun. ACM,
64(9):62–71, 2021.

[55] A. Sergeev and M. D. Balso. Horovod: Fast and Easy Distributed Deep Learning
in TF. arXiv preprint arXiv:1802.05799, 2018.

[56] J. Sun, M. Yue, Z. Lin, X. Yang, L. Nocera, G. Kahn, and C. Shahabi. Crime-
forecaster: Crime prediction by exploiting the geographical neighborhoods’
spatiotemporal dependencies. In ECML/PKDD (5), volume 12461 of Lecture Notes
in Computer Science, pages 52–67. Springer, 2020.

[57] C. H. C. Teixeira, A. J. Fonseca, M. Serafini, G. Siganos, M. J. Zaki, and A. Aboul-
naga. Arabesque: a system for distributed graph mining. In SOSP, pages 425–440.
ACM, 2015.

[58] J. Thorpe, Y. Qiao, J. Eyolfson, S. Teng, G. Hu, Z. Jia, J. Wei, K. Vora, R. Netravali,
M. Kim, and G. H. Xu. Dorylus: Affordable, scalable, and accurate GNN training
with distributed CPU servers and serverless threads. In OSDI, pages 495–514.
USENIX Association, 2021.

13

https://giraph.apache.org/
https://adalabucsd.github.io/papers/TR_2023_Saturn.pdf
https://adalabucsd.github.io/papers/TR_2023_Saturn.pdf
https://neo4j.com/


[59] Y. Tian. The world of graph databases from an industry perspective. CoRR,
abs/2211.13170, 2022.

[60] R.Waleffe, J. Mohoney, T. Rekatsinas, and S. Venkataraman. Mariusgnn: Resource-
efficient out-of-core training of graph neural networks, 2022.

[61] C. Wan, Y. Li, C. R. Wolfe, A. Kyrillidis, N. S. Kim, and Y. Lin. Pipegcn: Efficient
full-graph training of graph convolutional networks with pipelined feature
communication. In ICLR. OpenReview.net, 2022.

[62] M. Wang, L. Yu, D. Zheng, Q. Gan, Y. Gai, Z. Ye, M. Li, J. Zhou, Q. Huang, C. Ma,
Z. Huang, Q. Guo, H. Zhang, H. Lin, J. Zhao, J. Li, A. J. Smola, and Z. Zhang. Deep
graph library: Towards efficient and scalable deep learning on graphs. CoRR,
abs/1909.01315, 2019.

[63] F. Wu, A. H. S. Jr., T. Zhang, C. Fifty, T. Yu, and K. Q. Weinberger. Simplifying
graph convolutional networks. In ICML, volume 97 of Proceedings of Machine
Learning Research, pages 6861–6871. PMLR, 2019.

[64] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui. Graph neural networks in recom-
mender systems: A survey. ACM Comput. Surv., 55(5):97:1–97:37, 2023.

[65] T. Wu, A. Khan, M. Yong, G. Qi, and M. Wang. Efficiently embedding dynamic
knowledge graphs. Knowl. Based Syst., 250:109124, 2022.

[66] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu. A comprehensive survey
on graph neural networks. IEEE Trans. Neural Networks Learn. Syst., 32(1):4–24,
2021.

[67] H. Xie, D. Li, Y. Wang, and Y. Kawai. Visualization method for the spreading
curve of COVID-19 in universities using GNN. In BigComp, pages 121–128. IEEE,
2022.

[68] J. Xu, Z. Bai, W. Fan, L. Lai, X. Li, Z. Li, Z. Qian, L. Wang, Y. Wang, W. Yu, and
J. Zhou. Graphscope: A one-stop large graph processing system. Proc. VLDB
Endow., 14(12):2703–2706, 2021.

[69] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. How powerful are graph neural
networks? In ICLR. OpenReview.net, 2019.

[70] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and J. Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In KDD,
pages 974–983. ACM, 2018.

[71] W. Zhang, Y. Shen, Y. Li, L. Chen, Z. Yang, and B. Cui. ALG: fast and accu-
rate active learning framework for graph convolutional networks. In SIGMOD
Conference, pages 2366–2374. ACM, 2021.

[72] Y. Zhang, F. Mcquillan, N. Jayaram, N. Kak, E. Khanna, O. Kislal, D. Valdano, and
A. Kumar. Distributed deep learning on data systems: A comparative analysis of
approaches. Proc. VLDB Endow., 14(10):1769–1782, 2021.

