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Abstract—The tedious grunt work involved in data preparation
(prep) before ML reduces ML user productivity. It is also a
roadblock to industrial-scale cloud AutoML workflows that build
ML models for millions of datasets. One important data prep step
for ML is cleaning duplicates in the Categorical columns, e.g.,
deduplicating CA with California in a State column. However,
how such Categorical duplicates impact ML is ill-understood
as there exist almost no in-depth scientific studies to assess
their significance. In this work, we take the first step towards
empirically characterizing the impact of Categorical duplicates
on ML classification with a three-pronged approach. We first
study how Categorical duplicates exhibit themselves by creating
a labeled dataset of 1248 Categorical columns. We then curate a
downstream benchmark suite of 14 real-world datasets to make
observations on the effect of Categorical duplicates on three
popular classifiers. We finally use simulation studies to validate
our observations. We find that Logistic Regression and Similarity
encoding are more robust to Categorical duplicates than two
One-hot encoded high-capacity classifiers. We provide actionable
takeaways that can potentially help AutoML developers to build
better platforms and ML practitioners to reduce grunt work.
While some of the presented insights have remained folklore for
practitioners, our work presents the first systematic scientific
study to analyze the impact of Categorical duplicates on ML and
put this on an empirically rigorous footing. Our work presents
novel data artifacts and benchmarks, as well as novel empirical
analyses to spur more research on this topic.

I. INTRODUCTION

Automated machine learning (AutoML) is beginning to
increase access to ML for both small-medium enterprises
and non-ML domain experts. This has led to the emergence
of several platforms such as Google Cloud AutoML [1],
Microsoft’s AutomatedML [2], and H2O Driverless AI [3]
with the promise to automate the end-to-end ML workflow
without any human-in-the-loop. Since ML prediction accuracy
is the most critical in AutoML environments, many works
have studied the automation and impact of algorithm selection,
hyperparameter search, and optimization heuristics on ML [4],
[5]. Also, recently there is a growing interest for studying how
data prep specifically affects downstream ML [6]–[8].

Data prep for ML remains particularly challenging on struc-
tured data. It involves manual grunt work that is both tedious
and time-consuming. Even AutoML users are often asked to
manually perform many data prep steps before using their plat-
forms [9]. Surveys of AutoML users have repeatedly identified
such challenges in conducting data prep [10], [11]. One issue
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TABLE I
CUSTOMERS DATA USED FOR ML CHURN PREDICTION.

CustId Name Age Gender State Title Contract Churn
101 John 42 Male California sr. Scientist monthly ‘Y’

102 Jerry 29 Mail CA snr scientist Month-to
-month

‘N’

that they often encounter is duplicates in the columns that are
Categorical, which assumes mutually exclusive values from
a known finite set. This can require significant manual effort
to fix duplicates even if a single Categorical column contains
them in a data file.

Consider a dataset to be used for a common ML classifica-
tion task, Customers Churn prediction in Table I. Duplicates,
categories referring to the same real-world object, occur in
many Categorical columns such as Gender, State, Title, and
Contract. Note that Name is not Categorical since it offers
no discriminative power and cannot be generalized for ML.
The presence of duplicates within a Categorical column can
potentially dilute signal strength that one can extract for ML.
Thus, an ML practitioner would often deduplicate categories
before ML. Even, AutoML platforms often suggest users
to manually inspect Categoricals and consolidate duplicates
whenever they arise, as part of their guidelines for obtaining
an accurate model [12]. This can involve non-trivial amount
of deduplication effort at a Categorical column-level as dupli-
cates can arise as misspellings, abbreviations, and synonyms,
even within the same column. Note that this problem is related
but complementary to entity deduplication issues studied in the
data cleaning literature, as we will explain shortly.

In this paper, we ask: How do Categorical duplicates impact
commonly used ML classifiers? Is category deduplication
effort even worthwhile for ML? Is it always needed regardless
of the employed Categorical encoding scheme? We take a
step towards answering these questions by developing an in-
depth scientific understanding of the importance of category
deduplication for ML classification (henceforth referred to as
“ML”). Our objectives are two-fold. (1) Perform an extensive
empirical study to measure the impact of Categorical dupli-
cates on ML and distill the findings into actionable insights for
handling them. This can help ML practitioners decide when
and how to prioritise their cleaning effort. Moreover, this can
enable AutoML platform builders design better ML workflows.
(2) Present critical artifacts that can help advance the science



of building AutoML platforms by providing researchers an
apparatus to tackle open questions in this direction.

Approach Overview. We identify that the impact on ML accu-
racy in presence of Categorical duplicates can be characterized
with several confounders such as their duplication properties,
training data properties, Categorical encoding, and ML model.
Considering this, we make three-part contributions to cover our
goals. (1) We produce labeled dataset to study how real-world
Categorical duplicates arise. (2) We create a downstream
benchmark suite to phenomenalise the impact on ML on real-
world data containing Categorical duplicates with multiple
confounders. (3) Significance of each confounder is hard to
discern when all confounders act together. We use simulation
study to disentangle the impact with each confounder and
explain the phenomenon discretely.

Relationship to Prior Work. Entity Matching (EM) solu-
tions [13]–[15] operate at a tuple-level since they have access
to the entire feature vectors of the two tables. Note that
tuple-level duplicates do not necessarily imply duplication in
Categorical strings, and also vice versa. Thus, the problem
of EM is orthogonal to category deduplication. Admittedly, it
is possible to view category deduplication as an extension of
row-level deduplication but doing so is non-trivial. Regardless,
our focus is to study only the impact of category deduplication
on ML and not how to perform deduplication or compare
deduplication methods. Moreover, techniques to perform value
normalization [16] and string matching [17], [18] are orthogo-
nal to our focus. We leave automating category deduplication
to future work, including potentially extending existing row-
level deduplication works.

Note that a Categorical column for ML assumes values from
a finite closed domain. Non-generalizable open domain person
names, custom processable addresses, or even semantically
rich textual descriptions in public datasets [13], [19] and string
matching literature [17], [18] are not Categorical; thus, they
are beyond the scope of this work. Although incidental Cate-
gorical duplicates do arise in prior datasets [6], [13], [18], we
posit that we need a systematic benchmark to characterize and
understand their impact on ML accuracy that prior works do
not focus on. CleanML [6] evaluated the impact of many data
cleaning steps on ML. Our work is along the same direction,
but they did not specifically explore Categorical deduplication
and its causal confounders that matter for accuracy. We deep
dive into Categorical deduplication to offer empirical rigor and
understand the importance of task scientifically, rather than a
coarse-grained study of cleaning for ML.

Empirical Evaluation. An empirical comparison of our down-
stream benchmark reveals that category deduplication can
often improve the ML accuracy significantly, e.g., the median
lifts in % accuracies due to category deduplication on One-
hot encoded Logistic Regression (LR), Random Forest (RF),
and multi-layered perceptron (MLP) are 0.6, 1.6, and 2 (over
14 datasets) resp. Thus, LR gets impacted much less with
Categorical duplicates than RF and MLP. Overall, we make

eight such observations on the significance of confounders
with downstream benchmark. We validate them with simu-
lation study and provide explanations into how ML models
with different biases behave with Categorical duplicates.

Takeaways for Practitioners. We distill our empirical analy-
sis into a handful of actionable takeaways for ML practitioners
and AutoML developers. For instance, LR is more robust to the
adverse impact of Categorical duplicates than high-capacity
RF and MLP as it overfits less. Also, Similarity encoding [20]
is more robust than other encodings to tolerate Categorical
duplicates, thereby diminishing the utility of category dedu-
plication. We also expose a critical shortcoming of One-hot
and String encoding [21], when Categorical duplicates arising
in the deployment but not during training can affect ML
performance significantly.

Some of these insights may be considered folklore by
practitioners, but this work is the first in-depth systematic
scientific study to assess the impact of Categorical duplicates
on ML. We explain the impact from the bias-variance tradeoff
perspective to put the empirical results on a rigorous footing.
Our analyses can benefit practitioners to systematically under-
stand the various confounders that matter for accuracy. Also,
this can be useful to develop better practices and design ML
workflows that are robust to Categorical duplicates. Moreover,
our work opens up new research directions at the intersection
of ML theory, data management, and ML system design.

In summary, our work is novel in terms of new labeled
dataset, benchmark, and novel empirical analyses. We make
the following key contributions.

1. A new benchmark dataset. To the best of our knowl-
edge, this is the first work to curate a large labeled dataset
specifically for Categorical duplicates where the entities
are annotated. We present several insights that character-
izes how Categorical duplicates exhibit themselves.

2. Empirical benchmarking to understand the signifi-
cance of category deduplication on ML. Our curated
downstream benchmark containing “in-the-wild” datasets
enables us to point out cases where ML may or may not
benefit with category deduplication.

3. Characterization of confounders with simulation
study. Our study can disentangle and explain the impact
of confounders on how Categorical duplicates affect ML.

4. Utility of our study. We present the first in-depth scien-
tific empirical study to systematically charactertize when
and why category deduplication can help/not help ML.
We present several practical insights for practitioners.
We identify open questions for further research where
our labeled data can be a key enabler to address them.
Also, we open source our benchmark to enable more
community-driven contributions [22].

II. OUR APPROACH

To assess the significance of category deduplication on ML,
we first identify the critical confounders that matter for ML.



Duplication properties

ML accuracy

Feature Vector from 
Categorical Encoding

Data 
Regime

Column 
Relevancy

Hypothesis Space
of ML Model 

Fig. 1. Summarization of confounders impacting ML in the context of
Categorical column that has duplicates.

We then make empirical observations of the impact of dedupli-
cation with different confounder settings in the real-world. We
finally use synthetic study to validate observed phenomenon
and intricately study how each confounder impact ML. We
first summarize the confounders and then explain our three-
part contributions towards building an in-depth understanding
of the importance of category deduplication for ML.

We focus this study in the context of the Categorical column
that has duplicates as Figure 1 shows. As the domain size of
the column shrinks with deduplication, it can influence the
following confounders impacting ML: (1) Feature vector from
Categorical encoding method. (2) Hypothesis space denoting a
set of all prediction functions from feature space to label space
that the ML model can represent. (3) Data regime in terms of
the number of training examples per unique category in the
column. (4) Column relevancy as a measure of the importance
of the column for the downstream task. Admittedly, there
can exist other complex confounders such as skew in class
labels with different distributions and conditional duplication
properties given the class label. In this work, we focus on
the confounders that are most critical and leave performing a
fine-grained characterization and analysis to future work.

1. Our Hand-Labeled Data. We create the first large labeled
data where true entities within a Categorical column are
annotated with duplicate categories. This helps us understand
the observed properties of Categorical duplicates and how they
manifest themselves in real-world columns. Our data includes
1248 string Categorical columns from 217 raw CSV files.
The labeling process took us about 120 man-hours across
5 months. The utility of our labeled data is two-fold. (1)
Configure duplication parameter ranges and skew distribu-
tions in simulation study. (2) Presents a crucial artifact for
researchers to automate the task of Categorical deduplication
itself and even to objectively evaluate the accuracy of in-house
automated mechanisms by AutoML platform developers. In
fact, one such labeled data for ML feature type inference task
lead to objective benchmarking of existing AutoML tools and
even more accurate supervised ML approaches to automate
the task [23]. We dive into this part in Section IV.

