
SpeakQL: Towards Speech-driven Multimodal Querying of
Structured Data

Vraj Shah Side Li Arun Kumar Lawrence Saul

University of California, San Diego
{vps002, s7li, arunkk, saul}@eng.ucsd.edu

ABSTRACT
Speech-driven querying is becoming popular in new device
environments such as smartphones, tablets, and even con-
versational assistants. However, such querying is largely re-
stricted to natural language. Typed SQL remains the gold
standard for sophisticated structured querying although it is
painful in many environments, which restricts when and how
users consume their data. In this work, we propose to bridge
this gap by designing a speech-driven querying system and
interface for structured data we call SpeakQL. We support
a practically useful subset of regular SQL and allow users to
query in any domain with novel touch/speech based human-
in-the-loop correction mechanisms. Automatic speech recog-
nition (ASR) introduces myriad forms of errors in tran-
scriptions, presenting us with a technical challenge. We ex-
ploit our observations of SQL’s properties, its grammar, and
the queried database to build a modular architecture. We
present the first dataset of spoken SQL queries and a generic
approach to generate them for any arbitrary schema. Our
experiments show that SpeakQL can automatically correct
a large fraction of errors in ASR transcriptions. User stud-
ies show that SpeakQL can help users specify SQL queries
significantly faster with a speedup of average 2.7x and up to
6.7x compared to typing on a tablet device. SpeakQL also
reduces the user effort in specifying queries by a factor of
average 10x and up to 60x compared to raw typing effort.

1. INTRODUCTION
Structured data querying is practiced by users in many

domains such as enterprise, Web, and healthcare. Typing
queries in SQL is the gold standard for such querying. Many
works have looked into creating new query interfaces that
lowers the barrier to type SQL. They offer new types of
querying modalities such as visual [23, 56], touch-based [30,
42], typed natural language interfaces (NLIs) [37], and even
bidirectional conversations [38]. This allows users to query
on constrained environments such as tablets, smartphones,
and even conversational assistants without specifying any
SQL. However, what is missing from the prior work is a
speech-driven interface for regular SQL or other structured
querying.
One might ask: Why dictate structured queries and not

just use NLIs or visual tools? Many prior works assume
there exist only two kinds of users: SQL wizards such as
database administrators (DBAs), who use consoles or other
sophisticated tools, or non-technical lay users, who use NLIs.
This is a false dichotomy. As Figure 1 shows, there are many
users who are comfortable with basic SQL and are mostly

Database
AdministratorsLay users

AnalystsNurse
Informaticists

C-suite
users

SQL Expertise

Typed/Spoken
NLIs

SpeakQL
Regular console or
sophisticated tools

Low High

Figure 1: Contrasting SpeakQL’s goals with current NLIs
and other sophisticated tools in terms of SQL expertise of
users.

read-only data consumers such as business analysts, nurse
informaticists, and managers. The SQL knowledge of such
users is ignored by visual or NLI research. We conduct an
interview study with 26 SQL users belonging to 17 different
sectors to understand how a spoken structured querying in-
terface can bridge such crucial gaps in querying capabilities.
We summarize the key lessons from the study below and
discuss it in depth in the Appendix.

Lessons from interview studies. We find that most users
in industry compose ad hoc queries over arbitrary tables and
desire unambiguous response to their queries. In addition,
consumers such as analysts and informaticists often desire
anytime and anywhere access to their data, say via mobile
platforms such as tablets and smartphones. Even SQL ex-
pert DevOps DBAs sometime desire off-hour on-the-go ac-
cess to their data. However, as quoted by many users, typing
SQL is really painful in such constrained settings. Having a
speech-driven SQL interface that leverages both speech and
potentially also the touch capabilities of such platforms can
help speed up their query specification.

