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ABSTRACT

Cerebro is a distributed model selection system that supports a
novel parallel SGD execution strategy called Model Hopper Par-
allelism (MOP). Cerebro has been implemented in a modular way
combining model and data parallelism such that the support can
be extended for different backend execution layers. This project
extends the support for Cerebro to Dask users. Dask is a parallel
computing framework built in Python that natively supports em-
barrassingly task-parallel workloads. Our work manages to support
scalable model selection using MOP in Dask without modifying any
internal Dask implementations. We use Dask for the initial Extract
Transform Load (ETL), data partitioning, and orchestration of the
MOP strategy. The system is evaluated by training multiple model
configurations on a standard dataset using MOP. We observe that
the Dask backend can reproduce the same results as the original
implementation in terms of both system performance and accuracy.
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1 INTRODUCTION

Scalable deep learning has always been a challenging task, espe-
cially when maximizing system utilization and performance. Imple-
menting model selection strategies at such a large scale becomes
even more difficult. Previous solutions to this problem-focused ei-
ther on data-parallelism or task-parallelism, leading to a trade-off.
To this end, Cerebro[27] was proposed for model selection in large-
scale deep learning by combining the advantages of data-based and
task-based parallelism approaches. It employs a novel Model Hop-
per Parallelism (MOP) approach for performing parallel training of
multiple model configurations.

Data-parallelism focuses on sharding data across different ma-
chines. However, it only trains one model at a time and does not look
into model selection workloads. On the other hand, task-parallel
approaches train multiple models parallelly but expect the entire
dataset to be present on each worker, thus introducing extra cost
for carrying out the training process. Data parallel approaches suf-
fer from poor per-epoch efficiency and slower convergence. Task-
parallel approaches suffer from no data scalability and poor memory
efficiency. Cerebro’s MOP strategy tries to address these challenges.

MOP combines the advantages of data and task parallel ap-
proaches. The training data is sharded across all the workers. Each
model configuration is trained once on each worker in random
order. While one model is training on a worker, the other workers
can be utilized to train other models. Once the training is com-
pleted, the model config "hops" on to the next idle worker on which
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Figure 1: Model Hopper Parallelism

it has not trained previously. One training epoch is completed
when all the model configs have been trained on all the work-
ers. MOP benefits from the randomness order that is allowed by
SGD-based optimization[29] training in neural networks. Thus the
MOP strategy ensures high model throughput, high data scalability,
low communication cost, and no storage wastage. The authors of
Cerebro[28] implemented Cerebro using Spark[30] in backend.

Dask[10] is a Python-based programming library that enables
distributed computing. It supports task-parallel workloads through
dynamic scheduling. Dask schedulers integrate well with a wide
range of custom workloads. It also provides a wide range of data
collections[25] including arrays and dataframes[12], that supports
parallel programming while also being built upon existing Python
interfaces including Numpy and Pandas[16]. This makes Dask a
good backend alternative for the current Spark backend being used
by Cerebro.

Through this project, we have integrated Cerebro with Dask.
Specifically, we build a new backend completely using Dask to im-
plement the MOP technique for parallel training of multiple model
configurations. This integration will help for the wider adoption of
Cerebro and ameliorate any issues observed when using Spark. The
Dask backend is put to test by training multiple model configura-
tions at once on the Criteo[1] dataset. The system consumption and
results are compared with the original Spark backend. Specifically,
our main contributions through this project are as follows:

(1) Developed a new backend for Cerebro using Dask that
completely removes the Spark dependency while still im-
plementing MOP.

(2) Implemented and showed the parallelism achieved by MOP
using the Dask backend in a distributed cluster environ-
ment.

(3) Evaluated the system performance on the Criteo dataset and
performed an extensive analysis of results and comparison
with the Spark backend.
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Figure 2: Cerebro architecture

The rest of this report is structured as follows: Section 2 talks
in detail about the current implementation of Cerebro and the
functionality provided by Dask. We formally define our problem
in Section 3. The implementation details are explained in Section
4. The system evaluation and results are presented in Section 5
while the analysis and key takeaways are presented in Section 6.
Finally, we present the future scope and conclusion in Section 7
and 8 respectively.

2 BACKGROUND WORK

2.1 Current Implementation of Cerebro

The end-to-end Cerebro architecture broadly consists of three main
layers. These are model building APIs, optimization and scheduling,
and execution and storage layer. The modules in each of these layers
have been depicted in Figure 2.

