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ABSTRACT

Deep learning (DL) is revolutionizing many fields. However, there

is a major bottleneck for the wide adoption of DL: the pain of model
selection, which requires exploring a large configuration space of

model architecture and training hyper-parameters before picking

the best model. The two existing popular paradigms for exploring

this configuration space pose a false dichotomy. AutoML-based

model selection explores configurations with high-throughput but

uses human intuition minimally. Alternatively, interactive human-

in-the-loop model selection completely relies on human intuition to

explore the configuration space but often has very low throughput.

To mitigate the above drawbacks, we propose a new paradigm for

model selection that we call intermittent human-in-the-loop model
selection. In this demonstration, we will showcase our approach

using five real-world deep learning model selection workloads. A

short video of our demonstration can be found here: https://youtu.

be/K3THQy5McXc.
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1 INTRODUCTION

Deep learning (DL) is revolutionizing many fields. It is now being

used in various domains including e-commerce, web, and even in

critical applications such as in healthcare. However, there is a major

bottleneck for the wide adoption of DL: the pain of model selection.
The accuracy of a trained model heavily depends on the model ar-

chitecture and hyper-parameter values used during training. Thus,

practitioners often have to perform a search over the potential

configuration (config) space, in order to pick the best model.

Paradigms for Searching the Configuration Space. From our

conversations with DL practitioners and our own experience build-

ing large-scale DL applications we find two main paradigms: 1)

AutoML and 2) interactive human-in-the-loop. In the AutoML para-

digm, the user will initiate a model selection workload by specifying

a config search space and a canned AutoML procedure. AutoML

procedures implement a search heuristic such as Bayesian opti-

mization (e.g., HyperOpt [2]), evolutionary search (e.g., PBT [5]),

and random search (e.g., ASHA [9]). It then uses the parallelism
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available in a cluster (or a single machine) to explore configs with

high throughput. As model selection progresses, the user will re-

ceive the results of the explored configs. Figure 1 (A) presents an

illustration of this paradigm. While there are advanced AutoML

procedure implementations of the above-mentioned heuristics, re-

cent surveys [3] have shown that an overwhelming majority of ML

researchers and practitioners often use simple techniques like grid

(explore all configs) or random (randomly sample configs) search.

In interactive human-in-the-loop model selection [4, 14], the

user retains full control over the search process. They will explicitly

specify a config (or few configs) to explore and wait until it finishes.

Based on the results of the explored configs and human intuition

about the search space, they will specify the next config (or set of

configs) to explore. Figure 1 (B) illustrates this paradigm.

False Dichotomy of Existing Paradigms. We contrast the above

paradigms on two dimensions: 1) model exploration throughput

and 2) the ability to use human intuition. As shown in Figure 1 (D),

AutoML-based model selection explores configs with high through-

put. But the only time it relies on human intuition is during the

initial specification of the search space. As a result, it may ineffi-

ciently explore the config space and incur significant resource costs,

which could have been avoided by a simple human intervention. On

the other hand, the human-in-the-loop model selection primarily re-

lies on human intuition but operates at very-low throughput levels

due to the inherent limitations of human interactivity. Also, many

DL configs are so long-running that false promises of “interactivity”

become a prison for DL practitioners that wastes their time. Overall,

we see a major gap between AutoML-based and human-in-the-loop

model selection paradigms today.

This Work. To overcome the above-mentioned drawbacks, we

propose a new paradigm we call intermittent human-in-the-loop
model selection. It is a hybrid of both AutoML-based and inter-

active human-in-the-loop model selection. However, unlike the

latter, human exploration is not mandatory in our approach. As

an analogy, the interactive exploration is akin to instant messag-

ing (IM), whereas our paradigm is akin to email threads or Slack

channels. Without interactivity, the former becomes not usable.

But our approach is more flexible due to asynchronous, spread-

out-over-time yet stateful exchanges that can still subsume full

interactivity. We implement our paradigm in Cerebro, a new plat-

form for resource-efficient deep learning model selection [11]. We

extend Cerebro with a graphical user interface, a REST API, and

change existing components to support our new paradigm. In this

demonstration, we will allow the audience to use Cerebro to per-

form intermittent human-in-the-loop model selection using 5 real-

world DL model selection workloads. Our paradigm is an ideal fit

for DL model selection workloads due to their long-running nature,
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Figure 1: A)AutoML-basedmodel selection. B) Interactive human-in-the-loopmodel selection. C)Our paradigmof intermittent
human-in-the-loop model selection. D) Qualitative comparison of different paradigms.

and thus, we focus on DL for now. But it is readily applicable to any

other ML model family too. A short video of our demonstration

can be found here: https://youtu.be/K3THQy5McXc.

2 TECHNICAL CONTRIBUTIONS

2.1 New Paradigm for Model Selection

Our intermittent human-in-the-loop paradigm breaks the false

dichotomy of AutoML-based and interactive human-in-the-loop

model selection. It is motivated by both observations about model

selection practice [6] and our experience in training DL models for

public health applications [7]. It starts similar to the AutoML-based

paradigm where the user specifies the search space and picks a

canned AutoML procedure like Grid, Random, or even a more ad-

vanced one like HyperOpt. However, instead of passively waiting

by just consuming the results of explored configs, we enable the

user to steer the model selection process. User can now create new
individual configs or batch of configs using a refined search space,

stop running configs, and resume stopped configs.