Comparison against NLI. One might still wonder: Why
can not these users query their data using spoken NLIs rather
than dictating SQL? SQL offers advantages that many data
professionals find useful. SQL is already a structured En-
glish query language. Key to its appeal is query sophisti-
cation, lack of ambiguity due to its context-free grammar
(CFG), and succinctness. In contrast, NLIs are primarily
aimed at lay users and not necessarily professionals who
manage structured data. We discuss this comparison in the
Appendix.
Thus, instead of forcing all users to only use NLIs, we pur-

sue an exploratory research agenda that is complementary to
NLI research and existing touch-based or visual interfaces.
We study how to make spoken querying effective and effi-
cient without losing SQL’s benefits. In this work, we build

1

Type of Errors Ground truth token ASR transcription

Homophony (Keywords/
Special Characters to Literals)

sum some

Homophony (Literals to
Keywords/Special Characters)

fromdate from date

Unbounded vocabulary for Literals
CUSTID_1729A custody _ 1 7 2 9 8

table_123 table _ 1 2 3

Splitting of numbers into
multiple tokens

45412 45000 412

Erroneously transcribed dates 1991-05-07 may 07 90 91

Table 1: Illustration of different types of errors made by
Automatic Speech Recognition engine (ASR).

a speech-driven querying system for a subset of SQL which
we call SpeakQL. Since current NLIs are increasingly relying
on keywords and structured interactions[18, 37], we believe
our lessons can potentially also improve NLIs in future.

Desiderata. (1) Support regular SQL with a tractable
subset of the CFG, although our architecture and methods
should be applicable to any SQL query in general. (2) Lever-
age an existing modern state-of-the-art ASR technology in-
stead of reinventing the wheel. (3) Support any database
schema in any application domain. (4) Support speech-
first query specification and speech-driven and potentially
touch-driven query correction on a screen display. Overall,
we desire an open-domain, speech-driven, and multimodal
querying system for regular SQL wherein users can dictate
the query and perform interactive correction using touch
and/or speech.

Technical Challenges. Unlike regular English speech,
SQL speech gives rise to interesting novel challenges: (1)
ASR introduces myriad forms of errors when transcribing
that confound different elements of the query, as illustrated
by several examples in Table 1. (2) It is impossible for ASR
to recognize tokens not present in its vocabulary. Such “out-
of-vocabulary" tokens are more likely in SQL than natural
English because SQL queries can have infinite varieties of
literals, e.g. CUSTID_1729A. A single token from SQL’s per-
spective might get split by ASR into many tokens. We call
this the unbounded vocabulary problem, and it is a central
technical challenge for SpeakQL. Note that this problem has
not been solved even for spoken NLIs such as Alexa, which
typically responds “I’m sorry, I don’t understand the ques-
tion" every time an out-of-vocabulary token arises. Thus,
we believe addressing this problem may benefit spoken NLIs
too. (3) Achieving real-time efficiency for an interactive in-
terface is yet another technical challenge.

System Architecture. To tackle the above challenges, we
make a crucial design decision: decompose the problem of
correcting ASR transcription errors into two tasks: struc-
ture determination and literal determination. Structure de-
termination delivers a syntactically correct SQL structure
where literals are masked out with placeholder variables.
Literal determination identifies the literals for the variables.
This architectural decoupling lets us effectively tackle the
unbounded vocabulary problem. If the transcription gener-
ated by SpeakQL is still incorrect, users can correct it inter-
actively with speech/touch-based mechanisms in our novel
interface.

Technical Contributions. Our key technical contribu-
tions are as follows. (1) For structure determination, we
exploit the rich structure of SQL using its CFG to gen-
erate many possible SQL structures and index them with
tries. We propose a similarity search algorithm with a SQL-
specific weighted edit distance metric to identify the clos-
est structure. (2) For literal determination, we exploit our
characterization of ASR’s errors on SQL queries to create a
literal voting algorithm that uses the phonetic information
about database instances being queried to fill in the correct
literals. (3) We create an interactive query interface with a
novel “SQL Keyboard" and a clause-level dictation function-
ality to make our interface multimodal and more amenable
to speech- and touch-friendly corrections. For instance, to
reduce cognitive load of users when dictating a longer query,
we allow users to specify queries at a clause-level.
Overall, the key novelty of our system lies in synthesiz-

ing and innovating upon techniques from disparate litera-
tures such as database systems, natural language processing,
information retrieval, and human-computer interaction to
build an end-to-end system that satisfies our desiderata. We
adapt these techniques to the context of spoken SQL based
on the syntactic and semantic properties of SQL queries.