The high-level model building APIs consist of various functions
related to the training of models, including transfer learning, hy-
perparameter tuning, architecture search, and multi-task learn-
ing. These are accompanied by utilities including ablation analy-
sis, sequence analysis, feature transfer, and other related features.
This high-level layer is exposed to Jupyter notebooks and other
application-level functions. It should be noted here that not all of
these functionalities are currently available in the Cerebro archi-
tecture, and this is rather the vision of the Cerebro creators.

The intermediate layer consists of the MOP functionality and its
associated hybrids. Various schedulers required for AutoDiff and
SGD execution would be present here. Other managers required
for materialization and memory management will also find a place
in this layer.

The lowermost layer is the execution and storage layer that con-
sists of the core backend required to run the Cerebro architecture.
This includes direct file system access and required engines like
Spark([30] and Dask[10]. In the future, this layer would also be
able to support other cloud-native backends like Lambda, S3, AWS.
This execution and storage layer will work in tandem with the
intermediate layer to achieve fault tolerance and provide elasticity.

The current implementation of Cerebro uses Spark as its back-
end. This backend is exposed to the other layers using a set of APIs,
including data sharding, worker communication, epoch training,
validation, and data analysis. Such a modularized approach also
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Figure 3: Dask Execution

makes it convenient for the end-user to continue using the func-
tionalities without worrying about the internal processes running
in the lower layers.

2.2 Dask: Framework overview

The three main utilities of Dask include collections, task graphs,
and schedulers. Their purpose is shown in Figure 3. Dask pro-
vides a set of collections including array[3], dataframes[12], delayed
instances[13], and futures[18]. These collections can be used to cre-
ate a task graph[23]. Task graph consists of the sequence between
each of the processes being executed parallelly. This task graph is
operated upon and executed by Dask schedulers[22]. Dask sched-
ulers can operate in both single-machine and distributed cluster
environments.

2.3 Implementing parallel programming in
Dask

For integrating Dask with Cerebro, we went through different dis-
tributed ML algorithms which have been integrated with Dask
to compare previous approaches. First, we checked the XGBoost
algorithm[17]. XGBoost processes the Dask collections to create a
DMatrix, a data structure used by XGBoost for storing data. XG-
Boost handles the distributed training using the DMatrix and the
Dask scheduler. The XGBoost Dask interface gives a good start-
ing point for understanding the Dask interface, although the docs
were not clear in explanations. Another framework for performing
distributed ML is Dask ML[9]. The user needs a fair amount of un-
derstanding of Scikit-Learn APIs to use the scalable ML algorithms
support provided by Dask ML. Dask ML not only increases the
complexity of the code by increasing the number of dependencies,
but also requires the user to be familiar with all these multiple
libraries. Working with Dask ML would also require changes to the
Dask codebase itself to natively support Cerebro. All these chal-
lenges help us to formulate our problem better, described in the
next section.

3 PROBLEM DESCRIPTION

The task at hand is to create a new backend for Cerebro built using
Dask. The main challenge is to implement MOP while respecting
the constraints of Dask.
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Figure 4: Cerebro Dask Overview

3.1 Problem Motivation

Cerebro makes use of Spark[30] in its backend. Spark has several
limitations, including a steep learning curve, a large set of depen-
dencies, and poor support for streaming. Further, the addition of
new backends will help to improve the flexibility and wider adop-
tion of Cerebro. A Dask backend can also make the functionality
of Cerebro readily available to its rapidly growing community. All
these factors motivate us to pursue this project.

3.2 Objectives

As shown in Figure 2, our focus is on the execution and storage
layer of Cerebro. The objectives of our project are as follows:

e To implement the model hopper parallelism (MOP) tech-
nique using Dask APIs.

e To demonstrate the successful working of MOP in both
single-node and distributed cluster environments.

e To perform benchmarking and reproducibility checks against
the previously obtained results by the Spark backend in the
original Cerebro implementation.

We now explain the implementation details of our proposed
system in detail in the next section.

4 IMPLEMENTATION DETAILS
4.1 Overview

For our implementation, we decided to implement the functionali-
ties provided by Cerebro-Spark API using vanilla Dask methods.
We choose to use the same function names and endpoints to enable
easier switching between different backend for users. They will
not have to worry about different endpoint names or conventions.

We also keep Dask and Cerebro loosely coupled in the sense that
we can independently initialize the Dask scheduler and workers
which can be then be called from the Cerebro backend for further
processing.

