Towards an Optimized GROUP BY Abstraction
for Large-Scale Machine Learning

Side Li

University of California, San Diego

s7li@eng.ucsd.edu
ABSTRACT

Many applications that use large-scale machine learning (ML) in-
creasingly prefer different models for subgroups (e.g., countries) to
improve accuracy, fairness, or other desiderata. We call this emerg-
ing popular practice learning over groups, analogizing to GROUP
BY in SQL, albeit for ML training instead of SQL aggregates. From
the systems standpoint, this practice compounds the already data-
intensive workload of ML model selection (e.g., hyperparameter
tuning). Often, thousands of models may need to be trained, neces-
sitating high-throughput parallel execution. Alas, most ML systems
today focus on training one model at a time or at best, parallelizing
hyperparameter tuning. This status quo leads to resource wastage,
low throughput, and high runtimes. In this work, we take the first
step towards enabling and optimizing learning over groups from
the data systems standpoint for three popular classes of ML: lin-
ear models, neural networks, and gradient-boosted decision trees.
Analytically and empirically, we compare standard approaches to
execute this workload today: task-parallelism and data-parallelism.
We find neither is universally dominant. We put forth a novel hybrid
approach we call grouped learning that avoids redundancy in com-
munications and I/O using a novel form of parallel gradient descent
we call Gradient Accumulation Parallelism (GAP). We prototype
our ideas into a system we call Kingpin built on top of existing ML
tools and the flexible massively-parallel runtime Ray. An extensive
empirical evaluation on large ML benchmark datasets shows that
Kingpin matches or is 4x to 14x faster than state-of-the-art ML
systems, including Ray’s native execution and PyTorch DDP.

1 INTRODUCTION

Machine Learning (ML) over large-scale data is now common. In-
creasingly, many ML applications seek to train separate models
for separate subgroups based on various attributes, e.g., country or
zipcode. This is a new form of GROUP BY aggregation, albeit for
ML, not SQL aggregates. We call this process learning over groups.
It helps applications for various reasons such as accuracy, fairness,
and/or ease of ML deployment. For instance, some groups’ data
distributions may be simpler than the whole population, helping
raise accuracy. Emerging non-technical business needs, such as
privacy and regulatory compliance, may also necessitate learning
over groups. For instance, online advertising platforms build disag-
gregated partner-specific models, with each groups’ training data
organized as a separate pipeline [15].

During ML model building, model selection is typically inevitable
to control underfitting vs overfitting, e.g., via hyperparameter tun-
ing [33, 56]. Practitioners often compare tens to hundreds of mod-
els [16, 47]. Learning over groups only amplifies this load many
times, since model selection is needed for each group’s model. For in-
stance, if one compares 30 models on a group and has 50 groups, this

Arun Kumar
University of California, San Diego

arunkk@eng.ucsd.edu

.2 6 O _,
£

o
Data Scientist CTR per platform

(A) Ads response and country
Communication
LWL A B c
g N
x
A A g W2 A / B c /
° W3l i € Time
- I ~ o Data Parallelism
Materialize Schedule - thess

oW1 A A A 3gldleTime
c c % w2 e B B 3K
Unsorted Partitioned swaj ¢ ¢ ¢

Raw Data
®) Data Task Parallelism

Time

Figure 1: (A) Example for learning over groups. (B) Illustra-
tion of existing parallel approaches.

whole process results in the training of 1500 models. At this scale,
it is impractical to be building models one by one. High-throughput
parallel ML systems are needed to train models en masse.

Example. Consider a data scientist at a Web advertising team
modeling click-through rate. She tries a logistic regression model
on the whole population. She then has a hunch that separate models
per country and mobile platform can raise accuracy, as Figure 1(A)
shows. She materializes each group’s data subset on a distributed
platform such as HDFS and then runs model selection for each
group. After all model configurations of all groups finish, she picks
the best model per group for further analyses.

As the example shows, learning over groups proceeds in two
steps: (1) ETL to create and load groups’ data subsets and (2) sched-
ule ML model selection for all groups. Given the high volume of
models to be trained, parallelism on a cluster is critical. There are
two dominant existing approaches to execute this workload in par-
allel: task parallelism (TP) or data parallelism (DP). We now briefly
explain both of them, contrast their tradeoffs to explain why we
need new approaches, and then present our novel approach. Fig-
ure 2(A) summarizes the key contrasts.

Existing Approaches and Drawbacks. ETL for TP needs each
group’s data subset in its entirety. Then, randomly assign each
worker the full dataset of a group. Repeat for each group. TP must
balance data sizes assigned to workers to avoid imbalances. But in
full generality, this becomes an NP-Hard multi-way partitioning
problem [54]. Note that TP can raise the storage footprint substan-
tially, since the dataset is fully copied across workers. In contrast,
ETL for DP is more straightforward: split each group’s data subset
evenly across all workers. DP does not raise the storage footprint.

Scheduling model selection works as follows. TP spawns training
for each group independently on a worker; workers do not talk to

Task Data Grouped i
Parallelism | Parallelism | Learning w1

) A A A
Group Size S L S L S L g »
2B BBC &
Compute + + - + + + 5 £
Efficiency S¢c ¢ ¢ g
Storage + - + + + + W2
Footprint Wrap_-_aro_und :

Partitioning

Group + - - + + +
Scalability w3
(A) (B)

Side Li and Arun Kumar

Task Parallelism |
S & - nxgl:e_“ Wrap-around Assignment Scheduler |
b A u A . Worker Worker Worker
Gradieng Models, ‘GAP_ Models, ‘GAP Models,
A;‘;‘r‘:”:]”as"r:” Grouped | | Gradients Gradients Gradients
Learnin, o P -« P o« P
i|B|B|B [CH
gradientsl [o% RAY
ilefe|c
—— L Distributed ! ! !
B Istribute
Hybrid Execution () Storage A RRIFS), B2 ‘

Figure 2: (A) Contrasting task-parallelism, data-parallelism, and our approach, grouped learning. S/L stand for small and large.
Group scalability refers to handling large numbers of groups. (B) Illustration of grouped learning’s hybrid execution with GAP.

(C) Architecture of our system, Kingpin.

each other. But due to imbalanced task assignments and training
times on workers, TP often results in idle times. This is especially
problematic when group sizes are disproportionately distributed.
In contrast, DP trains each model of each group using the power
of all workers simultaneously. But this can incur enormous com-
munication cost for distributed training on a cluster, especially for
ML workloads based on stochastic gradient descent (SGD) [38, 55].
DP is also overkill for small groups. In general, real-world datasets
typically have a mix of both small and large groups.

Recent work in the DB literature proposed a hybrid of TP and DP
named Model Hopper Parallelism (MOP) for SGD workloads [34, 47].
Naturally, one may wonder if MOP can resolve the above TP-DP
dichotomy. Alas, we find that MOP does not directly suit the setting
of learning over groups for two reasons. First, MOP is akin to DP in
sharding datasets across all workers. This is still overkill for small
groups. Second, MOP is tied to SGD’s access patterns. But we seek
to study learning over groups for other key ML access patterns too.

Desiderata. We seek to optimize learning over groups with the
following desiderata. (1) Generality: Benefit multiple kinds of key
ML access patterns. (2) Scalability: Scale along multiple axes, in-
cluding number of groups, group sizes, cluster sizes, and model
selection search space sizes. (3) Efficiency: Avoid the issues of TP,
DP, and MOP, while retaining all their benefits. (4) Non-disruptive
integration: Ideally, achieve all the above without needing to change
the internal code of existing popular ML systems.

Our Approach. We introduce the analogue of GROUP BY for ML
at scale, which allows bulk specifications of model selection for
groups at once. For the underlying physical layer, we perform an
in-depth analysis of the access patterns of learning over groups
for 3 popular classes of ML: generalized linear models (GLMs),
deep learning (DL), and gradient boosted decision trees (GBDT).
We devise analytical cost models to account for multiple aspects—
computation, network, and memory-to compare the efficiency of
alternative approaches. Using our analytical models, we explored
the tradeoff space thoroughly and gleaned insights for designing
our new approach, which we explain next.

We call our approach grouped learning. It has three parts: (1) a
simple and highly general epoch-level scheduling template, (2) a
non-uniform data partitioning strategy for ETL, and (3) a novel form
of paralle] ML execution we call Gradient Accumulation Parallelism
(GAP). The first part is inspired by Cerebro [47] and helps us meet
the desiderata of generality and non-disruptive integration. It lets

us unify all 3 of those classes of ML and support multiple forms of
model selection. We support grid/random searches for now.

For the second and third parts, we formalize our optimization
problem from first principles as an MILP. It is NP-Hard. So, we
decompose ETL and scheduling. For ETL, we adopt and adapt an
algorithm called wrap-around from the operations research liter-
ature [31]. It lets us cut communication costs substantially, while
avoiding replication. Scheduling is tied to data placement. Most
small groups are trained in a task-parallel manner. Large groups get
sharded-typically non-uniformly-across workers. For such groups,
we use GAP to reduce communication costs further. GAP is a new
form of “bulk asynchronous” parallelism, a sibling of MOP. Fig-
ure 2(B) illustrates our approach. Put together, wrap-around and
GAP help us meet the desiderata of scalability and efficiency.

We prototype all of our ideas into a system we call Kingpin on
top of the state-of-the-art distributed computation engine, Ray [45].
Figure 2(C) illustrates our system architecture. We evaluate King-
pin empirically on two large ML benchmark datasets: Criteo [14]
and Cityscapes [13]. Kingpin matches or outperforms existing ap-
proaches to learn over groups, with speedups up to 14x for GLMs
and GBDT and 4x for DL. Deeper analysis of resource utilization
logs also validates that Kingpin’s gains come from avoiding unnec-
essary network communications and disk I/O and reducing idle
times on workers, thus affirming the benefits of our new techniques.
In summary, this paper makes the following contributions:

o To the best of our knowledge, this is the first work to enable
and optimize the analogue of GROUP BY for ML at scale, a
process we call learning over groups.

e We perform an in-depth analytical comparison of existing
approaches to learn over groups and their tradeoffs for 3
main classes of ML: GLMs, DL, and GBDT.

e Based on our analyses, we devise a novel approach, grouped
learning, that mitigates the issues of existing approaches,
while still being easy to implement.

o Aspart of our approach, we adopt and adapt the wrap-around
algorithm for shard placement and devise a novel form of
bulk-asynchronous parallelism, GAP.

e We implement our ideas in a scalable ML system Kingpin,
built on top of Ray and existing ML tools. A thorough em-
pirical evaluation shows that Kingpin matches or surpasses
strong existing baselines.

Towards an Optimized GROUP BY Abstraction
for Large-Scale Machine Learning

2 BACKGROUND AND PRELIMINARIES
2.1 Gradient-Based Optimization in ML

Gradient-based optimization is a highly popular mathematical sub-
strate in ML. Many popular ML models are defined as minimization
problems over model parameters and training data [26]. Given train-
ing data D = {(x;, yi)}zr'l:p xi, y; denote features and targets; n is
the number of examples. Many ML models compute argmin,,L(w),
where L is their loss function and w are model parameters, using
optimization procedures such as gradient descent. We now explain
them briefly; for more mathematical details, please see [18, 49].

The simplest optimization procedure is batch gradient descent
(BGD). It does a full pass over sD to compute the gradient of L at
an initial w(g), given by: VL(w) = X1, VI(wTx;,y;). The update
step follows: w1y < w(1) — aVL(w = w(q)); this is the “descent”
BGD repeats this process multiple times, each called an epoch, until
convergence to an optimal. Second-order batch methods are more
popular than BGD for convex losses, like in GLMs [39]. They com-
pute the second derivative of L, the Hessian, too. A popular second-
order method is limited-memory BFGS (LBFGS). It approximates
the Hessian with a fixed-size history of the last k gradients.