Experimental Evaluation. We first explain why the ex-
isting datasets are not enough for spoken querying and we
create the first dataset of spoken SQL queries using real-
world database schemas. Using several accuracy metrics we
show that SpeakQL can automatically correct large propor-
tions of errors in the ASR transcriptions. For example, we
see a substantial average lift of 21% in Word Recall Rate.
SpeakQL achieves almost real-time latency and through user
studies, we show that SpeakQL allows users to compose
queries significantly faster, achieving a speedup of average
2.7x and up to 6.7x compared to typing on a tablet. More-
over, the user touch effort to specify and/or correct the query
goes down by a factor of average 10x and up to 60x com-
pared to raw typing. We then evaluate SpeakQL against
state-of-the-art NLIs with typed and speech inputs on two
large-scale datasets containing pairs of natural language and
SQL queries: WikiSQL [55] and Spider [54]. Our evaluation
shows that SpeakQL achieves significantly higher accuracy
than state-of-the-art NLIs adapted for speech input. e.g.,
lift of 50% in execution accuracy on WikiSQL.
Overall, the contributions of this paper are as follows:

• To the best of our knowledge, this is the first paper to
present an end-to-end speech-driven system for making
spoken SQL querying effective and efficient.
• We propose a similarity search algorithm based on weighted
edit distances and a literal voting algorithm based on pho-
netic representation for effective structure and literal de-
termination, respectively.
• We propose a novel interface using SQL Keyboard and
clause-level dictation functionality that makes correction
and speech-driven querying easier in touch environments.
• We present the first public dataset of spoken SQL queries.
Our data generation process is scalable and applies to any
arbitrary database schema.
• We demonstrate through quantitative evaluation on real-
word database schemas that SpeakQL can automatically
correct a large portion of errors in ASR transcriptions.
Moreover, our user studies shows that SpeakQL helps

2

Spoken SQL Query

Select Salary

From Employees

Where Name

Equals John

Automatic
Speech

Recognition
(ASR) Engine

ASR Output(s)

Select Sales From

Employers wear

name equals Jon

Structure
Determination

SQL Grammar
SplChar Handling

Select V1

From V2

Where

V3 = “V4”

Literal
Determination

Syntactically
Correct SQL

Database Metadata

Phonetic Representation:
Table/attribute names,

Attribute values

Filled Literal
Placeholders

Interactive Query Display

Interactive
Query Correction

Clause Level
dictation

Select Salary

From Employees

Where Name = “Jon”

SQL
Keyboard

Figure 2: End-to-end Architecture of SpeakQL[28]. We show an example of a simple spoken SQL query, and how it gets
converted to a query displayed on a screen, which the user can correct interactively.

significantly reduce user time and effort in SQL speci-
fication.

2. SYSTEM ARCHITECTURE
Modern ASR engines powered by deep neural networks

have become the state-of-the-art for any industrial strength
application. Hence, to avoid replicating the engineering ef-
forts in creating a SQL-specific ASR, we exploit an existing
ASR technology. This decision allows us to focus on issues
concerning only SQL as described below.
First, unlike regular English, there are only three types of to-
kens that arises in SQL: Keywords, Special Characters (“Spl-
Char"), and Literals. SQL Keywords (such as SELECT, FROM
etc.) and SplChars (such as * , = etc.) have a finite set of
elements that occurs only from the SQL grammar [24]. A
literal can either be a table name, an attribute name or an
attribute value. Table names and attribute names have a
finite vocabulary but the attribute value can be any value
from the database or any generic value. Hence, the domain
size of the Literals would likely be infinite.
Second, the ASR engine can fail in several interesting ways
when transcribing as shown in Table 1. Due to homophones,
ASR might convert Literals into Keywords or SplChars and
vice versa. Even a single-token transcription might be com-
pletely wrong because the token is simply not present in
ASR’s vocabulary. Worse still, ASR might split a token like
CUSTID_1729A into a series of tokens in the transcription
output, possibly intermixed with Keywords and SplChars.
These observations related to SQL suggest that a correctly

recognized set of Keywords and SplChars can help us de-
liver the correct SQL structure. Correct structure combined
with the correct Literals can give us the correct valid query.
Based on this observation, we make an important architec-
tural design decision to decouple structure determination
from literal determination. This decoupling is a critical de-
sign decision that helps us tackle the unbounded vocabulary
problem. We present the complete four-component end-to-
end system in Figure 2 and the components are described
below. We presented an initial version of this architecture
in [28].

