
Categorical Data Deduplication
Soham Pachpande
Gehan Chopade

ABSTRACT
Data Preparation involved in Machine Learning Pipelines reduces
ML user productivity and hinders progress. One of the data pre-
processing steps is the identification and removal of duplicates in
categorical data. Encoding Categorical duplicates as different en-
tities poses risk to ML model accuracy. In this work, we look at
statistical features of categorical data, build a dataset with dupli-
cate and non-duplicate word pairs, and build a binary classifier to
distinguish between duplicate and non-duplicate word pairs. We
perform feature engineering using text comparison metrics and
model selection over classic ML models such as Logistic Regression,
Trees, and SVMs; and embedding-based Neural network models.
Our best performing model trained on a held-out cross-validation -
a Random Forest binary classifier achieves an F1 score of 0.95

KEYWORDS
datasets, text features, machine learning

1 INTRODUCTION
Data Cleaning is one of the most important and tedious sub-process
of Machine Learning data preparation and involves tedious grunt
work. And model performance is directly affected because of dirty
data even in AutoML systems. Data Acquisition in the real world
is often flawed and one of the data issues is categorical duplicates.
For example, in table 1, we can see that the categories "SWE" and
"Software Engineer" imply the same job title by common knowledge
but are represented differently. This dilutes the strength of the
category and affects downstream model accuracy.

In this project, we study the statistical features of duplicates in
categorical variables and build a binary classifier to predict whether
two words(categories) are duplicates of one another or not. Note
that we only use the categorical words and not the metadata making
this problem different from entity resolution. To the best of our
knowledge, we did not find any related work which has directly
worked on categorical data duplication without any contextual
information or metadata.

2 OUTLINE
We divide the report into the following sections. First, we describe
our dataset and data preparation process in section 3. We formally

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Location Job Title Education Salary Grade
SF Software Engineer Masters A
SF, CA SWE MS A

Table 1: Salary Grade Predication sample Data

define our Task in section 4. We discuss our approaches, experimen-
tal results, and analysis in section 5. We then conclude our report
and give a brief outline for future work.

3 DATA
3.1 Dataset
We use a labeled dataset for Categorical Duplicates [3] from the ML
Data Prep Zoo project [2]. This dataset is prepared by annotating
true entities within a Categorical column with corresponding du-
plicates. This dataset includes 1248 string categorical columns from
217 datasets stored as raw CSV files. Within this dataset, a total
of 52 string columns (which represent 33 out of the 217 datasets)
contain one or more categorical duplicates.

3.2 Data Preparation
We preprocess our dataset by creating word pairs from the dataset.
To get duplicate word pairs we pick entities that occur more than
once in a categorical column and we group every word with the
same annotated entity as a duplicate pair.

Category Set Category Oc-
currences

Total Entity
Number

Euro 25 263 1
U.S. Dollar 15 263 2
US Dollar 1 263 2
Franc 8 263 3

Table 2: Example Annotation for a single Categorical Column

For example, the table 2 shows the annotated data for a subset of
a single Categorical column in our dataset. The two category sets -
"U.S. Dollar" and "US Dollar" are duplicates of one another and are
annotated with the same entity number. We group all such category
sets which are annotated with the same entity number from every
column and label them as duplicate word pairs. For non-duplicates,
we randomly sample two category sets from a randomly sampled
category column, ensure that the sampled category set belongs to
a different entity, and label them as non-duplicates. Table 3 and
Table 4 shows annotated duplicate and non duplicate word pairs
respectively.

The total number of possible non-duplicate word pairs outnum-
ber the number of duplicate words pairs by a large ratio, this leads
to a heavy class imbalance. To avoid bias due to class imbalance, we

https://doi.org/10.1145/nnnnnnn.nnnnnnn

word1 word2 is Du-
plicate

Viewbank viewbank 1
Croydon croydon 1
adelaide Adelaide 1
Sefton Park SEFTON PARK 1
U.S. dollar U. S. dollar 1
ALASKA AK 1
New York, NY New York, NY 10012 1
White & Cream White/Cream 1

Table 3: Annotated Duplicate Word Pairs

word1 word2 is Du-
plicate

Curfew Aggravated Assault 0
Military Department Public Defender, State 0
French Guiana Mauritius 0
Prep End 0
Computer & Electron-
ics Retail

Leisure Products 0

Table 4: Annotated Non Duplicate word pairs

ensure that the ratio of the number of duplicates to non-duplicate
word pairs is approximately 1:5. We find 1782 duplicate word pairs
in our dataset and we sample 9500 non-duplicate word pairs.

4 TASK
We define our task as follows: Given a word pair, we aim to build a
binary classifier to identify whether the given words are duplicates
or non-duplicates. We resolve Categorical duplicates at a column
level with no extra metadata.

