
Improving Feature Type Inference Accuracy of TFDV with
SortingHat

Vraj Shah
University of California, San Diego

vps002@eng.ucsd.edu

Kevin Yang
University of California, San Diego

khy009@eng.ucsd.edu

Arun Kumar
University of California, San Diego

arunkk@eng.ucsd.edu

ABSTRACT
ML feature type inference is a critical data preparation (prep) step
when applying ML over structured data. Features could be Numeric,
Categorical, or something else. Tensorflow Data Validation (TFDV)
uses conservative heuristics to infer feature types from the descrip-
tive statistics about the column. It wrongly calls many Categorical
features with integer values as Numeric, e.g. ZipCode. In this work,
we discuss and compare different approaches to type inference to
improve the accuracy of TFDV for columns with integer domain.
We find that an ML-based approach using our tool, which we call
SortingHat is more accurate than many rule-based heuristics. More-
over, we perform an empirical comparison of different approaches
on a suite of downstream benchmark tasks. We find that the wrong
feature type inference can often lead to a significant decrease in
the downstream model’s accuracy relative to their true accuracy.
More importantly, we find that SortingHat can even help TFDV
to improve the accuracy of the downstream model. Finally, we in-
tegrate the best performing model built on our labeled data with
TFDV version 0.21.2.

1 FEATURE TYPE INFERENCE VOCABULARY
MAPPING

We formalized the task of ML feature type inference by creating
the first ever benchmark labeled dataset [5]. Our dataset has 9921
examples and a 9-class label vocabulary. The complete description
of our label vocabulary is provided in the technical report [5]. Fig-
ure 1 shows the feature type vocabulary of existing tools such as
TFDV [3], TransmogrifAI in Salesforce Einstein [2], and AutoGluon
from Amazon AWS [4] and how they map to our label vocabulary.

2 APPROACHES
The focus of this work is to study different type inference ap-
proaches for columns with integer domain on top of TFDV’s ex-
isting type inference pipeline. Specifically, we identify the fea-
ture type of a column using each approach. We then populate
the “schema.int_domain.is_categorical” field in the schema proto
with the True value if the inferred type is Catgeorical. We discuss 4
approaches below.

(1) TFDV + Rule on number of distinct value. If the number
of distinct values in a column is less than or equal to a certain
threshold, then we mark such columns as Categorical. We tune the
threshold using the methodology given in Section 4.1.

(2) TFDV + Rule on percentage of distinct values. If the per-
centage of unique values in a column is less than or equal to a
certain threshold, then we mark such columns as Categorical. We
tune the threshold using the methodology given in Section 4.1.

Numeric

Categorical

Datetime

Sentence

URL

Embedded Numbers

List

Not-Generalizable

Context-Specific

Numeric

Categorical

Time domain

Natural language
domain

Int

Float

Datetime

Object

Int

Long

Double

Timestamp

String

Numeric

Categorical

Date/Time

NLP feature

Uncategorized
(for removal)

Our Label VocabularyGoogle TFDV

Salesforce
TransmogrifAI

Amazon AutoGluon

Pandas

Figure 1: Feature type vocabularymapping of TFDV, Pandas,
TransmogrifAI, and AutoGluon to our vocabulary

Descriptive Stats
Total number of values
Number of nans and % of nans
Number of unique values and % of unique values
Mean and std deviation of the column values, word count, stopword count,
char count, whitespace count, and delimiter count
Min and max value of the column
Regular expression check for the presence of url, email, sequence of
delimiters, and list on the 5 sample values
Pandas timestamp check on 5 sample values

Table 1: List of descriptive statistics features

(3) TFDV + Rule on mutual information value. We compute
the mutual information of the column with the target column. We
randomly shuffle the column values and again compute their mutual
information with the target. If the difference is exactly 0 then we
mark the column as Categorical. We discuss why picking a threshold
on mutual information is non-trivial in Section 4.3.

