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ABSTRACT

Scalable systems for machine learning (ML) are largely siloed
into dataflow systems for structured data and deep learning
systems for unstructured data. This gap has left workloads
that jointly analyze both forms of data with poor systems sup-
port, leading to both low system efficiency and grunt work
for users. We bridge this gap for an important class of such
workloads: feature transfer from deep convolutional neural
networks (CNNs) for analyzing images along with struc-
tured data. Executing feature transfer on scalable dataflow
and deep learning systems today faces two key systems is-
sues: inefficiency due to redundant computations and crash-

proneness due to mismanaged memory. We present Vista, a
new data system that resolves these issues by elevating this
workload to a declarative level on top of dataflow and deep
learning systems. Vista automatically optimizes the configu-
ration and execution of this workload to reduce both compu-
tational redundancy and the potential for workload crashes.
Experiments on real datasets show that apart from making
feature transfer easier, Vista avoids workload crashes and
reduces runtimes by 58% to 92% compared to baselines.
ACM Reference Format:

Supun Nakandala and Arun Kumar. 2020. Vista: Optimized Sys-
tem for Declarative Feature Transfer from Deep CNNs at Scale. In
Proceedings of the 2020 ACM SIGMOD International Conference on

Management of Data (SIGMOD’20), June 14–19, 2020, Portland, OR,

USA. ACM, New York, NY, USA, 18 pages. https://doi.org/10.1145/
3318464.3389709

1 INTRODUCTION AND MOTIVATION

Deep CNNs achieve near-human accuracy for many image
analysis tasks [35, 51]. Thus, there is growing interest in
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Figure 1: (A) Simplified illustration of a typical deep CNN and its

hierarchy of learned feature layers(based on [70]). (B) Illustration

of the CNN feature transfer workflow for multimodal analytics.

using CNNs to exploit images in analytics applications that
have so far relied mainly on structured data. But ML systems
today have a dichotomy: dataflow systems (e.g., Spark [69])
are popular for structured data [4, 54], while deep learning
systems (e.g., TensorFlow [22]) are needed for CNNs. This
dichotomy means the systems issues of workloads that com-
bine both forms of data are surprisingly ill understood. In
this paper, we present a new system that closes this gap for a
popular form of such workloads: feature transfer from CNNs.

Example (Based on [53]). Consider a data scientist, Alice,
at an online fashion retailer building a product recommender
system (see Figure 1). She uses structured features (e.g., price,
brand, user clicks, etc.) to build an ML model (e.g., logistic re-
gression, multi-layer perceptron, or decision tree) to predict
product ratings. She then has a hunch that including product
images can raise ML accuracy. So, she uses a pre-trained
deep CNN (e.g., ResNet50 [37]) on the images to extract a
feature layer : a vector representation of an image produced
by the CNN. Deep CNNs produce a series of feature lay-
ers; each layer automatically captures a different level of
abstraction from low-level patterns to high-level abstract
shapes [36, 51], as Figure 1(A) illustrates. Alice concatenates
her chosen feature layer with the structured features and
trains her “downstream” model. Figure 1(B) illustrates this
workflow. She then tries a few other feature layers instead
to check if the downstream model’s accuracy increases.
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Figure 2: (A) Comparing the analytics-related capabilities of parallel dataflow (PD) systems and deep learning (DL) systems. (B) Currentmanual

approach of executing feature transfer at scale straddling PD andDL systems. The steps in themanual workflow are numbered. Step 3 (a-b-c) is

repeated for every feature layer of interest. (C) The “declarative” approach in Vista. (D) Tradeoffs of alternative execution plans on efficiency

(runtimes) and reliability (crash-proneness).

Importance of FeatureTransfer. Feature transfer is a form
of “transfer learning” that mitigates two key pains of training
deep CNNs from scratch [3, 18, 56]: the number of labeled im-
ages needed is lower, often by an order of magnitude [18, 67],
and the time and resource costs of training are lower, even
by two orders of magnitude [3, 18]. Overall, feature transfer
is now popular in many domains, including recommender
systems [53], visual search [42] (product images), healthcare
(tissue images) [34], nutrition science (food images) [10], and
computational advertising (ad images).

Bottleneck: Trying Multiple Layers. Recent work in ML
showed that it is critical to try multiple layers for feature
transfer because different layers yield different accuracies
and it is impossible to tell upfront which layer will be best [18,
24, 33, 67]. But trying multiple layers becomes a bottleneck
for data scientists running large-scale ML on a cluster be-
cause it can slow down their analysis, e.g., from an hour to
several hours (Section 5), and/or raise resource costs.

1.1 Current Approach and Systems Issues

The common approach to feature transfer at scale is a tedious
manual process straddling deep learning (DL) systems and
parallel dataflow (PD) systems. These systems present a di-
chotomy, as Figure 2(A) shows. PD systems support queries
and manage distributed memory for structured data but do
not support DL natively. DL systems support complex CNNs
and hardware accelerators but need manual partitioning of
files and memory for distributed execution. Moreover, data
scientists often prefer decision tree-based ML models on
structured data [8]; thus, a DL system alone is too limiting.

Figure 2(B) illustrates the manual process. Suppose Alice
tries layer 5 (L5) to layer 7 (L7) (say) from a given CNN.
She first runs CNN inference in DL system (e.g., Tensor-
Flow) to materialize L5 for all images in her dataset. She
loads this large data file with image features into PD system

(e.g., Spark), joins it with the structured data, and trains a
downstream multimodal ML model (e.g., using MLlib [54] or
TensorFlow). She repeats this for L6 and then for L7. Apart
from being tedious, this process faces two key systems issues:

(1) Inefficiency. Extracting a higher layer (say, L6) requires
a superset of the inference computations needed for a lower
layer (say, L5). So, the manual process may have high com-

putational redundancy, which wastes runtime.

(2) Crash-proneness. One might ask: why not write out all

layers in one go to save time? Alas, CNN feature layers can
be very large, e.g., one of ResNet50’s layers is 784KB but the
image is only 14KB [37]. So, 10GB of data blows up to 560GB
for just one layer! Forcing ML users to handle such large
intermediate data files on in-memory PD systems can easily
cause workload crashes due to exhausting available system
memory. Alternatively, writing these feature files to disk and
reading iteratively will incur significant overheads due to
costly disk reads/writes, thus reducing efficiency further.

1.2 Our Proposed Approach

We resolve the above issues by elevating scalable feature trans-

fer to a “declarative” level and automatically optimizing its

execution. We want to retain the benefits of both PD and DL
systems without reinventing their current capabilities (Fig-
ure 2(A)). Thus, we build a new data system we call Vista on

top of PD and DL systems, as Figure 2(C) illustrates. To make
practical adoption easier, we believe it is crucial to not modify

the code of the underlying PD and DL systems; this also lets
us leverage future improvements to those systems. Vista is
based on three design decisions: (1) Declarativity to simplify
specification, (2) Execution Optimization to reduce runtimes,
and (3)AutomatedMemory and System Configuration to avoid
memory-related workload crashes.



(1) Declarativity. Vista lets users specify what CNNs and
layers to try, but not how to run them. It invokes the DL
system to run CNN inference, loads and joins image features
with structured data, and runs downstream training on the
PD system. Since Vista, not the user, handles how layers are
materialized, it can optimize execution in non-trivial ways.

(2) Execution Optimization.We characterize the memory
use behavior of this workload in depth, including key work-
load crash scenarios. This helps us bridge PD and DL systems,
since PD systems do not understand CNNs and DL systems
do not understand joins or caching. We compare alternative
execution plans with different efficiency–reliability tradeoffs,
as Figure 2(D) shows. The “Lazy” plan simply automates the
manual process. It is reliable due to its lowmemory footprint,
but it has high computational redundancy. At the other end,
“Eager” materializes all layers of interest in one go (Section 4).
It avoids redundancy but is prone to memory-related crashes
if the intermediate data does not fit in memory. Alternatively,
enabling disk spills for the Eager plan will avoid crashes but
will be inefficient due to costly disk reads/writes. We then
present a new plan used in Vista that offers the best of
both worlds: “Staged” execution; it interleaves the DL and
PD systems’ operations by enabling partial CNN inference.