Creating new configs outside the control of the AutoML pro-

cedure enables the user to inject human intuition into the overall

model selection process. New configs can also be created by first

cloning an existing configuration along with its trained parameters

and then by tweaking only some of the hyper-parameters like learn-

ing rate or batch size. Users can use this feature to make the model

training adaptable based on human intuition. They can also dynam-

ically reprioritize the training of some configs over the others by

using the stop and resume feature. Thus, as shown in Figure 1 (D)

our paradigm can seamlessly navigate the exploration throughput

and human intuition usage tradeoff space based on the available

user interaction level. In a sense our approach fulfils the desire for

“dialogue with the algorithms” we have heard from many ML/DL

practitioners, except neither party is forced to respond promptly.

2.2 UIs for Intermittent Specification

System UI provides graphical controls that enable the user to per-

form intermittent human-in-the-loop model selection. It is imple-

mented using Python Dash visualization library and runs in a web

browser which makes it portable. It is integrated with a backend

REST API to perform the user-requested actions.

The user will start interacting with our system by either picking

a canned ML model from a roster or by uploading a Python script

defining a custom ML model using the UI shown in Figure 2 (A).

We currently support 4 popular DL models in our roster: ResNet50,

MobileNet, BERT-base, and DistilBert. New models can be easily

added to the roster. Also, the custom script option can support

arbitrary Keras models. After picking a model, the user will be then

prompted with the UI shown in Figure 2 (B) to specify a name,

description, AutoML search procedure, names of features and label

columns, the path to the training data, and the maximum number

of training epochs for any model. If a custom script is uploaded, the

user is required to specify the entry point function name in that

script. This entry point function should take a dictionary of config

values as input and return a compiled Keras model as output. The

user is also required to specify the search spaces for the available

configs. The list of available configs is fixed for a canned model.

For a custom model, it can be defined manually. After specifying

these values, the user can launch the model selection workload.

While the workload is running, the user can visualize model train-

ing and validation metrics, such as loss and accuracy, through an

embedded TensorBoard UI as shown in Figure 2 (C). User can also

add/stop/resume configs using the controls shown in Figure 2 (D) or

create a new drill-down workload on a refined search space using

the UI shown in Figure 2 (E).

2.3 Decoupled System Architecture

Our paradigm translates to two key system design decisions: (1)

decoupling the specification of what configs to explore from sched-

uling their training and (2) being able to multiplex the training of

many configs on the fly on the same cluster. Otherwise, it is simply

not possible to run multiple model selection workloads at the same

time or even increase the model selection throughput of a single

workload without provisioning more resources. While resource

provisioning has become easy with cloud computing, cloud users

also often need to limit their resource usages due to cost concerns.

For others like domain science users, it may be simply not possible

to provision more resources such as in fixed-sized campus clusters.

We implement our paradigm in Cerebro. Cerebro uses a novel

parallel execution strategy for stochastic gradient descent (SGD)-

based training (e.g., like in DL) called model hopper parallelism
(MOP) that ensures SGD properties. SGD reads training data se-
quentially and repeats it for several iterations. A single iteration is

also called an epoch of training. MOP breaks a single epoch of train-

ing on partitioned data into multiple sub-units called sub-epochs; a
sub-epoch operates on a single data partition. Given a set of con-

figs, MOP schedules them using an epoch-level scheduling template

where all configs are trained for the current epoch before training

the next epoch for any config. Also, it multiplexes the training of

the configs by asynchronously scheduling sub-epochs on workers.
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Figure 2: User interface for intermittent human-in-the-loop model selection. (A) UI to either pick a canned ML model (e.g.,

ResNet50) or upload a script file defining a custom model. (B) UI to specify experiment metadata, training data information,

and configuration search space. (C) Visualizing the learning curves using embedded TensorBoard. (D) UI listing all configs and

controls to add/stop/resume configs. (E) UI to create a drill-down model selection workload.
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Figure 3: High-level system architecture diagram of Cere-

bro along with the changes/additions to support our inter-

mittent human-in-the-loop model selection paradigm.

The scheduler ensures that both a config is trained sequentially and

on all partitions. Overall, MOP significantly increases the model

selection throughput without provisioning more resources. Orig-

inally, Cerebro was designed to execute a single AutoML-based

model selection workload at a time. Figure 3 presents Cerebro sys-

tem architecture. More details about the Cerebro system can be

found in our VLDB 2020 paper [11].

We leverage the epoch-level scheduling template of Cerebro to

support our new paradigm. We also add a new graphical user inter-

face (UI), a REST API and update Cerebro’s model selection APIs

and scheduler to achieve our requirements. UI sends user requests

to the model selection APIs through the REST API. We changed the

model selection APIs such that they now write the configs to an

SQLite database instead of directly interacting with the scheduler.