Stochastic Gradient Descent (SGD) is more popular than BGD
for non-convex losses, like in DL, especially over unstructured data.
One takes a random sample of D, called a mini-batch, to estimate
VL. Sampling is typically done without replacement, which can be
done at scale using a random shuffle of D followed by a sequential
pass. SGD typically converges much faster than BGD on large-scale
data because it performs many updates to w within a single epoch.
Optionally, the dataset is reshuffled between epochs [18].

Finally, GBDTs are a popular form of ML over structured data
that also use gradients. They build an ensemble of weak models (typ-
ically short decision trees) to minimize L. A difference to BGD/SGD
is that while GD descends along the gradient to update model pa-
rameters, gradient-boosting in GBDT performs descent against the
gradient by adding new models. Thus, GBDT needs a full pass over
D to run inference using all existing models.

2.2 Distributed Data Access Patterns in ML

Looking across the 3 common forms of optimization in ML, we can
organize them into 3 main kinds of data access patterns based on
amenability to distributed execution:

1) Algebraic: BGD and LBFGS compute algebraic aggregates, akin
to SQL SUM [23]. Thus, an epoch is easily parallelized on a cluster
with independent shards and workers; partial gradients are added
by an aggregator in the end. This is logically equivalent to single-
worker execution.

2) Sequential: An SGD epoch needs sequential access to the shuf-
fled dataset. During a pass, each mini-batch gradient update de-
pends on the previous, making SGD inherently hard to parallelize at
the full-dataset scale. We call this pattern sequential-parallelizable.
Techniques such as Parameter Server [38] and Horovod [55] are
sometimes used for data-parallel SGD.

3) Sampling: In this pattern, gradients used for updates are down-
sampled from the full dataset. This is typical in distributed GBDT
tools such as LightGBM [30]. The histogram-based GBDT performs

parallel gradient computations as with LBFGS and constructs mul-
tiple histograms from local gradients [19]. Then it finds the best
splits on the combined global histogram.

2.3 Assumptions and Notation

Unless otherwise mentioned, we assume that D fits in the cluster’s
total memory. We do allow data spills to disk; this is treated as an
extension, explained later. We assume the ETL step materializes
group data subsets and stores them in cheap (possibly ephemeral)
networked storage. We fetch data during training by reading over
the network; we cache data on workers if possible and necessary.
For model selection, we focus on grid/random searches with a fixed
number of hyperparameter configurations (configs). Grid/random
searchers are the most popular forms of models selection in prac-
tice [11] but as we will explain later, Kingpin’s design is amenable
to easily plugging in AutoML procedures in future work.

Table 1 lists our notation. For simplicity sake, we assume all
groups reuse the same s; this is also standard in ML practice. For sim-
plicity of exposition in the next section, h denotes number of train-
ing epochs with one variable but Kingpin supports convergence-
based criteria as well and does not need a fixed number of epochs up
front. Likewise, the single m is for simplicity of exposition; different
configs/groups can have different model sizes.

l Symbol [Meaning ‘
G Set of groups; G; is the i th group
g Number of groups (|G|)
0 Number of examples in D; n; is number of
examples in G;.
p Number of workers
s Number of hyperparameter configurations.
h Number of training epochs/iterations
b Mini-batch size used in SGD
m Model size

Table 1: Notation used in this paper.

2.4 Problem Statement

The problem of learning over groups is the following: orchestrate
the given model selection workloads for all given groups on a given
provisioned cluster. The goal is to minimize completion time, also
called makespan. We want to satisfy all 4 desiderata listed in Section
1. This is challenging from a formal standpoint because we need to
kill two birds with one stone: ETL for non-uniform partitioning and
scheduling of model selection. It is challenging from the systems
standpoint because we seek to build a unified system for 3 key
access patterns in ML across GLMs, DL, and GBDT.

3 LEARNING OVER GROUPS

We first explain the existing approaches for the 3 classes of ML in
terms of access patterns. We distill them into analytical cost models
to offer a more in-depth understanding. Our goal is not to build some
sort of cost-based optimizer but to study and explore the tradeoff
space analytically to derive insights that help us devise our new
approach. Section 4 will present our approach, which dominates
these existing approaches due to formally grounded reasons.

3.1 Task Parallelism (TP)

In the ML world, the most common way to train models of groups
in task parallelism (TP). A group’s dataset is copied to each worker.
A scheduler gets each worker to train some groups and/or configs.
Each worker trains its assigned config(s) until convergence.

We identify two flavors: group task parallelism (GTP) and model
task parallelism (MTP), based on the granularity of tasks. The former
defines tasks around groups; the latter, around configs. GTP places
entire model selection of a given group on one worker to finish end
to end. MTP breaks apart the model selection of a group to place
one config on a worker at a time. MTP is more prevalent when
compute resources are abundant.

Both flavors load a group’s data over the network once. But MTP
caches data on local disk so that it is not read again for a different
config of the same group. Note that if there are more configs than
workers (s > p), a worker may train more than one config per group
even in MTP.

Compute Cost. Gradient computations would account for most of
the compute time, while some cycles would also be used to update
models. Therefore, we model the total compute cost as:

@

Costcomp = Z s-h- [f:gmd(ni) +fupdate 1l

=s-h- [fgmd(n) +fupdate g1l

where fy,44(1) is the time to compute the gradient for one example,
Jupdate is the time to perform update to models, and is the number
of updates to models per iteration. n = { for sequential workloads,

and 1 = 1 for algebraic and sampling workloads.

I/0 and Memory Cost. Iterative ML computations result in rounds
of scans over the whole dataset. Training on one group requires a
full scan of the dataset’s corresponding subset. For GTP, we cache
each group’s data in memory for training all configs. For MTP, if
s > p, we cache data on disk and load them s — p times to train
additional configurations. Thus, I/O and memory cost is:

) g
Costio = fmem(s - h - Z ni) + faisk[max(0,s — p) - s - Z n;i|

i=1 i=1
= fmem(s - h-n) + fyisk[max(0,s — p) - s - n]

where finem is the cost of reading one example in memory, fy;q is
the cost of loading one example from disk and fy; gives non-zero
only in MTP.

Network Cost. Training models in TP requires little to no network
communication except fetching data from storage before training.
So the network cost is a lump-sum cost of loading data to workers.
For MTP, we copy the full dataset D to each worker.

GTP
Costyprvork = Fretwork (n)

MTP
COStNetwork = fnetwork(n - p)

where fyevork 1S the cost of fetching one example over network.

Idle Cost. Workers may go idle in GTP when too few groups and
configs (or too many workers) are present, or groups are highly
skewed. For MTP, skew is less of a concern if we have enough tasks
to parallelize (s - g > p). Random placement of tasks on workers

Side Li and Arun Kumar

will amortize such idle times. The max idle time MTP can have is
when training the largest group for one config on one worker.

COStEITeP =fnetwork (Mmax) + fmem (s - h - nmax)
+5h [fyrad(Mmax) + fupdate - 1
Costﬁlzp =faisk(Mmax) + fmem(h - Nmax)
+h - [fgrad(Nmax) + fupdate - 1]
where 1y is the number of examples in the largest group Gpax-

Total Runtime. We cannot merely add the three costs directly
because the actual runtime depends on the underlying hardware.
For example, in a memory-optimized cluster, the I/O cost will con-
tribute less to the total runtime. Thus, we model total runtime with
some cost parameters:

TotalTime = (aCostcomp + BCost1o + YCOStNetwork) /P + 5Costge

We tune the cost parameters «, f, y and § using offline calibration
runs, akin to RDBMSs. In particular, f may dominate when D does
not fit in memory. For the rest of this section, we reuse this template
of analytical cost models and cost parameters.

3.2 Data Parallellism (DP)

This approach shards the dataset of each group on each worker.
Thus, it improves upon TP by exploiting all workers for each config,
which can reduce worker idling for contiguous periods. But this
also means DP needs communication among workers to aggregate
partial gradients across workers. So, DP’s cost model differs from
TP primarily in the network and idle costs. Compute and I/O costs
of DP are similar to GTP; we skip those for brevity.

Compute Cost. Gradients computations and updates to models
still account for most of the compute time. Thus, we model the total
compute cost as:

9
Costcomp =5 - h - Z[fgrad(ni) +ﬁ4pdate -1l
=1

=s-h- [fgrad(”) +fupdate g 1]

I/0 and Memory Cost. I/O cost in DP is the same as that of GTP.
Overall, training all models for all group requires a full scan over
the dataset.

Costto=s-h-n

3.2.1 Algebraic/ LBFGS. Recall that algebraic workloads such
as LBFGS can be easily partitioned across shards/workers by com-
puting partial sums independently and then aggregating them.

Network Cost. Each worker computed local partial gradient (and
Hessian approximation, baked into m) independently. It then sends
its partial gradient to a peer per epoch. Also, there is the cost of
loading training data. Together, the network cost is:

CostNetwork = fnetwork(n +s-h- g- m)

Idle Cost. A worker can be idle while waiting for its peers to cal-
culate their partial gradient. This discrepancy of runtime among
workers also happens frequently in a cluster of homogenous nodes.
Many factors, such as the state of hardware and numerical instabil-
ity, contribute to it. With LBFGS, this process happens every epoch.

Towards an Optimized GROUP BY Abstraction
for Large-Scale Machine Learning

fsync is the blocking time spent on synchronization once.
Costygle = fsyrw(s ~h-g)

3.2.2 Sequential / SGD. Unlike LBFGS, SGD with DP has the
downside of massive amounts of communication (and often, syn-
chronization) among workers for mini-batch gradient computations.
This leads to overhead that compound the runtime distributed SGD
in the DP regime.

State-of-the-art systems for distributed data-parallel SGD lever-
age techniques from the high-performance computing, especially
the all-reduce scheme from Message Passing Interface (MPI) to
synchronize mini-batch gradient computations. Horovod [55] is
an exemplar, as is PyTorch DDP [40]. These systems saturate the
network and make the best usage of all workers’ compute capacity.

Network Cost. Network cost is where SGD and LBFGS differ fun-
damentally. Synchronizations among workers happen after each
mini-batch instead of once per epoch. The network cost is as fol-
lows:

n
Costnerwork = fretwork(n+s-h-m- E)

Idle Cost. SGD triggers many more rounds of network synchro-
nizations and thus sees higher idle cost.

n
Costrgle = fsync(s “h- E)

3.2.3 Sampling / GBDT. For this workload, each worker first
builds local statistics by sampling the local data partition. Then
these local statistics are merged. This may not return the equivalent
model obtained using a non-parallel approach because it essentially
performs independent sampling across different workers. Yet, this
approach still works in practice and is implemented in the popular
GBDT tool LightGBM.

Network Cost. At each iteration, a worker computes sampled
statistics and sends it to its peers. Together, the network cost is:

CostNerwork = fretwork(n+s-h-g-1)
where [is the size of sampled statistics.

Idle Cost. Idles time arises when aggregating local statistics for
boosting.

Costge = fsync(s “h-g)

3.3 Contrasting Task- and Data-Parallelism

Why are TP and DP not “good enough” for learning over groups?
In short, each bakes in some tradeoffs on key scalability axes that
make it substantially suboptimal in many realistic scenarios. Using
our analytical cost models, we contrast them to expose such trade-
offs in Figure 3. Note that compute cost does not differ much across
them; I/O costs do differ but can be optimized by faster storage
and network. The key differentiating factors that make this trade-
off space non-trivial are inherent differences in communication
cost/complexity and varying chances of worker idle times. The
plots use cost parameters calibrated based on real empirical runs
on Criteo dataset (Section 5); due to space constraints we provide
their details in the appendix.