(3) Automated Memory and System Configuration. Fi-
nally, we explain how key system tuning knobs affect this
workload: apportioning memory for caching data, CNNs,
and feature layers; data partitioning; and physical join oper-
ator. Using our insights, we build an end-to-end automated

optimizer in Vista to configure both the PD and DL systems
to run this workload efficiently and reliably.

Implementation and Evaluation.We prototype Vista on
top of two PD systems, Spark and Ignite [25], with Tensor-
Flow as the DL system. Our API is in Python. We perform an
extensive empirical evaluation of Vista using 2 real-world
multimodal datasets and 3 deep CNNs. Vista avoids many
crash scenarios and reduces total runtimes by 58% to 92%
compared to existing baseline approaches.
Our approach is inspired by the long line of work on

multi-query optimization in RDBMSs [60]. But our execution
plans and optimizer have no counterparts in prior work
because they treat CNNs as black-box user-defined functions
that they do not rewrite. In contrast, Vista treats CNNs as
first-class operations, understands their memory footprints,
rewrites their inference, and optimizes this workload in a
principled and holistic manner.

Overall, this paper makes the following contributions:

• To the best of our knowledge, this is the first work on
the systems principles of integrating PD and DL sys-
tems to optimize scalable feature transfer from CNNs.

• We characterize the memory use behavior of this work-
load in depth, explain the efficiency–reliability trade-
offs of alternative execution plans, and present a new
CNN-aware optimized execution plan.

• We create an automated optimizer to configure the
system and optimize its execution to offer both high
efficiency and high reliability.

• We prototype our ideas to build Vista on top of a PD
and DL system. We compare Vista against baseline ap-
proaches using multiple real-world datasets and deep
CNNs. Unlike the baselines, Vista never crashes and
is also faster by 58% to 92%.

Outline. Section 2 presents some technical background. Sec-
tion 3 formalizes the dataflow of the feature transfer work-
load, explains our assumptions, and provides an overview of
Vista. Section 4 dives into the systems tradeoffs and presents
our optimizer. Section 5 presents the experiments.We discuss
related work in Section 6 and conclude in Section 7.

2 BACKGROUND

We provide some background from the ML and data systems
literatures to help understand the rest of this paper. We defer
discussion of other related work to Section 6.

Deep CNNs. CNNs are a type of neural networks special-
ized for images [36, 51]. They learn a hierarchy of parametric
features using layers of various types (see Figure 1(A)): con-
volutions learn filters to extract features; pooling subsamples
features; non-linearity applies a non-linear function (e.g.,
ReLU) to all features; and fully connected is a set of percep-
trons. All parameters are trained using backpropagation [50].
CNNs typically surpass older hand-crafted image features
such as SIFT and HOG in accuracy [30, 52]. Training a CNN
from scratch incurs massive costs: they typically need many
GPUs for reasonable runtimes [3], huge labeled datasets, and
complex hyper-parameter tuning [36].

Transfer Learning with CNNs. Transfer learning miti-
gates the cost and labeled data requirements of training
deep CNNs from scratch [56]. When transferring CNN fea-
tures, no single layer is universally best for accuracy; the
“more similar” the target task is to the source task (e.g., Ima-
geNet classification), the better the higher layers will likely
be [18, 24, 33, 67]. Also, lower layer features are often much
larger; so, simple feature selection such as extra pooling
is typically used [24]. Such feature transfer underpins re-
cent breakthrough applications of CNNs in detecting can-
cer [34], diabetic retinopathy [63], facial analysis [66], and
multimodal recommendation systems [53].



Spark, Ignite, and TensorFlow. Spark and Ignite are pop-
ular distributed memory-oriented data systems [2, 25, 69].
At their core, both use a distributed collection of key-value
pairs as the data abstraction. They support many dataflow
operations, including relational operations and MapReduce.
Spark’s collection, called a Resilient Distributed Dataset or
RDD, is immutable, while Ignite’s is mutable. Spark holds
data in memory and supports disk spills; Ignite can be config-
ured as a purely in-memory system or as an in-memory cache
for disk resident data. Both systems support user-defined
functions (UDFs) to let users run ML algorithms directly on
large datasets, e.g., with Spark MLlib [54].

TensorFlow (TF) is a system for training and running neu-
ral networks [21]. Models in TF are specified as a “compu-
tational graph,” with nodes representing operations over
“tensors” (multi-dimensional arrays) and edges represent-
ing dataflow. TensorFrames and SparkDL are libraries that
integrate Spark and TF [15, 16]. TensorFrames lets users pro-
cess Spark data tables using TF code, while SparkDL offers
pipelines to integrate neural networks into Spark queries
and distribute hyper-parameter tuning. SparkDL is the most
closely related work to ours, since it too supports transfer
learning. But unlike Vista, SparkDL does not support trying
multiple layers of a CNN nor does it optimize this workload’s
execution. Furthermore, due to manual memory and system
configuration tuning, it is also prone to memory-related
workload crashes. Thus, both the functionality and tech-
niques of Vista are complementary to SparkDL. Horovod [7]
is a distributed SGD system for training TF computational
graphs that is now integrated with Spark to enable training
directly over Spark-resident data.

3 PRELIMINARIES AND OVERVIEW

We now formally describe our problem setting, explain our
assumptions, and present an overview of Vista.

3.1 Definitions and Data Model

We start by defining some terms and notation to formalize
the data model of partial CNN inference. We will use these
terms in the rest of this paper.

Definition 3.1. A tensor is a multidimensional array of

numbers. The shape of ad-dimensional tensor t ∈ Rn1×n2×...nd

is the d-tuple (n1, . . .nd ).

A raw image is the (compressed) file representation of
an image, e.g., JPEG. An image tensor is the numerical ten-
sor representation of the image. Gray-scale images have
2-dimensional tensors; colored ones, 3-dimensional (with
RGB pixel values). We now define some abstract data types
and functions that will be used to explain our techniques.

Definition 3.2. A TensorList is an indexed list of tensors

of potentially different shapes.

Definition 3.3. A TensorOp is a function f that takes as

input a tensor t of a fixed shape and outputs a tensor t ′ = f (t )
of potentially different, but also fixed, shape. A tensor t is said
to be shape-compatible with f iff its shape conforms to what

f expects for its input.

Definition 3.4. A CNN is a TensorOp f that is represented

as a composition of nl indexed TensorOps, denoted f (·) ≡
fnl (. . . f2 ( f1 (·)) . . . ), wherein each TensorOp fi is called a

layer and nl is the number of layers.1 We use f̂i to denote

fi (. . . f2 ( f1 (·)) . . . ).

Definition 3.5. A FlattenOp is a TensorOp whose output

is a vector; given a tensor t ∈ Rn1×n2×...nd , the output vector’s

length is

∑d
i=1 ni .

Definition 3.6. CNN inference. Given a CNN f and a

shape-compatible image tensor t , CNN inference is the process
of computing f (t ).

Definition 3.7. Partial CNN inference. Given a CNN f ,
layer indices i and j > i , and a tensor t that is shape-compatible

with layer fi , partial CNN inference i → j is the process of

computing fj (. . . fi (t ) . . . ), denoted f̂i→j .

Allmajor CNN layers–convolutional, pooling, non-linearity,
and fully connected–are just TensorOps. The above defini-
tions capture a crucial aspect of partial CNN inference: data
flowing through the layers produces a sequence of tensors.