User-created configs are also directly added to this database. The

scheduler will then read all the configs that need to be trained from

this database and train them for one epoch. After completing train-

ing for one epoch it will update the training metrics of the config

in the database. And this process will continue. Whenever the user

wants to stop (resp. resume) a config, it will be marked as such

in the database and will be ignored (resp. considered back) by the

scheduler for training. Figure 3 presents the system architecture of

the modified Cerebro system.

3 DEMONSTRATION

3.1 Datasets and Workloads

In this demonstration we will enable the user to perform intermit-

tent human-in-the-loop model selection on 5 real-world workloads:

ResNet50 and MobileNet fine-tuning for NIH Chest X-Ray images

dataset, BERT-base, and DistilBert fine-tuning for Yelp Reviews

dataset, and an MLP training on Criteo click-through rate predic-

tion dataset. Models for image and text workloads will be available

in the system’s model roster. For MLP, we will use the custom

model option. The user will be able to pick either Grid Search, Ran-

dom Search, or HyperOpt as the AutoML procedure. We will be

running Cerebro with Spark backend and HDFS storage medium.

We assume the training and validation data are pre-processed

and already available on HDFS, which is a reasonable assumption

for many real-world ML model selection workloads. Currently, we

support Petastorm data format, a widely used data format to store

training data for DL training. More details on how to generate

training data in Petastorm format can be found in Cerebro sys-

tem documentation [1]. Also, we will use samples from the above
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datasets as real-world DL workloads intermittently span hours to

even days, while the VLDB Demo slot is only an hour or so.

3.2 Walkthrough

Participants will be first made familiar with the intermittent human-

in-the-loop model selection paradigm, Cerebro system architec-

ture, and MOP using a supporting slide deck. This introduction

will give the participants the necessary knowledge to understand

and appreciate our technical contributions. Participants will be

demonstrated 3 scenarios.

Scenario 1: Add/Stop/Resume Configs.We will demonstrate in-

termittent human-in-the-loop model selection using Grid Search

as the AutoML procedure. We will pick a dataset and a canned DL

model from our roster. We will then launch the workload after speci-

fying the required information and defining the config search space.

Since we pick a canned DL model the available config values are

pre-determined and we will only need to specify the search space

for those values. Instead of passively waiting until the workload

finishes, we will demonstrate how we can use the model training

and validation metrics available in the embedded TensorBoard UI

to manually stop any non-promising configs, add new configs that

we think will be better based on the results of completed configs,

clone a config to run it further with a changed learning rate or

batch size, and also resume any stopped config.

Scenario 2: CustomDLModel. This is similar to the first scenario

except here we will use a custom DL model by uploading a script

file. We will demonstrate how to define a custom model using Keras

and how to define the config search space for the custom model

that it depends on. We will explain how we can use this approach to

perform a model selection workload over any config search space

including architecture tuning such as tuning the number of layers

and the number of neurons, and hyper-parameter tuning such as

tuning the learning rate.

Scenario 3: Drill-down Model Selection. Here we will demon-

strate how to launch another drill-down model selection workload

on a refined search space as part of a parent model selection work-

load. This is useful when the user wants to explore several configs

closer to a promising config in one go, instead of manually adding

one config at a time. We will pick a dataset and a canned DL model

from our roster and launch amodel selection workload using Hyper-

Opt AutoML procedure. Instead of passively waiting and allowing

HyperOpt to explore the search space, we will demonstrate how

we can launch a drill-down model selection workload on a refined

search space based on human intuition.

Finally, participants will be able to use a hosted version of our

system. They will be able to pick a dataset and a model from the

roster or define a custom model and perform intermittent human-
in-the-loop model selection.

4 RELATEDWORK

While a few commercial software products including Sagemaker Au-

topilot, Azure Automated ML, and Determined AI have attempted

to streamline AutoML-based model selection, unlike our paradigm,

none of these products enable the user to steer a model selection

process while it is running. Several other works [6, 8, 15] have also

emphasized the importance of more human control in AutoML-

based model selection. However, to the best of our knowledge, ours

is the first system prototype that enables the user to intervene and

steer the model selection process on par with the meta-heuristic

while it is running. We also provide details of a system architec-

ture to realize this new paradigm. Ideas similar to our stop and

resume-based model training reprioritization approach have been

explored in relational query processing settings [12, 13]. Our work

was inspired in part by such ideas but ours is the first to apply them

in the context of ML model selection workloads, with the main

novelty here being our focus on iterative training procedures such

as SGD and intervention by observing evolving learning curves.

5 FUTURE RESEARCH DIRECTIONS

First, much work is needed in formalizing this new paradigm and

developing new AutoML procedures that explicitly take advantage

of human input. Alas, almost all AutoML procedures today are de-

veloped without any human interactivity in mind. Some even make

assumptions that prohibit human interaction [10]. Second, it would

be appealing to add elastic scaling and cloud-native scheduling

support to Cerebro, so that it can reduce runtimes subject to mon-

etary constraints. Finally, Cerebro’s decoupled architecture can be

generalized to support multi-tenancy. With multi-tenancy, multiple

concurrent model selection workloads on different datasets can be

run on the same infrastructure.
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