The overall takeaway is neither TP nor DP dominates the other
on all axes. MTP is worse than both GTP and DP mainly due to its

repeated calls to reload data. GTP and DP are often comparable but
have many crossovers. When the dataset size goes down or number
of groups goes up, GTP dominates; but with more workers or more
skew in group sizes, DP dominates. As a teaser for comparison,
our approach in Kingpin (Section 4) is shown too—it matches or
dominates all these alternatives on all these scalability axes. We
summarize key systems design issues with both TP and DP:

(1) TP Suffers from Imbalances. GTP faces idle times due to im-
balances in groups across workers. Its optimal scheduling problem is
NP-Hard via a reduction from multi-way number partitioning [54].
But even with a near-optimal scheduling heuristic, group size skews
will still cause idle times due to the fundamental indivisibility of a
task. As an extreme example, if a dataset has one very large group,
the time to train that group on a worker will utterly bottleneck the
cluster. Thus, TP as practiced today has inherent efficiency limits.

(2) TP Wastes Storage/Network. MTP mitigates GTP’s issues
with imbalances by placing different configs of a group on different
workers. But this requires a full copy of that group’s data to each
worker. While storage is relatively cheaper, it is still a concern at
scale, e.g., 1TB blows up to 10TB on a 10-node cluster! Of course,
reading from remote storage (e.g., S3) can avoid such blowups. But
due to the iterative nature of gradient-based ML this ends up being
highly wasteful of the network instead! Recent work showed that
this approach can have even 100x higher network costs [47]. Thus,
TP as practiced today has inherent scalability limits as well.

(3) DP has Inherent Communication Costs. DP avoids the above
issues of TP by splitting each config across all workers. Alas, this
leads to new bottleneck: inevitable communication rounds and syn-
chronization to aggregate gradients. Our analytical cost models
show that this cost grows linearly with many key factors: number
of configurations s, number of epochs h, number of batches (for
SGD) and number of groups g. In fact, regardless of the class of ML,
DP gets significantly slower as g increases. Thus, DP as practiced
today also has inherent efficiency limits.

4 OUR APPROACH: GROUPED LEARNING

We now dive into our approach, grouped learning (GL), a novel
hybrid of TP and DP. We start with some intuition and an overview,
then formalize our problem, present our algorithms, and finally
present its analytical cost model and a key extension.

4.1 Intuition, Overview, and Technical Novelty

Our intuition is as follows: DP is too fine-grained, while TP is too
coarse-grained. This leads to their fundamental issues laid out in
Section 3.3. Philosophically, with GL we “take things apart” to go
down from TP’s level to avoid its issues (imbalances, resource bloat)
and “put things back better” to go up from DP’s level to avoid its
issues (high communication costs). Concretely, GL reduces idle
times from imbalances (vs TP), avoids data copying bloat (vs TP),
and avoid needless communication/synchronization (vs DP). We
achieve all this by assembling three things:

2000

—a—8—8—a
—~1000
500
200 t

100 d—h—h——h—%
50 ***\H

20

Runtime (minute|

4 6 8 10 2 0 50 100 150 200 100

Number of workers Number of groups

AT

200

Size of data (GB)

Side Li and Arun Kumar

—a—u—u—1= MTP (Model
Task Parallelism)
GTP (Group
by A A Task Parallelism)
—&— DP (Data Parallelism)
d—h—h——h—% - Kingpin (ours)
300 400 500 01 02 03 04 05

Ratio of the largest group

Figure 3: Analytical cost model-based plots for key scalability axes. Cost parameters are calibrated from real empirical runs
presented later (Section 5) on Algebraic/LBFGS on Criteo dataset with grouping attribute Country. The dataset size is 488GB;
Country has 18 groups; ratio of largest group, npmax/n, is 0.26. We set p = 4 workers. For each plot here, we vary one variable,

while fixing all other workload properties.

Setup 3 workers: Gradient Accumulation Parallelism (GAP) in One Iteration on Algebraic
82 AalAA oL W2 W3 8 w1 Model} ModelAB @Gradﬂ Serad}}
93 ks 2 Vperpa’aa"‘;‘e":"“ 9% £ w2 @Model], @Model}; @Model?, @ Modell, —, SGCrady; SGrady; scrad‘” SGradl? Qgcradc 2 .
E o 6 models to be trained: = W3 Model?, @Modell, SGrad®? sGradV‘,'3 SGradl?
@ S| S|E AX(“’C’?Efzga' A 1. Initialize models 2. Accumulate gradients and send them to peers
Wrap-around Partitioning w1 odeld , + &Grad}/l update
» A A A W2 odel , + &Grad} update
g w o - W3 update 0 wz w3
£ W2BBBC W3 @Modell + S Grad; + & Grad{y uwdae odelc,,+scrad +86rad update & Model{ g
o
(8) 2 w3cec c ©) 3. Aggregate gradients, update models and send them back if needed
@ Model} ¢ &Grady P2t F Model} ,
Gradient —» (@Model} + &Grad}Z "date g Model} odel .+ 8Grad“{3 update FiModellS = —>
Accumulation am;ModelgB+ S Grady'g Pdate §iModel?3
Parallelism 1. Initialize models 2. Accumulate models for one conflg
GAP) in One
(IteraZion on w1 @ Model} @i Model} ; + gcrad‘”l update @i M"delAB
Sequential diModelS —> i@Model] o+ & Gradys update iy

d: Moclelo $

3. Send models to peers

()

§:Model23 + eGrad“{3 updte '} 5 Modelc,ﬂ
4. Train another config and send them back if needed

Figure 4: Illustration of our entire approach for an epoch/iteration. Modelk is the model of group i and config j after k-th
iteration. Grad)”, is the gradient of group i and config j obtained at w worker Items underlined are sent from other workers
asynchronously A) Setup of workload inputs. (B) Wrap-around partitioning on the dataset. (C) GAP execution for Algebraic

(LBFGS). (D) GAP execution for Sequential (SGD).

(1) A simple and general two-level scheduling template, in-
spired in part by Cerebro [47]. By decoupling per-epoch and across-
epoch scheduling, we can support many kinds of iterative gradient-
based ML (GLMs, DL, and GDBT) and many model selection heuris-
tics in a unified way, including with varying numbers of epochs per
config. The template itself is not novel but our application of it to
the problem of learning over groups is novel.

(2) A non-uniform data partitioning strategy for ETL based
on a suitable algorithm from the operations research world: wrap-
around. It enables GL to holistically optimize data and computation
placement across groups and configs at every epoch boundary. The
wrap-around algorithm itself is not novel but our application of it
to this large-scale ML systems setting is novel.

(3) A novel form of parallel ML execution per epoch: Gradi-
ent Accumulation Parallelism (GAP). To the best of our knowledge,
GAP is only the second-known form of “bulk asynchronous” par-
allelism, inspired by its (complementary) sibling MOP [47]. GAP
works for all 3 major ML access patterns laid out in Section 2.2.

The precise workflow of GL is as follows, given the cluster, full
dataset, groups, and model selection workloads. First, partition the
dataset to favor TP using wrap-around. A group’s data is not split

across workers unless really needed. If a group’s data is “too” large,
it is sharded across workers. Second, place the epochs of the current
set of configs on the workers and shards based on the scheduler’s
decision. Third, execute the training of configs in a hybrid-parallel
manner, using TP for those that can and GAP for those that cannot.
Next, we explain the mechanics of GAP first and then formalize
our scheduling and partitioning problems.

4.2 Gradient Accumulation Parallelism (GAP)

GAP does the following: given a large set of configs and potentially
sharded data per group, execute gradient-based ML using a hybrid
of TP and DP. The novelty of GAP lies in its operation on sharded
data of one group. Basically, it accumulates gradients-related arti-
facts and ships them across workers asynchronously and in parallel.
The degree of parallelism is determined by the number of configs
and shards. We dive into how GAP works for each class of ML.
Figure 4(C-D) illustrate the workflow on Algebraic and Sequential.
Due to space constraints, we present the illustration of Sampling
(GBDT) in the appendix.

Towards an Optimized GROUP BY Abstraction
for Large-Scale Machine Learning

(1) Algebraic (LBFGS): Split gradient computation algebraically
as usual; multiple workers simultaneously train the same config to
obtain local partial gradients. DP would aggregate partial gradients
eagerly in one go, but GAP has this twist: aggregate partial gradients
lazily and asynchronously over time, as dictated by our scheduler.

(2) Sequential (SGD): Parallelize at the granularity of a group; two
workers can not simultaneously train the same config. This ensures
logical equivalence to sequential SGD, helping accuracy. When a
worker finishes training a group’s config, it moves on to another
config of that group while asynchronously shipping the previous
config to another worker. In this sense, GAP is inspired by MOP.

(3) Sampling (GBDT): Parallelize the sampled statistics on work-
ers as usual. We repeat swapping of parallelizable artifacts asyn-
chronously among workers until GAP finishes one iteration of all
configs of all groups, akin to shipping partial gradients in Algebraic.

Overall, GAP has the following invariants based on the ML ac-
cess patterns, with the last 2 being potentially relaxed for Algebraic
and Sampling workloads: (1) Data sharding: D is sharded across
workers, not fully copied. (2) Worker exclusivity: A worker han-
dles only one config at a time. (3) Config isolation: A config is
handled by at most one worker at a time. (4) Group isolation:
Configs of a group do not run concurrently across workers.

4.3 Formal Scheduling Problem

Our scheduler tackles the two-fold problem of ETL/partitioning and
scheduling of configs. We now state it formally as a mixed-integer
linear program (MILP). Table 2 summarizes the extra notation. The
objective is to minimize makespan C to train all configs of all groups
for one epoch. We do a pilot run to get the runtime of a config on a
group’s dataset to set V.

Ob;. min (1)
C.N.X,0,P,Q
Vi, i’ € [1,.,9],¥j,j € [1,...s], Yk, k" € [1, ..., p]

s.t. CzX;j+T; (1a)
Xij =20 (1b)

p

Z Nij = % (1c)
=
Xijk 2 Xy jk+Tyjk =V Nyg-Oipjk (1d)
Xijk 2 Xijk+Tijk =V Nig- (1= Oy k) (1e)
Xijk 2 Xijk +Tijx =V Nig - Pijrr (1f)
Xijk 2 Xijk+Tijk =V Nig- (1= Pijrx) (1g)
Xijk 2 Xijk+Tijk =V Nik-Qijjk (1h)

Xijrk 2 Xijk+Tijk =V Nig - (1—0Qy v k) (1i)

The variables to optimize over are the start times X, group iso-
lation assignments O, worker exclusivity assignments P, config
isolation assignments Q, and data partitioning N. The constraints
enforce the four invariants of GAP as listed above: (1c) ensures
data sharding; (1d) and (1e) ensure group isolation; (1f) and (1g)
ensure worker exclusivity; (1h) and (1i) ensure config isolation; (1a)
and (1b) define makespan and sanity of start times.

One might now wonder if we can use an MILP solver such as
Gurobi. But our problem turns out to be a fusion of two classic NP-
Hard problems: multi-way number partitioning [54] and open-shop
scheduling [22]. Since the total number of configs across groups
can even be in the thousands, MILP solvers may be too slow.

Due to the above, we adopt the following two-step heuristic
approach that is both efficient and offers near-ideal makespans in
practice, certainly significantly faster than the prior art approaches
(TP and DP). First, partition a set of numbers (in our case, data for
groups) into a collection of subsets so that each collection’s sums
are as equal as possible. Second, find an optimal schedule to execute
these collections/groups to minimize the makespan.