[73] J. Zhao, M. Qu, C. Li, H. Yan, Q. Liu, R. Li, X. Xie, and J. Tang. Learning on
large-scale text-attributed graphs via variational inference. In The Eleventh
International Conference on Learning Representations, 2023.

[74] D. Zheng, C. Ma, M. Wang, J. Zhou, Q. Su, X. Song, Q. Gan, Z. Zhang, and
G. Karypis. Distdgl: Distributed graph neural network training for billion-scale
graphs. In 10th IEEE/ACM Workshop on Irregular Applications: Architectures and
Algorithms, IA3 2020, Atlanta, GA, USA, November 11, 2020, pages 36–44. IEEE,
2020.

[75] R. Zhu, K. Zhao, H. Yang, W. Lin, C. Zhou, B. Ai, Y. Li, and J. Zhou. Aligraph: A
comprehensive graph neural network platform. Proc. VLDB Endow., 12(12):2094–
2105, 2019.

A APPENDIX
A.1 Cost Models
A.1.1 Replication Factor. The vertex replication factor is a com-
mon measure of the quality of graph partitioning algorithms. It is
defined as the average amount of logical presence each vertex has
across partitions. However, replication factor defined this way does
not consider the asymmetry during GNN forward- and backward-
propagation highlighted in Section 5.1.

During forward-prop, the vertices merely have their embeddings,
and replicating these vertices is relatively less expensive. However,
during back-prop, the vertices are associated with maps of gradi-
ents that could be orders of magnitude larger than the embeddings.
Replicating them would induce high costs. Hence vertex replication
has different importance during forward-prop and back-prop. To
account for this asymmetry, we define, as follows, a newmetric com-
posed of a weighted sum of the forward and backward replication
costs.

Define the set of vertex partitions V𝑝 = {(𝑣𝑖 , 𝑝)}, each vertex 𝑣𝑖
is accompanied by the partition number 𝑝 . If a vertex is replicated,

multiple tuples will be in the set with the same vertex but different
partitions. Similarly we define the set of edge partitions as E𝑝 =

{(𝑣𝑖 , 𝑣 𝑗 , 𝑝)}, where 𝑣𝑖 is the source and 𝑣 𝑗 the destination.

Forward replication factor. During forward-prop, data flows
from source vertices to destination vertices. Replication, if needed,
happens during the scatter phase when the source and destination
are not colocated. The same source vertex needs to be shipped over
the network to each physical location where it is needed. Hence
higher replication factor directly contributes to more networking
needed. Define the forward replication cost 𝑅𝑓 to be:

𝑅𝑓 :=
1
𝑛

∑︂
𝑖

|A𝑓 (𝑣𝑖 ) |, (4)

where A𝑓 (𝑣𝑖 ) ⊆ {𝑝} is the subset of partitions that 𝑣𝑖 is mirrored
to, and 𝑣𝑖 has at least one outgoing edge that is co-located in that
partition.

Backward replication cost. Similarly, the backward replication
cost 𝑅𝑏 can be defined as:

𝑅𝑏 :=
1
𝑛

∑︂
𝑖

|A𝑏 (𝑣𝑖 ) |, (5)

where A𝑏 is defined the same way as A𝑓 , except that instead of
summing all 𝑣𝑖 that have an out-going edge, we now sum those
that have an in-coming one.

Total replication cost. Together, we take a weighted sum of 𝑅𝑓
and 𝑅𝑏 to obtain the total replication cost 𝑅:

𝑅 :=
1

1 + 𝑑 𝑅𝑓 +
𝑑

1 + 𝑑 𝑅𝑏 , (6)

where 𝑑 is the average degree of the graph. 𝑅𝑓 and 𝑅𝑏 now acknowl-
edge the asymmetry between forward- and back-propagation. In
practice, 𝑅𝑓 and 𝑅𝑏 can be measured using their definitions rather
easily.

A.1.2 Memory Consumption. The most intensive memory con-
sumption of the Graph Engine comes from the gather-scatter opera-
tions.We canmodel the relationship betweenmemory consumption
and the number of partitions.

𝑀 =
𝑓𝑟𝑒𝑝𝑃 + 𝑁
max( 𝑃

𝑀𝐿
, 1)

, (7)

where𝑀 is the number of machines, 𝐿 is the number of processing
units per machine (degree of parallelism), 𝑃 is the number of par-
titions for the data, and 𝑁 is the total amount of data (in terms of
the number of vertices). For simplicity, assume 𝑓𝑟𝑒𝑝 follows a linear
relationship with 𝑃 . Observations:

(1) At the very low amount of partitions (𝑃 ≤ 𝑀𝐿), increase 𝑃
would increase memory footprint.