3.2 Problem Statement and Assumptions

We are given two tables Tstr (ID,X ) and Timg (ID, I ), where
ID is the primary key (identifier), X ∈ Rds is the structured
feature vector (with ds features, including label), and I are
raw images (say, as files on HDFS). We are also given a CNN
f with nl layers, a set of layer indices L ⊂ [nl ] specific to
f that are of interest for transfer learning, a downstream
ML algorithm M (e.g., logistic regression), a set of system
resources R (number of cores, system memory, and number
of nodes). The feature transfer workload is to train M for
each of the |L| feature vectors obtained by concatenating X
with the respective feature layers obtained by partial CNN
inference; we can state it more precisely as follows:

∀ l ∈ L : (1)

T ′
img,l (ID,дl ( f̂l (I ))) ← Apply (дl ◦ f̂l ) to Timg (2)

T ′l (ID,X
′
l ) ← Tstr ▷◁ T

′
img,l (3)

TrainM on T ′l with X ′l ≡ [X ,дl ( f̂l (I ))] (4)
1We use sequential (chain) CNNs for simplicity of exposition; it is easy to
extend our definitions to DAG-structured CNNs such as DenseNet [41].
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Step (2) runs partial CNN inference to materialize layer l
and flattens it with дl , a shape-compatible FlattenOp. Step (3)
concatenates structured and image features using a key-key
join. Step (4) trains M on the concatenated feature vector.
Pooling can be inserted before д to reduce dimensionality for
M [24]. The current approach (Figure 2(B)) runs the above
queries as such, i.e., materialize layersmanually and indepen-
dently as flat files and transfer them; we call this execution
plan Lazy. This plan is cumbersome, inefficient due to redun-
dant CNN inference, and/or is prone to workload crashes
due to inadvertently mismanaged memory. Our goal is to
resolve these issues. Our approach is to elevate this workload

to a declarative level, obviate manual feature transfer, auto-

matically reuse intermediate results, and optimize the system

configuration and execution for better reliability and efficiency.

We make a few simplifying assumptions for tractability
in this first paper on this problem. First, we assume that f
is from a roster of well-known CNNs. We currently support
AlexNet [46], VGG16 [61], and ResNet50 [37] due to their
popularity in real feature transfer applications [53, 66]. Sec-
ond, we support only one image per data record. We leave
support for arbitrary CNNs and multiple images per example
to future work. Finally, we assume enough secondary storage
is available for disk spills and optimize the use of distributed
memory; this is a standard assumption in PD systems.

3.3 System Architecture and API

Weprototype Vista as a library on top of Spark-TF and Ignite-
TF environments. Due to space constraints, we explain the
architecture of only the Spark-TF prototype; the Ignite-TF
one is similar.
Vista has three components, as Figure 3 illustrates: (1) a

“declarative” API, (2) a roster of popular named deep CNNs
with numbered feature layers, and (3) the Vista optimizer.
Our Python API expects 4 major groups of inputs. First is
the system environment (memory, number of cores, and
number of nodes). Second, a deep CNN f and the number

of feature layers |L| (starting from the top most layer) to
explore. Third, the downstream ML routineM that handles
the downstream model’s evaluation, hyperparameter tuning,
and model artifacts. Fourth, data tables Tstr and Timg and
statistics about the data.We provide detailed API information
in our technical report [19].
Under the covers, Vista invokes its optimizer (Section

4.3) to pick a fast and reliable set of choices for the logical
execution plan (Section 4.2.1), system configuration param-
eters (Section 4.2.2), and physical execution decisions (Sec-
tion 4.2.3). After configuring Spark accordingly, Vista runs
within the Spark Driver process to control the execution.
Vista injects UDFs to run (partial) CNN inference, i.e., f , f̂l ,
дl , and f̂i→j for the CNNs in its roster (currently, AlexNet,
VGG16, and ResNet50). These UDFs specify the computa-
tional graphs for TF and invoke Spark’s DataFrames and
TensorFrames APIs with appropriate inputs based on our
optimizer’s decisions. Image and feature tensors are stored
with our custom TensorList datatype. Finally, Vista invokes
downstream ML model training on the concatenated feature
vector and obtains |L| trained downstream models. Overall,
Vista frees ML users from manually writing TF code for CNN

feature transfer, saving features as files, performing joins, or

tuning Spark for running this workload at scale.

4 TRADEOFFS AND OPTIMIZER

We now characterize the abstract memory usage behavior
of our workload in depth. We then map our memory model
to Spark and Ignite. Finally, we use these insights to explain
three dimensions of efficiency-reliability tradeoffs and apply
our analyses to design the Vista optimizer.

4.1 Memory Use Characterization

It is important to understand and optimize the memory use
behavior of the feature transfer workload, since misman-
aged memory can cause frustrating workload crashes and/or
excessive disk spills or cache misses that raise runtimes. Ap-
portioning and managing distributed memory carefully is
a central concern for modern distributed data processing
systems. Since our work is not tied to any specific dataflow
system, we create an abstract model of distributed memory

apportioning to help us explain the tradeoffs in a generic man-
ner. These tradeoffs involve apportioning memory between
intermediate data, CNN/DLmodels and working memory for
UDFs. Such tradeoffs affect both reliability (avoiding crashes)
and efficiency. We then highlight interesting new proper-
ties of our workload that can cause unexpected crashes or
inefficiency, if not handled carefully.

Abstract Memory Model. In distributed memory-based
dataflow systems, a worker’s System Memory is split into



two main regions: Reserved Memory for OS and other pro-
cesses and Workload Memory, which in turn is split into
Execution Memory and Storage Memory. Figure 4(A) illus-
trates the regions. Execution Memory is further split into
User Memory and Core Memory; for typical relational/SQL
workloads, the former is used for UDF execution, while the
latter is used for query processing. Best practice guidelines
recommend allotting most of System Memory to Storage
Memory, while having enough Execution Memory to reduce
disk spills or cache misses [5, 13, 14]. OS Reserved Memory
is typically a few GBs. Our workload requires rethinking
memory apportioning due to interesting new issues caused
by deep CNN models, (partial) CNN inference, feature layers,
and the downstream ML task.

(1) The guideline of usingmost of SystemMemory for Stor-
age and Execution no longer holds. In both Spark and Ignite,
CNN inference in DL system (e.g., TF) uses System Memory
outside Storage and Execution regions. If a DL model is used
as the downstream ML model, it will also use memory out-
side of Storage and Execution regions. The memory footprint
of DL models is non-trivial. For parallel query execution in
PD systems, each execution thread will spawn its own DL
model replica, multiplying the footprint.
(2) Many temporary objects are created when reading

serialized DL models to initialize the DL system, for buffers
to read inputs, and to hold features created by CNN inference.
All these go under User Memory. The sizes of these objects
depend on the number of examples in a data partition, the
CNN, and L. These sizes could vary dramatically and also
be very high, e.g., layer fc6 of AlexNet has 4096 features but
conv5 of ResNet has over 400,000 features! Such complex
memory footprint calculations will be tedious for ML users.
(3) The downstream ML routine (e.g., MLLib) also copies

features produced by CNN inference into its own represen-
tations. Thus, Storage Memory should accommodate such
intermediate data copies. Finally, Core Memory must accom-
modate the temporary objects created for join processing.

Mapping to Spark’sMemoryModel. Spark allocates User,
Core, and Storage Memory regions of our abstract memory
model from the JVMHeap Space.With default configurations,
Spark allocates 40% of the Heap Memory to User Memory
region. The rest of the 60% is shared between the Storage and
Core Memory regions. The Storage Memory–Core Memory
boundary in Spark is not static. If needed, Core Memory au-
tomatically borrows from the Storage Memory evicting data
partitions to the disk. Conversely, if Spark needs to load more
data to memory, it borrows from Execution Memory. But
there is a maximum threshold fraction of Storage Memory
(default 50%) that is immune to eviction.

Mapping to Ignite’s Memory Model. Ignite treats both
User and Core Memory regions as a single unified memory
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Figure 4: (A) Our abstract model of distributed memory apportion-

ing. (B,C) How our model maps to Spark and Ignite.

region and allocates the entire JVM Heap for it. This region
is used to store the in-memory objects generated by Ignite
during query processing and UDF execution. Storage Mem-
ory region of Ignite is allocated outside of JVM heap in the
JVM native memory space. Unlike Spark, Ignite’s in-memory
Storage Memory region has a static size.

Memory-related Crash and Inefficiency Scenarios. The
three issues explained above give rise to various unexpected
workload crash scenarios due to memory errors, as well as
system inefficiencies. Manually handling them could frus-
trate data scientists and impede their ML exploration.

(1) DL Execution Memory blowups. Serialized file formats of
CNNs and downstreamMLmodels often underestimate their
in-memory footprints. Alongwith the replication bymultiple
threads, DL Execution Memory can be easily exhausted. If
such blowups are not accounted when configuring the data
processing system, and if they exceed available memory, the
OS will kill the application.