4.4 The Wrap-around Algorithm for ETL

If we relax N in the MILP to real space, the ETL part becomes more
manageable. In the operations research literature such a relaxation
is called “pliable shop” scheduling [31]. That prior work proposed
a linear-time algorithm that is a good fit for our (relaxed) scenario:
wrap-around algorithm. The idea is to compute the expected ca-
pacity/makespan and keep adding data for groups onto a worker.
If adding a group would exceed the current worker’s optimal ca-
pacity, we shard the data and continue adding the overflow part to
next worker. The order groups are put onto workers itself entails a
schedule to manage executions. Based on all of our notation so far,
the optimal makespan will now be:

c* = z
= max{—, max
P i€ll,...,

(ni)}-V-s/n ()
g1
Prior work [31] also showed that the wrap-around algorithm is
provably optimal; we refer the interested reader to [43] for their
proof. Note that max;¢ [y, 4] (n;) comes from the rationale that we
cannot execute a job in parallel but in a strictly sequential manner.
Overall, this algorithm is helpful to ensure sequential execution
order on sharded data. If we end up needing to shard in between
an example (non-integral splits), we round it by rolling over the
extra example to the next worker. Just one example off from the
optimal has virtually no impact on the makespan. Thus, we modify
it slightly and present the pseudocode above. Figure 4(B) illustrates
the algorithm.

4.5 Putting It All Together

Combining wrap-around and GAP, we first evaluate workers’ ex-
pected capacities for at each epoch based on simple statistics on the
data and hyperparameter search space. Workers read their assigned
data over the network. GAP is used for training all configs for that
epoch. We accumulate training artifacts and ship them around work-
ers asynchronously. When a worker finishes training a config on its
(shard of a) group, it propagates gradient-related results to another
worker with the same group data. The last worker will finally add
up all gradients, run the update step for the optimization procedure,
and then broadcast updated models back to relevant workers. Thus,
all workers are kept busy almost always during training instead of
waiting for instructions from a centralized manager.

See Figure 4 again for the end-to-end illustration of how wrap-
around and GAP for all 3 classes of ML workloads. Note that syn-
chronization over the network is only needed when a group’s data
is not entirely on one worker. All in all, grouped learning scales

Table 2: Additional notation used in MILP.

Symbol [Description ‘

C Makespan (per epoch)

N; i indicates the proportion of data of
kth

N € |R|9%P

group G; on worker

T; j k is the runtime of training group

T € |[R|9¥P
IR] G; and j*" configuration on k*" worker

Xi,jk is the start time of the execution

X € |R|9*s*P of group G; and j! configuration on

k'™ worker
k= 1 Xi,j,k < Xl-’,j,k’
Ni,k > 0, Ni',k >0
Pijkw =1 Xijr <Xijr
Ni,k > 0, Ni,k/ >0
Qi,j,j’,k =1 Xi,j,k < Xl',j’,k:
Ni,k >0
Very large value. Time to train one
model on the whole dataset

Oivj,

0 € {o, 1}g><g><s><p

P € {0, 1}9%sXPxp

Q € {0’ 1}9)(3)(8)(;7

\4

Algorithm 1 The Wrap-around Algorithm

1: Input: Group Information: G, g, n. Number of workers: p
2: Output: Partitioning schema

3 C* = max{}}, maxie[y, _g)(ni)}

4: Initialize A € |R|9%P =[]0, ...,0]]

5. cur_filled = 0, cur_worker = 1

6: for group i in G do

7: if n; + cur_filled <= C* then

8 Ai,cur_worker =ng,

9

cur_filled +=n;

10: else

11: while n; > 0 do

12: if C* — cur_filled <= n; then

13: Aj cur_worker = C* - cur_filled
14: nj -= C* - cur_filled

15: cur_worker += 1, cur_filled = 0
16: else

17: Ai,cur_worker =n;

18: cur_filled +=nj, n; =0

19: Return A

seamlessly on all axes explained in Section 3: dataset size, cluster
size, number of groups, and group sizes.

4.6 Analytical Cost Model

We now present our approach’s analytical cost models that we used
for Figure 3 in Section 3. The compute and I/O costs are the same
as that of DP; we skip them for brevity.

Network Cost. This is a key advantage of GAP: it does not incur
much network cost, especially for SGD, even if a group’s dataset

is sharded across workers. The actual cost per epoch is as follows.

Note it is is linear in the number of shards of a group, which in the
worst case is only the number of workers p (say, for a super large
group). This is in contrast to DP for SGD (e.g., Horovod or PyTorch

Side Li and Arun Kumar

W1lA A a W1 A A a
A W2 A A a W2 A A
5 (A) W3 ®W3 B B
c W1 A A a Wi A A abD
w2 A A W2 A A
D W3 B B C W3 B B C
(9] (D)

Figure 5: Illustration of the constrained wrap-around algo-
rithm. Optimal makespan is 3. (A) Split A into two partitions,
because 5/3 is rounded to 2. (B) No split on B, and put it on
the worker with least data assigned. (C) and (D) No split.

DDP), which are orders of magnitude higher.

CostNetwork = fretwork(n+5s-h-m-p)

Idle Cost. A worker may still be idle when waiting for its peers to
finish their parts. But this synchronization happens only once per
epoch, no matter how many groups or configurations we have.

Costygje = fsync(h)

4.7 General Extension

So far, our approach can be easily layered onto existing ML popular
frameworks for LBFGS and SGD-based ML (e.g., PyTorch) without
modifying their internal code. But for GBDT, an implementation
nuance is that this is not possible with just the pure wrap-around
algorithm. We will explain the implementation part of this nuance
later in Section 4.8. But for now we present an algorithmic extension
that will let us support GBDT systems (e.g., Light GBM) seamlessly
as well, preserving the high generality of our approach.

Basically, we decouple gradient computation and its subsequent
use for the ML/optimization procedures. We then modify the MILP
to account for this. There are only so many ways to partition a
group’s dataset: 1, 2, or upto p shards. Formally, this is akin to
setting a constraint on Nj j as follows:

ni
Vee[1,..,pl,Njj=00r Njj = -

It is also equivalent to having the same upper and lower bound
for each type of split. Even if we relax it to linear space, this bound
setting makes the problem a variant of the pliable job scheduling
problem, which is NP-Hard [31]. Thus, we propose a new heuristic.

Constrained Wrap-around Algorithm. Intuitively, we want
to split a group into as few shards as possible because the more
shards there are, the higher the network cost. Ideally we do not
shard a group at all, resembling TP, albeit with no copying. As
a heuristic, we always split a group to its nearest ratio with the
optimal makespan: round(n; - p/n). We call this heuristic the con-
strained wrap-around algorithm. Algorithm 2 presents the pseu-
docode. Figure 5 presents an illustration. The key difference now
is that we first sort the groups in G in decreasing order of size to
decide whether to split large groups first. Smaller groups usually
have that ratio < 1; so, we need not split them at all. Empirically,

Towards an Optimized GROUP BY Abstraction
for Large-Scale Machine Learning

Algorithm 2 The Constrained Wrap-around Algorithm

1: Input: Group Information: G, g, n. Number of workers: p
2: Output: Partitioning schema

3. C* = g; Sort G by its size in decreasing order

4: Initialize A € |[R|9%P =[]0, ...,0]]

s: // A priority queue for workers, sorted by assigned data
6: Q=1[(0,1),...,(0,p)] // (filled, worker index)

7. for group i in G do

8 best_num_splits = round % to nearest integer

9 for each split do

10: cur_filled, worker = Q.pop()

1 Aj cur_worker += ni / best_num_splits

12: Q.push((cur_filled + n; / best_num_splits, worker))
13: Return A

we find that this heuristic achieves near-optimal makespans for re-
alistic workloads; due to space constraints, we present more details
of this comparison in the appendix.

4.8 System Implementation

Kingpin is a new ML system that implements our ideas of grouped
learning, including GAP and the wrap-around algorithm. As a strate-
gic decision, we chose to prototype Kingpin on top of Ray, a recent
highly scalable runtime engine for compute-intensive ML/AI work-
loads [45]. We weighed a prototype on Spark too but found Ray
better for 2 reasons. First, Ray has new systems capabilities that
avoid extra I/Os for intermediates relative to Spark, both for base-
lines (TP and DP) and for Kingpin. Second, Spark’s JVM-based data
caching leads to extra overheads for copying and shipping data to
ML tools (we use Pytorch and LightGBM). Due to space constraints,
we leave the detailed specifics in the appendix.

4.8.1 Overview. We adopt an extensible architecture that can
talk to multiple ML tools, as in Figure 2(C). Ray helps parallelize
workloads on physical machines. We still use Spark, albeit only for
materializing group data subsets if the full dataset comes in raw.

A user specifies the following in Kingpin APIs: group metadata
(with syntactic sugar), model_creator, optimizer_creator, hyperpa-
rameter search space, and cluster configuration (number of CPUs,
GPUs, etc.). Our scheduler then runs the wrap-around algorithm
and spawns workers to load corresponding data. All workers are
started as native Ray actors connected by PyTorch’s distributed
primitives [40]. Intermediate results (e.g., gradient artifacts) are
saved in Ray’s in-memory object store, with the option to spill to
disk for fault tolerance. In the end, users will get back serialized
copies of all groups’ models, including selected best models.

For ML training, Kingpin essentially acts as an abstraction en-
veloping popular ML tools without modifying their internal code,
e.g., for tensor compilation or hardware optimizations. Currently,
we support the APIs for PyTorch (for LGBFS and SGD) and Light-
GBM (for GBDT). It is relatively straightforward to add support for
their rival tools if needed (e.g., TensorFlow or XGBoost).

As a detail about the LightGBM integration, it ships histograms
during distributed training. But these histogram data structures are
baked deep into its C++ code and are hard to decouple. LightGBM
provides developers an extensibility option to compute gradients

Criteo (Country)

&
=

o

0
0

5
100k
2
10k
k Illll- 50

0
09w 6 @ [

‘ ‘ .

2 ’&V’)*’)y%fv AU 9’0)72)9 O R N N RS S 2 Y

=]

o
o

Cityscapes
i,

2o

s é(/ fo&

%6“ /oo o
2%y,

P
R (%

’e 0 §'
Group Ids K

Criteo (Partner)

o
=

=~

Group Ids

Figure 6: Data distributions of groups in Criteo and
Cityscapes datasets. Note that group names in Criteo are just
numbers for anonymous reasons.

using a custom loss function. But to use this, we need to rewrite ex-
isting loss functions written in C++ (e.g., cross-entropy) in Python,
which may become a backward compatibility issue for our software.
We decided to avoid this deeper dependency with a different ap-
proach: extend the wrap-around algorithm itself in our scheduler-as
explained in Section 4.7-so that we can restrict ourselves to using
only the user-facing APIs of LightGBM.

5 EXPERIMENTS

We now present an extensive empirical evaluation seeking to an-
swer three questions. (1) How does Kingpin compare with the
existing approaches of MTP, GTP, and DP on runtimes, accuracy,
and resource utilization? (2) Did our analytical cost-model based
discussion correctly predict the trends? (3) Does Kingpin offer good
scalability on key axes?

Datasets. We use two large ML benchmark datasets with different
groups: Criteo Sponsored Search Data [14] and Cityscapes [13].
Criteo is a product ad click binary classification task with numeric
and categorical features. We pick Country and Partner as meaning-
ful groups for 2 datasets. As standard ML practice, we use random
hashing to convert categorical features into feature vectors. It took
about 90 min to featurize each dataset. Cityscapes is a popular
image dataset for semantic understanding of urban street scenes
in German and Swiss cities. Table 4 lists the dataset and group
statistics. Figure 6 provides the group size distributions. We hold
out a random 10% of data in each group as its validation set. We
also partition all data into small files (default: 25MB) to enable the
wrap-around algorithm to virtually split data at "any" point.

Workloads. We run end-to-end test for all three ML access patterns.
(1) Algebraic: Logistic regression with LBFGS (history size 10). (2)
Sequential: A UNet [52] neural network with 8 filters for semantic
segmentation, Adam as the SGD method, and b = 32. (3) Sampling:
GBDT. For all 3, we run standard grid search for hyperparameter
tuning. Table 3 lists the grids.

Experimental Setup. We use two clusters: CPU-only for Algebraic
and Sampling; GPU-enabled for Sequential. Both clusters have 4
nodes on CloudLab [17]. Each CPU-only node has 2 Intel E5-2660

Side Li and Arun Kumar

Table 3: Model selection workloads of all 3 ML access patterns. All configs are run for 10 epochs/iterations.