Current Limitation. We source the Categorical columns by
leveraging our previous dataset of real-world columns [23].
The raw data files were collected from sources such as Kaggle
and UCI ML repo where the data file may have been subjected
to some pre-processing. However, this is the best we can
do from academic research standpoint given legal constraints:
acquire large public datasets, annotate them, and make them

available to the community. It is hard to acquire truly raw
data files from several enterprises and make them public due
to legal constraints. Also, we do not make any general claims
about the manifestation of duplicates across the universe of the
datasets. This would require doing a comprehensive analysis
of datasets from all sources including that from enterprises and
other organizations. However, this does not diminish the utility
of our empirical analyses as both the downstream benchmark
suite and our synthetic study are independently useful.

2. Downstream Benchmark Suite. We create a benchmark
suite of 14 real-world datasets to empirically benchmark the
impact of Categorical duplicates. Note that these datasets are
different than our hand-labeled data. This is because, in the
future, we plan to use the hand-labeled data to build super-
vised learning-based approaches for deduplication, instead of
manual annotations. Thus, to make sure that the upstream ML
model for deduplication is not evaluated on the same data it
was trained with, we keep the two dataset suites separate. We
choose these 14 datasets such that it sufficiently represents
different regimes in the confounder spectrum (explained in
Section V-B). We explain our choices with ML models and
Categorical encoding below and leave in-depth discussion of
this component in Section V.

We choose three popular ML classifiers from the entire
spectrum of bias-variance tradeoff: low-capacity LR and high-
capacity RF from the two ends. Somewhere in between them,
we choose a high-capacity MLP with two hidden units (100
neurons each) and VC dimension lower than RF [24], [25].
Note that RF has infinite VC dimension as it can represent
any function on the data [24]. LR and RF are also the two
most popular classifiers among ML practitioners, as per the
Kaggle survey [26]. With respect to Categorical encoding, we
focus on three schemes: One-hot, String (applicable for tree
learners) [21], and Similarity [20]. We choose the first two
since they are already popular in practice, as per study on
OpenML workflows [27]. We choose Similarity as it offers
category duplicates with a feature vector representation that
is similar to that of their true entities. In contrast, One-hot
leads to duplicates with feature vectors orthogonal to their
true entities. There exists a large stock of encoding methods
for representing Categoricals [28]. We leave studying them to
future work for tractability sake.

3. Synthetic Study. We perform a Monte Carlo-style simula-
tion study to achieve two objectives. (1) Confirm the validity
of the observations we make with downstream benchmark
suite. (2) Disentangle and characterize the effect of duplicates
with multiple confounders individually to make the impact
interpretable. We embed two different true distributions and
vary the confounders one at a time while fixing the rest to
study their impact on ML accuracy along with how they
trend. Although we use hand-labeled data to inform dupli-
cation parameter values, our simulation study is not entirely
dependent on it. One can very well fix arbitrary duplication
parameter values, although that doesn’t change the trends and
conclusions that we derive. Section VI explains this in depth.



TABLE II
NOTATIONS USED IN THIS PAPER WITH A SIMPLIFIED EXAMPLE TO

ILLUSTRATE OUR NOTIONS WITH State COLUMN CATEGORIES.

Symbol Meaning
C Set of category values in the column 𝐴!
E Set of unique real-world entities referred by categories from C
ED Subset of real-world entities that have at least 1 duplicate; ED ⊆ 𝐸

occ(Z) Sum of occurrences of all categories present in set Z; Z ⊆ C

D A set of non-empty sets of duplicate values for 
each entity in ED; |D|	=	|ED|

Category set Ci

(𝟏 ≤ 𝒊 ≤ |C|)
Occurrence of

Category (occ({Ci}))
Entity set Ej

(𝟏 ≤ 𝒋 ≤ |E|)
New York C1 60

New York E1NY C2 30
new york C3 10
California C4 70 California E2Ca C5 30
Wisconsin C6 100 Wisconsin E3

III. PRELIMINARIES

A. Assumptions and Scope

We focus on the ML classification setting over tabular
data. We call the ML model to be trained over the data
as the “downstream model.” Note that our goal is not to
study the upstream deduplication process itself, which is
handled manually in the paper. We leave designing automated
upstream deduplication mechanisms to future work. We focus
on understanding how duplicates manifest themselves in real-
world and how they impact the performance of the downstream
models. Specifically, we study them in the context of string
nominal Categorical features, which do not have a notion of
ordering among its values. Note that a Categorical feature
contains mutually exclusive values from a known finite domain
set. In contrast, Text type features can take arbitrary string
values. Thus, generic open domain addresses or person names
are not Categorical. We study duplicates arising in Categorical
column, which is not the actual target for the prediction task.

B. Definitions

We present terms and notations needed to study the effect
of Categorical duplicates in the context of implications for
ML accuracy. We first draw upon notations from a mix
of both database theory [29] and ML literature [30] for
known concepts. A relational table is defined by schema
R(A1, A2, ..., An, Y ) with a relation (instance) r. We use A to
denote a set of columns {A1, A2, ..., An} and Y is the target
column for prediction. Note that, formally, a column is referred
to as an attribute [29]. Let Al(l ∈ [1, n]) be a Categorical
column with a domain dom(Al) ⊆ L, where L is the set of
strings with finite length. A relation r is defined over A as a
set of mappings with {tp : A →

⋃n
l=1 dom(Al), p = 1...|r|},

where for each tuple tp ∈ r, tp(Al) ∈ dom(Al), |r| is the
number of examples in the the table.

Note that Categorical strings are not directly consumable
by most ML models. Thus, an encoding scheme is required to
transform the set of columns A to a feature vector to train an
ML model. We explain this further in Section V-A. We now
reuse and adapt terminologies from existing database [29], [31]

and ML literature [30] together for terms that we need for the
rest of the paper. Table II lists the notations and explains the
terms used with an example. For simplicity of exposition, we
focus on one Categorical column with duplicates, Al ∈ A.

DEFINITION (CATEGORY). A Category set Cl =
{Cl

1, C
l
2, ..., C

l
|Cl|} contains all unique domain values

occurring in the column Al. Note that Cl is also referred to
as the active domain of Al relative to relation r [29], i.e.,
Cl=adom(Al, r)={c ∈ dom(Al) | ∃tp ∈ r, tp(Al) = c}. We
drop the superscript (Cl) and simplify the active domain
operation with C only to make it succinct for follow up
set algebra. Each distinct value in the column is defined as
“category.” For Table II example, C = {New York, NY, new
york, California, Ca, Wisconsin}.

DEFINITION (ENTITY). An Entity set E ⊆ C represents
a subset of Categories that conceptually refer to different
real-world objects. A category from set C can be uniquely
mapped to an entity from set E. Let the mapping func-
tion be denoted by M : C → E. In Table II, there are
three unique real-world state objects, i.e., E = {New York,
California, Wisconsin}. Note that entities are defined at a
conceptual level; thus, referring to New York as new York
or NY is identical. But for ease of exposition, we assume
the category that most frequently represents an entity (ties
broken lexicographically) in the column to be the true entity.
There exist multiple categories representing the same entity,
i.e., M(C1)=M(C2)=M(C3)=E1={New York}.

DEFINITION (OCCURRENCE). We define Occurrence (or per-
centage Occurrence) of category Ci as percentage of times
Ci represents Ej in the column. For instance, whenever
real-world New York entity occurs, 30% and 10% of the
times NY and new york represents them respectively. New
York is referred to as the entity since it occurs more than
NY and new york. We define the Occurrence function as
occ : Z → [0, 100]. The input Z is a subset Z ⊆ C such
that all categories of the subset map to a unique entity Ej

(j ∈ [1, |E|]), i.e., Ej = M(Z1)=M(Z2)=...=M(Z|Z|). The
output is the sum of occurrence values for all categories
present in the input set which is a real number in [0, 100].
occ(Z) = occ(Z1) + ... + occ(Z|Z|), e.g., occ({C1}) =
60, occ({C2, C3}) = 40, and occ({C1, C4}) = Undefined.

DEFINITION (DUPLICATE). There exist a duplicate for Ej

whenever Ej = M(Z1) = M(Z2) = ... = M(Z|Z|) and
|Z| > 1. Whenever Ej occurs, the % times it is repre-
sented by Z1, Z2, and Zn are occ(Z1), occ(Z2), and occ(Zn)
respectively. Without the loss of generality, we assume that
occ(Z1) >= occ(Z2) >= ... >= occ(Z|Z|). Since Z1 most
frequently represents the entity (ties broken lexicographically),
the other categories Z2, ..., Zn are referred to as duplicates
of the entity Ej . We define ED ⊆ E as the subset of the
entities that contain at least one duplicate, i.e., ∃Z ⊆ C s.t.
|Z| > 1 and M(Z1) = ... = M(Z|Z|) = EDj(j ∈ [1, |ED|]).
We define a duplicate set Dk(k ∈ [1, |ED|]) for every entity
in ED such that Dk = {Z2, Z3, ..., Z|Z|} represents a set of
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Fig. 2. CDF over all Categorical columns with at least one duplicate on (A) % entities that have at least one duplicate. (B) Duplicate set sizes over all
k ∈ [1, |ED|]. The maximum duplicate set size is 148. (C) Duplicate set occurrences over all k ∈ [1, |ED|], i ∈ [1, |Dk|]. (D) % reduction in domain size
with category deduplication.

duplicate values, e.g., ED1 = California, D1 = {Ca} and
ED2 = New York, D2 = {new york, NY}.

DEFINITION (CATEGORY DEDUPLICATION). Category Dedu-
plication is the task of mapping categories from set C to an
entity from set E with the mapping function M. The new
column after the assignment is called the deduplicated column.
Set C and E of the deduplicated column are identical.

DEFINITION (COLUMN RELEVANCY). Let Acc(A) be the %
classification accuracy obtained by the ML model with a set
of columns A to be used as features in the input. Relevancy
of a column Al ∈ A is defined as Acc(A)−Acc(A− {Al}).
This quantifies the absolute predictive power of column Al for
the downstream task.

IV. OUR HAND-LABELED DATASET

We create a labeled dataset of Categorical columns where
Entities in each column is annotated with their duplicates
whenever present. This enables us to understand how real-
world duplicates manifest themselves and what do the sets
E,ED,D and their occurrences look like. We now discuss
how this dataset is created, the types of real-world duplicates
present, and our dataset analysis with stats and important
insights into the behavior of duplicates.

A. Data Sources

We constructed a large real-world dataset of 9921 columns
from diverse application domains such as retail, healthcare, fi-
nance, etc., sourced from Kaggle and UCI ML repository [23].
This included columns manually annotated with a standardized
9-class vocabulary of ML feature types. The classes include
feature types such as Numeric, Categorical, Datetime, Sen-
tence, and Not-Generalizable (e.g., primary keys). Using this,
we obtain 217 raw CSV files that contain at least one string
Categorical column. Overall, we find 1248 such columns.