(2) Insufficient User Memory. All UDF execution threads share
User Memory for the CNNs, downstream ML models, and
feature layer TensorList objects. If this region is too small due
to a small overall Workload Memory size or due to a large
degree of parallelism, such objects might exceed available
memory, leading to a crash with out-of-memory error.

(3) Very large data partitions. If a data partition is too big, the
PD system needs a lot of User and Core Execution Memory
for query execution operations (e.g., for the join in our work-
load and MapPartition-style UDFs in Spark). If Execution
Memory consumption exceeds the allocated maximum, it
will cause the system to crash with out-of-memory error.



(4) Insufficient memory for Driver Program. All distributed
data processing systems require a Driver program that or-
chestrates the job among workers. In our case, the Driver
reads and creates a serialized version of the CNN and broad-
casts it to the workers. For the downstream ML model, the
Driver may also have to collect partial results from work-
ers (e.g., for collect() and collectAsMap() in Spark). Without
enough memory for these operations, the Driver will crash.

Overall, several execution and configuration considera-
tions matter for reliability and efficiency. Next, we delineate
these systems tradeoffs precisely along three dimensions.

4.2 Three Dimensions of Tradeoffs

The dimensions we discuss are largely orthogonal to each
other but they affect reliability and efficiency collectively.

4.2.1 Logical Execution Plan Tradeoffs. Figure 5(A) illus-
trates the Lazy plan (Section 3.2). As mentioned earlier, it has
high computational redundancy; to see why, consider a pop-
ular deep CNN AlexNet with the last two layers fc7 and fc8

used for feature transfer (L = {fc7, fc8}). This plan performs
partial CNN inference for fc7 (721 MFLOPS) independently
of fc8 (725 MFLOPS), incurring 99% redundant computations
for fc8. An orthogonal issue is join placement: should the

join really come after inference? Usually, the total size of all
feature layers in L will be larger than the size of raw images
in a compressed format such as JPEG. Thus, if the join is
pulled below inference, as shown in Figure 5(B), the shuffle
costs of the join will go down. We call this slightly modified
plan Lazy-Reordered. But this plan still has computational
redundancy. The only way to remove redundancy is to break
the independence of the |L| queries and fuse them.

Consider the Eager plan shown in Figure 5(C). It material-
izes all feature layers of L in one go, which avoids redundancy
because CNN inference is not repeated. Features are stored
as a TensorList in an intermediate table and joined with Tstr .
M is then trained on each feature layer (concatenated with
X ) projected from the TensorList. Eager-Reordered, shown
in Figure 5(D), is a variant with the join pulled down. Alas,
both of these plans have high memory footprints, since they
materialize all of L at once. Depending on the memory ap-
portioning (Section 4.1), this could cause workload crashes
or a lot of disk spills, which in turn raises runtimes.
To resolve the above issues, we create a logically new

execution planwe call Staged execution, shown in Figure 5(E).
It splits partial CNN inference across the layers in L and
invokesM on branches of the inference path; so, it stages out
the materialization of the feature tensors. Staged offers the
best of both worlds: it avoids computational redundancy, and
it is reliable due to its lower memory footprints. Empirically,
we find that Eager and Eager-Reordered are seldom much

faster than Staged due to a peculiarity of deep CNNs. The
former can be faster only if a CNN “quickly” (i.e., within a few
layers and low FLOPs) converts the image to small feature
tensors. But such an architecture is unlikely to yield high
accuracy, since it loses too much information too soon [36].
Indeed, no popular deep CNN has such an architecture. Based
on our above analysis, we find that it suffices for Vista to
only use our new Staged plan (validated in Section 5).
4.2.2 System Configuration Tradeoffs. Logical plans are

generic and independent of the PD system. But as explained
in Section 4.1, three key system configuration parameters
matter for reliability and efficiency: degree of parallelism
in a worker, data partition sizes, and memory apportioning.
While the tuning of such parameters is well understood for
SQL and MapReduce [40, 64], we need to rethink them due
to the properties of CNNs and partial CNN inference.

Naively, one might choose the following settings that may
work well for SQL workloads: the degree of parallelism is
the number of cores on a node; allocate few GBs for User and
Core Execution Memory; use most of the rest of memory
for Storage Memory; use the default number of partitions in
the PD system. But for the feature transfer workload, these
settings can cause crashes or inefficiencies.

For example, a higher degree of parallelism increases the
worker’s throughput but also raises the CNN models’ foot-
print, which in turn requires reducing Execution and Stor-
age Memory. Reducing Storage Memory can cause more disk
spills, especially for feature layers, and raise runtimes. Worse
still, User Memory might also become too low, which can
cause crashes during CNN inference. Lowering the degree
of parallelism reduces the CNN models’ footprint and allows
Execution and Storage Memory to be higher, but too low a
degree of parallelism means workers will get underutilized.2
This in turn can raise runtimes, especially for the join and
the downstream training. Finally, too low a number of data
partitions can cause crashes, while too high a value leads to
high overheads. Overall, we see multiple non-trivial systems
tradeoffs that are tied to the CNN and its feature layer sizes.
It is unreasonable to expect ML users to handle such trade-
offs manually. Thus, Vista automates these decisions in a
feature transfer-aware manner.

4.2.3 Physical Execution Tradeoffs. Physical execution
decisions are closer to the specifics of the underlying PD
system. We discuss the tradeoffs of two such decisions that
are common in PD systems and then explain what Spark and
Ignite specifically offer.
First is the physical join operator used. The two main

options for distributed joins are shuffle-hash and broadcast. In
2In our current prototypes, every TF invocation by a worker uses all cores
regardless of how many cores are assigned to that worker. But, one TF
invocation per used core increases overall throughput and reduces runtimes.
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Eager execution plan. (D) Reordering the join operator in Eager. (E) Our new Staged execution plan.

shuffle-hash join, base tables are hashed on the join attribute
and partitioned into “shuffle blocks.” Each shuffle block is
then sent to an assigned worker over the network, with each
worker producing a partition of the output table using a local
sort-merge join or hash join. In broadcast join, each worker
gets a copy of the smaller table on which it builds a local
hash table before joining it with the outer table without any
shuffles. If the smaller table fits in memory, broadcast join is
typically faster due to lower network and disk I/O costs.

Second is the persistence format for in-memory storage of
intermediate data. Since feature tensors can be much larger
than raw images, this decision helps avoid/reduce disk spills
or cache misses. The two main options are deserialized for-
mat or compressed serialized format. While the serialized
format can reduce memory footprint and thus, reduce disk
spills/cache misses, it incurs additional computational over-
head for translating between formats. To identify potential
disk spills/cache misses and determine which format to use,
we estimate the size of intermediate data tables |Ti | (for i ∈ L).
Vista can automatically estimate |Ti | because it knows the
sizes of the feature tensors in its CNN roster and understands
the internal record format of the PD system.
Spark supports both shuffle-hash join and broadcast join

implementations, aswell as both deserialized and compressed
serialized in-memory storage formats. In Ignite, data is shuf-
fled to the corresponding worker node based on the parti-
tioning attribute during data loading itself. Thus, a key-key
join can be performed using a local hash join, if we use the
same data partitioning function for both tables. Ignite stores
intermediate in-memory data in a compressed binary format.

4.3 The Optimizer

We now explain how the Vista optimizer navigates all the
tradeoffs in a holistic and automated way to improve both
reliability and efficiency. Table 1 lists the notation used.