Workload/Model Dataset (iisrljg;]?g Optimizer Hyper-parameter search space

Algebraic - LR Criteo (I:’erltnnterz LBFGS Learning rate: [1,0.5,0.1], L1 regularization: [1,0.5,0.1,0.05]
Sequential - UNet Cityscapes City Adam Learning rate: [le-2,1e-3,1e-4,1e-5], L2 regularization: [0,1e-3,1e-2]
Sampling - GBDT Criteo %;?tnnterf N/A Learning rate: [1,0.5,0.1,0.05], Num of leaves: [10,20,30]

Table 4: Dataset details after preprocessing.

Dataset OanISk Format Count GrF)up # Groups
size attribute
. Country 18
Criteo 488GB CSv 14M Partner 280
Cityscapes 54GB PNG 21146 City 44

v2 10-core CPUs, 256GB RAM, 2 1TB HDDs, and 10 Gbps network.
Each GPU node has 2 Intel Xeon Silver 4114 10-core CPUs, 192GB
RAM, 2 1TB HDDs, 1 480GB SSD and an Nvidia P100 GPU. All
nodes run Ubuntu 16.04. We use Ray v1.1.0, PyTorch v1.7, and
LightGBM v3.1.1. All training and validation datasets are stored on
HDFS hosted in the same cluster.

Baselines. GTP, MTP, DP, and Switching Parallelism (SP) imple-
mented on top of Ray’s native ML infrastructure are our baselines.
Ray offers native and robust TP scheduling, while RaySGD runs
DP using PyTorch’s DDP [40]. For GBDT, DP runs LightGBM in
data-parallel mode on sockets [4]. We make all baselines as strong
as can be with our best-effort engineering. All baselines use the
same data loader we implement for Kingpin. Also, we scale DP to
run more processes when a workload alone cannot saturate com-
pute resources on one worker; the same applies to GTP. We spawn
multiple configs to train in parallel on one worker using shared
memory store in Ray [1]. For MTP, we do not perform this optimiza-
tion because it will lead to training groups simultaneously on one
worker. Loading all their corresponding data to memory at once
is infeasible. SP is a middle ground that switches between DP and
GTP. It runs DP on large groups and GTP on small groups. Large
groups in our narrow definition are those in the 50th percentile.

5.1 End-to-End Results

We load all data shards to workers’ local memory first before train-
ing for all experiments. Different approaches will trigger this pro-
cess multiple times-thus, we must include data loading time from
remote storage in the end-to-end runtimes. For GTP and MTP, we
use a FIFO queue to schedule out groups and configs. For DP, we
train one group at a time on all worker nodes. For GBDT, Kingpin
uses the general extension in Section 4.7.

Total Runtimes. Table 5 shows the results. We see Kingpin is
either significantly faster than the baselines in most cases cases,
while matching the best baselines in some cases. On Algebraic over
Criteo-Country, Kingpin is 2.7x faster than GTP and 12.6x faster
than MTP. This is expected because logistic regression training is

1 —*— Kingpin (ours)
DP (Data
Parallelism)
& o5 GTP (Group
Task Parallelism)
MTP (Model
Task Parallelism)

Validation Loss
o o
IS o

N
N}
1)

5 10 0.2 0.4 0.6

Iteration Validation Accuracy

Figure 7: Learning curves of Wurzburg and CDFs of valida-
tion accuracies of all groups in the Cityscapes dataset.

dominated by I/O and data movement. MTP wastefully reloads data
repeatedly. DP is about 1.8x slower than Kingpin and 1.4x faster
than GTP. SP is slightly faster than GTP but 1.4x slower than DP.
Overall, Kingpin dominates all the existing approaches.

On Algebraic over Criteo-Partner (a much larger group), King-
pin’s runtime is comparable to what it saw for Country, thus show-
ing its ability to scale well with large numbers of groups. In contrast,
DP becomes dramatically slower due to its inherently high commu-
nication costs. GTP is also comparable to what it saw for Country;
MTP, slightly slower than before. SP is surprisingly faster than
before as well as both GTP and DP.

On Sampling (GBDT) over Criteo for both grouping attributes,
Kingpin is comparable to GTP. DP is marginally slower on Country
but sees 4x slowdown on Partner due its larger number of groups.
MTP’s is still very slow, due to its repeated data loading overheads.
SP’s performance over Partner is between GTP’s and DP’s, while
the result over Country is worse than both.

Finally, on Sequential (UNet) over Cityscapes, Kingpin is compa-
rable to GTP; their GPU utilizations are also comparable. MTP is
only 1.4x slower than Kingpin; this gap is lower now because deep
learning is compute-bound and MTP’s data loading disadvantage
is less significant here. DP is 4.3x slower than Kingpin due to its
inherent communication costs even though PyTorch DDP is a state-
of-the-art system for data-parallel SGD. SP’s runtime sits exactly
in the middle of GTP’s and DP’s.

Learning curves. For Algebraic and Sampling, all approaches
(GTP, MTP, DP, and Kingpin) have virtually indistinguishable con-
vergence behaviors. So, we elide them for brevity. For Sequential
(SGD), different approaches go through a group’s dataset in dif-
ferent orders, likely leading to different learning curves. For all of
them, we shuffled each group’s dataset once up front, which often
suffices for SGD [18]. Figure 7 shows the learning curves on the
largest group of in Cityscapes (Wurzburg), as well as a CDF of the
validation accuracies achieved by the best models for all groups
after 10 epochs. The learning curves on the largest group largely
overlap, showing that all approaches are suitable from the accuracy

Towards an Optimized GROUP BY Abstraction
for Large-Scale Machine Learning

Table 5: End-to-end results on Criteo and Cityscapes for all workloads. All of the experiments are conducted on the Ray
infrastructure. GTP and MTP run the native task-parallel executions in Ray. DP runs PyTorch DDP under the hood for Logistic
Regression and UNet. For GBDT, DP runs native LightGBM in data-parallel mode and Kingpin runs the general extension.

l Workload H Algebraic - Logistic Regression H Sampling - GBDT H Sequential - UNet ‘
Dataset Criteo (Country) Criteo (Partner) || Criteo (Country) || Criteo (Partner) Cityscapes
E2E Ave CPU E2E Avg E2E Avg E2E Avg E2E Avg | Avg
Systems runtime & runtime | CPU || runtime | CPU || runtime | CPU || runtime | CPU | GPU
. (%)
(min) (min) | (%) (min) | (%) (min) | (%) (min) | (%) | (%)
Kingpin (ours) 86 87.6 95 78.6 42 85.0 55 66.5 563 28.1 | 83.5
Group Task Parallelism 226 81.3 232 79.1 42 87.7 52 66.1 570 13.2 | 86.0
Model Task Parallelism 1082 35.6 1312 44.7 578 63.2 703 56.0 780 13.9 | 69.0
Data Parallelism 158 70.0 711 23.5 50 73.1 208 20.8 2414 13.8 | 95.3
Switching Parallelism 217 51.8 194 65.8 63.8 58.4 63.9 57.0 1377 14.2 | 955
c Kingpin (ours) Data Parallelism 200 Kingpin (ours) Data Parallelism 2000 Kingpin (ours) Data Parallelism
< 150 @500
= 05 £100 51000
< g ° Vo e N b
Iy 0 s 0 2 0
o] 20 40 60 80 a 0 20 40 60 80 0 50 100 150 x 0 20 40 60 80 0 50 100 150
é Group Task Parallelism Model Task ParaHehsm %200 Group Task Parallelism Model Task Parallelism %000 Group Task Parallelism Model Task Parallelism
& 2150 2500
§ 05 2100 WWWH £ 000
b % 50 £ 500
z = 0 0
100 150 200 O 1000 0 50 100 150 200 O 500 1000 0 50 100 150 200 O 500 1000
Time (minute) Time (minute) Time (minute)

Figure 8: CPU, Memory and Network Usage of Algebraic on Criteo (Country)

Data Parallelism

Kingpin (ours)

Kingpin (ours)

51 800
S @600

9
2 05 < 400
& 200
% 0 2 0
i) 200 400 0 500 1000 1500 2000 X 0 200 400 0
é Group Task Parallelism Model Task Parallelism g 300 Group Task Parallelism
@
o Z 600
z 05 E 400
5 g
b 2200
5 P——
< Q.

0 200 400 0

Time (mlnute)

Figure 9: GPU and Network Usage of Sequential on Cityscapes

standpoint—their runtimes and resource efficiency are what differ-
entiate them. Recall that Kingpin, just like GTP and MTP, ensures
sequential-equivalence for SGD. In the CDF, we see that DP leads
to somewhat worse models than the others; this is just an artifact of
the batch size being fixed, since PyTorch DDP raises the “effective”
batch size [47]. Tuning b too will mitigate that.

Summary. Kingpin is the most resource-efficient approach for
learning over groups across all 3 major ML access patterns we stud-
ied. It also scales well with many groups and is often significantly
faster than prior art without sacrificing on accuracy.

5.2 Resource Usage Drill-down

5.2.1 Algebraic (LBFGS) on Criteo-Country. Figure 8 shows
the average CPU usage, max memory usage per worker, and net-
work usage for all compared approaches.

Compute (CPU). Kingpin saturates the CPU most of the time
while having about 10 falloffs overall. These falloffs are from the
synchronization among all workers and occur at our epoch-level

Dat

500
Model

=

200

Time (minute)

a Parallelism - MTP (Model Task Parallelism) - DP (Data Parallelism)

- GTP (Group Task Parallelism) = Kingpin (ours)
1000

500 .\.\.*I

200 —reefe——k
100 M
20

4

1000 1500 2000
Task Parallelism

Speedup vs. 4 workers

5 6 7 5 6 7 8

Number of workers Number of workers

400 600

Figure 10: Worker scalability test.

scheduling boundaries. Falloffs are more frequent in DP due to its
exchanging of gradients after every group, config, and epoch. GTP
makes the fullest use of CPU but gradually it sees some workers
becoming idle. MTP has the strangest CPU usage with 12 spikes.
After poring over the detailed logs, we find that these spikes corre-
spond to 12 sets of hyperparameter configs. MTP evenly distributes
configs instead of groups to workers. Training one group and config
at a time is not able to saturate all CPU cores in this experiment.

Memory. We see that Kingpin ramps up memory at the beginning
and keeps needed data in memory till the end. DP does the same,
except that it loads one group at a time, leading to less memory
used per worker. GTP loads all data to Ray’s shared memory store
and trains multiple configs by reading data from the store. Thus,
we see its memory usage is also increasing sharply in the beginning
and stays there till the end. MTP loads groups’ data to memory
repeatedly; so, we see 12 spikes on this plot too. Note that GTP
tends to consume more memory due to extra serialization in Ray’s
shared memory store.

1o Workload | GBDT [MLP |
g E2E Avg E2E Avg
2006 runtime | CPU | runtime | CPU
§§E (min) (%) (min) (%)
sk Kingpin 54 67.4 832 38.1
oo E A GTP OOM | N/A | OOM | N/A
Group Ids DP 58 64.7 1663 17.6

Figure 11: Criteo (Device) distribution and end-to-end re-
sults on it with GBDT and Multi-Layer Perceptron (MLP).

Network. These plots concur with our analytical cost models. King-
pin first reads data and then keeps gradients flowing around. DP
also loads data and exchanges gradients after each epoch. GTP
and MTP only load data over the network once; no more network
usage is triggered during training, except MTP copies almost all
groups’ data to each worker. One unexpected observation here is
that Kingpin triggers more network communications than DP but
GAP’s asynchronous nature amortizes them to yield significantly
lower end-to-end runtimes anyway.