Since Dask natively supports task parallelism, we cannot directly
use Dask task graphs[23] for submitting our model training tasks.
This approach will not work because a pre-computed task graph
cannot predict idle workers. Worker status can change from idle to
training (or vice versa) in real-time. Hence we used the approach
used in Cerebro-Spark to schedule the training task on workers as
soon as we find an idle model-worker pair.

This section describes the system design of integrating Dask
with Cerebro. We go through all the components of the pipeline as
illustrated in Figure 4. We first start with setting up the Dask client
and then move to the data preparation for training and validation
data. After that, we describe the data structures used in the random
scheduler and the training process. Then we describe the model val-
idation process. Finally, we describe the additional considerations
for running the setup on a distributed cluster.

4.2 Dask client

To set up Dask, we need three main modules: Dask scheduler[22],
Dask workers[24] and Dask client[5]. The complete Dask client
setup and process is illustrated in Figure 5.

e Dask scheduler[22]: To initialize a Dask scheduler, we use
the command-line interface. The scheduler gets initialized
on port 8786 by default, but if required, we can assign it to
a different port. Dask scheduler handles the assignment of
tasks to different Dask workers.
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o Dask workers[24]: After initializing the scheduler, we can
now spawn workers. To spawn workers from the command
line we need to pass the scheduler IP to the command so that
the Dask worker can be registered with the corresponding
scheduler. We initialize one Dask worker on each cluster
node based on a distributed setting. Each Dask worker
stores its local data in its respective space folder. So, in
a shared network file system, it has to be ensured that
workers have their separate worker spaces to avoid using
locks.

e Dask client[5]: Dask client is the interface between the
Dask API and the Dask scheduler. After the scheduler and
workers are set up, the Dask client is initialized by passing
in the Dask scheduler address.

4.3 Data preparation

We are given the training and validation data that needs to be sent
to Dask workers. The scattering of training and validation data is
handled differently. For partitioning the training data, the Dask
client’s scatter[11] method is used, which works on Dask collec-
tions to send a dataset to a particular worker. We can provide a list
of worker IPs to send the data. In our case, since each partition has
to be sent to only one worker, we give only one worker IP for a
partition. We get back the Dask future object[18] pointing to the
Dask dataframe partition. This future is used during training to
assign a particular model training to a data partition. Such parti-
tioning ensures that the complete training data is never loaded on
the client. Even the first data load occurs in a delayed manner. Dask
loads the data in chunks[4] and distributed manner. If required, the
dataset can be chunked back so that the chunks can fit in memory.

In case of the validation dataset, the complete dataset is copied
to each worker’s memory. There are two main reasons to do this:
First is that model evaluation will become an easy task-parallel task.
We do not need to worry about how to aggregate model evaluation
statistics. This is because one model will be evaluated on one worker
on the complete validation set in a single go. Secondly, validation
data is usually much smaller in size than the training data and
hence can fit in memory, and hence can be broadcasted to all the
workers.

4.4 Random Schdeduler

A random scheduler is used in the Cerebro system to schedule
model training on different workers. SGD is robust to randomness,
so model training on workers in a random order will not affect the
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model performance. To support random scheduling, we have used
the following data structures.

e Models|m1, m2, ...m]: Randomly shuffled list of model con-
figurations. The configurations are shuffled in every epoch.

o Workers|[wl,w2...w]: List of worker IP addresses. This
is required to send a model training task to a particular
worker.

e Trained[m][w]: A 2D boolean matrix detailing if a model
m has been trained on worker w. This will be used to check
if a model has been trained on all workers, and also to find
an idle model to train on a worker.

o Mapping{m— > (w, < Dask futuref >)}: A mapping from
a model to the corresponding worker on which the model
is training. Along with the worker, a Dask future object is
also stored. Whenever a model training task is submitted to
a worker, a Dask future[18] is saved corresponding to the
train function call. This future is used to check if a model
training is complete on a worker.

4.5 Training

Algorithm 1 presents the pseudocode for training one epoch. The
data structures described in the previous subsection (4.4) are all
input to the training process. The function runs until all models
have been trained on all workers once. The function iterates over
all the workers to find an idle worker. If an idle worker is found,
we search for a runnable model i.e. a model currently idle and also
not trained on the idle worker. Once the idle model worker pair is
found, Dask client’s submit[5] method is called to train the model
on that worker. The training algorithm is implemented such that
all the four invariants of MOP are taken care of (completeness,
model training isolation, worker/partition exclusive access, and
non-preemptive execution).