ASR Engine. This component processes the recorded spo-
ken SQL query to obtain a transcription output. ASR con-
sists of two major components: acoustic model and language
model. The acoustic model captures the representation of
sounds for words, and the language model captures both vo-
cabulary and the sequence of utterances that the application

is likely to use. We utilize Azure’s Custom Speech Service to
create a custom language model by training on the dataset
of spoken SQL queries (explained in 6.1). For the acoustic
model, we use Microsoft’s state-of-the-art search and dic-
tation model. For the dictated query in Figure 2, the re-
sult returned by ASR engine could be select sales from
employers wear first name equals Jon.

Structure Determination. This component processes the
ASR output to obtain a syntactically correct SQL state-
ment with numbered placeholder variables for Literals, while
Keywords and SplChars are fixed. We propose a similarity
search algorithm with a SQL-specific weighted edit distance
metric that leverages SQL’s CFG to deliver a syntactically
correct SQL structure. In our running example, the detected
structure is Select x1 From x2 Where x3 = x4. Here, the
Keywords and SplChars are retained, while the Literals are
shown as placeholder items x1, x2, x3 and x4. We dive into
Structure Determination in depth in Section 3.

Literal Determination. The Literal Determination com-
ponent finds a ranked list of Literals for each placeholder
variable using both the raw ASR output and a pre-computed
phonetic representation of the database being queried. For
example, variable x1 is replaced as a top k list of attribute
names. Phonetically, among all the attribute names, Salary
is the closest to Sales, and thus, x1 would be bound to
Salary. This component is explained in depth in Section 4.

Interactive Display. We present a single SQL statement
to the user. Even with our query correction techniques, some
tokens in the transcription may be incorrect, especially for
Literals not in the ASR vocabulary (“out-of-vocabulary" Lit-
erals). Thus, we support user-in-the-loop interactive query
correction through speech or touch-based mechanisms. The
user can re-dictate queries at the clause level or make use
of a novel SQL keyboard tailored to reduce their correction
effort. Section 5 explains the interface in depth.

3. STRUCTURE DETERMINATION
We now discuss the challenges of structure determination

and present our algorithms to tackle them. The goal of this
component is to get a syntactically correct SQL statement
given ASR transcription. Figure 10 presents its architecture.
Supported SQL Subset. We currently support a subset of
regular SQL DML that is meaningful and practically useful
for spoken data retrieval and analysis. This subset includes
Select-Project-Join-Aggregation (SPJA) queries along with

3

SplChar Handling
+ Literal Masking

Search
Engine

Structure
Generator

SQL
Grammar

SQL
Structures

ASR
Transcription

Indexer

Syntactically
Correct SQL

Index Offline

Processed
Transcription

Figure 3: Structure Determination component’s architec-
ture.

LIMIT and ORDER BY, one level nested queries, without any
limits on the number of joins or aggregates, as well as on
predicates. We do not currently support queries belonging
to SQL DDL. We use the production rules of SELECT state-
ments of standard SQL in Backus-Naur Form [24]. This sub-
set already allows many structurally sophisticated retrieval
and analysis queries that may arise in speech-driven envi-
ronments. That said, we do plan to systematically expand
our subset to offer more SQL functionalities in future work.
In contrast, note that some NLIs impose much more strin-
gent structural restrictions. For instance, the state-of-the-
art NLI on the WikiSQL dataset [34, 55] allows queries over
only one table and with only one aggregate. In addition, the
task on Spider dataset does not involve generating condition
values [54]. We provide the full grammar in the Appendix.