Optimizer Formalization and Simplification. Table 1(A)
lists the inputs given by the user. From these inputs, Vista in-
fers the sizes of the structured data table (|Tstr |), the images

table (|Timg), and all intermediate data tables (|Ti | for i ∈ L)
shown in Figure 5(E). Vista also looks up the CNN’s se-
rialized size | f |ser , runtime memory footprint | f |mem, and
runtime GPU memory footprint | f |mem_gpu from its roster,
in which we store these statistics. Then, Vista calculates
the runtime memory footprint of the downstream model
|M |mem based on the specifiedM and the largest total num-
ber of features (based on L). For instance, for logistic regres-
sion, |M | is proportional to the sum of structured features
and the maximum number of CNN features for any layer
(max
l ∈L
|дl ( f̂l (I )) |). Table 1(B) lists the variables whose values

are set by the optimizer. We define two quantities that cap-
ture peak intermediate data sizes to help our optimizer set
memory variables reliably:

ssingle = max
1≤i≤ |L |

|Ti | (5)

sdouble = max
1≤i≤ |L |−1

( |Ti | + |Ti+1 |) − |Tstr | (6)

The ideal objective is to minimize the overall runtime sub-
ject to memory constraints. As explained in Section 4.2.2,
there are two competing factors: cpu and memstorage . Raising
cpu increases parallelism, which could reduce runtimes. But
it also raises the DL Execution Memory needed, which forces
memstorage to be reduced, thus increasing potential disk spill-
s/cache misses for Ti ’s and raising runtimes. This tension is
captured by the following objective function:

min
cpu,np,memstorage

τ +max(0, sdoublennodes

−memstorage )

cpu

(7)

In the numerator, τ captures the total compute and com-
munication costs, which are effectively “constant” for this op-
timization. The second term captures disk spill costs for Ti ’s.
The denominator captures the degree of parallelism. While
this objective is ideal, it is impractical and needlessly compli-
cated for our purposes due to three reasons. (1) Estimating τ
is tedious, since it involves join costs, data loading costs, etc.
(2) More importantly, we hit a point of diminishing returns
with cpu quickly, since CNN inference typically dominates



Table 1: Notation for Section 4 and Algorithm 1.

Symbol Description

(A) Inputs given by user to Vista

Tstr Structured features table
Timg Images table
f CNN model in our roster
L Set of feature layer indices of f to transfer
M Downstream ML routine
nnodes Number of worker nodes in cluster
memsys Total system memory available in a worker node
memGPU GPU memory if GPUs are available
cpu

sys
Number of cores available in a worker node

(B) System variables/decisions set by Vista Optimizer

memstorage Size of Storage Memory
memuser Size of User Memory
memdl DL Execution Memory
cpu Number of cores assigned to a worker
np Number of data partitions
join Physical join implementation (shuffle or broadcast)
pers Persistence format (serialized or deserailized)

(C) Other fixed (but adjustable) system parameters

memos_rsv Operating System Reserved Memory (default: 3 GB)
memcore Core Memory as per system specific best practice guide-

lines (e.g. Spark default: 2.4 GB)
pmax Maximum size of data partition (default: 100 MB)
bmax Maximum broadcast size (default: 100 MB)
cpu

max
Cap recommended for cpu (default: 8)

α Fudge factor for size blowup of binary feature vectors as
JVM objects (default: 2)

total runtime and DL systems like TF, anyway uses all cores
regardless of cpu. That is, this workload’s speedup against
cpu will be quite sub-linear (confirmed by Figure 12(C) in
Section 5). Empirically, we find that about 7 cores typically
suffice; interestingly, a similar observation is made in Spark
guidelines for purely relational workloads [13, 15]. Thus, we
cap cpu at cpu

max
= 8. (3) Given the cap on cpu, we can just

drop the term minimizing disk spill/cache miss costs, since
sdouble will typically be smaller than the total memory (even
after accounting for the CNNs) due to the above cap.

Overall, our insights above yield a simpler objective that
is still a reasonable surrogate for minimizing runtimes:

max
cpu,np,memstorage

cpu (8)

The constraints for the optimization are as follows:

1 ≤ cpu ≤ min{cpu
sys
, cpu

max
} − 1 (9)

memuser =




(a) M is stored in PD User Memory:
max{| f |ser + cpu × α × ⌈ssingle/np⌉,
cpu × |M |mem }

(b) M is stored in DL Execution Memory:
| f |ser + cpu × α × ⌈ssingle/np⌉

(10)

memdl =




(a) M is stored in PD User Memory:
cpu × | f |mem

(b) M is stored in DL Execution Memory:
max{cpu × | f |mem, cpu × |M |mem }

(11)

memos_rsv +memdl +memuser +memcore

+memstorage < memsys

(12)

np = z × cpu × nnodes, for some z ∈ Z+ (13)

⌈ssingle/np⌉ < pmax (14)

If GPUs are available:

cpu ×max{| f |mem_gpu, |M |mem_gpu} < memGPU (15)

Equation 9 caps cpu and leaves a core for the OS. Equa-
tion 10 captures User Memory for reading CNN models for
invoking the DL system, copying materialized feature lay-
ers from the DL system and memory needed for M–if M is
stored in PD User Memory. As execution threads in a sin-
gle worker have access to shared memory, the serialized
CNN model need not be replicated. Equation 11 captures the
maximum DL Execution Memory. cpu × | f |mem is the CNN
inference memory needed. If the downstream ML model is
also a DL model, DL Execution Memory should also account
for holdingM . Equation 12 constrains the total memory as
per Figure 4. If there are GPUs, maximum GPU memory foot-
print cpu ×max{| f |mem_gpu, |M |mem_gpu} should be bounded
by available GPUmemorymemGPU as per Equation 15. Equa-
tion 13 requires np to be a multiple of the number of worker
processes to avoid skews, while Equation 14 bounds the size
of an intermediate data partition as per system guidelines [1].

Optimizer Algorithm. Given our above observations, the
algorithm is simple: linear search on cpu to satisfy all con-
straints.3 Algorithm 1 presents it formally. If the for loop
completes without returning, there is no feasible solution,
i.e., System Memory is too small to satisfy some constraints,
say, Equation 12. In this case, Vista notifies the user, and
3we explain our algorithm for the CPU-only scenario with an MLLib down-
stream model. It is straightforward to extend to the other settings.



Algorithm 1 The Vista Optimizer Algorithm.
1: procedure OptimizeFeatureTransfer:
2: inputs: see Table 1(A)
3: outputs: see Table 1(B)
4: for x = min{cpu

sys
, cpu

max
} − 1 to 1 do ▷ Linear search

5: np ← NumPartitions(s
single
,x ,nnodes )

6: memworker ←memsys −memos_r sv − x × | f |mem
7: memuser ← max{| f |ser + x × α × ⌈s

single
/n′p ⌉,x ×

|M |mem }

8: if memworker −memuser > memcore then

9: cpu ← x
10: memstoraдe ←memworker −memuser −memcore
11: join← shuffle

12: if |Tstr | < bmax then

13: join← broadcast

14: pers ← deserialized

15: if memstoraдe < s
double

then

16: pers ← serialized

17: return (memstorage,memuser , cpu,np , join, pers)

18: throw Exception(No feasible solution)
19:
20: procedure NumPartitions(s

single
,x ,n

nodes
):

21: totalcores ← x × nnodes
22: return ⌈

ssingle
pmax×totalcores

⌉ × totalcores

the user can provision machines with more memory. Oth-
erwise, we have the optimal solution. The other variables
are set based on the constraints. We set join to broadcast if
the predefined maximum broadcast data size constraint is
satisfied; otherwise, we set it to shuffle. Finally, as per Sec-
tion 4.2.3, pers is set to serialized, if disk spills/cache misses
are likely (based on the newly set memstorage). This is a bit
conservative, since not all pairs of intermediate tables might
spill, but empirically, we find that this conservatism does not
affect runtimes significantly (more in Section 5). We leave
more complex optimization criteria to future work.

5 EXPERIMENTAL EVALUATION

We empirically validate if Vista is able to improve efficiency
and reliability of feature transfer workloads. We then drill
into how it navigates the tradeoff space.

Datasets. We use two real-world public datasets: Foods [10]
and Amazon [38]. Foods has about 20, 000 examples with 130
structured numeric features such as nutrition facts along
with their feature interactions and an image of each food
item. The target represents if the food is plant-based or not.
Amazon is larger, with about 200, 000 examples with struc-
tured features such as price, title, and categories, as well
as a product image. The target is the sales rank, which we
binarize as a popular product or not. We pre-processed title
strings to get 100 numeric features (an “embedding”) using

Doc2Vec [49]. We convert the indicator vector of categories
to 100 numeric features using PCA. All images are resized to
227 × 227 resolution, as needed by popular CNNs. Overall,
Foods is about 300 MB in size; Amazon is 3 GB. While these
can fit on a single node, multi-node parallelism helps reduce
completion times for long running ML workloads; also note
that intermediate data sizes during feature transfer can be
even 50x larger. We will release all of our data pre-processing
scripts and system code on our project web page.