(2) When 𝑃 > 𝑀𝐿, the memory consumption would eventually
begin to drop.

This means the memory consumption would rise and then fall as 𝑃
increases.
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A.1.3 Overheads. It is a non-trivial task to manage and operate on
billions of objects in a distributed environment. Overheads such as
object headers and one extra ephemeral copy of data are negligible
in many systems. However, we cannot safely ignore them due to
the “amplifying" effect of large graphs – any inefficiency would
get repeated millions, if not billions of times, due to the number of
vertices and edges in such a graph. Consequently, we realized our
cost model has to have a better understanding and estimation of the
overheads for a more accurate total cost estimation. We separate
the overheads into two categories: constant and scaling. As the
name suggests, the constant overheads are fixed costs associated
with each specific type of operation; these could include process
setup/destruction time. They usually do not scale with the amount
of data and, therefore of little importance to our estimation.

On the other hand, the scaling overheads rise when the number
of data increases. Note that the trend may not always be linear, as
when the data scale approaches certain thresholds (disk/network
throughput, RAM constrain), new overheads are induced due to
network throttling, disk spilling, and garbage collections. All in all,
these overheads further complicate the picture and are even harder
to estimate. Our system relies on logs of past runs and specific
heuristics to determine their costs.

Induced Overheads. Given the total memory consumption 𝐼 , net-
work and disk bandwidth usage 𝐽 and 𝐾 . And their respective re-
source limit 𝐼𝑚𝑎𝑥 , 𝐽𝑚𝑎𝑥 , 𝐾𝑚𝑎𝑥 . The total induced overhead𝑂𝑖𝑛𝑑𝑢𝑐𝑒𝑑
can be summarized as:

𝑂𝑖𝑛𝑑𝑢𝑐𝑒𝑑 := 𝑂𝑚𝑒𝑚𝑜𝑟𝑦 +𝑂𝑛𝑒𝑡𝑤𝑜𝑟𝑘 +𝑂𝑑𝑖𝑠𝑘 , (8)

and

𝑂𝑚𝑒𝑚𝑜𝑟𝑦 = 1𝐼>𝐼𝑚𝑎𝑥
· 𝑜𝑚𝑒𝑚𝑜𝑟𝑦 (𝐼 ), (9)

𝑂𝑛𝑒𝑡𝑤𝑜𝑟𝑘 = 1𝐽 >𝐽𝑚𝑎𝑥
· 𝑜𝑛𝑒𝑡𝑤𝑜𝑟𝑘 (𝐽 ), (10)

𝑂𝑑𝑖𝑠𝑘 = 1𝐾>𝐾𝑚𝑎𝑥
· 𝑜𝑑𝑖𝑠𝑘 (𝐾), (11)

where 𝑜𝑚𝑒𝑚𝑜𝑟𝑦, 𝑜𝑛𝑒𝑡𝑤𝑜𝑟𝑘 , 𝑜𝑑𝑖𝑠𝑘 are the respective functions for the
overheads, and 1𝐴 is the indicator function defined as:

1𝐴 (𝑥) =
{︄
1 if 𝑥 ∈ 𝐴
0 if 𝑥 ∉ 𝐴

(12)

This means the induced overheads only exist when the required
resource is above the resource limit and also scales along with the
amount of resource requirement. There is no good way to estimate
these functions and the resource limits beforehand, and we usually
rely on runtime statistics. Even so, the estimation may still be tricky
due to its non-linear nature. Hence a quick workaround is to give
preference to execution plans with resource requirements below
thresholds, which is implemented in Lotan.

A.1.4 Computational Cost Models. Scatter-Gather-Collect Cost.