B. Labeling Process

Among the Categorical columns we collected, we do not
know which columns contain duplicates beforehand. This ne-
cessitates us to manually scan through all the 1248 Categorical
columns and look for duplicates in them. We follow the below
process at a column-level to reduce the cognitive load of
labeling. For every Categorical column, we enumerate its
category set along with the count of times each category

TABLE III
DUPLICATION TYPES WITH EXAMPLES FROM OUR HAND-LABELED DATA

Duplication Types Column name Category Examples
1 Capitalization Country “United States” , “united States”
2 Misspellings Gender “Male” , “Mail” , “Make” , “msle”

3 Abbreviation State “California” , “CA”
preparer_title “Senior Counsel” , “Sr. Counsel”

4 Difference of 
Special Characters

City “New York” , “ New  York,  ”
Colour “Black/Blue” , “Black-Blue”

5 Different Ordering Colour “GoldWhite“ , 
“WhiteGold” , “Gold/White” 

6 Synonyms Gender “Female” , “Woman”
Venue “Festival Theatre”, “Festival Theater”

7 Presence of
Extra Information City “Houston” , “Houston TX” , 

“Houston TX 77055”

8 Different grammar Colour “triColor” , “tricolored”
Venue ”Auditorium” , “TheAuditorium”

appears in the column. Before scanning the category set, we
sort the categories by their appearance count in descending
order and their values in lexicographic order. This helps up
catch the true entities early on in the file. Recall that we call the
category that most frequently represents a real-world object the
true entity. As we scan the category set, we annotate duplicates
with their corresponding entities in the column. Thus, we
construct sets E,ED, and D, along with their occurrences for
all the columns. The entire labeling process took us roughly
120 man-hours across 5 months and 3 people.

C. Types of Duplicates

We find that there exist eight types of duplication. We
present these types with examples in Table III. The differences
shown are relative to the representation of the true entity.
We now clarify some of the types. Type 4 denotes the dif-
ference of any non-alphanumeric special characters including
comma, period, and white spaces. Type 5 denotes different
ordering within multi-valued categories. Type 8 categories have
either a common stem/lemma, presence of stopwords, or a
common singular representation. Note that a duplicate can
have duplication of multiple types and an entity can have
numerous duplicates, each belonging to multiple types, e.g.,
given ED1= New York and D1 = {new-york., NY}, “new-
york.” has both Type 1 and 4 duplication, and the entity New
York has duplicates with duplication of Type 1, 3, and 4.

D. Data Statistics and Takeaways

We annotated 56573 entities across all 1248 string Categori-
cal columns. We find 4% of those entities have the presence of



TABLE IV
STATISTICS OF THE COLUMN CONTAINING Categorical DUPLICATES IN four OF OUR 14 DOWNSTREAM DATASETS. WE PRESENT THE STATISTICS FOR THE
REST OF THE DATASETS IN THE TECHNICAL REPORT [32]. |r|, |A|, AND |Y | ARE THE TOTAL NUMBER OF EXAMPLES, COLUMNS, AND TARGET CLASSES
IN THE DATASET RESPECTIVELY. |rC| DENOTES THE NUMBER OF TRAINING EXAMPLES PER CATEGORY OF THE SET C . P IS THE FRACTION OF |E| THAT
HAS AT LEAST 1 DUPLICATE BEING MAPPED TO “Others” CATEGORY IN THE VALIDATION SET FOR OHE AND StrE. WE USE COLORS GREEN, BLUE, RED

WITH HAND-PICKED THRESHOLDS TO VISUALLY PRESENT AND BETTER INTERPRET THE CASES WHERE THE AMOUNT OF DUPLICATION IS LOW
(1− |E|/|C| < 0.25), MODERATE (1− |E|/|C| > 0.25 & < 0.50), AND HIGH (1− |E|/|C| > 0.50) RESPECTIVELY. WE USE THE FOLLOWING
THRESHOLDS WITH THE SAME COLORS TO BETTER INTERPRET THE DATA REGIME: LOW (|rC| < 5), MODERATE (|rC| > 5 & < 25), AND HIGH

(|rC| > 25). NOTE THAT THE DATA REGIME MOVES UP WITH CATEGORY DEDUPLICATION AS CATEGORY SET SIZE HAS SHRUNK.

Datasets |r| |A| |𝒀|
Amount of Duplication Data Regime

P	%𝑬𝑫
|𝑬|

%
median
|𝑫𝒌|

median
occ {𝑫𝒌𝒊}

|C| 1-
|𝑬|
|𝑪|

% |rC| |rC|	after dedup
(Increase w.r.t Raw)

Midwest Survey 2778 29 9 33.1 2 4 1008 64 2.5 6.5 (2.6x) 23.6

Relocated Vehicles 3263 20 4 33.2 1 20 1097 35.8 2.5 3.8 (1.5x) 14.9

San Francisco 148654 13 2 10.7 1 25 2159 9.8 46.3 50.9 (1.1x) 3.2

Building Violations 22012 17 6 51 2 4.8 270 63 53.7 145 (2.7x) 4.4

at least one duplicate with a total of 3475 duplicates. Overall,
52 columns from 33 raw CSV files have the presence of at least
one duplicate. There are three parameters that quantify the
amount of duplication within a column. (1) Fraction of entities
that have at least one duplicate (|ED|/|E|). (2) Duplicate
set size for all entities present in the column (set D). (3)
Duplicate occurrences occ({Dki}), k ∈ [1, |ED|], i ∈ [1, |D|].
Figure 2 plots the cumulative distribution function (CDF) of
these parameters over all columns in our labeled dataset that
has at least one duplicate. We also report CDF of the %
reduction in domain size of the columns with deduplication.

We now summarize the presented results. We find that
whenever duplicates arise in the column, they can occur quite
often. Almost 17% of columns that have duplicates have them
in all of their entities! Also, whenever an entity is diluted
with duplicates, almost 90% of the time they have one or two
duplicates! Duplicate set sizes follow a long-tail distribution,
most entities have small duplicate set sizes and very few
entities have a lot of duplicates. This can make catching
duplicates and deduplicating them particularly challenging, as
they can go unnoticed. Moreover, the occurrence of duplicates
approximately follows a uniform distribution, i.e., all occur-
rence values up to 50% are roughly equally likely. We present
stats on duplication types with takeaways in tech report [32].

V. DOWNSTREAM BENCHMARK

We now empirically study the impact of category duplicates
on the downstream ML tasks. Note that our focus is not to
compare and evaluate category deduplication methods. We
curate a benchmark suite of 14 real-world datasets, each con-
taining a column with duplicates. We use this to empirically
evaluate and compare three Categorical encoding schemes
both with and without the presence of duplicates. Finally,
we make several important observations on the different con-
founders that impact the relationship of Categorical duplicates
with downstream classifiers.

A. Models and Encodings

We choose three popular classifiers used among the ML
practitioners as per Kaggle data science survey [26]: LR, RF,

and a two-layered MLP (100 neurons each). These models also
present representative choices from the bias-variance tradeoff
spectrum [30]: high bias and low variance approach with LR
and low bias and high variance approaches with RF and MLP.

We encode Categorical columns with three popular
schemes: One-hot (OHE), String (StrE) [21], and Similarity
(SimE) [20]. OHE is the standard approach to encode nominal
Categoricals as it follows their two properties. (1) Each
category is orthogonal to one another. (2) Pairwise distance
between any two categories is identical. With a category set
Cl (for Al) closed during training, OHE sets feature vector
Xp

l =[1(tp(Al) = Cl
1), ..., 1(t

p(Al) = Cl
|Cl|)], where 1(.) is the

indicator function and p = 1..|r|. RF with OHE performs
binary splits on the data. RF can also handle raw “stringified”
Categorical values by performing set-based splits on the data.
We refer to this as StrE. Note that StrE is not applicable for
LR, since it cannot handle raw string values. Both OHE and
StrE assume that the Categorical domain is closed with ML in-
ference, i.e., new categories in the test not seen during training
are handled by mapping them to a special category, “Others.”
SimE takes into account the morphological variations between
the categories. The feature vector for category set Cl is given
as Xp

l = [Sim(tp(Al), C
l
1), ..., Sim(tp(Al), C

l
|C|)], where

Sim(.) is a similarity metric defined as the dice-coefficient
over n-gram (n ranges from 2 to 4) strings [33]. This feature
vector can be computed even for any new categories arising
in test set which are unseen during training for SimE.

B. Real Datasets and Labeling

We collect 14 datasets from real open-source data portals.
Our rationale for choosing these datasets is to span the spec-
trum of different confounder combinations. Table IX presents
the statistics over four of our datasets. There are four data-
dependent confounders that can potentially impact accuracy.
(1) Three parameters characterizing duplicates: |ED|/|E|,
|Dk|, occ(Dk). We use the quantity % reduction in domain
size with deduplication (1-|E|/|C|) to summarize the amount
of duplication. (2) Data regime as the number of training ex-
amples per category value (|rC|). We ensure that our selected
datasets sufficiently represent different ranges of values (high



TABLE V
CLASSIFICATION ACCURACY COMPARISON OF DOWNSTREAM MODELS WITH DIFFERENT Categorical ENCODINGS ON Raw (COLUMN WITH Categorical

DUPLICATES) VS. Deduped (DEDUPLICATED COLUMN) DATA. ACCURACY RESULTS FOR Deduped ARE SHOWN RELATIVE TO Raw AS DELTA LIFT/DROP IN
% ACCURACY. GREEN, BLUE, AND RED COLORS DENOTE CASES WHERE THE Deduped ACCURACY RELATIVE TO Raw IS SIGNIFICANTLY HIGHER,

COMPARABLE, AND SIGNIFICANTLY LOWER (ERROR TOLERANCE OF 1%) RESPECTIVELY.