If a worker is not idle, that would mean that some model is
training on the worker. Hence its training status is checked using
the Dask future object. If the training is complete, the training
matrix is updated for the model worker pair, and the model and
worker are set to idle. If the model is trained on all workers, it is
removed from the set of models to be trained.

4.6 Validation

Model validation is done using task parallelism. All the workers
have the complete validation dataset. So, each model is sent to one
worker selected at random to perform model validation. Once all
the models are validated, we can return the best-performing model.
We preferred task parallelism over data parallelism because, with
data parallelism, we would have had to handle the aggregation of
validation statistics for different evaluation metrics, which is not
maintainable. Using task parallelism ensures that the deep learning
library handles validation.

4.7 Distributed Execution

For supporting distributed execution, two main things have to be
supported: a shared file system and a distributed cluster. Other than
these changes, no other changes were required to the Dask setup
described before.
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Algorithm 1 Training for 1 epoch

Input: List of model configs M, List of worker IPs W, Training
status TS
Output: Trained models T
while len(models_to_train) > 0 do
for each w in W do
if w is idle then
m « Idle model not trained on w
w.future = client.submit(w,m,train_model()) x
Mapping|m] = {w, w.future}
else
if w.future == "finished" then
TS[w][m] = True
update(T (m))
Set m and w as idle
Remove m from models_to_train if trained on all
workers
end if
end if
end for
end while
return T

Firstly, we had to set up a Network File System. This was done by
setting up passwordless ssh on the cluster nodes. Then the network
file system was set up using sshfs[19]. Using a network file system
has two advantages:

o Share data: The training and validation data can be placed
in the NFS. This ensures that workers can easily read data
from the shared file system. This also avoids copying data
repeatedly to each worker.

o Reduce communication cost: The setup also ensures min-
imal communication between the client and workers. The
Dask client communicates with the Dask workers to assign
a train sub-epoch task. Each worker has its own partitioned
local training data loaded in its memory. First, we thought
that the client could send the model every time to a worker,
and the worker can return the updated model to the client.
However, this can lead to the client becoming a bottleneck.
So, instead of the client communicating the models, we set
up a Network File System from where each worker can read
and update models, thus avoiding communication between
client and workers.

Secondly, to execute Dask-Cerebro on a distributed cluster, we
had to set up a Dask cluster[7]. Dask supports two types of sched-
ulers single machine and distributed scheduler. The single machine
scheduler initializes all Dask workers on a local process or thread
pool. However, the issue with a single machine scheduler is that
it is limited by a machine’s resources and does not scale. The sec-
ond type is a distributed scheduler which is required for our task.
There are different ways of setting up a distributed Dask cluster[14].
Dask cluster can be set up using the command-line interface to set
up the Dask-scheduler and Dask-worker processes. Dask cluster
can also be set up using python API using SSHCluster[14]. But
the issue with Python API is that it does not provide support for

Table 1: Workload configuration for training the system on
the Criteo dataset

Parameter Values

Model arch. 3 layer, 1000-500-1
Model size 90 MB

Batch size {32, 64, 256, 512}
Learning rate  {le-3, le-4}

Regularization {le-4, le-5}
Epochs 5

changing the location of local Dask worker space. The Dask worker
space defaults to the home directory. This can be an issue during
experimentation because the home directory has very limited space.
Hence, a command-line interface is used to set up the Dask clusters.

5 EVALUATION AND RESULTS
5.1 Experimental Setup

We set up a 9 node distributed cluster environment on Cloudlab!
[26]. These nodes include a scheduler node and 8 worker nodes.
Each of these nodes was configured to have 256 GB RAM and 2.2
GHz Intel E5 10-core CPUs. Approximately 200 GB of storage space
was allotted to each of the workers. Tensorflow v2.3[20] was used
for model building.

We evaluate the architecture by training a neural network ar-
chitecture on the Criteo[1] dataset. The Criteo dataset is a binary
classification task to predict whether a particular ad was clicked
through or not. We use a subset of the original dataset, similar to
the one used to evaluate the original Cerebro implementation. This
subset consists of over 100 million samples, each containing a mix
of categorical and numerical features. We have 7306 input columns
per sample post the one-hot encoding and data densification. We
load the dataset in Parquet[2] format.