𝑊𝑆𝐺𝐶 (𝑘, 𝑓 𝑜𝑟𝑤𝑎𝑟𝑑) = 𝑙 (𝑘)𝑁 · (𝑐0𝑑𝑜𝑢𝑡 + 𝑐1𝑅𝑓 + 𝑐2𝑑𝑖𝑛) (13)

The first term is the scatter computation time, the second is the scat-
ter data movement time (involving network and disk I/O), and the
third is the gather and collect computation time. 𝑐0, 𝑐1, 𝑐2 represent
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Figure 15: Messenger architecture.

the throughput of scatter, data movement and gather, respectively.
Similarly, for back-propagation:

𝑊𝑆𝐺𝐶 (𝑘, 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑) = 𝑙 (𝑘)𝑁 · (𝑐0𝑑𝑖𝑛 + 𝑐1𝑅𝑏 𝑓𝑒 + 𝑐2𝑑𝑜𝑢𝑡 ). (14)

Note the asymmetry between forward and backward propagation,
as highlighted previously in Section 6. Furthermore, we define
an explosion factor 𝑓𝑒 ∈ {𝑑𝑖𝑛, 𝑑𝑜𝑢𝑡 , 1} to represent the potential
explosion of data for specific plans. The actual value of 𝑓𝑒 depends
on the specification of the GNN, the execution plan, and the current
prorogation direction.

Pipe-and-Join Cost.

𝑊𝑃 𝐽 (𝑘) = 𝑐3𝑙 (𝑘)𝑁 (𝑓 𝑜𝑢𝑡𝑒 + 𝑓 𝑖𝑛𝑒 ) + 𝑐4𝑁 + 𝑐5𝑙 (𝑘)𝑁, (15)

The first and second terms (collected together) represent the pipe-to
and pipe-from cost between the Graph Engine and Deep Learning
Engine. Hence, to indicate the potential asymmetry, we have two
explosion factors 𝑓 𝑜𝑢𝑡𝑒 and 𝑓 𝑖𝑛𝑒 . The third term represents the join
cost of adding data back to the Graph Engine, and we always use
a hash-join. The last term is the serialization/deserialization costs
between different runtimes. 𝑐3, 𝑐4, 𝑐5 are the pipe throughput, join
operator, and serialization coefficients, respectively.

ApplyEdge-Aggregation-ApplyVertex Cost.

𝑊𝐴𝐴𝐴 = 𝑙 (𝑘)𝑁 𝑓𝑒 (𝑤0 (𝑘) +𝑤1 (𝑘)) +𝑤2 (𝑘)𝑙 (𝑘)𝑁, (16)

where 𝑤0,𝑤1,𝑤2 are the speed of the ApplyEdge, Aggregation,
and ApplyVertex functions; they all depend on the GNN model
specification.

Total Cost. To put everything together, we have the total cost of
an execution plan written as:

𝑊 =
∑︂
𝑘

∑︂
𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛

(𝑊𝑆𝐺𝐶 +𝑊𝑃 𝐽 +𝑊𝐴𝐴𝐴 +𝑂 (𝑁,𝑑, 𝑙)), (17)

where 𝑂 (𝑁,𝑑, 𝑙) is the non-negligible overheads associated with
each stage. To compute the total cost, we need to gather statistics
or estimate all the coefficients, compute the costs for each stage,
and then sum them together.

A.2 Messenger
The architecture of the Messenger is shown in Figure 15. We create
one Dealer per Graph Engine worker to handle the datacasting
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and batching, dubbed micro-batch processing. Each data batch is
hash-indexed to verify the data orders. The Dealers then connect
to a Router, which forwards data to and from the message queues,
which the DL Engine workers consume.

A.3 Supplementray Experiment Results
A.3.1 Learning Curves.

Figure 18 shows the learning curves for the best model out of
some of the hyperparameter tuning workloads on the validation
set.
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Figure 16: Effect of Number of Partitions.
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Figure 17: Effect of Number of Partitions.

A.3.2 Effect of number of partitions.
In our system, the number of partitions is a critical config parameter
to tune. This parameter interplays with various components and
subtly impacts the overall performance. We take the same ogbn-
arxiv+GCNworkload used in our end-to-end experiments and run it
with various partitions. Figure 11 (C) shows the experiment results.
As predicted in Section 6, the throughput first increases and then
decreases. It increases likely due to increased parallelism at the
beginning but then drops because of the overheads caused by the
higher number of partitions. The network usage follows a similar
trend, but the disk usage remains more stable. It is important to
note that there exists a sweet spot of the parameter setting for

maximum throughput. However, as discussed earlier, it is tough to
model such non-linear behavior. So instead, we adopt the heuristics
described in Section 6.
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Figure 18: Learning curves for the chosen model on the validation set. (A) ogbn-products-GCN. (B) ogbn-products-GIN. (C)
ogbn-arxiv-GCN. (D) ogbn-arxiv-GIN.
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