Dataset 

Logistic Regression (LR) Random Forest (RF) MLP

Relevancy OHE OHE SimE Relevancy OHE OHE StrE SimE OHE SimE

Raw Deduped Raw Deduped Raw Deduped Raw Deduped Raw Deduped Raw Deduped Raw Deduped Raw Deduped Raw Deduped

Midwest 
Survey 10.6 +9.4 57.2 +9.4 66.7 +2.1 4.6 +11.5 49.1 +11.5 59.2 +10 64.9 +4.4 54.7 +9.5 63.4 +3.8

Mental
Health -1.3 +1.3 46.9 +1.3 46.3 +0.6 0.2 +1.1 47.9 +1.1 47.8 -0.1 47.4 -1.7 42.4 +2 43.2 -0.4

Relocated
Vehicles 18.1 +4 82.9 +4 88.4 +0.4 6.1 +3 72.5 +3 81.3 +4.1 88.3 -0.1 83.6 +3.6 89.6 +0

Health
Sciences -1.3 +0.9 58.7 +0.9 60 +1.8 -1.8 +2.2 53.3 +2.2 61.8 +0 60 -2.7 55.1 +4.9 56.4 +1.8

Salaries -1.1 +0.1 30.4 +0.2 32.4 -1.3 -1 +1.7 64.7 +1.7 69.6 +1.3 94.6 +0.4 22 +0.5 19.9 +5.4

TSM 
Habitat 0 +0 50.7 +0 50.7 +0 4.8 +0.4 71.2 +0.4 84.1 +1.4 71.2 +0.4 50.7 -2.7 50.7 -2.7

EU IT 0 +0 29.1 +0 29.1 +0 2.1 +1.2 41.2 +1.2 43.6 -0.6 47.8 +4 13.4 -2.4 6.8 +5

Halloween 0.4 +3.4 42.6 +3.4 49.8 +1.1 -1.9 +1.5 40 +1.5 36.2 +1.5 34.7 -4.9 41.9 +4.2 43 +0.8

Utility 1.4 -0.2 42.4 -0.2 43 +0.3 -6.7 +1.4 58.8 +1.4 46.3 +1.2 43.2 +1.4 65.1 +2.3 73.2 +2.5

Mid or 
Feed 0 +1.7 40.5 +1.7 41.5 -1.2 -1 +2.5 40.2 +2.5 35.7 -0.2 36.2 +1.8 34 +2 32.7 +0.2

Wifi -2.1 +1.1 64.2 +1.1 58.9 +8.4 -1.1 +5.3 60 +5.3 57.9 +4.2 50.5 +3.2 52.6 +2.1 48.4 +3.2

Etailing 0.7 -0.5 41.1 -0.5 38.9 +1.8 -2.5 +2 40 +2 44.5 +1.1 38.2 +3 40.2 -3 37.2 +0

San
Francisco 26.9 -0.1 86 -0.1 85.5 +0 24.3 +0.1 83.4 +0.1 83.9 -0.3 86 +0 86 +0.1 86.1 -0.1

Building
Violations 0.1 +0 91.6 +0 91.9 +0 0 -0.1 97.5 -0.1 97.3 +0.1 97.6 +0 97.2 +0 97.4 +0

vs. low measured relatively) in each confounder spectrum. For
instance, a dataset that involves a high amount of duplication
coupled with high- and low-data regimes such as Building
Violation and Midwest Survey resp. This enables us to make
specific observations on the role of different confounders,
which we validate and disentangle using our simulation study.

We do not claim that the 14 downstream datasets are univer-
sally proportionate to the manifestation of confounders in the
real-world. To reiterate, we select these datasets to showcase
different possible confounder settings and ensure that we cover
the entire spectrum for our empirical analyses. The benchmark
suite helps us lay out the confounders that matter. This coupled
with synthetic study only serves as a guidebook that can
help ML practitioners and AutoML platform developers glean
insights. We hope our work inspires more data benchmark
standardization in this space with industry involvement.

Downstream datasets are obtained from Chicago city, New
York and California state, Pittsburgh health, mental illness
project data portals, and also real data surveys from FiveThir-
tyEight, EveryDayData, and Kaggle. Specifically, we obtain
the following data files: Midwest Survey [34], Wifi [35], Men-
tal Health [36], EU IT [37], Relocated Vehicles [38], Health
Sciences [39], Salaries [40], TSM Habitat [41], Building Vio-
lations [42], Etailing [43], Mid or Feed [44], Halloween [45],
San Francisco [46], and Utility [47]. Each dataset has a column
with Categorical duplicates which we manually deduplicate.

C. Methodology

We partition each dataset into an 80:20 split of train and test
set. We perform 5-fold cross-validation and use a fourth of the

examples in the train set for hyper-parameter search. We tune
the regularization parameter for LR. We tune the number of
trees and their maximum depth for RF with values for each
ranging from 5 to 100. The MLP architecture comprises of
2 hidden units with 100 neurons each and is L2 regularized.
Due to space constraints, we present the entire grids for hyper-
parameter tuning in the technical report [32].

D. Results

Table V shows the end-to-end comparison of the down-
stream ML models built with different encoding schemes
in terms of diagonal accuracy. As an example, on Midwest
Survey, RF with OHE of Categoricals delivers a 9-class
classification accuracy of 49.1% on the Raw dataset. Cleaning
its duplicates (Deduped) lead to an 11.5% lift in accuracy
relative to the Raw. Table VI shows summary statistics of
how the different encoding schemes perform with the two ML
models and also relative to one another on 14 datasets. Finally,
we present the generalization performance of classifiers with
the overfitting gap (difference between train and validation
accuracies) on both Raw and Deduped in Table VII. We sum-
marize our results with eight important observations below.

O1. We find that there exist several downstream cases where
Deduped improves the ML accuracy over Raw for any en-
coding scheme. For instance, the delta accuracy increase with
Deduped on RF with OHE is of median 1.6% and up to 11.5%
compared to Raw (across 14 datasets). Moreover, the delta
accuracy increase is of median 2% and up to 9.5% for MLP.



TABLE VI
SUMMARY STATISTICS TO ILLUSTRATE THE IMPACT OF CATEGORY

DEDUPLICATION ON ML MODELS USING DIFFERENT ENCODINGS WITH 14
DOWNSTREAM DATASETS. ∗ AND † DENOTE TWO AND ONE CASES WHERE

BOTH ENCODING SCHEMES PERFORM THE BEST RESP.

LR Random Forest (RF) MLP

OHE SimE OHE StrE SimE OHE SimE

% lift in accuracy with Deduped

Mean 1.5 1 2.4 1.7 0.7 1.7 1.4

Median 0.6 0.4 1.6 1.2 0.4 2 0.5

75th percentile 1.6 1.6 2.4 1.5 2.7 3.3 3

Max 9.4 8.4 11.5 10 4.4 9.5 5.4

# downstream datasets where

>1% lift in accuracy 
on Deduped

6 5 11 8 6 8 6

Best performing
encoding on Raw

6* 10* 5 3 6 6† 9†

Best performing
encodin on Deduped

5* 11* 5 3 6 8* 8*

O2. Delta increases in accuracies with Deduped are typically
higher with RF and MLP than LR. The median delta increases
in accuracy with RF and MLP using OHE are 1.6 and 2,
compared to 0.6 for LR. Thus, LR is more robust to duplicates
than the high-capacity models.

O3. Deduped helps RF using OHE the most, StrE the second
most, and SimE the least (see Table VI). Interestingly, the
median lifts in accuracies due to deduplication with SimE
are just 0.4 and 0.5 on RF and MLP respectively. Overall,
SimE improves the ML performance in just ∼40% downstream
cases. This is because, SimE considers morphological varia-
tions between the category strings and maps a duplicate to a
similar feature vector as the true entity. So, duplicates are often
located close to their true entities in the feature space. Thus,
any further lift in accuracy due to deduplication is marginal.

O4. Deduplication reduces the overfitting gap for all models
(from Table VII), thereby improving their generalization abil-
ity. Since RF and MLP are more prone to overfitting than LR,
their accuracy lifts with Deduped are more significant.

O5. If the magnitude of overfitting gap on Raw is insignificant
(less than 1%), then the amount of possible reduction in over-
fitting with Deduped is also small. Thus, it’s not worthwhile
to deduplicate if the overfitting gap on Raw is already low
to begin with. We observe this will all the datasets where the
overfitting gap is close to 1%, e.g., San Francisco and Building
Violations. We observe this across the three classifiers.

O6. Category deduplication increases the column Relevancy
for all models, i.e., the column becomes more predictive for
the downstream tasks after category deduplication. Note that
the amount of increase in column Relevancy with Deduped
also quantifies the accuracy lift with Deduped.

O7. The accuracy lifts with Deduped on all the models are
more significant when the column has high Relevancy unless
there exist a high-data regime (a large number of training

TABLE VII
COMPARISONS OF OVERFITTING GAP (DIFFERENCE BETWEEN TRAIN AND

VALIDATION SET ACCURACIES) WITH OHE. THE DROP IN OVERFITTING
GAP FOR Deduped IS SHOWN RELATIVE TO THE Raw.

Dataset
LR Random Forest (RF) MLP

Raw Deduped Raw Deduped Raw Deduped

Midwest Survey 24.4 -9.4 50.7 -14.2 45.1 -10.4

Mental Health 11.7 -3.5 42.3 -7.2 26.7 -0.2

Relocated Vehicles 17 -4.1 27.3 -3.1 16.4 -3.6

Health Sciences 9.3 -5.9 35 -8.1 44.9 -4.9

Salaries 1.9 +0.2 34.6 -1 1.4 -0.5
TSM Habitat 1.9 -0 28 -0 0.1 +0.5

EU IT 1.2 -0 53.1 -6.6 1.4 +0.9
Halloween 38.3 -3.5 50.9 -5.8 58.1 -4.2

Utility 0.7 -0.3 41.2 -1.4 26.1 -3
Mid or Feed 34.2 -12.8 58.4 -1.1 66 -2

Wifi 11.1 -2.1 26.2 +1.3 47.4 -2.1
Etailing 41.2 -7.7 54.4 -1.6 59.7 +2.9

San Francisco 0.5 -0 -0.2 -0 1.1 -0.1
Building Violations 0.2 +0.1 1.8 -0.1 1.1 -0.2

examples per category). Thus, if a column has already high
Relevancy on Raw, it may be worthwhile conservatively to
deduplicate, e.g., Relocated Vehicles and Midwest Survey.
O8. High-data regime is robust to the impact of Categorical
duplicates than low-data regime, regardless of the amount of
duplication. Even a high amount of duplication has a negligible
impact in the high-data regime, e.g., Building Violations has a
massive 63% reduction in domain size due to deduplication,
but there exist a large number of training examples per
category. We do not see any lift in accuracy with category
deduplication on any of the ML models.

We rerun our downstream benchmark suite using additional
evaluation metrics such as macro/micro average of precision,
recall, and F1-score. We find that none of the empirical
conclusions made with diagonal accuracy change even with
these additional metrics. Thus, we defer their results to a
technical report [32]. Beyond our observations, there exists a
non-trivial interaction of the confounders impacting ML. We
now disentangle and study them separately in the next section.

VI. IN-DEPTH SIMULATION STUDY

We now dive deeper into the impact of each confounder
on the downstream ML. This study helps us not only validate
our empirical observations but also makes the significance of
each confounder impacting ML more interpretable. Moreover,
it reveals the limitations of commonly used encoding schemes
when unseen duplicates arise in the test set.

A. Models and Encodings

The structural model parameters such as the number of tree
estimators and maximum tree depth for RF and the specific
MLP architecture can largely impact the bias-variance tradeoff.
Thus, we fix them to disentangle their impact and better
illustrate our findings by presenting two extremes of RF’s and
MLP’s bias spectrum. We use high-bias models such as shallow
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Fig. 3. Simulation results for HiCapRF with OHE and StrE. (A-D) Duplicates present in train, validation, and test set. (E-F) Only test
set is diluted with duplicates. (A) Vary |r|t (# training examples) while fixing (|ED|/|E|, occ(Dk), |Dk|)=(30, 25, 1) (B) Vary |ED|/|E|
while fixing (|r|t, occ(Dk), |Dk|)=(3000, 25, 1) (C) Vary occ(Dk) while fixing (|r|t, |ED|/|E|, |Dk|)=(3000, 30, 1) (D) Vary |Dk| while fixing
(|ED|/|E|, |r|t, occ(Dk))=(30, 3000, 25), for all k ∈ [1, |ED|]. Parameter settings of (E) and (F) are same as (B) and (C) respectively.

decision tree with a restricted tree depth of 5 (denoted as
ShallowDT), a low-capacity MLP comprising of two hidden
units with 5 neurons each (denoted as LoCapMLP), and also
LR. In addition, we use low-bias high-capacity RF with the
number of tree estimators and maximum tree depth being
fixed to 50 (denoted as HiCapRF). These values represent
the median best-fit parameters obtained by performing a grid
search (with the grids being same as Section V-C) over the
synthetically generated data described in Section VI-B. We
again use a high-capacity MLP comprising of two hidden units
with 100 neurons each (HiCapMLP).