We use a simple three-layer neural network for training purposes.
It consists of 1000 and 500 nodes in its hidden layers and one output
classifier node. 16 different model configurations are generated
by varying the three hyperparameters: learning rate, lambda, and
batch size. Each of these model configurations was trained for 5
epochs. The workload architecture is defined in Table 1.

5.2 Dask Diagnostics: Overview

Dask provides an in-built diagnostics dashboard[15] which con-
stantly monitors an active system and provides information related
to the same. The main monitoring insights provided by the Dask
dashboard are as follows:

o Task Stream: A real-time graph indicating the active tasks
and their duration on each of the workers. It also shows
the progress of each task including their status wiz. one of
in-memory, processing, waiting, or failed.

e Bytes stored: The dashboard provides information about
the total bytes stored in memory currently, including the
bytes stored per worker. Further statistics are provided
about the worker’s active and unmanaged memory.

!https://www.cloudlab.us/
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Figure 6: Sample image of the Dask dashboard

e Worker information: Detailed information about each
worker is provided including the currently used memory,
active processes, number of threads being executed, and its
associated logs.

o Graphs: Information related to any sub-processes that are
being executed within a process is provided, including its
consumption and execution times.

e Other logs: Other logs related to the occupancy of each
task, their profiles, and grouping is provided. The user also
can download some of this information, including stream
graphs, logs, and system consumption.

A screenshot of the Dask dashboard during a sample run has
been shown in Figure 6.

5.3 Results

One of the main objectives of our work was to benchmark the
obtained results and perform reproducibility checks against the
original implementation. To this end, we compare our results with
the results obtained by the Spark backend[31] used in the original
Cerebro implementation. Specifically, results are compared for the
runtimes and the system utilization during the end-to-end tests.
This comparison has been shown in Table 2.

It can be observed that we have managed to replicate the results
obtained using the Spark backend, in fact even outperforming it
across certain metrics. The CPU and DRAM utilization and Disk
write operations are almost in line with the original implementation.
The Dask backend performs slightly more disk reads per worker,

Table 2: Comparison of system utilization with Spark back-
end

Cerebro-Dask Cerebro-Spark

Metric (Proposed) (Original)
CPU Utilization (%) 36.9 35.2
DRAM Utilization (%) 23.48 28.50
Per worker disk read (GB) 0.55 0.2
Per worker disk write (GB) 1.02 1
Network traffic (TB) 0.03 0.2
Runtime (hrs.) 10.2 22.5

which could be attributed to the reads performed for maintaining
custom logs and monitoring them. We observe a tremendous reduc-
tion in network traffic as NFS has been used, leading to minimum
sharing between workers and scheduler as both of them read di-
rectly from the NFS. Further, memory has been persisted hence not
requiring any further exchange. We observe almost a 2x speedup in
terms of the runtime of the entire experiment. This could be attrib-
uted to the optimizations in subsequent versions of Tensorflow[20]
post the original implementation and the advantages provided by
the internal optimizations of Dask.

To show the parallelism in Dask, we also show the Gantt chart
indicating the process sequence for training the 16 different model
configurations across the eight workers. This chart has been visu-
alized in Figure 7. It can be seen that MOP has been implemented



Integrating Cerebro with Dask

Epoch 1 Epoch 2

Worker

18:00
Nov 28, 2021

20:00

Epoch 3

2

2200

Epoch 4 Epoch 5

Model

Hnu
o

HEEEEN
[=2]

00:00 02:.00
Nov 29, 2021

Figure 7: Gantt chart of the Criteo training process (5 epochs)

7200

7000

6800

6600

Time (in seconds)

6400

6200

0 1 2 3 4

Epoch

6000

Figure 8: Per epoch training times

successfully with the level of parallelization achieved. The interme-
diate gaps at intervals are due to the validation process running
between the epochs to note down the evaluation results.

Finally, we also analyze the per epoch training times in Figure 8.
It can be seen that the first epoch requires a higher time than the
other epochs. This can be attributed to the fact that each worker
is loading their respective data shards for the first time in local
memory. However, as this memory is persisted for subsequent
epochs, the training times decrease and remain consistent later.