(4) TFDV + SortingHat. SortingHat is our tool that uses our best
performing Random Forest model to automatically infer the fea-
ture types from a raw CSV file. Our Random Forest model uses
the column name, 5 randomly sampled unique values from the
column, and 25 descriptive statistics for a column such as percent-
age of distinct values, percentage of NaNs, mean, standard devia-
tion, minimum value, maximum value, and an average number of
whitespace-separated tokens. We provide the complete list of these
25 features in Table 1.

3 SORTINGHAT INTEGRATIONWITH TFDV
To compute the descriptive stats, we use the same apache beam
pipeline but with a separate run over the data. This allows us
to avoid having to edit the various generators present in the
existing codebase. In the generate_statistics_from_csv method
in the stats_gen_lib.py file, we added our code to grab and
count distinct values using “beam.transforms.util.Distinct” and
“beam.combiners.Count.Globally.” To gather the 5 sample values,
we use the method: “Sample.FixedSizeGlobally(5).” Next, we created
a sorting_hat.proto file to hold the values that we extract in the
above pipeline. With all of this established, we process the data
and populate each individual proto, while finally creating a list
of them and returning it to the user. Once we have both the sta-
tistics proto as well as the sortinghat proto, we send them to the
infer_schema method in the validation_api.py file. Since both pro-
tos hold the attribute name field, we can use that to merge the two
protos into a vector representation. Using this vectorized data, we
compute several descriptive stats that we need to run our Random
Forest model. If the output of our model is Categorical, we populate
the “schema.int_domain.is_categorical” field in each schema proto.
Overall, we have made changes to the stats_gen_lib.py and vali-
dation_api.py files to integrate our SortingHat model with TFDV
version 0.21.2.

How to use our integration code?

(1) Pull TFDV version 0.21.2.

(2) Replace stats_gen_lib.py (under utils/) and validation_api.py (un-
der api/) files in their respective locations with our files. The usage
of the “generate_statistics_from_csv” function now has an extra pa-
rameter of "sorting_hat_output_path" which is a path of a file that
serves as a sink for the apache beam output. The “infer_schema”
function has now two extra parameters: "sorting_hat_stats" and
"model_name." The former represents the SortingHat proto and the
later represents the name of the model with the current default
being ‘rf’ (denoting Random Forest). In addition, the “infer_schema”
function returns a dictionary of predictions made by the Random
Forest model on the columns with integer domain. The key of this
dictionary denotes a feature type from our 9-class label vocabulary
and the value is a list of the columns inferred with that type.

(3) Add the sorting_hat_pb2.py file under tensorflow-metadata’s
proto/v0 folder with the other proto files. Add the RandomForest
model and the dictionary file under the directory: “api/”.

(4) We provide an example script to test our integration code in
tfdv-test.py.

4 EMPIRICAL STUDY
4.1 Threshold Tuning
We curated and hand-labeled a large meta-dataset of 9921 columns
from 1240 real data files with 9-class vocabulary for benchmarking
feature type inference [5]. We use our labeled dataset to select 3447
columns with integer domain. We use this subset of our labeled
data to find the threshold for the rule-based approaches. Note that
the integer domain columns can correspond to any label from
5 classes: Numeric, Catgeorical, Datetime, Not-Generalizable, and

Distinct
Values Train Test

2 0.4977 0.4617

3 0.5717 0.5428

5 0.5901 0.5560

10 0.5782 0.5310

15 0.5757 0.5339

20 0.5706 0.5265

25 0.5681 0.5206

50 0.5544 0.5044

75 0.5457 0.5015

100 0.5287 0.4926

150 0.5078 0.4912

200 0.4930 0.4779

% Distinct
Values Train Test

0.1 0.5334 0.4912

0.2 0.5749 0.5369

0.5 0.5457 0.5133

0.75 0.5294 0.5059

1 0.5139 0.4941

2 0.4872 0.4690

3 0.4771 0.4543

5 0.4623 0.4484

10 0.4373 0.4366

20 0.4142 0.4041

30 0.4020 0.3835

60 0.3749 0.3540

Table 2: 5-class train and test accuracy on our labeled dataset
(only the integer columns) with different thresholds on the
absolute number of distinct values and percentage distinct
values in the column

Context-Specific. We partition our labeled data subset into a train
and test set with an 80:20 ratio. We use a standard grid search for
tuning the threshold where the train set is used for validation. We
pick the threshold with the highest train accuracy.