We focus this study in the context of OHE and StrE. SimE
require the categories to be semantically meaningful strings.
An entity can have duplication of multiple types. Constructing
a fine-grained simulator that generates semantically meaning-
ful duplicates while preserving the same true entity is non-
trivial and intricate from the language standpoint. We leave
designing an apt simulation mechanism for SimE to future.

B. Setup and Data Synthesis

There is one relational table with Y being boolean (domain
size is 2). We include three Categorical columns in the table
and set |A| to 3. We set the entity set size of every columns
to |E| = 10, i.e., all columns have a domain size of 10.
Data generating process. We set up a “true” distribution
P (A, Y ) and sample examples in an independently and identi-
cally distributed manner. We study a complex joint distribution
where all features obtained from A determine Y . We sample
|r| number of total examples, where the examples for training,
validation, and test are in 60:20:20 ratio. We then introduce
synthetic duplicates in one of the columns of the table in
different ways. We vary the six confounders one at a time and
study their impact on ML accuracy along with how they trend

as the parameter is varied. We generate 100 different (clean)
training datasets and 10 different dirty datasets for every clean
one. We measure the average test accuracy and the average
overfitting gap of all models obtained from these 1000 runs.

The exact sampling process is as follows. (1) Construct a
conditional probability table (CPT) with entries for all possible
values of A from 1 to |E|. We then assign P (Y = 0|A)
to either 0 or 1 with a random coin toss. (2) Construct |r|
tuples of A by sampling values uniform randomly from |E|.
(3) We assign Y values to tuples of A by looking up into their
respective CPT entry. (4) We perform the train, validation,
and test split of this clean dataset and obtain the binary
classification accuracy of the ML models on the test split.

Duplication process. We introduce duplicates in a column
Al ∈ A of the clean data as follows. (1) Fix fraction of
entities to be diluted with duplicates, e.g., |ED|/|E|=0.3
(2) Form set ED (set of entities that are to be diluted
with duplicates) by sampling uniformly randomly |ED| cat-
egories from E, e.g., ED={E3, E5, E8}. (3) For every en-
tity in set ED, fix duplicate set size |Dk|, k ∈ [1, |ED|],
e.g., |Dk|=1, k∈[1, 3]. We assume that all entities have
identical duplicate set sizes. We relax this assumption in
Section VI-C3. (4) Given |Dk|, we form the set D by
introducing duplicates, e.g., D1={E3-duplicate1}, D2={E5-
duplicate1}, D3={E8-duplicate1}. (5) Fix occ(Dk), k ∈
[1, |ED|]. For every duplicate value d in D, set occurrence
occ(d)=occ(Dk)/|Dk|, i.e., we assume that all the duplicates
representing an entity are equally likely to occur. We relax this
assumption in Section VI-C3. (6) We perform the same train,
validation, and test split of the resulting dataset as obtained in
step 4 of the data generating process. We finally obtain the test
accuracy of the ML models on the dirty dataset. We use our
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Fig. 4. Simulation results with OHE for (A) LR (B) ShallowDT (C) LoCapMLP (D) HiCapMLP with the same setup as Figure 3(B).
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Fig. 5. HiCapRF results. Vary |ED|/|E|, while fixing (|A|, |r|t, occ(Dk),
|Dk|)=(4, 5000, 25, 1). Duplicates introduced on the column with (A) non-
positive Relevancy (noisy column) (B) high Relevancy (predictive column).

labeled data to configure apt duplication parameter values such
that we can showcase an average and worst-case scenario.

C. Results

We vary all confounders one at a time while fixing the rest.
We confirm the trends and observations made with italics.

1) Varying the data regime: Figure 14 (A) presents the
delta drop in %accuracy with duplication relative to the ground
truth clean dataset on HiCapRF as the number of training
examples (|r|t) are varied with both OHE and StrE. We
find that with the rise in |r|t, the delta drop in accuracy
decreases. With just 3 training examples per CPT entry (|r|t
= 3k and total entries in CPT=1k), duplicates cause a drop of
median 2.3% and up to 4.3% accuracy with OHE. With 10
training examples, the median and max drops in accuracies
due to duplicates with OHE are 0.3% and 0.7% respectively.
This confirms our observation on the downstream benchmark
suite: A higher data regime is more robust to duplication
than a lower data regime. The same trend holds with StrE
encoding and also all the other classifiers: LR, ShallowDT,
LoCapMLP and HiCapMLP. Thus, a high-data regime can
tolerate duplicates by remaining more agnostic to the model
biases. Increasing the amount of duplication for a high data
regime (|r|t=10k) has a marginal impact on accuracy. Thus,
even high duplication has a marginal impact in the high-data
regime. We present the corresponding accuracy plots of the
impact of duplicates with data regime changes on the other
classifiers in tech report [32].

2) Varying parameters controlling the amount of duplica-
tion: Figure 14 (B-D) shows how different duplication param-
eters influence HiCapRF. We notice a clear trend: the drop in

accuracy with HiCapRF rises with the increase in any of the
three duplication controlling parameters, |ED|/|E|, occ(Dk),
and |Dk|. We find that among the three duplication parameters,
|ED|/|E| has the most drastic effect on HiCapRF. The effects
of the increase in |Dk| are less pronounced because all other
parameters including occ(Dk) are kept fixed. Thus, there exist
more duplicates for the same occurrence. Interestingly, we find
from Figure 14 that StrE is more robust to duplicates than
OHE regardless of the parameter being varied, as the delta
drop in accuracy with StrE is comparatively lower, although
significant in high duplication cases.

Figure 4 presents how a key confounder (|ED|/|E|) affects
other classifiers. We find that all high-bias models behave
similarly as they show a marginal drop in accuracy even when
all entities are diluted with duplicates. In contrast, HiCapMLP
exhibits similar behavior as HiCapRF when |ED|/|E| is
increased. Note that the absolute accuracies of the high-bias
approaches are lower than that of high-capacity ones. Overall,
both high-capacity classifiers are more susceptible to the
adverse performance impact of duplicates than the high-bias
approaches. We notice the same trend as other confounders
(occ(Dk) and |Dk|) are varied. We present the corresponding
accuracy plots with other confounders in tech report [32].

3) Introducing skewness in the duplication parameters:
Until now, we assumed that all entities in ED have identical
duplicate set sizes |Dk| and all duplicates in Dk are equally
likely to occur. From our labeled data, we find that most
entities have small duplicate set sizes and only a few entities
have many duplicates. Also, some duplicates in the same set
Dk are more likely to occur than others. Thus, we relax these
two assumptions and include distributions in |Dk| and occ(Dk)
that can better represent the duplication process. We alter our
duplication process and approximate |Dk| with a long-tail
Zipfian distribution and occ(Dk) with a Needle-and-Thread
distribution, varying the skew amount one at a time. Overall,
we find that none of our takeaways in Section VI-C1 and
VI-C2 change or get invalidated with this setup. Due to space
constraints, we present the accuracy plots in tech report [32].

4) Varying properties of duplicates being mapped to “Oth-
ers.”: We study how duplicates that do not arise in the train
set but are present in the test set (say, during deployment) can
impact ML. We modify and repeat our duplication process on
just the test set while keeping the train set intact. We introduce
just one duplicate in the test set that gets mapped to “Others.”
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Fig. 6. Simulation results on (A) LR (B) ShallowDT (C) HiCapRF (D) LoCapMLP (E) HiCapMLP (with the same setup as Figure 3(B)).

Figure 14 (E-F) presents the results on HiCapRF with OHE
where |ED|/|E| and occ(Dk) are varied. We find that the delta
drop in accuracies with all parameters are even more higher
than the corresponding delta drops when both train and test
set were duplicated (Figure 14 (B-C)). This simply suggests
that the presence of unwarranted duplicates during the test can
cause downstream ML to suffer significantly.

5) Varying column Relevancy: We now study low vs.
high Relevancy setting with a slight twist in our simulation.
We introduce an additional noisy column in the clean dataset:
All except one column participates in CPT. Thus, we have
the presence of both high and low Relevancy columns. We
introduce duplicates in both types of columns one at a time.
Figure 5 present results. We find that duplication on a highly
relevant column has a significant adverse impact on HiCapRF
performance. In contrast, the impact is negligible when dupli-
cates are introduced over the noisy column. Even increasing
the amount of duplication creates no impact with the low
relevancy column. We observe the same trend with HiCapMLP.

6) Changing data generating process: We set up a
different distribution where the data is separable with a hyper-
plane. This distribution is well-suited for LR and MLP (where
each neuron defines a hyperplane), but represents a bad-case
scenario for RF that requires many numbers of splits to recover
the true concept. We again vary all confounders one at a time
while fixing the rest. We confirm the same trends that we
saw with all models in Section VI-C1- VI-C5, except with
HiCapMLP which doesn’t overfit as much as HiCapRF and
behaves similar to LR. Due to space constraints, we discuss the
exact data generating process and results in tech report [32].

D. Explanations and Takeaways

We now intuitively explain the behavior of ML classifiers
in presence of duplicates with the synthetic study. We check
the generalization ability of the ML models with the overfit-
ting gap. Figure 6 presents the overfitting gap results of all
classifiers with OHE. We find that the delta drop in accuracy
(Figure 14) closely follows the increase in the overfitting gap
due to duplicates with both high-capacity models, HiCapRF
and HiCapMLP. That is, the increase in overfitting or variance
with duplicates explains the accuracy drop we see. Thus, du-
plicates can negatively impact the generalization capability of
high-capacity models, which are prone to overfitting. However,
as the number of training examples rises, overfitting subsides.
This explains our trends in the high-data regime.

We find that LR exhibits no amount of extra overfitting
with duplicates. This is because the VC dimension of LR is
linear in the number of features. As the dimensionality of the
feature space expands with duplicates, VC dimension of LR
expands. We get an expanded logistic hypothesis space with
duplication that is a superset of the true logistic hypothesis
space. Thus, a larger hypothesis space can potentially lead to
more variance unless the true concept is simple enough to
recover in an expanded feature space. We check the weights
of the hyperplane learned with LR in presence of duplicates
where a higher weight indicates higher importance. We find
that the absolute weights of duplicate features are often close
to zero. This suggests that the LR can learn the true concept by
completely ignoring the extra dimensions. Thus, the variance
does not rise. HiCapRF with OHE makes many binary splits
on the data to recover the true concept, causing the tree to fully
grow to the restricted height. Chances of further overfitting
with duplicates are reduced with a limited height. This explains
why a set-based split with StrE is more robust than binary
splits with OHE as it allows to pack more category splits
within the same tree height.

VII. DISCUSSION

A. Public Release

We release a public repository on GitHub with our entire
benchmark suite [22]. This includes our labeled dataset of
entities in the string Categorical columns annotated with their
duplicates, along with their raw CSV files. We also release the
downstream benchmark suite with raw and deduped versions
of all datasets, synthetic benchmarks, and the code to run them.