6 ANALYSIS OF SYSTEM ARCHITECTURE

We analyze the system across five main characteristics. These are
namely: usability, manageability, efficiency, scalability, and devel-
opability [6][8]. For a disinterested view, we note down both the

advantages and disadvantages of the proposed architecture across
each of these characteristics:

(1) Usability: Our observation was that while Dask schedulers
are easy to use, ETL operations are difficult to perform. The
best use of the framework would be by trying to perform as
much data cleaning and processing before feeding the data
into the pipeline, to benefit from the scheduling abilities of
Dask. A core advantage of Dask is the easy integration of the
Dask scheduler with custom workloads. The disadvantage
is every dataset has to be converted to a Dask collection
(array/dataframe) before partitioning the dataset across
workers. This adds additional overhead.

Manageability: The built-in dashboard provided by Dask
provides a rich set of diagnostics including process charts,
memory consumption, logs, and per worker statistics. The
dashboard can be run locally without any external depen-
dencies. A core disadvantage of this dashboard is that it
does not detect any background fault occurrence and hence
keeps running without any notice to the user.

Efficiency: We observed that the efficiency of the Dask
backend is comparable to the Spark backend. In fact for
some parameters like network traffic and memory con-
sumption, it even outperformed the Spark backend. This
could be attributed to changes like optimization in the latest
versions of the Tensorflow([20] library and the internal op-
timizations of the Dask framework. However, we consider
this analysis to be a good analysis problem in itself and
would consider it to be a good future scope for extension.

@

®)



On the negative front, the Dask backend seems to be per-
forming more memory write operations as compared to its
Spark counterpart.

(4) Scalability: It is fairly easy to scale the Dask backend to
multiple workers. All of them would require the Dask dis-
tributed framework and required libraries to be installed,
and the scheduler would need access to their IP addresses.
Maintaining consistent versions and updating all the work-
ers to have the same setup would require some extra con-
sideration.

(5) Developability: Dask is still a developing framework and
hence has its own set of bugs and limitations. There is
a learning curve involved with getting acquainted with
playing around with Dask. However, once a user gets a fair
hold on the concepts and is offered Dask utilities, Dask has
a broad range of services to offer for enabling distributed
computing across a broad range of applications.

7 SCOPE FOR IMPROVEMENT

e Improving ETL operations: The xarray utility can be
used for better supporting parallel and streaming compu-
tations in the case of Dask. Xarray provides a rich set of
functions for ETL making it a better choice as compared to
the standard utilities in the Dask library. Also, in general,
the ETL can be handled in a more streamlined manner and
not be Dask collection dependent.

e Achieving large-scale data sharding in memory: We
faced considerable difficulties in reading large-sized parquet
files. While this could be attributed to our system limitations
to some degree, Spark had a better tolerance and debugging
mechanism for the same, and a similar one is desired for
the Dask backend.

o Scripts for automating setup and model runs: Cur-
rently, we had to manually execute the same script on each
of the workers, including installation of libraries, setting up
of their SSH configs, and clearing and maintaining directo-
ries. This was a fairly monotonous and trivial activity and
could be automated[21] for better control of the network
right from the scheduler or the client.

o Fault tolerance and elasticity: As mentioned previously,
the Dask backend currently does not have the best support
for fault tolerance. However, this should be easy to imple-
ment as checkpointing has been maintained. We would just
need to maintain a log of the sequence in which each of
the models was trained, to be able to fetch their latest com-
plete train in case of any node failure. Some work would be
needed to address elasticity in the network. This includes
the ability to include a new node while training is online
and making it a part of the training process in between the
epochs. An additional loop can be used to keep a watch on
all the active workers currently a part of the network. We
leave this implementation for future work.

e Open source integration: With the objectives focusing
on implementation of MOP and result benchmarking, we
did not implement all the other Cerebro services that were
provided in the Spark backend. These include advanced
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data preparation modules, metadata analysis, column break-
down, etc. As we integrate our Dask backend into the open-
source implementation of Cerebro, we will need to include
these supporting blocks in our implementation.

8 CONCLUSION

In conclusion, through this project, we have managed to extend
Cerebro to support a new Dask backend. We were able to replicate
the working of the model hopper parallelism approach in both sin-
gle and distributed-machine environments, without modifying any
existing implementations of Dask. Using the Dask scheduler and
distributed computing utilities, we demonstrated the working of
MOP for training multiple model configurations on the standard
Criteo dataset. The obtained results and system consumption pat-
terns of our backend were similar to the original Spark backend
implementation, hence proving the consistency. The addition of
this backend would help to make the adoption of Cerebro easier, es-
pecially with organizations that currently use Dask in their backend
pipelines.
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