Table 2 presents the grids and 5-class train and test accuracy
on different thresholds of absolute domain size and the percentage
of unique values in the column. We find that the training accu-
racy is highest with a grid value of 5 on the absolute number of
distinct values. Thus, we set its threshold to be 5. Similarly, we
pick the threshold value of 0.2 on the percentage of distinct values.
We present the cumulative distribution of the absolute number of
unique values, total values, and the percentage of unique values for
the integer columns of our labeled dataset in the appendix.

4.2 Datasets
We use 23 datasets from our downstream benchmark suite that has
at least one integer column [5]. In total, there are 19 classification
tasks and 4 regression tasks. The datasets and their source details
are available on our Github repo [1].

4.3 Mutual Information Approach
The approach based on mutual information requires the user to
manually annotate the target column in the dataset. Our labeled
dataset does not contain information about the target for any of
the labeled examples. For many columns in our labeled dataset, it
is not trivial to decide the target column in their corresponding
source data file. Thus, it is not clear how a threshold on mutual
information should be picked.

We show the scatter plots of mutual information value between
every column in the downstream datasets and their correspond-
ing target in Figure 2 (A). We find that categorical and numerical
columns are distinctively separated by their domain size, where
numerical columns have typically more number of unique values

MI
Value

Distinct Value # Distinct Value

MI
Value

Numeric

Categorical
Numeric

Categorical

Distinct Value

Difference
in MI Value

Numeric

Categorical

A
A B

0

Figure 2: (A) Scatter plots of mutual information of Numeric and Categorical columns of the downstream datasets with their
respective target. (B) Scatter plot of difference in mutual information between original columns with target and shuffled
columns with target on the downstream datasets.

than categorical attributes. However, we do find a clear demarca-
tion of mutual information value between numeric and categorical
columns. Figure 2 (B) shows the difference in mutual information
value between the original raw columns with target and shuffled
raw columns with the target. We observe that there are more cate-
gorical columns with a mutual information difference of zero than
numeric columns. But it is not clear how we can quantify the mu-
tual information change in terms of the type of the column and/or
data properties.

4.4 Type Inference Accuracy Results
Table 4 presents the type inference accuracy of all approaches on
23 downstream datasets. We observe that the accuracy of standard
TFDV is almost 83%. A rule-based approach on the absolute number
of distinct values with TFDV leads to a lift in the accuracy of nearly
6% compared to standard TFDV. A rule-based approach on the
percentage of distinct values performs only marginally better than
standard TFDV. Overall, among all approaches, the type inference
accuracy of TFDV is highest with the SortingHat approach.

Mfeat dataset has 216 Numeric integer columns, containing al-
most 50% of the total columns. Thus, excluding Mfeat dataset, the
overall type inference accuracy drops to 66% with standard TFDV.
Moreover, we find that the overall accuracy with the rule-based ap-
proach on the absolute domain size is higher with a threshold of 20
than with a threshold of 5. However, on includingMfeat, the overall
accuracy of the same rule-based approach with a threshold of 5
is higher than a threshold of 20. Thus, rule-based approaches are
highly sensitive to a chosen threshold and dataset characteristics.

4.5 Downstream Benchmark Suite
We now empirically study the benefit of doing feature type infer-
ence accurately with TFDV-based approaches on the downstream
model accuracy. We refer the reader to our technical report for a
comprehensive downstream benchmark with other tools and other
feature types [5].