B. Takeaways

We find that the presence of Categorical duplicates can
potentially impact downstream ML accuracy significantly. The
amount of impact can be characterized by multiple con-
founders that interact in non-trivial ways. It is not always pos-
sible to disentangle the impact on ML with each confounder
individually. However, our empirical analyses can provide
insights into when cleaning effort would be more or less
beneficial. The current practice among ML practitioners and
AutoML platform developers to handle Categorical duplicates
is largely ad hoc rule-based and completely oblivious to many
confounders. We first give general guidelines and actionable
insights to help them prioritise their category deduplication
effort and also potentially design better end-to-end automation



pipelines. We then lay out critical open research questions in
this direction that require contributions from the community.

1) For ML practitioners and AutoML platform developers:
a. Make ML workflows less susceptible to the adverse
performance impact of Categorical duplicates. LR is less
prone to overfitting than RF and MLP when Categorical
duplicates arise. This is because, as duplicates increase feature
dimensionality of Categoricals, LR can completely ignore
the extra dimensions of duplicates by setting their weights
close to 0, making them overfit less. Also, StrE is relatively
more robust than OHE when using RF. Moreover, SimE
inherently exploits the presence of similar categories in the
Categorical domain. This makes it significantly more robust
from Categorical duplicates compared to OHE and StrE.
Moreover, unseen Categorical duplicates that arise during the
deployment phase can degrade ML performance with OHE or
StrE. Overall, Similarity encoding and/or a Logistic Regression
can be utilized by ML practitioners and AutoML developers
if they desire to guard their pipelines against any adverse
drop in ML performance from likely Categorical duplicates.
Moreover, the impact of Categorical duplicates get mitigated
in a higher-data regime compared to a low-data regime. Thus,
whenever possible, one can consider getting more train data
to offset their impact by trading off runtime.

b. Track the overfitting gap of ML models. Category
deduplication can reduce the overfitting caused by Categorical
duplicates on ML. Thus, cleaning Categorical duplicates may
not be worthwhile if the overfitting gap is already low on the
raw data. Monitoring and presenting it as an auxiliary metric
to the AutoML user can provide them with more confidence
about the downstream performance.

2) For Researchers:
a. Design accurate methods for category deduplication.
Although Categorical duplicates can often impact ML accu-
racy substantially, existing open source AutoML tools such as
AutoGluon [48] and TransmogrifAI [49] do not support an
automated deduplication workflow. Cleaning duplicates man-
ually can be slow and frustrating for many users, especially
non-technical lay users who were promised an end-to-end au-
tomation of the entire ML workflow. Our labeled dataset can
serve towards bulding supervised learning-based approach
to automate category deduplication. Moreover, this will lead
to an objective assessment of the accuracy of automation.
Capturing semantic-level characteristics of the categories with
either designing features or with deep learning models is an
important avenue for future research.

b. Theoretical quantification. Our empirical study suggests
that Categorical duplicates can increase variance since the
hypothesis space of the model can grow. This opens up several
research questions at the intersection of ML theory and data
management: Is it possible to establish bounds on the increase
in variance using VC-dimension theory [50]? Can we set
up a decision rule to formally characterize when catgeory
deduplication would be needed?

VIII. RELATED WORK

Data Prep and Cleaning for ML. CleanML [6] analyses the
impact of many data cleaning steps on downstream ML tasks.
However, they do not specifically cover Categorical dedupli-
cation. Although they study string-level inconsistencies within
a column with four real datasets, they are not all Categorical.
They focus on deriving a broad perspective of many cleaning
steps such as this. In contrast, we offer empirical depth with
confounder characterization to study the impact of Categorical
duplicates on ML. We performed an objective benchmarking
of a specific ML data prep step, namely the feature type
inference task [23]. We build upon our open-sourced datasets
but we study a completely different problem.

There exist numerous data prep tools such as rule-based
tools [51], exploratory data analysis-based libraries [52], visual
interfaces [53], and program synthesis-based tools [54], [55]
to reduce users’ manual grunt work effort and allow them to
productively prepare their data for ML. Our work’s insights
can complement all these tools to reduce human time and
effort and make their analysis more interpretable. Some works
have studied human-in-the-loop data cleaning to improve ML
accuracy and reduce user effort [56], [57]. However, they do
not support a cleaning operation when Categorical duplicates
arise. Our labeled data can spur more follow-up works in
this general direction of automating and improving data prep
for ML. Error detection [58] and ML for data cleaning
methods [59], [60] are orthogonal to our focus since we do
not propose new techniques for Categorical deduplication.
AutoML Platforms. Several AutoML tools allow users to
perform automated model selection without covering any data
prep tasks [61]–[63]. Other tools such as AutoML Tables [1],
TransmogrifAI [49], and AutoGluon [48] do automate many
data prep tasks. However, they do not handle Categorical
duplicates. Instead, the users are asked to explicitly clean and
remove inconsistencies in Categorical columns before using
their platforms [9]. Our labeled data can lead to contributions
from community to automate deduplication task, including
potentially extending AutoML with deduplication processor in
the optimization process [7], [8], [61]. Moreover, we believe
that our empirical analyses and takeaways are valuable to
improve AutoML platforms. AutoML benchmark [5] performs
a comparative study of many AutoML tools with their model
selection routines. However, understanding any data prep step
from downstream ML standpoint is not their focus.
EM. The task of identifying whether records from two ta-
bles refer to the same real-world entity has received much
attention with rule-based [64]–[66], learning-based [13]–[15],
[67], semi-supervised [68], unsupervised [69], [70], and active-
learning [71] approaches. Our focus is on analyzing the
impact of category duplicates on ML. We do not propose
new techniques for EM or even category deduplication. Thus,
prior work on EM is complementary to ours in terms of
utility for AutoML platforms. Moreover, active learning-based
string matching solution [18] is truly complementary as it can
enhance our benchmark by reducing labeling effort for users.
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J. Quiané-Ruiz, A. Solar-Lezama, and N. Tang, “Generating concise
entity matching rules,” in Proceedings of the 2017 ACM International

Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, S. Salihoglu, W. Zhou,
R. Chirkova, J. Yang, and D. Suciu, Eds. ACM, 2017, pp. 1635–1638.
[Online]. Available: https://doi.org/10.1145/3035918.3058739

[65] F. Panahi, W. Wu, A. Doan, and J. F. Naughton, “Towards
interactive debugging of rule-based entity matching,” in Proceedings
of the 20th International Conference on Extending Database
Technology, EDBT 2017, Venice, Italy, March 21-24, 2017, V. Markl,
S. Orlando, B. Mitschang, P. Andritsos, K. Sattler, and S. Breß,
Eds. OpenProceedings.org, 2017, pp. 354–365. [Online]. Available:
https://doi.org/10.5441/002/edbt.2017.32

[66] R. Singh, V. V. Meduri, A. K. Elmagarmid, S. Madden, P. Papotti,
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TABLE VIII
THREE PAIRS OF DUPLICATE TUPLES FROM THREE DIFFERENT DATASETS OF THE MAGELLAN DATA REPOSITORY [13].

Dataset Name Left Tables Right Tables

Restraunt
Address Phone number Name Address Phone number Name

1929 Hillhurst Ave,
Los Angeles, CA (323) 644-0100 Alcove Cafe 

& Bakery
1929 Hillhurst Ave,

Los Angeles, CA 90027 (323) 644-0100 Alcove Cafe 
& Bakery

Ebooks

Author Title Price Author Title Price

John D.T. White
101 Things You May 

Not Have Known 
About the US Masters

5.99 John White
101 Things You May 

Not Have Known About
the US Masters

5.49

Citations

Author Entry Type Title Author Entry Type Title
David A. Cohn and Zoubin

Ghahramani and 
Michael I. Jordan

article
Active Learning 
with Statistical 

Models

Cohn, David A and 
Ghahramani, Zoubin
and Jordan, Michael I

article Active learning with 
statistical models

Type Number

(A)

% of all 
duplicates

(B)

Number of Types of 
duplication per duplicate

% of all 
duplicates

Number of Types of 
duplication per entity

(C)

% of all 
entities

Fig. 7. Histogram plots to illustrate how duplication types (from Table III)
arise across all columns in all files. x and y denote x-axis and y-axis
respectively. (A) y% duplicates have duplication of at least one x Type
Number. (B) y% duplicates have x different duplication types within. (C)
y% entities have duplicates with x different duplication types within.

this is an orthogonal problem to category deduplication. Tuple-
level duplicates do not necessarily imply duplication in the
Categorical strings. Likewise, duplication in a Categorical
column may not lead to row-level duplicates. We present three
pairs of duplicate records from three different datasets of the
Magellan data repository in Table VIII. Note that generic open
domain attributes such as author person names and addresses
are not Categorical features for ML. Instead, such features are
context-specific where either custom features are extracted or
are completely dropped as they may not generalize for ML.
Moreover, Title in Citations datasets has rich semantic infor-
mation and is typically used as a Text or Sentence type feature.
A Categorical feature assumes mutually exclusive values from
a known finite domain set. We find that almost all of the Mag-
ellan datasets involve duplication in non-Categorical features
such as generic person names, company names, addresses, and
textual values with rich semantic information. Thus, they are
not relevant for us to study category deduplication. We focus
exclusively on the Categorical features and curate the first
labeled dataset of entities annotated with duplicates within a
Categorical column.

X. HAND-LABELED DATA

A. Data Statistics and Takeaways
We summarize the presented results with key takeaways

below.

(1) We first explain the worst-case scenario that can arise due
to duplicates. We find that almost 17% of the columns that
have duplicates have them in all of their entities! Furthermore,
7% of duplicates across all columns occur at 50%, i.e., the
representation of the duplicate and the true entity are same.
Additionally, 1% of all entities have more than five duplicates.
However, the presence of more than 10 duplicates per entity
is quite unlikely (less than 0.5%). Finally, deduplication can
reduce the domain size of the Categorical column substantially
by up to 99%. Overall, we find that whenever duplicates arise
in the column, they can occur quite often.

(2) We now discuss the presence of duplicates with the average
case scenario. We find that whenever an entity is diluted with
duplicates, almost 90% of the time they have one or two
duplicates! Duplicate set sizes follow a long-tail distribution,
most entities have small duplicate set sizes and very few
entities have a lot of duplicates. This can make catching
duplicates and deduplicating them particularly challenging, as
they can go unnoticed. Moreover, the occurrence of duplicates
approximately follows a uniform distribution, i.e., all occur-
rence values up to 50% are roughly equally likely. Finally,
|ED|/|E| values of 10-35% fall close to the median.

(3) We present how different duplication types (from Table III)
are represented in our labeled data in Figure 7. We find that the
Difference of Special Characters and Capitalization issues are
the most common, while Synonyms and Grammar issues are
less common. Moreover, whenever duplicates exist, 17% of the
time they belong to more than one duplication type (maximum
observed is 4 duplication types). Also, 19% of entities have
duplicates that can be mapped to multiple types (maximum
observed is 6 duplication types).