Workloads. We use three ImageNet-trained deep CNNs:
AlexNet [46], VGG16 [61], and ResNet50 [37], obtained from
TF model zoo [9]. They complement each other in terms of
model size [26]. We select the following layers for feature
transfer from each: conv5 to fc8 from AlexNet (|L| = 4); fc6 to
fc8 fromVGG (|L| = 3), and top 5 layers from ResNet (from its
last two layer blocks [37]). Following standard practices [18,
67], we apply max pooling on convolutional feature layers
to reduce their dimensionality before using them forM4.

Experimental Setup. We use a cluster with 8 workers and
1 master in an OpenStack instance on CloudLab, a free and
flexible cloud for research [57]. Each node has 32 GB RAM,
Intel Xeon @ 2.00GHz CPU with 8 cores, and 300 GB Seagate
Constellation ST91000640NS HDDs. All nodes run Ubuntu
16.04. We use Spark v2.2.0 with TensorFrames v0.2.9, Tensor-
Flow v1.3.0, and Ignite v2.3.0. Spark runs in standalone mode.
Each worker runs one Executor. HDFS replication factor is
three; input data is ingested to HDFS and read from there. Ig-
nite is configured with memory-only mode; each node runs
one worker. All runtimes reported are the average of three
runs with 90% confidence intervals. We chose these systems
due to their popularity but the takeaways from our experi-
ments are applicable to other DL systems (e.g., PyTorch [12])
and PD systems (e.g., Greenplum [11]) as well.

5.1 End-to-End Reliability and Efficiency

We compare Vista with five baselines: three naive and two
strong. Lazy-1 (1 CPU per Executor), Lazy-5 (5 CPUs), and
Lazy-7 (7 CPUs) capture the current dominant practice of
layer at a time execution (Section 3.2). Spark is configured
based on best practices [5, 13] (29 GB JVM heap, shuffle join,
deserialized, and defaults for all other parameters, including
np and memory apportioning). Ignite is configured with a 4
GB JVM heap, 25 GB off-heap Storage Memory, and np set to
the default 1024. Lazy-5 with Pre-mat and Eager are strong
baselines based on our tradeoff analyses in Section 4.2.1. In
Lazy-5 with Pre-mat, the lowest layer specified (e.g., conv5
for AlexNet) is materialized beforehand and used instead
of raw images for all subsequent CNN inference; Pre-mat is

4Filter width and stride for max pooling are set to reduce the feature tensor
to a 2 × 2 grid of the same depth.
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Figure 7: (A) End-to-end reliability and efficiency on GPU. “×” is a

workload crash. (B) Comparing TFT+Beam vs. Vista on Foods/CPU.

time spent on pre-materializing the lowest layer specified.
Eager is an alternative plan explained in Section 4.2.1; we
use 5 CPUs per Executor. For Lazy-5 with Pre-mat and Eager,
we explicitly apportion CNN Inference memory, Storage
Memory, User Memory, and Core Memory to avoid workload
crashes. Note that Lazy-5 with Pre-mat and Eager actually
need parts of our code from Vista. As forM , we run logistic
regression for 10 iterations. Figure 6 presents the results.

Overall, Vista improves reliability and/or efficiency across
the board. On Spark-TF, Lazy-5 and Lazy-7 crash on both
datasets for VGG16. On Ignite-TF, Lazy-7 crashes for all
CNNs on Amazon, while for ResNet50, Lazy-7 on Foods also
crashes. These are due to memory related crash scenarios
explained in Section 4.1. On Ignite-TF, Eager on Amazon also
crashes for ResNet50 due to intermediate data exhausting the
total available system memory. When Eager does not crash
and the intermediate data fits in memory, its efficiency is
comparable to Vista, which validates our analysis in Section
4.2.1. However, when the size of the intermediate data does
not fit in memory, as with Amazon on Spark for ResNet50,
Eager incurs significant overheads due to costly disk spills.
Lazy-5 with Pre-mat does not crash, but its runtimes are
comparable to Lazy-5 and mostly higher than Vista. This is
because the layers of AlexNet and ResNet are much larger
than the images, which raises data I/O and join costs.
More careful tuning could avoid the crashes with Lazy.

But that forces ML users to waste time wrestling with low-
level systems issues (Section 4)–time they can now spend
on further ML analysis. Compared to Lazy-7, Vista is 62%–
72% faster; compared to Lazy-1, 58%–92%. These gains arise

because Vista removes redundancy in partial CNN inference
and reduces disk spills. Of course, the exact gains depend
on the CNN and L: if more of the higher layers are tried, the
more redundancy there is and the faster Vista will be.

Experiments on aGPU.We ranGPU experiments on Spark-
TensorFlow environment using the Foods dataset. Experi-
mental setup is a single node machine with 32 GB RAM,
Intel i7-6700 @ 3.40GHz CPU with 8 cores, 1 TB Seagate
ST1000DM010-2EP1 SSD, and Nvidia Titan X (Pascal) 12GB
GPU. Figure 7 presents the results. In this setup Lazy-5 and
Lazy-7 crash with VGG16. For ResNet50, Eager takes signifi-
cantlymore time to complete compared to Vista due to costly
disk spills. Overall, the experimental results on both CPU
and GPU settings confirm the benefits of an automatic opti-
mizer such as ours for improving reliability and efficiency,
which could reduce both user frustration and costs.

Comparing against TF Transform+Beam. TensorFlow
Transform (TFT) [6] is a library for pre-processing input
data for TF. It can wrap CNN models as pre-processing func-
tions and be run on Apache Beam at scale to generate ML-
ready features in TFRecord format. So, TFT is akin to the role
of TensorFrames in Vista. We compare TFT+Beam against
Vista on Foods/ResNet50 with varying number of layers ex-
plored. For TFT+Beam, we first join the structured data with
images and then extract and write out features for all the
layers in one go (similar to our Eager plan). We then train a
3-layer MLP (each hidden layer has 1024 units) for 10 iter-
ations using distributed TF/Horovod. We use Apache Flink
(v1.9.2) as the backend runtime for Beam. For Flink, through
trial and error, we chose a working configuration with a par-
allelism of 32, JVM heap of 25GB, and User Memory fraction
of 60% (default 30%). Increasing the parallelism, reducing the
heap size, and/or User Memory fraction resulted in various
memory-related crashes. For Vista we use Spark backend
and use TF/Horovod to train the same downstream MLP.
Figure 7 (B) presents the results.

When exploring only the last layer, TFT+Beam is slightly
faster than Vista. However, when exploring more layers,
Vista starts to clearly outperform TFT+Beam. This is because



extracting all the layers in one go puts significant memory
pressure on Flink, causing costly disk spills. Vista’s staged
materialization plan keeps the memory pressure to a mini-
mum. The fact that we had to manually figure out a working
configuration for Flink to run this workload underscores
the importance of automatically tuning these parameters
without any user intervention. It also shows that the trade-
offs discussed in Section 4.1 are generally applicable when
integrating DL and PD systems.

5.2 Accuracy

All approaches in Figure 6 (including Vista) yield identical
downstream models (and thus, same accuracy) for a given
CNN layer. For both Foods and a sample of Amazon (20,000
records) datasets we evaluate the downstream logistic re-
gression model test F1 score with (1) only using structured
features, (2) structured features combined with “Histogram
of Oriented Gradients (HOG)” [31] based image features, and
(3) structured features combined with CNN based image fea-
tures from different layers of AlexNet and ResNet. Figure 8
presents the results.
In all cases incorporating image features improves the

classification accuracy, and CNN features offer significantly
higher lift in accuracy than traditional HOG features. We
saw F1 score lifts of 3% to 5% for the logistic regression
model with feature transfer on test datasets (20% of the data).
As expected, the lift varies across CNNs and layers. For in-
stance, on Foods, structured features alone give 80.2% F1
score. Adding ResNet50’s conv-5-3 layer raises it to 85.4%,
a large lift in ML terms. But using the last layer fc-6 gives
only 83.5%. Amazon exhibited similar trends. These results
reaffirm the need to try multiple layers and thus, the need for
a system such as Vista to simplify and speed up this process.
We also tried a decision tree as the downstream ML model.
For Foods it yielded a test F1 score of 88.5% and for Amazon

an F1 score of 61.4%. However, in both cases incorporating
CNN features didn’t improve the accuracy significantly. We
believe this is because the depths of the conventional deci-
sion tree models are not large enough to reap the benefits
of CNN features. We leave the analysis on the suitability
of different ML models for CNN feature transfer for future
work as it is orthogonal to our work.