TFDV TFDV + Rule
(#DV <=5) TFDV + SH

LR RF LR RF LR RF
Underperform truth 16 14 14 13 11 11
Match or outperform
truth 7 9 9 10 12 12

Match TFDV - 17 17 8 9
Outperform TFDV 5 3 12 10
Best performing
approach for a dataset

12 13 16 13 21 18

Table 3: Number of downstream datasets (out of 23) where
tools underperform,match, or outperform the ground truth
downstreamperformance, or standardTFDV, or the best per-
forming tool. #𝐷𝑉 is the number of distinct values in the
column. SH is our SortingHat tool that uses the RandomFor-
est for type inference trained on our data. LR denotes down-
stream linear model (Logistic/Linear regression) and RF de-
notes downstream Random Forest.

4.5.1 Models and Metrics. In terms of downstream model eval-
uation, we present both extremes of bias-variance tradeoff: L2-
regularized Logistic regression (high bias, low variance) for classifi-
cation, L2-regularized Linear regression (high bias, low variance)
for regression, and Random Forest (low bias, high variance) for
both classification and regression. Thus, we have 46 downstream
models in total. We use the accuracy metric scaled to 100 for the
classification tasks and root mean squared error (RMSE) metric for
the regression tasks.

‘

4.5.2 Downstream Model Performance. Table 5 presents the
end-to-end comparison of downstream models built with feature
types inferred by two approaches: TFDV with a rule on the abso-
lute domain size with a threshold of 5 (TFDV + DV) and TFDV
with SortingHat (TFDV + SortingHat). We compare their down-
stream performance relative to that with feature types inferred with
standard TFDV and true feature types. Table 3 presents summary

Feature
Types

Raw Attribute
Types Dataset |Y| |A| |AC|

Type Inference Accuracy

TFDV TFDV + Rule
(#DV <=5)

TFDV + Rule
(#DV <=20)

TFDV + Rule
(%DV <=0.2)