XI. DOWNSTREAM BENCHMARK

A. Datasets

Table IX presents the statistics with different confounders
that can potentially impact the ML performance over all
14 downstream datasets. For the downstream benchmark, we
downloaded as many datasets as possible from public sources



TABLE IX
STATISTICS OF THE COLUMN CONTAINING DUPLICATES IN OUR DOWNSTREAM BENCHMARK DATASETS. |r|, |A|, AND |Y | ARE THE TOTAL NUMBER OF

EXAMPLES, NUMBER OF COLUMNS, AND NUMBER OF TARGET CLASSES IN THE GIVEN DATASET RESPECTIVELY. |rC| DENOTES THE NUMBER OF
TRAINING EXAMPLES (AVERAGED OVER 5 FOLDS) PER CATEGORY OF THE SET C . P IS THE FRACTION OF |E| (AVERAGED ACROSS 5-FOLDS) THAT HAS

AT LEAST 1 DUPLICATE BEING MAPPED TO “Others” CATEGORY IN THE VALIDATION SET WITH OHE AND StrE. WE USE COLORS GREEN, BLUE, RED
WITH HAND-PICKED THRESHOLDS TO VISUALLY PRESENT AND BETTER INTERPRET THE CASES WHERE THE AMOUNT OF DUPLICATION IS LOW
(1− |E|/|C| < 0.25), MODERATE (1− |E|/|C| > 0.25 & < 0.50), AND HIGH (1− |E|/|C| > 0.50) RESPECTIVELY. WE USE THE FOLLOWING
THRESHOLDS WITH THE SAME COLORS TO BETTER INTERPRET THE DATA REGIME: LOW (|rC| < 5), MODERATE (|rC| > 5 & < 25), AND HIGH

(|rC| > 25). NOTE THAT THE DATA REGIME MOVES UP WITH DEDUPLICATION AS CATEGORY SET SIZE HAS SHRUNK.

Datasets |r| |A| |𝑌|
Amount of Duplication Data Regime

P %!"
|!|

%
median
|𝐷! |

median
occ {𝐷!"}

|C| 1-
|!|
|$|

% |rC| |rC| after dedup
(Increase w.r.t Raw)

Midwest Survey 2778 29 9 33.1 2 4 1008 64 2.5 6.5 (2.6x) 23.6

Mental Health 1260 27 5 40 3.5 2.3 49 69.4 23.2 81.2 (3.5x) 25.3

Relocated Vehicles 3263 20 4 33.2 1 20 1097 35.8 2.5 3.8 (1.5x) 14.9

Health Sciences 238 101 4 36.4 2 6 56 60.7 3.6 8.3 (2.3x) 26.4

Salaries 1655 18 8 24 1 25 647 29.2 1.8 2.2 (1.2x) 10.9

TSM Habitat 2823 48 19 11 1 25 912 11.4 2.6 2.9 (1.1x) 14.6

EU IT 1253 23 5 24 1.5 12.5 256 34.8 3.9 5.9 (1.5x) 19.5

Halloween 292 55 6 31.3 2 11.1 163 50.9 1.5 3 (2x) 22.8

Utility 4574 13 95 38.4 1 20 199 30.7 16.2 24.3 (1.5x) 6.2

Mid or Feed 1006 78 5 21.4 6 0.8 37 62.2 20.6 59.7 (2.9x) 24.3

Wifi 98 9 2 30.3 2.5 12.5 69 52.2 1.3 2.5 (1.9x) 26.1

Etailing 439 44 5 47.8 4 5.9 71 67.6 5.3 14.3 (2.7x) 28.7

San Francisco 148654 13 2 10.7 1 25 2159 9.8 46.3 50.9 (1.1x) 3.2

Building Violations 22012 17 6 51 2 4.8 270 63 53.7 145 (2.7x) 4.4

and looked for columns with duplicates in them. We then
made sure that our selected datasets sufficiently represents
different extremes in the confounder spectrum. For instance,
a dataset that involves a high amount of duplication coupled
with high- and low-data regimes such as Building Violation
and Midwest Survey respectively. While the former dataset is
robust to duplicates even with almost 51% of their column’s
entity diluted with duplicates, the latter is not. This enables
us to make specific observations on the role of different
confounders, which we validate and disentangle using our
simulation study.

B. Methodology

Experimental Setup. We use CloudLab [72] with cus-
tom OpenStack profile running Ubuntu 18.04, 10 Intel Xeon
cores, and 160GB of RAM. We use python scikit-learn [73],
H2O [74], and SimilarityEncoder [75] packages to implement
OHE, StrE, and SimE respectively. We use a standard grid
search for hyper-parameter tuning, with the grids described in
detail below.

Logistic Regression: There is only one regularization param-
eter to tune: C. Larger the value of C, lower is the regulariza-
tion strength, hence increasing the complexity of the model.
The grid for C is set as {10−3, 10−2, 10−1, 1, 10, 100, 103}.

Random Forest: There are two hyper-parameters to tune:
NumEstimator and MaxDepth. NumEstimator is the number
of trees in the forest. MaxDepth is the maximum depth
of the tree. The grid is set as follows: NumEstimator ∈
{5, 25, 50, 75, 100} and MaxDepth ∈ {5, 10, 25, 50, 100}.

MLP: The multi-layer perceptron architecture comprises of
2 hidden units with 100 neurons each. We do L2 regularization
with the regularization parameter tuned using the following
grid axis: {10−4, 10−3, 10−2}.

C. Results with Additional Evaluation Metrics

We check if using additional evaluation metrics such as F1
score, precision, and recall alter any empirical observations
or conclusions in Section V-D of the paper. Note that the
micro average of precision, recall, and F1-score is identical
to the accuracy of multi-class classification [76]. Thus, we
use the macro average of precision, recall, and F1-score [76]
as evaluation metrics and rerun our downstream benchmark
suite. We check if evaluating with macro F1 score alters the
conclusion made with % diagonal classification accuracy as
the metric in regard to the varied confounder.

Overall, we find that none of the empirical conclusions
made with diagonal accuracy in the paper change even with
these additional evaluation metrics. Table X presents the
comparison of downstream models with different Categorical



TABLE X
COMPARISON OF DOWNSTREAM MODELS IN TERMS OF MACRO F1 SCORE WITH DIFFERENT Categorical ENCODING SCHEMES ON Raw (COLUMN WITH

DUPLICATES) VS. Deduped (DEDUPLICATED COLUMN) DATA. RESULTS FOR Deduped ARE SHOWN RELATIVE TO THE Raw AS DELTA LIFT/DROP IN % F1
SCORE. GREEN, BLUE, AND RED COLORS DENOTE CASES WHERE THE Deduped F1 SCORE RELATIVE TO Raw IS SIGNIFICANTLY HIGHER, COMPARABLE,

AND SIGNIFICANTLY LOWER (ERROR TOLERANCE OF 1%) RESPECTIVELY.

Dataset 

Logistic Regression Random Forest MLP

OHE SimE OHE StrE SimE OHE SimE

Raw Deduped Raw Deduped Raw Deduped Raw Deduped Raw Deduped Raw Deduped Raw Deduped

Midwest Survey 55.7 +10.3 65.4 +2.7 44.9 +12.6 56.5 +11.7 63.4 +5 54.3 +9.7 63.3 +3.7

Mental Health 42 -0.6 40.1 +0.8 40.3 +0 39.3 -1.3 38 +0.8 39.3 +2.7 41.1 +0.5

Relocated Vehicles 82.8 +4 88.4 +0.4 71.6 +3.5 81.3 +3.7 88.3 -0.1 83.6 +3.6 89.5 +0

Health Sciences 56.1 +0.7 57.4 +2.2 51.5 +3.3 59.1 -0.5 59.2 -3.7 54.7 +5.4 56.6 +1.8

Salaries 27.4 +1.3 30.5 -2 57.6 +2.1 64.5 +1.9 93.8 +0.4 15.9 +3.4 14.7 +8.7

TSM Habitat 34.1 +0 34.1 +0 68.5 +0 82.2 +1.6 85.7 +0.6 24.6 +4 19.1 +12.3

EU IT 16.1 +0 16.1 +0 33.6 +1.1 36.8 +0.2 43.1 +2.7 9.3 -2.2 4.2 +4.8

Halloween 37.1 +3.8 45.7 +0.5 34.2 +3 33.2 +1.7 31.1 -4.9 38.8 +4.1 40.9 -0.6

Utility 37 +0.1 38.5 +0.3 58.2 +1.5 44.9 +1.4 41.8 +1.7 65.2 +2 73.4 +2.2

Mid or Feed 37.2 +0.2 39.1 -3.6 35.2 +1.8 26.6 -0.3 26.1 +2.6 33 +1.9 31.2 +0.4

Wifi 54.9 +1.5 50.7 +8.2 52.7 +8.5 54.3 -4.5 50.2 +1.9 51.6 +2.3 48.3 +2.6

Etailing 37.2 -2.3 37.5 -0.1 33.3 +3 36.3 +1.4 32.9 +3.1 39.4 -3.1 36.7 +0

San Francisco 85.9 -0.1 85.6 -0.1 83 +0.3 83.3 +0.3 86.1 -0.1 86 +0.1 86 +0.1

Building Violations 89.4 +0 89.3 +0.1 97.5 -0.1 97 +0.1 97.4 +0.1 97.5 +0.1 97.2 +0.4

TABLE XI
COMPARISONS OF OVERFITTING GAP (DIFFERENCE BETWEEN TRAIN AND

VALIDATION SET MACRO F1 SCORES) WITH OHE. THE DROP IN
OVERFITTING GAP FOR Deduped IS SHOWN RELATIVE TO THE Raw.

Dataset
LR Random Forest MLP

Raw Deduped Raw Deduped Raw Deduped

Midwest Survey 25.3 -10 55 -15.8 45.5 -10.6

Mental Health 12.5 -3.4 49.8 -7.9 28.9 +1.5

Relocated Vehicles 17 -4.1 28.2 -3.7 16.4 -3.6

Health Sciences 7.5 -6.5 35.1 -8.6 45.3 -5.4

Salaries 2.3 -0.8 41.6 -1.4 0.8 +0.6

TSM Habitat 2.1 -0 30.6 -4.8 1.3 +0.2

EU IT 0.1 -0 60 -6.8 1 +1.1

Halloween 40.4 -3.8 56.2 -7.2 61.2 -4.1

Utility 0.1 -0.9 41.8 -1.5 26 -2.9

Mid or Feed 35.7 -12.4 63.3 -0.4 67 -1.9

Wifi 11.9 -2.6 31.8 -4.8 46.8 +0.8

Etailing 43.3 -6.7 60.6 -2.3 60.6 +3

San Francisco 0.6 -0.2 0.1 +0.1 1.1 -0.1

Building Violations 0.1 +0.1 1.8 +0.1 1.2 -0.2

encoding schemes in terms of macro F1 scores. Table XII
(similar to Table VI) showcases the aggregate statistics over
all evaluation metrics. Finally, we present the generalization
performance of the ML classifiers with the overfitting gap,
difference between train and validation macro F1 scores in

Table XI here (similar to Table VII). We confirm the validity of
all observations O1-O8 made with the downstream benchmark
suite with the additional evaluation metrics. As an example, we
still find that the delta increases in macro F1-score, precision,
and recall with Deduped are higher with Random Forest
and Multi-layer Perceptron (MLP) than Logistic Regression.
Moreover, we again find that Similarity encoding is more
robust than other encoding schemes to tolerate duplicates. Note
that the focus of this work is on interpreting the impact on ML
with features having different duplication properties and not
on disentangling the impact at a per-class basis.