5 APPROACHES AND RESULTS
We present three approaches. For each approach, we give a back-
ground observation and the algorithm. Finally we analyse the
strength and weakness of each approach. The experimental results
are described in table 5.

5.1 Heuristic based Approach
5.1.1 Model: We observe that a large portion of duplicate words
differ in special characters (ex: "Black-Blue" vs "Black/Blue"), Cap-
italization (ex: "United States" vs "united states") and presence of
extra information (ex: "San Diego" vs "San Diego, CA"). We come up
with a heuristic baseline to first remove white spaces and special
characters (via a strip function) and convert words to a uniform
lower case representation. We then compute the edit distance be-
tween processed string forms of the word pair and compare with a
manually set threshold to classify word pairs as duplicate or non-
duplicate. The algorithm 1 describes our heuristic-based method.
To compute the edit distance, we penalize insertion and deletion
by a factor of 1 and substitution of characters by a factor of 2.

Algorithm 1 Heuristic Algorithm to identify duplicates
Require: Threshold(Th), Minimum Length(min)
𝑤1← 𝑙𝑜𝑤𝑒𝑟𝑐𝑎𝑠𝑒 (𝑠𝑡𝑟𝑖𝑝 (𝑤𝑜𝑟𝑑1))
𝑤2← 𝑙𝑜𝑤𝑒𝑟𝑐𝑎𝑠𝑒 (𝑠𝑡𝑟𝑖𝑝 (𝑤𝑜𝑟𝑑2))
𝑒𝑑𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ← 𝑒𝑑𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑤1,𝑤2)
if 𝑒𝑑𝑖𝑡𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ≥ 𝑇ℎ then return False
else return True
end if

5.1.2 Analysis: The results for this model can be seen in table 5.
We find a good precision but a very poor recall for this approach.
Thus the heuristic model is good at identifying non-duplicates
but struggles with accurately identifying duplicates. This is not
surprising as non-duplicates often drastically differ in semantics
as well and syntax whereas duplicate word pairs have very similar
syntactic features. We, therefore, shift our attention to recall and
build approaches to give a good recall and overall F1 score.

5.2 Embedding based Neural Networks
5.2.1 Model: Semantic word embedding models of languages rep-
resent each word with a real-valued vector such that word em-
beddings for any two words with similar semantic meaning or
embeddings are more similar than embeddings for dissimilar words.
We observe that categorical duplicates have similar meanings and
propose a model to use the GloVe Embedding model [1] to represent
our word pairs and train a shallow Neural Network to perform the
required binary classification task. Figure 1 describes our neural
network architecture. We generate vector embeddings of length 100
using GloVe embedding pre-trained model [1] and concatenate the
embeddings for our word pair to get a vector of length 200. These
concatenated vector embeddings are passed onto a fully connected
neural network which is trained using Stochastic Gradient Descent
with cross-entropy as the loss metric.

Figure 1: Embedding Based Neural Network Classifier

5.2.2 Analysis: One major caveat of this approach is that vector
embedding models contain vector representations of words that
belong to the corpus. This is not true in the case of our categorical
duplicate dataset. Often words have spelling mistakes or do not
have any semantic meaning. During our experiments, we found
that only 37.2% of words in our dataset had word embeddings. This

2

Features Model Precision Recall F1-Score
Original Words Heuristic .87 .73 .78
GloVe Embeddings Embeddings

(on a subset of dataset)
.95 .93 .94

N-Grams
Logistic Regression .76 .76 .76
SVM .76 .73 .73
Random Forest .95 .95 .95

Distance Metrics
Logistic Regression .90 .81 .85
SVM .90 .86 .88
Random Forest .95 .94 .95

Table 5: (Macro-averaged) Results for All Approaches

renders embedding models to be impractical. Therefore, despite
the good model performance, we shift our attention back towards
syntactic textual features.

5.3 Machine Learning Models on Textual
Features: N-Grams

An N-gram is a sequence of n words generated from a text that can
be modeled as features for language models. In this work, we de-
cided to leverage character-level n-grams, taking motivation from
word-level n-grams used in language modeling. The general idea
here is to find probabilities associated with the occurrence of char-
acters that occur in two words next to each other. To demonstrate
using an example, if we were to compare two words such as San
Diego and San Diego City, we will the occurrence of characters in
both these sequences can be used to develop features. If we onlt
consider bi-grams generated from these two words, we will get
[sa,an,n , d,di,ie,eg,go] and [sa,an,n , d,di,ie,eg,go,o , c,ci,it,ty]. We
propose that we look at bi-grams and tri-grams of the pair of words
and use them as features for our machine learning models. We use
these features to build Logistic Regression, Support Vector Machine,
and Decision Tree models.

5.3.1 Analysis: We observe that the dataset that is generated after
computing bi-grams and tri-grams for two words is significantly
large and all of the features generated do not contribute to the infer-
ence that is generated by the model making most of these features
redundant. It is also difficult to understand why certain ngrams are
more important then others which reduces model explainability.