5.2.2 Sequential (SGD) on Cityspaces. We compare compute
(GPU) and network usages, and Figure 9 shows the details.

Compute (GPU). Kingpin keeps GPU busy most of the time while
having lots of falloffs in-between. These falloffs come from the
overhead of switching models to train in GAP, leading to Kingpin
making worse use of GPU than GTP. Alas, GTP leaves some workers
idle towards the end. More skew in the dataset would magnify the
idleness. MTP also has lots of falloffs when loading data repeatedly
to memory. DP surprisingly saturates the GPU most of the time. We
figure the reason being that NVIDIA’s GPU utility library (NCCL)
is in charge of communicating gradients.

Network. Overall, Kingpin and GTP have the minimum network
usages. Both do not explicitly trigger network traffic except loading
data and hopping models, though we still see about 100GB of addi-
tional network usage started by the underlying Ray infrastructure.
MTP essentially copies the whole dataset to all workers, topping
about 200GB of network usage. DP is the only approach that re-
quires constant network communication within one epoch, as it
uses all-reduce to exchange gradients for each mini-batch.

5.3 Scalability Discussion

Worker Scalability. We now vary the number of workers for Alge-
braic on Criteo-Country to show their speedup behaviors. Figure 10
shows the results. The curves validate our analytical cost model-
based discussion for all approaches, with one difference being DP
does not scale as well as we expected (its curve is flat here). As
the number of workers increases, Kingpin and MTP see speedups,
while MTP benefits the most from more workers. This is because
MTP can easily parallelize any group and config on any worker.
DP’s runtimes do not show any speedup at all mainly due to its
high network communication costs. GTP’s runtimes also barely
change no matter how many workers there are; its total runtime is
bounded by the time spent on the largest group.

Side Li and Arun Kumar

Group Scalability. Our analytical cost models showed that the
runtimes of all approaches except DP are agnostic to the number
of groups. DP faces more overhead when training more groups.
Table 5 confirmed this on Criteo, with Partner having 15x as many
groups as Country. The differences in runtimes on these two at-
tributes are marginal for Kingpin, GTP, and MTP, although we do
see minor slowdown on Partner. This minor slowdown comes from
the overhead of managing (create, read, and write) more models
for all groups. DP suffers from a lot due to its communication costs
and idleness as the number of groups went up.

Skew Scalability. We run GBDT (Sampling) and a three-layer
MLP (Sequential) on Criteo-Device, a new dataset highly skewed
to 2 dominant groups. Figure 11 shows the data distribution and
end-to-end runtimes. Kingpin and DP are agnostic to skew, as
they both shard data across workers. GTP and MTP step into out-
of-memory (OOM) errors because the largest group cannot fit in
memory. A backup strategy is to swap data to disk, which can be
slow and error-prone. Even if the data does fit in memory, GTP
cannot match Kingpin in this case. It will only keep 2 workers
saturated, exacerbating the idleness seen in Figure 8 and 9.

6 RELATED WORK

In-RDBMS ML. There is much prior work on integrating ML with
data systems, including RDBMSs (e.g., MADIib [18, 27]), cloud-
native DBMSs [2, 58], and dataflow systems (e.g., MLlib [44]). All
these systems are complementary to our work; none of them opti-
mize learning over groups. Our goal is to study the fundamental
systems tradeoffs of this workload at scale, not to integrate ML with
data systems. The “keyed models” API in Spark Scikit-learn [5] is
the closest to our work in that it trains models in UDFs for each
value of a grouping attribute. But it does not fully support model se-
lection for groups and its execution approach is GTP, which suffers
from the issues we explained in Section 3.3.

Higher-Level ML Systems. Our work is inspired in part from the
recent line of in the DB world on “factorized ML” [12, 32, 35, 50,
51, 53, 60]. They optimize ML over joins of tables. For instance, [12,
39] push linear algebra operators down through joins to avoid
materializing the join output. In contrast, our work enables and
optimizes a GROUP BY abstraction for scalable ML model selection.
Ease.ml [29, 41] and SystemML/SystemDS [7-10] are higher-level
end-to-end ML platforms. SystemML also uses some hybrid-parallel
execution schemes [10] but it is aimed at bulk linear algebra. All
of these works are orthogonal to ours. Our goal is not to build a
general high-level ML system from scratch. Instead, we enable and
optimize a GROUP BY abstraction for scalable ML model selection.
Toward that goal, we devise a novel parallel ML execution scheme
and unify the right mix of data partitioning, scheduling, and other
system design decisions in a novel and effective manner.

Model Selection Heuristics and Systems. ASHA [37], Hyper-
band [36], Hyperopt [36] and PBT [28] are recent examples of
methods that scale hyperparameter tuning. They are all orthogonal
to our work; Kingpin can support them on top in the future. Ray
Tune [42], Google Vizier [21], and Dask Hyperband [57] are model
selection systems that implement some of the above heuristics;
they are all task-parallel systems and thus suffer from the issues
we explained in Section 3.3. Horovod [55] and SparkDL [3] offer

Towards an Optimized GROUP BY Abstraction
for Large-Scale Machine Learning

some model selection support but they are data-parallel systems
and thus suffer from the issues we explained in Section 3.3. Overall,
none of these systems aim to holistically optimize learning over
groups for model selection at scale. That said, they can adopt our
techniques in the future to improve their efficiency.

Model Hopper Parallelism (MOP). We view GAP as a sibling of
MOP [34, 46, 47] in that both hybridize TP and DP. But they are
fundamentally different and complementary in rationale, generality,
and technique. MOP is aimed at Sequential (SGD) on a single large
dataset that may not fit on one worker. GAP is aimed at learning
over groups, not a single dataset, and supports Algebraic and Sam-
pling access patterns too, not just SGD. MOP-based systems such
as Cerebro [48] can be extended to support learning over groups
via a lazy group-based subselection on the fly during model selec-
tion. However, such an approach will become too slow due to the
overhead caused by the relatively low selectivity of most groups in
practice, e.g., see the distributions in Figure 6.

Multi-Task Scheduling. Gandiva [59], Tiresias [24], OASIS [6]
and SLAQ [61] are cluster scheduling frameworks for deep learning
in multi-user scenarios. They focus on lower-level primitives, such
as intra-server locality, to reduce average task completion time.
Kingpin is complementary because it exists as a higher-level logi-
cal abstraction for learning over groups. In addition, GAP works
with ML algorithms besides deep learning. How to allocate com-
puting resources is beyond our scope. There is much prior work in
operations research and systems literature about such scheduling
algorithms [20, 25]. Our goal in Kingpin is to only apply and adapt
known techniques to new ML system settings.

7 CONCLUSION AND FUTURE WORK

Learning over groups is becoming a common practice among practi-
tioners of large-scale ML. Existing approaches to scale this workload
using task- or data-parallelism fail to view this process holistically
and treat each group as an individual task, which results in poorer
resource efficiency, lower model building throughput, and higher
total runtimes. We compare existing approaches in depth analyt-
ically and empirically and then design a novel approach we call
grouped learning to orchestrate learning over groups for large-scale
ML model selection holistically and efficiently. We devise a novel
parallel ML execution approach we call GAP and support 3 popular
classes of ML models: generalized linear models, neural networks,
and gradient-boosted decision trees. We adopt a new non-uniform
data partitioning scheme suitable for this workload. All of our ideas
are easy to integrate with existing ML tools, as we show by building
our system, Kingpin, on top Ray and popular ML tools. Both ana-
lytically and empirically we find that Kingpin is often substantially
faster than the alternative approaches. We hope our work helps ML
practitioners interested in training ever more numerous models
on group-specific data at scale to achieve more customization for
ML applications. As for future work, we aim to extend Kingpin to
support AutoML search heuristics, integrate it with Cerebro, and
also enable cloud-native scalable execution.

ACKNOWLEDGMENTS

This work was supported in part by an NSF CAREER Award un-
der award number 1942724, the NIDDK of the NIH under award

number R01DK114945, and gifts from VMware. The first author
was supported in part by a Charles Lee Powell Fellowship and a
Halicioglu Data Science Institute Graduate Prize Fellowship. The
content is solely the responsibility of the authors and does not nec-
essarily represent the views of any of these organizations. We thank
the members of UC San Diego’s Database Lab for their feedback on
this work.

REFERENCES

[1] [n.d.]. 10x Faster Parallel Python Without Python Multiprocessing.
https://towardsdatascience.com/10x-faster-parallel- python- without-python-
multiprocessing-e5017¢93ccel. Accessed: 2021-1-29.

[2] [n.d.]. Amazon Redshift ML. https://aws.amazon.com/redshift/features/redshift-
ml/. Accessed: 2021-1-29.

[3] [n.d.]. Deep Learning Pipelines for Apache Spark. https://github.com/databricks/
spark-deep-learning. Accessed: 2021-1-29.

[4] [n.d.]. LightGBM Parallel Learning Guide. https://lightgbm.readthedocs.io/en/
latest/Parallel-Learning-Guide.html. Accessed: 2021-1-29.

[5] [n.d.]. Scikit-learn integration package for Apache Spark. https://github.com/
databricks/spark-sklearn. Accessed: 2021-1-29.

[6] Yixin Bao, Yanghua Peng, Chuan Wu, and Zongpeng Li. 2018. Online Job Sched-
uling in Distributed Machine Learning Clusters. In IEEE INFOCOM 2018 - IEEE
Conference on Computer Communications. 495-503. https://doi.org/10.1109/
INFOCOM.2018.8486422

[7] Matthias Boehm, Iulian Antonov, Mark Dokter, Robert Ginthér, Kevin Innerebner,
Florijan Klezin, Stefanie N. Lindstaedt, Arnab Phani, and Benjamin Rath. 2019.
SystemDS: A Declarative Machine Learning System for the End-to-End Data
Science Lifecycle. CoRR abs/1909.02976 (2019). arXiv:1909.02976 http://arxiv.
org/abs/1909.02976

[8] Matthias Boehm, Michael W. Dusenberry, Deron Eriksson, Alexandre V. Ev-

fimievski, Faraz Makari Manshadi, Niketan Pansare, Berthold Reinwald, Fred-

erick R. Reiss, Prithviraj Sen, Arvind C. Surve, and Shirish Tatikonda. 2016.

SystemML: Declarative Machine Learning on Spark. Proc. VLDB Endow. 9, 13

(Sept. 2016), 1425-1436. https://doi.org/10.14778/3007263.3007279

Matthias Boehm, Berthold Reinwald, Dylan Hutchison, Prithviraj Sen, Alexan-

dre V. Evfimievski, and Niketan Pansare. 2018. On Optimizing Operator Fusion

Plans for Large-Scale Machine Learning in SystemML. Proc. VLDB Endow. 11, 12

(Aug. 2018), 1755-1768. https://doi.org/10.14778/3229863.3229865

Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen, Yuanyuan

Tian, Douglas R. Burdick, and Shivakumar Vaithyanathan. 2014. Hybrid Paral-

lelization Strategies for Large-Scale Machine Learning in SystemML. Proc. VLDB

Endow. 7, 7 (March 2014), 553-564. https://doi.org/10.14778/2732286.2732292

Xavier Bouthillier and Gaél Varoquaux. 2020. Survey of machine-learning experi-

mental methods at NeurIPS2019 and ICLR2020. Research Report. Inria Saclay Ile

de France. https://hal.archives-ouvertes.fr/hal-02447823

Lingjiao Chen, Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel. 2017. To-

wards Linear Algebra over Normalized Data. Proc. VLDB Endow. 10, 11 (Aug.

2017), 1214-1225. https://doi.org/10.14778/3137628.3137633

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus En-

zweiler, Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. 2016.