TFDV + MI
(diff = 0) TFDV + SH

NU
Int, Float Cancer 2 9 9 100 +0 +0 +0 -33.3 +0

Int Mfeat 10 216 216 100 +0 -10.2 +0 -0.5 -3.2

CA

Int Hayes 3 4 4 0 +100 +100 +0 +100 +100

Int Supreme 2 7 7 71.4 +0 +14.3 +0 +0 +28.6

Int, String Flares 2 10 10 30 +70 +70 +0 +10 +70

Int, String Kropt 18 6 6 50 +16.7 +50 +16.7 +16.7 +50

Int, String Boxing 2 3 3 66.7 +0 +33.3 +0 +0 +0

CA + NG Int, String Apnea2 2 3 3 66. 7 +0 +33.3 +0 +0 +0

NU + CA

Int, String Flags 2 28 28 60.7 17.9 +39.3 +0 +14.3 +25

Int,Float,String Diggle 2 8 8 87.5 +0 +12.5 +0 +0 -25

Int, Float Hearts 2 13 13 61.5 +38.5 +38.5 +0 +23.1 +38.5

Int, Float Sleuth 2 10 10 80 +20 -10 +0 +20 +20

NU + CA + ST Int, String Auto-MPG 3 8 8 62.5 +12.5 +25 +0 +0 +12.5

NU + CA +
ST + NG Int,String,PK Clothing 5 10 9 66.7 +0 +0 +11.1 +0 +11.1

NU + DT + NG Int, String,
Time, PK IOT 2 4 2 100 +0 +0 -50 +0 -50

NG + CA Int,String, PK Zoo 5 17 13 92.3 +7.7 +7.7 +0 +0 +7.7

NU + CA +
EN + NG Int,Float,String PBCseq 2 18 12 83.3 +8.4 +8.4 +8.4 +16.7 -8.3

NU + CA + LST
+ NG + CS

Int, Float,
String, PK Pokemon 36 40 35 37.1 +0 +11.5 +0 -2.8 +51.5

NU +CA+DT+
URL +NG+CS

Int,Float,Date,
String, Time President 57 26 16 100 +0 -6.2 -6.2 +0 +0

CA Int MBA R 2 2 50 +0 +0 +0 +50 +50

NU + CA
Int Vineyard R 3 3 66. 7 +0 +0 +0 -33.4 +33.3

Int, String Apnea R 3 3 66. 7 +0 +33.3 +0 +0 +0

NU + CA +
EN + NG Int, String Car Fuel R 11 6 100 +0 +0 +0 -16.7 +0

Mean accuracy on 23 downstream datasets 449 426 83.3 +6.3 +4.5 +0.2 +2.6 +9.9

Mean accuracy on 22 datasets (Mfeat excluded) 233 210 66.2 +12.9 +19.5 +0.5 +5.7 +23.3

Table 4: Type Inference Accuracy of different approaches on the downstream datasets. Numeric (NU), Categorical (CA), Date-
time (DT), Sentence (ST),Not-Generalizable (NG), Embedded Number (EN),URL, List (LST), and Context-Specific (CS) are feature
types. |A| is the number of columns/attributes in that dataset. |AC| is the number of columns covered by TFDV with its type
inference vocabulary. |Y| is the number of target classes. 𝑅 denotes regression tasks and PK denotes primary keys. #𝐷𝑉 and
%𝐷𝑉 are the number of distinct values and the percentage of distinct values in the column respectively.𝑀𝐼 and 𝑆𝐻 denotes the
mutual information-based and SortingHat approach (using Random Forest trained on our labeled data) respectively.

statistics on how these approaches perform relative to the ground
truth, standard TFDV, and best performing tool for a given dataset.
We find that for a given dataset and a downstream model, TFDV +
SortingHat underperforms the best performing approach for only
7 out 46 downstream models, in contrast to 17 for TFDV + DV. In

addition, TFDV + SortingHat outperforms the standard TFDV for
22 downstream models, in contrast to 8 for TFDV + DV.

From Table 5, we find that wrong type inference often leads to a
drop in accuracy compared to the accuracy with true feature types.
For instance, wrong type inference leads standard TFDV to under-
perform on 30 out of 46 downstream models. This lead to a drop of