5.4 Machine Learning Models on Textual
Features: Distance metrics based similarity
score

The distance metric is used vastly in machine learning applications
to recognize the similarity between two data points. We have al-
ready used edit distance in the previous section in our heuristic
approach. But the heuristic approach has a shortcoming where the
results of that model significantly depend on the threshold that we
manually tune. There is a possibility that the threshold is a function
of the textual features of words which is difficult to tune manually.
To get past this shortcoming, we decided to automate the threshold-
ing process by providing distance metrics between two words as
features and feeding them to a machine learning model, and make

the machine learning model predict if the two inputs belong to the
same category or not. We limit our scope for this work to three
distance metrics - Levenshtein distance and Cosine and Jaccard
distances generated from uni-grams, bi-grams, and tri-grams. We
again train these set of features with Logistic Regression, SVM, and
Random forest classifier.

5.4.1 Analysis: We observe that our performance significantly im-
proves as compared to the previous approach with only 7 features
present (Levenshtein distance, cosine distance, and Jaccard distance
for uni-gram, bi-gram, and tri-gram).Wewere further curious about
which features contributed the most to this improved performance.
So we ran a series of feature selection and model selection exper-
iments. We perform a nested cross-validation experiment on our
best performing model, a random forest classifier, to determine
feature importance and model hyperparameters. The outer cross-
validation is k-fold cross-validation with 10 folds and the inner
cross is a 3 fold grid search cross-validation. We validate on a list
of 10,50, and 100 trees with a list of 2,4, and 6 features. In this ex-
periment, we observed that we get the best configuration with 4
features (cosine and Jaccard distances generated from bigrams and
trigrams of the input words) and 100 trees. On further investigation,
we concluded that Levenshtein distance negatively impacts the
performance of the model. We used the results from our nested
cross-validation experiment and validated them on our dataset. The
results are displayed in table 5.

6 FUTURE SCOPE
Although we achieve f1 score of 0.95 with a random forest classifier
in our distance metric approach, there is still room for improvement.
We look forward to implementing this approach on an exhaustive
set of datasets that have more types of categorical duplicates, espe-
cially synonyms and entity duplicates. We also plan on testing our
approach with downstream benchmark models after we have re-
moved categorical duplicates from the datasets using the approach
mentioned above. This will give us a fair idea about how much does
the performance varies in absence of categorical duplicates. Lastly,
right now we are only considering distance metrics as features and
classifying categorical duplicates. We would like to use contextual
information from existing datasets and form a pair of context vec-
tors for every pair of words which can then be used as a feature
vector for our machine learning models.

3

7 CONCLUSION
Currently, the process of handling categorical data in a dataset is
a part of a data cleaning process that is largely dependent on the
exploratory data analysis task that is performed on the dataset. In
the scope of this work, we have taken steps towards automating
this process. We went through a holistic process of classifying
categorical duplicates in this work.We start offwith a basic heuristic
approach and build towards an embedding-based approach that
leverages deep neural networks. We then look at more explainable
models diverting our attention to using textual features like n-grams
and distance metrics in machine learning models where we achieve

state-of-the-art results with distance metrics on a random forest
classifier with a f1 score of 0.95.

REFERENCES
[1] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove:

Global vectors for word representation. In Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP). 1532–1543.

[2] Vraj Shah and Arun Kumar. 2019. The ML Data Prep Zoo: Towards Semi-
Automatic Data Preparation for ML. In Proceedings of the 3rd International Work-
shop on Data Management for End-to-End Machine Learning, DEEM@SIGMOD
2019, Amsterdam, The Netherlands, June 30, 2019, Sebastian Schelter, Neoklis
Polyzotis, Stephan Seufert, and Manasi Vartak (Eds.). ACM, 11:1–11:4. https:
//doi.org/10.1145/3329486.3329499

[3] Vraj et al. Shah. [n. d.]. An Empirical Study on the (Non-)Importance of Cleaning
Categorical Duplicates before ML. https://adalabucsd.github.io/papers/TR_2021_
CategDedup.pdf

4

https://doi.org/10.1145/3329486.3329499
https://doi.org/10.1145/3329486.3329499
https://adalabucsd.github.io/papers/TR_2021_CategDedup.pdf
https://adalabucsd.github.io/papers/TR_2021_CategDedup.pdf

	Abstract
	1 Introduction
	2 Outline
	3 Data
	3.1 Dataset
	3.2 Data Preparation

	4 Task
	5 Approaches and Results
	5.1 Heuristic based Approach
	5.2 Embedding based Neural Networks
	5.3 Machine Learning Models on Textual Features: N-Grams
	5.4 Machine Learning Models on Textual Features: Distance metrics based similarity score

	6 Future Scope
	7 Conclusion
	References