5.3 Drill-Down Analysis of Tradeoffs

We now analyze how Vista navigates the tradeoffs explained
in Section 4 using Spark-TF prototype of Vista. We use
the less resource-intensive Foods dataset but alter it semi-
synthetically for some experiments to study Vista runtimes
in new operating regimes. In particular, when specified, vary
the data scale by replicating records (say, “4X”) or varying
the number of structured features (with random values). For
uniformity sake, unless specified otherwise, we use all 8
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Figure 8: Test F1 scores for various sets of features for training a

logistic regression model with elastic net regularization with α =
0.5 and a regularization value of 0.01.

workers, fix cpu to 4, and fix Core Memory to 60% of JVM
heap. Other parameters are set by Algorithm 1. The layers
explored for each CNN are the same as before.

Logical Execution Plan Decisions.We compare four com-
binations: Eager or Staged combined with inference After
Join (AJ) or Before Join (BJ). We vary both |L| (dropping
lower layers) and data scale for AlexNet and ResNet. Fig-
ure 9 shows the results. The runtime differences between all
plans are insignificant for low data scales or low |L| on both
CNNs. But as |L| or the data scale goes up, both Eager plans
get much slower, especially for ResNet (Figure 9(2,4)); this is
due to disk spills of large intermediate data. Across the board,
AJ plans are mostly comparable to their BJ counterparts but
marginally faster at larger scales. The takeaway is that these
results validate our choice of using only Staged/AJ in Vista,
viz., Plan (E) in Figure 5 in Section 4.2.1.

Physical Plan Decisions. We compare four combinations:
Shuffle or Broadcast join and Serialized (Ser.) or Deserial-
ized (Deser.) persistence format. We vary both data scale and
number of structured features (|Xstr |) for both AlexNet and
ResNet. The logical plan used is Staged/AJ. Figure 10 shows
the results. On ResNet, all four plans are almost indistin-
guishable regardless of the data scale (Figure 10(2)), except
at the 8X scale, when the Ser. plans slightly outperform the
Deser. plans. On AlexNet, the Broadcast plans slightly outper-
form the Shuffle plans (Figure 10(1)). Figure 10(3) shows that
this gap remains as |Xstr | increases but the Broadcast plans
crash eventually. On ResNet, however, Figure 10(4) shows
that both Ser. plans are slightly faster than their Deser. coun-
terparts but the Broadcast plans still crash eventually. The
takeaway is that no one combination is always dominant,
validating the utility of an automated optimizer like ours to
make these decisions.
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Figure 9: Runtimes of logical execution plan alternatives for varying data scale and number of feature layers explored.
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Figure 11: Varying system configuration parameters. Logical and
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Optimizer Correctness. We vary cpu and np while explic-
itly apportioning the memory regions based on the chosen
cpu value. We pick Staged/ AJ/Shuffle/Deser. as the logical-
physical plan combination. Figures 11(A,B) show the results
for all CNNs. As explained in Section 4.3, the runtime de-
creases with cpu for all CNNs, but VGG eventually crashes
(beyond 4 cores) due to the blowup in CNN Inference Mem-
ory. The runtime decrease with cpu is sub-linear though. To
drill into this issue, we plot the speedup against cpu on 1 node
for data scale 0.25X (to avoid disk spills). Figure 12(C) shows
the results: the speedups plateau at 4 cores. As mentioned in
Section 4.3, this is as expected, since CNN inference domi-
nates total runtimes and TF always uses all cores regardless
of cpu. Overall, we can see that the Vista optimizer (Algo-
rithm 1) picks either optimal or near-optimal cpu values;
AlexNet: 7, VGG16: 4, and ResNet50: 7.

Figure 11(B) shows non-monotonic behaviors with np . At
low np , Spark crashes due to insufficient Core Memory for
the join. As np goes up, runtimes go down, since Spark uses
more parallelism (up to 32 cores). Eventually, runtimes rise
again due to Spark overheads for running too many tasks. In
fact, whennp > 2000, Spark compresses task statusmessages,
leading to high overhead. The Vista optimizer (Algorithm 1)
sets np at 160, 160, and 224 for AlexNet, VGG, and ResNet
respectively, which yield close to the fastest runtimes. The
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takeaway is that these settings involve non-trivial CNN-
specific efficiency tradeoffs and thus, an automated optimizer
like ours can free ML users from such tedious tuning.

Scalability. We evaluate the scaleup (weak scaling) and
speedup (strong scaling) of the logical-physical plan combi-
nation of Staged/After Join/Shuffle/Deserialized for varying
number of worker nodes (and also data scale for scaleup).
While CNN inference andM are embarassingly parallel, data
reads from HDFS and the join can bottleneck scalability. Fig-
ures 12 (A,B) show the results. We see near-linear scaleup for
all 3 CNNs. But Figure 12 (B) shows that the AlexNet sees a
markedly sub-linear speedup, while VGG and ResNet exhibit
near-linear speedups. To explain this gap, we drilled into
the Spark logs and obtained the time breakdown for data
reads and CNN inference coupled with the first iteration of
logistic regression for each layer. For all 3 CNNs, data reads
exhibit sub-linear speedups due to the notorious “small files”
problem of HDFS with the images [17]. But for AlexNet in
particular, even the second part is sub-linear, since its abso-
lute compute time is much lower than that of VGG or ResNet.
Thus, Spark overheads become non-trivial in AlexNet’s case.

Summary of Results. Vista reduces runtimes (even up to
10x) and avoids memory-related crashes by automatically



handling the tradeoffs of logical execution plan, system con-
figuration, and physical plan. Our new Staged execution plan
offers both high efficiency and reliability. CNN-aware system
configuration for memory apportioning, data partitioning,
and parallelism is critical. Broadcast join marginally out-
performs shuffle join but crashes at larger scales. Serialized
disk spills are marginally faster than deserialized. Overall,
Vista automatically optimizes such complex tradeoffs, free-
ing ML users to focus on their ML exploration.

5.4 Discussion of Limitations

Deep integration betweenPDandDL systems.Vista cur-
rently supports one image per data example and a roster of
popular CNNs. Nothing in Vista makes it difficult to relax
these assumptions. For instance, supporting arbitrary CNNs
requires static analysis of TF computational graphs. We leave
such extensions to future work.

Feature transfer from other types of neural models.

Apart from image analytics, natural language processing
(NLP) is another domain where feature transfer from pre-
trained models has proven to be useful [58]. BERT [32] is
one such popular pre-trained NLP model. It has a DAG style
encoder-decoder architecture where as CNNs can be simpli-
fied into a sequence of logical layers. Similar to CNNs, in
order to pick the best layer one has to explore multiple de-
coder layer outputs. Also, aggregating features frommultiple
decoder layers using concatenation or element-wise addition
is also common. Thus, a feature layer in BERT depends on
multiple input layers and supporting it in Vista requires gen-
eralizing our staged materialization plan to support arbitrary
DAG architectures. We leave such extensions to future work.

6 OTHER RELATEDWORK

Multimodal Analytics. Transfer learning is used for other
kinds of multimodal analytics too, e.g., image captioning [44].
Our focus is on integrating images with structured data. A
related but orthogonal line of work is “multimodal learning”
in which deep neural networks are trained from scratch
on images [55, 62]; this incurs high costs for resources and
labeled data, which feature transfer mitigates.

Multimedia Systems. The multimedia and database sys-
tems communities have studied “content-based” image re-
trieval, video retrieval, and similar queries over multimedia
data [23, 43]. But they typically used non-CNN features such
as SIFT and HOG [30, 52] not learned or hierarchical CNN
features, although there is a resurgence of interest in CBIR
with CNN features [65, 68]. Such systems are orthogonal
to our work, since we focus on CNN feature transfer, not
retrieval queries on multimedia data. One could integrate
Vista with multimedia databases.