The Cityscapes Dataset for Semantic Urban Scene Understanding. In Proc. of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

CriteoLabs. 2018. Criteo Sponsored Search Conversion Log Dataset. ~ Re-

trieved November 20, 2020 from https://ailab.criteo.com/criteo- sponsored-search-

conversion-log-dataset/

CriteoLabs. 2018. Spark Custom Partitioner. Retrieved November 20, 2020 from

https://labs.criteo.com/2018/06/spark-custom-partitioner/

[16] Jeffrey Dunn. 2016. Introducing FBLearner Flow: Facebook’s AI back-

bone. https://engineering.fb.com/2016/05/09/core-data/introducing-fblearner-

flow-facebook-s-ai-backbone/.

Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon

Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya

Akella, Kuangching Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael

Zink, Emmanuel Cecchet, Snigdhaswin Kar, and Prabodh Mishra. 2019. The

Design and Operation of CloudLab. In 2019 USENIX Annual Technical Con-

ference (USENIX ATC 19). USENIX Association, Renton, WA, 1-14. https:

//www.usenix.org/conference/atc19/presentation/duplyakin

Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. 2012. Towards

a Unified Architecture for in-RDBMS Analytics. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data (SIGMOD ’12). ACM,

325-336.

Fangeheng Fu, Jiawei Jiang, Yingxia Shao, and Bin Cui. 2019. An Experimental

Evaluation of Large Scale GBDT Systems. Proc. VLDB Endow. 12, 11 (July 2019),

[o

[10

[11

=
&

[13

[14

[15

(17

[18

[19

https://towardsdatascience.com/10x-faster-parallel-python-without-python-multiprocessing-e5017c93cce1
https://towardsdatascience.com/10x-faster-parallel-python-without-python-multiprocessing-e5017c93cce1
https://aws.amazon.com/redshift/features/redshift-ml/
https://aws.amazon.com/redshift/features/redshift-ml/
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://lightgbm.readthedocs.io/en/latest/Parallel-Learning-Guide.html
https://lightgbm.readthedocs.io/en/latest/Parallel-Learning-Guide.html
https://github.com/databricks/spark-sklearn
https://github.com/databricks/spark-sklearn
https://doi.org/10.1109/INFOCOM.2018.8486422
https://doi.org/10.1109/INFOCOM.2018.8486422
https://arxiv.org/abs/1909.02976
http://arxiv.org/abs/1909.02976
http://arxiv.org/abs/1909.02976
https://doi.org/10.14778/3007263.3007279
https://doi.org/10.14778/3229863.3229865
https://doi.org/10.14778/2732286.2732292
https://hal.archives-ouvertes.fr/hal-02447823
https://doi.org/10.14778/3137628.3137633
https://ailab.criteo.com/criteo-sponsored-search-conversion-log-dataset/
https://ailab.criteo.com/criteo-sponsored-search-conversion-log-dataset/
https://labs.criteo.com/2018/06/spark-custom-partitioner/
https://engineering.fb.com/2016/05/09/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://engineering.fb.com/2016/05/09/core-data/introducing-fblearner-flow-facebook-s-ai-backbone/
https://www.usenix.org/conference/atc19/presentation/duplyakin
https://www.usenix.org/conference/atc19/presentation/duplyakin

1357-1370. https://doi.org/10.14778/3342263.3342273

Jyoti V Gautam, Harshadkumar B Prajapati, Vipul K Dabhi, and Sanjay Chaudhary.
2015. A survey on job scheduling algorithms in Big data processing. In 2015 IEEE
International Conference on Electrical, Computer and Communication Technologies
(ICECCT). 1-11. https://doi.org/10.1109/ICECCT.2015.7226035

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro,
and D. Sculley. 2017. Google Vizier: A Service for Black-Box Optimization. In
Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (Halifax, NS, Canada) (KDD ’17). Association for
Computing Machinery, New York, NY, USA, 1487-1495. https://doi.org/10.1145/
3097983.3098043

Teofilo Gonzalez and Sartaj Sahni. 1976. Open Shop Scheduling to Minimize Finish
Time. J ACM 23, 4 (Oct. 1976), 665-679. https://doi.org/10.1145/321978.321985
Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data Cube: A Rela-
tional Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-Totals.
Data Min. Knowl. Discov. 1, 1 (Jan. 1997), 29-53. https://doi.org/10.1023/A:
1009726021843

Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon,
Junjie Qian, Honggiang Liu, and Chuanxiong Guo. 2019. Tiresias: A GPU Cluster
Manager for Distributed Deep Learning. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). USENIX Association, Boston, MA,
485-500. https://www.usenix.org/conference/nsdi19/presentation/gu

Trevor Hastie. 1998. Scheduling Algorithms. Springer-Verlag.

Trevor Hastie et al. 2001. The Elements of Statistical Learning: Data mining,
Inference, and Prediction. Springer-Verlag.

Joseph M. Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, and Arun Kumar. 2012. The MADIib Analytics Library: <i>Or MAD
Skills, the SQL</i>. Proc. VLDB Endow. 5, 12 (Aug. 2012), 1700-1711. https:
//doi.org/10.14778/2367502.2367510

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff
Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan,
Chrisantha Fernando, and Koray Kavukcuoglu. 2017. Population Based Training
of Neural Networks. arXiv:1711.09846 [cs.LG]

Bojan Karlas, Ji Liu, Wentao Wu, and Ce Zhang. 2018. Ease.Ml in Action: Towards
Multi-Tenant Declarative Learning Services. Proc. VLDB Endow. 11, 12 (Aug. 2018),
2054-2057. https://doi.org/10.14778/3229863.3236258

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Advances in Neural Information Processing Systems, 1. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett
(Eds.), Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/
2017/file/6449f44a102fde848669bdd9eb6b76fa- Paper.pdf

S. Knust, N. Shakhlevich, Stefan Waldherr, and C. Weif3. 2019. Shop Scheduling
Problems with Pliable Jobs. Journal of Scheduling (04 2019). https://doi.org/10.
1007/s10951-019-00607-9

Arun Kumar, Mona Jalal, Boqun Yan, Jeffrey Naughton, and Jignesh M. Patel.
2015. Demonstration of Santoku: Optimizing Machine Learning over Normalized
Data. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1864-1867. https://doi.org/10.14778/
2824032.2824087

Arun Kumar, Robert McCann, Jeffrey Naughton, and Jignesh M. Patel. 2016.
Model Selection Management Systems: The Next Frontier of Advanced Analytics.
SIGMOD Rec. 44, 4 (May 2016), 17-22. https://doi.org/10.1145/2935694.2935698
Arun Kumar, Supun Nakandala, Yuhao Zhang, Side Li, Advitya Gemawat, and
Kabir Nagrecha. 2021. Cerebro: A Layered Data Platform for Scalable Deep
Learning (CIDR’21). http://cidrdb.org/cidr2021/papers/cidr2021_paper25.pdf
Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel. 2015. Learning Gener-
alized Linear Models Over Normalized Data. In Proceedings of the 2015 ACM
SIGMOD International Conference on Management of Data (Melbourne, Victoria,
Australia) (SIGMOD ’15). Association for Computing Machinery, New York, NY,
USA, 1969-1984. https://doi.org/10.1145/2723372.2723713

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2018. Hyperband: A Novel Bandit-Based Approach to Hyperparameter
Optimization. Journal of Machine Learning Research 18, 185 (2018), 1-52. http:
//jmlr.org/papers/v18/16-558.html

Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt,
Benjamin Recht, and Ameet Talwalkar. 2020. A System for Massively Parallel
Hyperparameter Tuning. arXiv:1810.05934 [cs.LG]

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling Dis-
tributed Machine Learning with the Parameter Server. In 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 14). USENIX Association,
Broomfield, CO, 583-598. https://www.usenix.org/conference/osdil4/technical-
sessions/presentation/li_mu

Side Li, Lingjiao Chen, and Arun Kumar. 2019. Enabling and Optimizing Non-
Linear Feature Interactions in Factorized Linear Algebra. In Proceedings of the 2019

Side Li and Arun Kumar

International Conference on Management of Data (Amsterdam, Netherlands) (SIG-
MOD ’19). Association for Computing Machinery, New York, NY, USA, 1571-1588.
https://doi.org/10.1145/3299869.3319878

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala.
2020. PyTorch Distributed: Experiences on Accelerating Data Parallel Training.
arXiv:2006.15704 [cs.DC]

Tian Li, Jie Zhong, Ji Liu, Wentao Wu, and Ce Zhang. 2018. Ease.Ml: Towards
Multi-Tenant Resource Sharing for Machine Learning Workloads. Proc. VLDB
Endow. 11, 5 (Jan. 2018), 607-620. https://doi.org/10.1145/3187009.3177737
Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez,
and Ion Stoica. 2018. Tune: A Research Platform for Distributed Model Selection
and Training. arXiv:1807.05118 [cs.LG]

Robert McNaughton. 1959. Scheduling with Deadlines and Loss Functions. Man-
age. Sci. 6, 1 (Oct. 1959), 1-12. https://doi.org/10.1287/mnsc.6.1.1

Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris
Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet
Talwalkar. 2016. MLIlib: Machine Learning in Apache Spark. Journal of Machine
Learning Research 17, 34 (2016), 1-7. http://jmlr.org/papers/v17/15-237.html
Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. 2018. Ray: A Distributed Framework for Emerging AI Applications.
In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). USENIX Association, Carlsbad, CA, 561-577. https://www.usenix.
org/conference/osdi18/presentation/moritz

Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2019. Cerebro: Efficient and
Reproducible Model Selection on Deep Learning Systems. In Proceedings of the
3rd International Workshop on Data Management for End-to-End Machine Learning
(Amsterdam, Netherlands) (DEEM’19). Association for Computing Machinery,
New York, NY, USA, Article 6, 4 pages. https://doi.org/10.1145/3329486.3329496
Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Cerebro: A Data System
for Optimized Deep Learning Model Selection. Proc. VLDB Endow. 13, 12 (July
2020), 2159-2173. https://doi.org/10.14778/3407790.3407816

Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2020. Resource-Efficient Deep
Learning Model Selection on Apache Spark. https://databricks.com/session_
na20/resource-efficient- deep-learning-model-selection-on-apache-spark.
Jorge Nocedal and Stephen J. Wright. 2006. Numerical Optimization. Springer.
Dan Olteanu and Maximilian Schleich. 2016. F: Regression Models over Factorized
Views. Proc. VLDB Endow. 9, 13 (Sept. 2016), 1573-1576. https://doi.org/10.14778/
3007263.3007312

Steffen Rendle. 2013. Scaling Factorization Machines to Relational Data. Proc.
VLDB Endow. 6, 5 (March 2013), 337-348. https://doi.org/10.14778/2535573.
2488340

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional
Networks for Biomedical Image Segmentation. arXiv:1505.04597 [cs.CV]
Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. 2016. Learning Linear
Regression Models over Factorized Joins. In Proceedings of the 2016 International
Conference on Management of Data (San Francisco, California, USA) (SSIGMOD
’16). Association for Computing Machinery, New York, NY, USA, 3-18. https:
//doi.org/10.1145/2882903.2882939

Ethan L. Schreiber, Richard E. Korf, and Michael D. Moffitt. 2018. Optimal
Multi-Way Number Partitioning. J. ACM 65, 4, Article 24 (July 2018), 61 pages.
https://doi.org/10.1145/3184400

Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. CoRR abs/1802.05799 (2018). arXiv:1802.05799
http://arxiv.org/abs/1802.05799

S. Shalev-Shwartz. 2012. . https://doi.org/10.1561/2200000018

S. Sievert, T. Augspurger, and M. Rocklin. 2019. Better and faster hyperparameter
optimization with Dask.

Umar Syed and Sergei Vassilvitskii. 2017. SQML: Large-Scale in-Database Ma-
chine Learning with Pure SQL. In Proceedings of the 2017 Symposium on Cloud
Computing (Santa Clara, California) (SoCC ’17). Association for Computing Ma-
chinery, New York, NY, USA, 659. https://doi.org/10.1145/3127479.3132746
Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, Fan Yang, and Lidong Zhou. 2018. Gandiva: Introspective Cluster Sched-
uling for Deep Learning. In 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18). USENIX Association, Carlsbad, CA, 595-610.
https://www.usenix.org/conference/osdi18/presentation/xiao