Feature
Types Dataset |Y|

Logistic Regression Random Forest

Truth
TFDV

% change
over Truth

TFDV + Rule
(#DV <=5)
% change
over TFDV

TFDV + SH
% change
over TFDV

Truth
TFDV

% change
over Truth

TFDV + Rule
(#DV <=5)
% change
over TFDV

TFDV + SH
% change
over TFDV

NU
Cancer 2 60.8 +0 +0 +0 66.7 +0 +0 +0

Mfeat 10 92.5 +0 +0 -2.7 91.8 +0 +0 -2.3

CA

Hayes 3 74.1 -14.1 +14.1 +14.1 78.5 +0 +0 +0

Supreme 2 99.3 -17.1 +0 +17.1 99.4 +0 +0 +0

Flares 2 90.8 +0 +0 +0 89.2 +0.3 -0.3 -0.3

Kropt 18 39.4 -6.9 +0 +6.9 68.8 -3.4 +0.4 +3.4

Boxing 2 80.7 -25.2 +0 +0 78.5 -11.9 +0 +0

CA + NG Apnea2 2 92 -0.6 +0 +0 90.1 -0.8 +0 +0

NU + CA

Flags 2 68.2 -3.6 +0.5 +3.1 75.9 -2.6 +0 +0.5

Diggle 2 99.9 +0 +0 -5.5 99.9 +0 +0 -0.3

Hearts 2 84.9 -1.6 +1.6 +1.6 86.2 -3 +3 +3

Sleuth 2 68.9 -3.3 +3.3 +3.3 76.7 +0 +0 +0

NU + CA + ST Auto-MPG 3 89.1 -8.6 +0 -7.3 95.2 -18.9 -0.3 -1.5

NU + CA +
ST + NG Clothing 5 66.7 -9.1 +0 +0 64.2 -4.9 +0 +1

NU + DT + NG IOT 2 83.8 +0 +0 +0 93.8 +0 +0 +0

NG + CA Zoo 5 75.6 -11.1 +8.9 +8.9 77.8 -8.9 +4.4 +2.2

NU + CA +
EN + NG PBCseq 2 68.6 +0.5 -1.4 +8.5 73 -0.1 -0.1 +2.2

NU + CA + LST
+ NG + CS Pokemon 36 65.84 -52.4 +0 +1.7 88.1 -3.2 +0 +1.4

NU +CA+DT+
URL +NG+CS President 57 39.5 -7.9 +0 +1.5 81.7 -23.1 +0 +0.2

Feature
Types Dataset

Linear Regression – L2 Regularization Random Forest

Truth
TFDV

change
over Truth

TFDV + Rule
(#DV <=5)

change
over TFDV

TFDV + SH
change

over TFDV
Truth

TFDV
change

over Truth

TFDV + Rule
(#DV <=5)

change
over TFDV

TFDV + SH
change

over TFDV

CA MBA 0.363 +0.05 -0 -0.05 0.384 +0.08 -0 -0.08

NU + CA
Vineyard 2.97 +2 -0 -2 2.7 +0.37 -0 -0.37

Apnea 2206.2 -0 -0 -0 1355.7 -0 -0 -0

NU + CA +
EN + NG Car Fuel 11.3 +0.16 -0 -0 11.7 +1.1 -0 -0

(A)

(B)

Table 5: Accuracy comparison of downstream models using inferred types from Random Forest trained on our labeled data
(SH) and rule-based approach on the number of distinct values, against standard TFDV, relative to accuracy with true feature
types. Datasets involve (A) Classification tasks with accuracy metric (B) Regression tasks with RMSE metric. Numeric (NU),
Categorical (CA), Datetime (DT), Sentence (ST),Not-Generalizable (NG), Embedded Number (EN), URL, List (LST), and Context-
Specific (CS) are feature types. |Y| is the number of target classes. PK denote primary keys. #𝐷𝑉 is the number of distinct values
in the column. 𝑆𝐻 denotes the SortingHat approach (using Random Forest trained on our labeled data).

an average 6.4% and up to 52% in accuracy compared to the ground
truth-based model. We find that the drop in accuracy due to wrong
type inference is higher for a linear model (average of 8.5%) com-
pared to a higher-capacity Random Forest model (average of 4.2%).
Overall, TFDV + SortingHat and TFDV + DV approaches underper-
form the truth for 22 and 27 models respectively. Thus, SortingHat
can even help TFDV to improve its downstream performance.

5 PUBLIC RELEASE
We have released a public repository on GitHub with our entire
labeled data for the ML feature type inference task [1]. Also, we
released the raw 1240 CSV files that we used to create our labeled
data. The repository also contains the downstream benchmark
suite with all the datasets and the associated code for running the
benchmark.

6 TAKEAWAYS
(1) From our end-to-end experiments on our labeled data, we find
that Random Forest model (scikit-learn implementation) achieves
the highest 9-class classification accuracy compared to models like
CNN, Logistic Regression, RBF-SVM, and 𝑘-NN. The difference in
accuracy on our held-out test set between Random Forest and CNN
is almost 5%, which is significant. Thus, we decided to integrate
Random Forest rather than the CNN with TFDV.

(2) The integration code we wrote is for TFDV version 0.21.2. Thus,
it would need to be ported to the latest TFDV version.