XII. SIMULATION STUDY RESULTS

A. Scenario AllA

This represents a complex joint distribution where all fea-
tures obtained from A determine Y .

1) Varying the data regime and the parameters that control
the amount of duplication.: Figure 11 shows the delta drop in
classification accuracy with duplication relative to the ground
truth clean dataset on all models with OHE as the number of
training examples and the duplication confounders are varied.
Figure 13 shows the results as the confounders are varied
for HiCapRF with StrE. We again note that a high-data
regime is more robust to duplication than a low-data regime
for both encoding schemes.All the high-bias approaches are
more robust to duplication than the high-capacity models.
Also, duplication confounders can have significant adverse
performance effects on high-capacity classifiers



% Entities with duplicates
on the non-relevant column

(A)

% Entities with duplicates
on the relevant column

(B)

Y-axis: Delta drop in  % test accuracy due to duplication with OHE

Fig. 10. Hyperplane results on HiCapRF. We set |A| = 4 and vary
|ED|/|E|, while fixing (|r|t, occ(Dk), |Dk|)=(5000, 25, 1). Duplicates in-
troduced on the column with (A) non-positive Relevancy (noisy column) (B)
high Relevancy (predictive column).

TABLE XII
SUMMARY STATISTICS OVER 14 DOWNSTREAM DATASETS IN TERMS OF

MACRO F1-SCORE, PRECISION, AND RECALL TO SHOWCASE THE IMPACT
OF DEDUPLICATION ON ML MODELS USING DIFFERENT ENCODING

SCHEMES.

F1 score
LR Random Forest MLP

OHE SimE OHE StrE SimE OHE SimE

% lift in accuracy with Deduped

Mean 1.4 0.7 2.9 1.4 0.7 2.4 2.6

Median 0.2 0.2 2 1.4 0.7 2.5 1.2

75th percentile 1.5 0.7 3.2 1.9 2.5 3.9 3.4

Max 10.3 8.2 12.6 11.7 5 9.7 12.3

# downstream datasets where

>1% lift wrt metric
on Deduped 5 3 10 8 6 10 7

Precision
LR Random Forest MLP

OHE SimE OHE StrE SimE OHE SimE

% lift in accuracy with Deduped

Mean 1.8 1.1 4.2 1.2 0.7 1.7 1.9

Median 0.9 0.3 3.2 1 0.5 1.9 1.7

75th percentile 2.9 2.1 6.2 1.9 2.8 3.4 2.8

Max 10.3 8.1 14.7 11.9 5.8 9.8 9.8

# downstream datasets where

>1% lift wrt metric
on Deduped 7 4 10 7 6 9 8

Recall
LR Random Forest MLP

OHE SimE OHE StrE SimE OHE SimE

% lift in accuracy with Deduped

Mean 1.6 0.9 2.4 1.9 0.7 2.3 2.7

Median 0.9 0.4 1.6 1.3 0.6 2.1 1.3

75th percentile 1.6 1.1 2.4 2.1 2.7 4.1 3.7

Max 9.4 8.4 10.8 10 4.4 9.5 15

# downstream datasets where

>1% lift wrt metric
on Deduped 7 4 10 9 6 9 7

Zipfian skew parameter (𝑧𝑝)

(A) (B)

Needle probability (𝑛𝑝)

Y-axis: Delta drop in  % test accuracy due to duplication with OHE

Fig. 8. Effects of skew parameters on AllA simulation scenario for Random
Forest with OHE. |A| is preset to 3. (A) Vary Zipfian skew parameter
zp of |Gk|, while fixing (|r|t, |ED|/|E|) = (3000, 30). (B) Vary needle
probability parameter np of occ(Gk), while fixing (|r|t, |ED|/|E|, zp) =
(3000, 30, 2).
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Fig. 9. Hyperplane scenario results on HiCapRF with OHE. Only
test set is diluted with duplicates. (A) Vary |ED|/|E|, while fixing
(|r|t, occ(Dk), |Dk|) = (3000, 25, 1). (B) Vary occ(Dk), while fixing
(|r|t, |ED|/|E|, |Dk|) = (3000, 30, 1).

2) Skewness in the duplication parameters.: We now alter
our duplication process to capture skewness in |Dk| and
occ(Dk), varying one at a time. Figure 8 presents the results.
We find that the delta drop in % accuracy due to duplicates
remains significant regardless of the amount of skew in |Dk|
and occ(Dk). With the Zipfian skew in |Dk|, the delta drop is
highest at uniform distribution in |Dk| (no skew setting) and
marginally decreases as the skewness parameter is increased.
On the other hand, when a needle-and-thread skew in occ(Dk)
is present, one duplicate from set Dk has a probability mass
np (needle parameter). The remaining 1-np probability mass
is uniformly distributed over the rest of the duplicates in Dk.
We find that the delta drop due to duplicates decreases while
still remaining significant when one duplicate value is more
likely to occur than the rest (as np is increased). Overall, the
overarching conclusion from this analysis is that none of our
results or takeaways change or get invalidated with this new
setup.

B. Scenario Hyperplane

Data generating process. We set up distribution with a true
hyperplane to separates the classes. (1) We define and fix
the normal vector of the hyperplane with weights, Wi, 1 <=
i <= |A|. Each weight Wi with cardinality |E| is randomly
sampled from a list of non-zero integers ([−5, 5]\{0}) without



replacement. Note that the integer weights are chosen only
to make the distance calculation simpler in step (3). The
trends of our results do not change even if the weights are
chosen from real number uniform distribution. (2) Construct
|r| tuples of A by sampling values uniformly randomly from
|E|. Thus, with fixed weights, the hyperplane over One-hot
encoded example feature vectors is given by

∑i=|A|
i=1 Wi · Ai

= 0. (3) Examples for which
∑i=|A|

i=1 Wi ·Ai >= 0 are labeled
positive (Y =0) and remaining examples are labeled negative
(Y =1). This generates the true dataset where all columns have
high Relevancy. We introduce duplicates in them by following
the same duplication process as Section VI-C.

Results. Figure 12 shows the delta drop in accuracy due to
duplicates with all models using OHE. We find that all high-
bias approaches are again robust to the presence of duplicates
even when all entities are diluted with duplicates. Interestingly,
HiCapMLP exhibits only marginal impact with duplicates. In
contrast, duplicates affect HiCapRF significantly, especially
in a high-duplication regime. We explain this interesting
behavior in Section VI-D. We vary other confounders such as
the other duplication parameters, the fraction of entities being
mapped to “Others,” and column Relevancy. We confirm the
same trends that we saw with all models in AllA scenario,
except with HiCapMLP which behaves similar to LR than
HiCapRF.

1) Varying the data regime and the parameters that control
the amount of duplication.: Figure 15 presents the delta drop
in classification accuracy due to duplicates with all models
using OHE. We again note that as the number of available
training examples is increased, the delta drop in accuracy
due to duplicates decreases for HiCapRF. Raising the other
duplication parameters such as |ED|/|E|, occ(Dk), |Dk| also
increases the adverse performance impact of duplicates on
HiCapRF. Interestingly, we find that HiCapMLP exhibits
only a marginal amount of overfitting on the Hyperplane
simulation scenario. Thus, we do not see any impact due
to duplicates on HiCapMLP and also on all the high-bias
approaches.

2) Varying properties of duplicates being mapped to “Oth-
ers” and column Relevancy.: We now repeat the simulation
scenario presented in Section VI-C4 but with Hyperplane
setting, i.e. the true distribution is given by a hyperplane that
separates the classes. Figure 9 presents the results when only
the test set is diluted with duplicates. We again note that
the presence of duplicates in the test set impacts HiCapRF
significantly. Figure 10 presents the Hyperplane simulation
results when we have the presence of both high and low rele-
vancy columns in the dataset (setup same as Section VI-C5).
We again find that the duplication on a noisy column has
a marginal impact on HiCapRF, while duplicates the on
relevant column affect it significantly.
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Fig. 11. AllA simulation scenario results for LR, ShallowDT, HiCapRF, LoCapMLP, and HiCapMLP with OHE. |X| = 3. (A) Vary |r|t (# training
examples) , while fixing (|ED|/|E|, occ(Dk), |Dk|) = (30, 25, 1). (B) Vary |ED|/|E|, while fixing (|r|t, occ(Dk), |Dk|) = (3000, 25, 1). (C) Vary
occ(Dk), while fixing (|r|t, |ED|/|E|, |Dk|) = (3000, 30, 1). (D) Vary |Dk|, while fixing (|ED|/|E|, |r|t, occ(Dk)) = (30, 3000, 25), for all k ∈
[1, |ED|].
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Fig. 12. Hyperplane setting results on (A) LR (B) ShallowDT (C) HiCapRF (D) LoCapMLP (E) HiCapMLP (same setup as Figure 5).
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Fig. 13. AllA simulation scenario results for ShallowDT and HiCapRF with StrE. (A) Vary |r|t (# training examples) , while fixing
(|ED|/|E|, occ(Dk), |Dk|) = (30, 25, 1). (B) Vary |ED|/|E|, while fixing (|r|t, occ(Dk), |Dk|) = (3000, 25, 1). (C) Vary occ(Dk), while fixing
(|r|t, |ED|/|E|, |Dk|) = (3000, 30, 1). (D) Vary |Dk|, while fixing (|ED|/|E|, |r|t, occ(Dk)) = (30, 3000, 25), for all k ∈ [1, |ED|].
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Fig. 14. AllA simulation scenario results for Random Forest with OHE and StrE where hyper-parameters are tuned with grid search. |X| = 3. (A) Vary |r|t
(# training examples) , while fixing (|ED|/|E|, occ(Dk), |Dk|) = (30, 25, 1). (B) Vary |ED|/|E|, while fixing (|r|t, occ(Dk), |Dk|) = (3000, 25, 1).
(C) Vary occ(Dk), while fixing (|r|t, |ED|/|E|, |Dk|) = (3000, 30, 1). (D) Vary |Dk|, while fixing (|ED|/|E|, |r|t, occ(Dk)) = (30, 3000, 25), for all
k ∈ [1, |ED|].
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Fig. 15. Hyperplane simulation scenario results for LR, ShallowDT, HiCapRF, LoCapMLP, and HiCapMLP with OHE. |X| = 3. (A) Vary |r|t
(# training examples) , while fixing (|ED|/|E|, occ(Dk), |Dk|) = (30, 25, 1). (B) Vary |ED|/|E|, while fixing (|r|t, occ(Dk), |Dk|) = (3000, 25, 1).
(C) Vary occ(Dk), while fixing (|r|t, |ED|/|E|, |Dk|) = (3000, 30, 1). (D) Vary |Dk|, while fixing (|ED|/|E|, |r|t, occ(Dk)) = (30, 3000, 25), for all
k ∈ [1, |ED|].
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