K. Yang, Y. Gao, L. Liang, B. Yao, S. Wen, and G. Chen. 2020. Towards Factorized
SVM with Gaussian Kernels over Normalized Data. In 2020 IEEE 36th International
Conference on Data Engineering (ICDE). 1453-1464. https://doi.org/10.1109/
ICDE48307.2020.00129

Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J. Freedman. 2017. SLAQ:
Quality-Driven Scheduling for Distributed Machine Learning. In Proceedings of
the 2017 Symposium on Cloud Computing (Santa Clara, California) (SoCC ’17).
Association for Computing Machinery, New York, NY, USA, 390-404. https:

https://doi.org/10.14778/3342263.3342273
https://doi.org/10.1109/ICECCT.2015.7226035
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1145/3097983.3098043
https://doi.org/10.1145/321978.321985
https://doi.org/10.1023/A:1009726021843
https://doi.org/10.1023/A:1009726021843
https://www.usenix.org/conference/nsdi19/presentation/gu
https://doi.org/10.14778/2367502.2367510
https://doi.org/10.14778/2367502.2367510
https://arxiv.org/abs/1711.09846
https://doi.org/10.14778/3229863.3236258
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1007/s10951-019-00607-9
https://doi.org/10.1007/s10951-019-00607-9
https://doi.org/10.14778/2824032.2824087
https://doi.org/10.14778/2824032.2824087
https://doi.org/10.1145/2935694.2935698
http://cidrdb.org/cidr2021/papers/cidr2021_paper25.pdf
https://doi.org/10.1145/2723372.2723713
http://jmlr.org/papers/v18/16-558.html
http://jmlr.org/papers/v18/16-558.html
https://arxiv.org/abs/1810.05934
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/li_mu
https://doi.org/10.1145/3299869.3319878
https://arxiv.org/abs/2006.15704
https://doi.org/10.1145/3187009.3177737
https://arxiv.org/abs/1807.05118
https://doi.org/10.1287/mnsc.6.1.1
http://jmlr.org/papers/v17/15-237.html
https://www.usenix.org/conference/osdi18/presentation/moritz
https://www.usenix.org/conference/osdi18/presentation/moritz
https://doi.org/10.1145/3329486.3329496
https://doi.org/10.14778/3407790.3407816
https://databricks.com/session_na20/resource-efficient-deep-learning-model-selection-on-apache-spark
https://databricks.com/session_na20/resource-efficient-deep-learning-model-selection-on-apache-spark
https://doi.org/10.14778/3007263.3007312
https://doi.org/10.14778/3007263.3007312
https://doi.org/10.14778/2535573.2488340
https://doi.org/10.14778/2535573.2488340
https://arxiv.org/abs/1505.04597
https://doi.org/10.1145/2882903.2882939
https://doi.org/10.1145/2882903.2882939
https://doi.org/10.1145/3184400
https://arxiv.org/abs/1802.05799
http://arxiv.org/abs/1802.05799
https://doi.org/10.1561/2200000018
https://doi.org/10.1145/3127479.3132746
https://www.usenix.org/conference/osdi18/presentation/xiao
https://doi.org/10.1109/ICDE48307.2020.00129
https://doi.org/10.1109/ICDE48307.2020.00129
https://doi.org/10.1145/3127479.3127490
https://doi.org/10.1145/3127479.3127490

Towards an Optimized GROUP BY Abstraction
for Large-Scale Machine Learning

//doi.org/10.1145/3127479.3127490

A SYSTEM IMPLEMENTATION SPECIFICS

A.1 Data API

A.1.1 ETL and Group Metadata. In general, the how of the ETL
step is complementary. If an existing pipeline outputs partitioned
files with corresponding metadata to distributed storage, Kingpin
can take it from there. Our ETL functions are a lightweight abstrac-
tion on top of Spark. The user inputs the unsorted raw data file;
the output is fine-grained partition files of each group and their
metadata. Our API let users specify raw data path, type of data (CSV,
images, or binary), and max file size (default: 25 MB). The max file
size balances overheads vs parallelism. The wrap-around algorithm
needs the ability to split a group’s data at a fine granularity. But for
ease of implementation, we use a coarser granularity of small files;
we still get near-optimal makespans. We also provide a separate
API to generate metadata (file path, number of examples in each file
partition, and group) at scale using all I/O and network resources
available.

A.1.2 Data Loading. Once the wrap-around algorithm assigns
data partitions, it is up to the workers to load data for ML. But
during ETL, we create 100s or even 1000s of small (shard) files. To
the best of our knowledge, most ML systems still lack good support
for reading multiple text files in parallel. The most common practice
of loading multiple files is to load image data, where each image file
is just one example. But we must also deal with 1000s of small text
files, each with 1000s of training examples. To meet this need, we
created an efficient parallel data loader to read 1000s of small text
files. Our loader supports two modes: eager and lazy. Eager means
we read all files listed in the metadata beforehand; lazy reads data
on the fly as requested. Users can also specify the number of CPU
cores to use and whether to cache shards in memory or on disk.

A.2 Moving Gradients and Models Around

Running GAP means shipping gradient artifacts and models among
workers. These artifacts can add up to 100s of GBs of memory
on a worker based on the ML algorithms and groups given. Thus,
we need an efficient way to manage them in memory. We use the
distributed in-memory object store in Ray, which allows simple put-
get operations and pass-by-references in a cluster. The workflow is
as follows: put gradients/models in the local object store and get
reference IDs back. When we ship gradients/models, send reference
IDs. When a worker needs to update models, it gets objects by
asking the local object-store. If the local object store does not have
it, Ray will consult other workers to find it and ship it for us. Overall,
we ship gradients/and models lazily and asynchronously. Based on
the partitioning created by the wrap-around algorithm, we have
multiple workers initialize different groups; this also amortizes
memory footprints.

B VERIFICATION OF THE HEURISTICS

We use some real-world metadata to verify the schema and expected
makespans yielded by the constrained wrap-around algorithm. We
perform an empirical verification of the constrained wrap-around
algorithm by random sampling from the Cityscapes dataset in Fig-
ure 6. In the first experiment, we fix it to four workers and change

= optimal

4000
® ours

3000

2000

“ull I
0 10 20 30 40 5 6 7 8

Number of groups

Expected Makespan

Number of workers

Figure 12: Simulation of the constrained wrap-around.

the number of groups. In the second one, we set the number of
groups to 40 and change the number of workers. We compare the
expected makespan returned by equation 2 and returned by our
heuristic algorithm. The result is depicted in Figure 12. Overall, we
find that the constrained performs only slightly worse than the
optimal.

C STORAGE USAGE

Kingpin (ours) Data Parallelism

B)

D
IN
o
)

N
o
o

L

200 40 60 8 O 50 100 150
Group Task Parallelism Model Task Parallelism

N
o
)

N
o
o

Avg. Disk Usage Per Worker (

o

50 100 150 200 O 500 1000
Time (minute)

Figure 13: Disk usage of algebraic on Criteo (Country)

Figure 13 displays disk usage of all approaches. Kingpin, DP,
and GTP all directly read data into memory, and therefore no disk
space is used at all. MTP caches training data on local disk to avoid
reading from remote storage repeatedly. However, We can see from
the plot that each worker ends up caching almost a full copy of the
dataset on the local disk.

D MORE DISCUSSION ON SCALABILITY

In section 6.3, we cover worker, group and skew scalability of all
approaches. We now expand to compare them over other axes.

Data Scalability. The cost model plots in Figure 3 show that all
approaches’ runtimes increase as the size of data increases. While
Kingpin and DP are reasonably scalable, MTP and GTP’s runtimes
shoot up for large data. For MTP, it is primarily because the full
dataset will end up being copied to each worker over the network.
GTP is less scalable because the largest group will always bind
the end-to-end runtime. We can also find the memory usage of all
approaches in Figure 8. DP is the least memory-hungry approach,
as it only loads one group at a time and distributes data across
workers. Kingpin, GTP, and MTP all require each worker to have
at least 150GB of memory space. If we do not have big memory

https://doi.org/10.1145/3127479.3127490

Side Li and Arun Kumar

o WHist{;)@Histm —

"@Htsth

odel}
odeléﬁ

)

Setup 3 work Gradient Accumulation Parallelism (GAP) in One Iteration on Sampling
workers:
R W1, W2, W3 o wi @Hist”” (WHistyy
£g 2 hyperparameter] W
82 [slele Configs: a, 8 5 w2 u;;,Modelw — ([WHist? .stt WHisty,
5 g 6 models to be trained: 2 w3] HLstC“f @Hi“?,/ﬁ
cjce|lc Ax(a, B), Bx(a, B), 1. Initialize models 2. Accumulate gradients and send them to peers
() Cx(a, B) :
Wrap-around Partitioning w1 odel§ , +([WHist}! odelgﬁ+@HLs VV';; update Model}w
0 it W2 2 update
o wilA A A w2 . Odevfg,a + HtSft;,’,; odel 5+ [Histy j “Pdate g Modely o
& i i 3
% w2885 B W3 @iModelp , + (WHistys + [WHistdy odell g+ WHisty; + WHistl; update § Model
(B) = w3 c c cC ©) 3. Aggregate gradients, update models and send them back if needed

Figure 14: Illustration of our entire approach for an epoch/iteration. Model!c | is the model of group i and config j after k-th
iteration. Hist}"; is the histogram of group i and config j obtained at w worker. Items in bold are sent from other workers
asynchronously. A) Setup of workload inputs. (B) Wrap-around partitioning on the dataset. (C) GAP execution for Sampling

(GBDT).

machines, a backup strategy for Kingpin will be to train a subset
of groups at a time. For GTP and MTP, the only choice is to swap
data to disk, which can be slow and flaky. Plus, MTP already caches
data on local disks, and this is an unnecessary extra cost.

E ANALYTICAL COST MODELS
PARAMETERS

Using our analytical cost models, we contrast all approaches (King-

pin, DP, GTP and MTP) to expose trade-off spaces in Figure 3. The

plots use cost parameters calibrated based on real empirical runs on
Criteo dataset. The table below summarizes the parameters applied.

We also have m=1e6, n=1.4e7, s=12, h=10, |G|=18 and np,4x /n=0.25
as the basic setting. For each plot, we vary one variable,while fixing
all other workload properties.

Approach [al|p [Y [1) ‘
Kingpin (ours) 1]1]1|1e6
Group Task Parallelism | 1 [1 | 1 3
Model Task Parallelism | 1 | 1 | 50 1
Data Parallelism 111 2 ;Lé

	Abstract
	1 Introduction
	2 Background and Preliminaries
	2.1 Gradient-Based Optimization in ML
	2.2 Distributed Data Access Patterns in ML
	2.3 Assumptions and Notation
	2.4 Problem Statement

	3 Learning Over Groups
	3.1 Task Parallelism (TP)
	3.2 Data Parallellism (DP)
	3.3 Contrasting Task- and Data-Parallelism

	4 Our Approach: Grouped Learning
	4.1 Intuition, Overview, and Technical Novelty
	4.2 Gradient Accumulation Parallelism (GAP)
	4.3 Formal Scheduling Problem
	4.4 The Wrap-around Algorithm for ETL
	4.5 Putting It All Together
	4.6 Analytical Cost Model
	4.7 General Extension
	4.8 System Implementation

	5 Experiments
	5.1 End-to-End Results
	5.2 Resource Usage Drill-down
	5.3 Scalability Discussion

	6 Related Work
	7 Conclusion and Future work
	Acknowledgments
	References
	A System Implementation Specifics
	A.1 Data API
	A.2 Moving Gradients and Models Around

	B Verification of the Heuristics
	C Storage usage
	D More Discussion on Scalability
	E Analytical Cost Models Parameters