(3) We believe that TFDV can benefit by expanding their type
inference vocabulary to include Not-Generalizable type. Not-
Generalizable columns do not contain any informative values to

be useful as features. e.g., primary keys, columns with only one
unique value, etc. Such columns offer no discriminative power and
are thus useless. For more examples, please refer to our tech re-
port [5]. From our downstream benchmark experiments in the tech
report, we find that using such features that offer no discriminative
power to build the downstream model, leads to a drop in accuracy
compared to excluding them completely for building the model.
Thus, recognizing such columns correctly can improve downstream
performance.

REFERENCES
[1] 2020. Github Repository for ML Feature Type Inference https://github.com/pvn25/

MLDataPrepZoo/tree/master/MLFeatureTypeInference.
[2] 2020. TransmogrifAI: Automated machine learning for structured data https:

//transmogrif .ai/.
[3] Denis Baylor et al. 2017. Tfx: A tensorflow-based production-scale machine

learning platform. In SIGKDD. ACM.
[4] Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu

Li, and Alexander Smola. 2020. AutoGluon-Tabular: Robust and Accurate AutoML
for Structured Data. arXiv preprint arXiv:2003.06505 (2020).

[5] Vraj Shah, Jonathan Lacanlale, Premanand Kumar, Kevin Yang, and Arun Kumar.
2020. Towards Benchmarking Feature Type Inference for AutoML Platforms
(Technical Report). https://adalabucsd.github.io/papers/TR_2020_SortingHat.pdf.

APPENDIX

A CUMULATIVE DISTRIBUTION ON OUR
LABELED DATA

Figure 3, Figure 4, and Figure 5 presents the cumulative distribution
of the number of distinct values, total values, and the percentage
of distinct values for all integer columns by class in our labeled
dataset. Figure 6 presents themutual information value of all integer
columns in our downstream benchmark suite by class.

https://github.com/pvn25/MLDataPrepZoo/tree/master/MLFeatureTypeInference
https://github.com/pvn25/MLDataPrepZoo/tree/master/MLFeatureTypeInference
https://transmogrif.ai/
https://transmogrif.ai/
https://adalabucsd.github.io/papers/TR_2020_SortingHat.pdf

Distinct Values

CD
F

CD
F

Distinct Values

A B

A

CD
F

CD
F

Distinct Values

Distinct Values

B

CD
F

Distinct Values

Distinct Values

C

C

CD
F

Distinct Values

CD
F

Distinct Values

CD
F

D

D

Figure 3: Cumulative distribution of the number of distinct values for all integer columns in our labeled dataset that belongs
to (A) Any of the 5 class, (B) Numeric class, (C) Categorical class, and (D) Not-Generalizable class.

Total Values

CD
F

A B

CD
F

Total Values # Total Values

CD
F

C D

CD
F

Total Values
Figure 4: Cumulative distribution of the total number of values for all integer columns in our labeled dataset that belongs to
(A) Any of the 5 class, (B) Numeric class, (C) Categorical class, and (D) Not-Generalizable class.

% Distinct Values

CD
F

A BCD
F

% Distinct Values

CD
F

% Distinct Values

CD
F

% Distinct Values

C

D

Figure 5: Cumulative distribution of percentage of distinct values for all integer columns in our labeled dataset that belongs
to (A) Any of the 5 class, (B) Numeric class, (C) Categorical class, and (D) Not-Generalizable class.

MI Value

CD
F

CD
F

MI Value

A B

A

CD
F

CD
F

MI Value

MI Value

B

CD
F

MI Value

MI Value

C

C

CD
F

Figure 6: Cumulative distribution of the mutual information value for all integer columns in our downstream benchmark
suite that belongs to (A) Any class, (B) Numeric class, and (C) Categorical class.

	Abstract
	1 Feature Type Inference Vocabulary Mapping
	2 Approaches
	3 SortingHat Integration with TFDV
	4 Empirical Study
	4.1 Threshold Tuning
	4.2 Datasets
	4.3 Mutual Information Approach
	4.4 Type Inference Accuracy Results
	4.5 Downstream Benchmark Suite

	5 Public Release
	6 Takeaways
	References
	A Cumulative distribution on our labeled data