Query Optimization. Our work is inspired by a long line
of work on optimizing queries with UDFs, multi-query opti-
mization (MQO), and self-tuning DBMSs. For instance, [20,
27, 39] studied the problem of optimizing complex relational
queries with UDF-based predicates. Unlike such works on
queries with UDFs in the WHERE clause, our work can be
viewed as optimizing UDFs expressed in the SELECT clause
for materializing CNN feature layers. Vista is the first sys-
tem to bring the general idea of MQO to complex CNN
feature transfer workloads, which has been studied exten-
sively for SQL queries [60]. We do so by formalizing partial
CNN inference operations as first-class citizens for query
processing. In doing so, our work expands a recent line of
work on materialization optimizations for feature selection
in linear models [45, 71] and integrating ML with relational
joins [28, 47, 48, 59]. Finally, our work also expands the work
in database systems on optimizing memory usage based on
data access patterns of queries [29]. But ours is the first work
to study this issue in depth for CNN feature transfer queries.

System Auto-tuning. There is much prior work on auto-
tuning the configuration of RDBMSs, Hadoop/MapReduce,
and Spark for relational workloads (e.g., [40, 64]). Our work
is inspired by these works but ours is the first to focus on
the CNN feature transfer workload. We explain the new
efficiency and reliability issues caused by CNNs and feature
layers and apply our insights for CNN-aware auto-tuning in
our setting that straddles PD and DL systems.

7 CONCLUSIONS AND FUTUREWORK

The success of deep CNNs presents new opportunities for
exploiting images and other unstructured data in data-driven
applications that have hitherto relied mainly on structured
data. But realizing the full potential of this integration re-
quires data analytics systems to evolve and elevate CNNs as
first-class citizens for query processing, optimization, and
system resource management. We take a first step in this
direction by integrating parallel dataflow and deep learning
systems to support and optimize a key emerging workload in
this context: feature transfer from deep CNNs. By enabling
more declarative specification and by formalizing partial
CNN inference, Vista automates much of the data manage-
ment and systems-oriented complexity of this workload, thus
improving system reliability and efficiency. For future work,
we plan to support more general forms of CNNs, downstream
ML tasks, and other types of unstructured data as well.
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A ESTIMATING INTERMEDIATE DATA

SIZES

We explain the size estimations in the context of Spark. Ignite
also uses an internal format similar to the Spark. Spark’s
internal binary record format is called “Tungsten record
format,” shown in Figure 14. Fixed size fields (e.g., float) use
8 B. Variable size fields (e.g., arrays) have an 8 B header with
4 B for the offset and 4 B for the length of the data payload.
The data payload is stored at the end of the record. An extra
bit tracks null values.
Vista estimates the size of intermediate tables Tl ∀l ∈

L in Figure 5(E) based on its knowledge of the CNN. For
simplicity, assume ID is a long integer and all features are
single precision floats. Let |X | denote the number of features
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Figure 15: Size of largest intermediate table.

in X . |Tstr | and |Timg | are straightforward to calculate, since
they are the base tables. For |Ti | with feature layer l = L[i],
we have:

|Ti | = α1 × (8 + 8 + 4 × |дl ( f̂l (I )) |) + |Tstr | (16)

Equation 16 assumes deserialized format; serialized (and
compressed) data will be smaller. But these estimates suffice
as safe upper bounds.

Figure 15 shows the estimated and actual sizes. We see that
the estimates are accurate for the deserialized in-memory
data with a reasonable safety margin. Interestingly, Eager is
not that much larger than Staged for AlexNet. This is because
among its four layers explored the 4th layer from the top is
disproportionately large while for the other two layer sizes
are more comparable. Serialized is smaller than deserialized
as Spark compresses the data. Interestingly, AlexNet feature
layers seem more compressible; we verified that its features
had many zero values. On average, AlexNet features had
only 13.0% non-zero values while VGG16’s and ResNet50’s
had 36.1% and 35.7%, respectively.

B PRE MATERIALIZING A BASE LAYER

Often data scientists are interested in exploring few of the
top most layers. Hence a base layer can pre-materialized
before hand for later use of exploring other layers. This can
save computations and thereby reduce the runtime of the
CNN feature transfer workload.

However, the CNN feature layer sizes (especially for conv
layers) are generally larger than the compressed image for-
mats such as JPEG (see Table 2). This not only increases the
secondary storage requirements but also increases the IO
cost of the CNN feature transfer workload both when ini-
tially reading data from the disk and during join time when
shuffling data over the network.
We perform a set of experiments using the Spark-TF sys-

tem to explore the effect of pre-materializing a base layer (1,
2, 4, and 5th layers from top). For evaluating theMLmodel for
the base layer no CNN inference is required. But for the other
layers partial CNN inference is performed starting from the
base layer using the Staged/After Join/Deserialized/Shuffle

logical-physical plan combination. Experimental set up is
same as in Section 5.3.

Table 2: Sizes of pre-materialized feature layers for the Foods

dataset (size of raw images is 0.26 GB).

Materialized Layer Size (GB)
(layer index starts from the last layer)
1st 2nd 4th 5th

AlexNet 0.08 0.14 0.72
VGG16 0.08 0.20 1.19
ResNet50 0.08 2.65 3.45 11.51
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Figure 16: Runtimes comparison for using pre-materialized fea-

tures from a base layer

For AlexNet and VGG16 when materializing 4th , 2nd , and
1st layers from the top, the materialization time increases
as evaluating higher layer requires more computations (see
Figure. 16 (A) and (B)). However, for ResNet50 there is a sud-
den drop from the materialization time of 5th layer features
to the materialization time of 4th layer features. This can be
attributed to the high disk IO overhead of writing out 5th
layer image features which are ∼3 times larger than that of
4th layer (see Figure. 16 (C)). Therefore, for ResNet50 starting
from a pre-materialized feature layer, instead of raw images,
may or may not decrease the overall CNN feature transfer
workload runtime.

C RUNTIME BREAKDOWN

We drill-down into the time breakdowns of the workloads
on Spark-TF environment and explore where the bottlenecks
occur. In the downstream logistic regression (LR) model, the
time spent for training the model on features from a specific
layer is dominated by the runtime of the first iteration. In
the first iteration partial CNN inference has to be performed
starting either from raw images or from the image features
from the layer below and the later iterations will be operating
on top of the already materialized features. Input read time
is dominated by reading images as there are lot of small files
compared to the one big structured data file [17]. Table 3
summarizes the time breakdown for the CNN feature transfer
workload. It can be seen that most of the time is spent on
performing the CNN inference and LR 1st iteration on the
first layer (e.g 5th layer from top for ResNet50) where the
CNN inference has to be performed starting from raw images.



Table 3: Runtime breakdown for the image data read time and 1st iteration of the logistic regression model (Layer indices starts from the top

and runtimes are in minutes).

ResNet50/5L AlexNet/4L VGG16/3L
Number of nodes Number of nodes Number of nodes

1 2 4 8 1 2 4 8 1 2 4 8

La
ye
r

5 19.0 9.5 4.5 2.3
4 3.8 1.8 0.9 0.4 3.7 2.1 1.2 0.7
3 2.7 1.3 0.7 0.4 2.4 1.3 0.7 0.5 43.0 22.0 11.0 5.4
2 2.6 1.3 0.6 0.3 1.1 0.6 0.3 0.2 1.0 0.5 0.3 0.2
1 1.8 0.9 0.4 0.2 0.3 0.2 0.1 0.1 0.3 0.2 0.1 0.1

total 29.9 14.8 7.1 3.6 7.5 4.2 2.3 1.5 44.3 22.7 11.4 5.7
Read images 3.7 2.0 1.1 0.7 3.9 2.1 1.2 0.8 4.6 2.5 1.4 0.9
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Figure 17: Drill-down analysis of Speedup Curves

We also separately analyze the speedup behavior for the
input image reading and the sum of CNN inference and LR
1st iteration times (see Figure 17). When we separate out
the sum of CNN inference and LR 1st iteration times, we
see slightly super linear speedups for ResNet50, near linear
speedups for VGG16, and slightly better sub-linear speedups
for AlexNet.
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