3.1 SplChar Handling and Literal Masking
We create a dictionary of the supported SQL Keywords

and SplChars, namely, KeywordDict and SplCharDict as
below:

KeywordDict: Select, From, Where, Order By, Group By,
Natural Join, And, Or, Not, Limit, Between, In, Sum, Count,
Max, Avg, Min
SplCharDict: * = < > () . ,
ASR often fails to correctly transcribe SplChars and pro-

duces the output in words. For example, < becomes “ less
than". Thus, we replace the substrings in the transcription
output (TransOut) with the corresponding SplChars. Then,
we mask out all tokens in the transcribed text that are not
in KeywordDict or SplCharDict with a placeholder variable.
In our running example, the masked out transcription out-
put (MaskOut) is SELECT x1 FROM x2 x3 x4 = x5.

3.2 Structure Generator
This offline component uses the production rules in the

grammar recursively to generate a sequence of tokens, which
is a string representing a SQL ground truth structure. Since
the number of tokens that can be generated is infinite, we
restrict the string to a maximum of 50 tokens. This leads to
generation of roughly 1.6M ground truth structures. Our ba-
sic idea is to compare MaskOut with these generated ground
truth structures and select the one with minimum edit dis-
tance. Thus, the knowledge of the grammar lets us effec-
tively invert the traditional approach of parsing strings to
extract structure. We found that parsing is an overkill for
our setting, since the grammar for spoken queries is more
compact than the full grammar of SQL. Furthermore, the
myriad forms of errors ASR introduces (Table 1) means de-
terministic parsing will almost always fail. Early on, we
also tried a probabilistic CFG and probabilistic parsing but
it turned out to be impractical because configuring all the
probabilities correctly is tricky and parsing was slower.

3.3 Indexer
Comparing TransOut with every ground truth string will

be too slow as we want our system to have a real-time la-
tency. Thus, we index the generated ground truth strings
such that only a small subset needs to be retrieved by the
Search Engine to be compared against TransOut. A chal-
lenge is that the number of strings to index is large. But we
observe that there is a lot of redundancy, since many strings
share prefixes. This observation leads us to consider a trie
structure to index all strings. A path from root to leaf node
represents a string from the ground truth structures. Every
node in the path represents a token in the string. Thus,
tries not only save memory but can also save computations
with respect to common prefixes. The computations can be
saved further by making the search engine more aware of the
length of strings in the trie as we will explain in Section 3.4.
Hence, packing all strings into a single trie leads to a higher
latency. Since latency is a major concern for us, we trade
off memory to reduce latency by storing many tries, one per
structure length. We have 50 disjoint tries in all.

3.4 Search Engine
Given MaskOut, the search engine aims to find the closest

matching structure by comparing against the ground truth
strings from the index based on edit distance. There are
many variants of edit distance that differs in the set of op-
erations involved. We use a weighted longest common sub-
sequence edit distance [43], which allows only insertion and
deletion operations at the token level.
Typically, all operations in an edit distance function are

equally weighted. But we introduce a twist in our set-
ting based on a key observation of ASR outputs. We find
that ASR is far more likely to correctly recognize Keywords
than Literals, with SplChars falling in the middle. Thus,
we assign different weights to these three kinds of tokens.
We assign the highest weight WK to Keywords, next high-
est WS to SplChars, and lowest WL to Literals. We set
WK = 1.2,WS = 1.1 and WL = 1. One could set these
weights differently by training an ML model, but we find
that the exact weight values are not that important; it is
the ordering that matters. Thus, the fixed weights suffice
for our purpose.
Denote the source string as a = a1a2...an and target

string as b = b1b2...bm. Let dp denote a matrix with m + 1
columns and n+1 rows, and dp(i, j) be the edit distance be-
tween the prefix a1a2...ai and b1b2...bj . Algorithm 1 shows
the dynamic program to compute this matrix. We observe
that computing dp(i,j) requires only the previous column
(DpPrvCol) and current column (DpCurCol). Moreover, if
for a node n, min(DpCurCol) > MinEditDist, then we can
stop exploring it further. We now present an optimization
that can reduce the computational cost of searching over our
index.
Bidirectional Bounds. Recall that our index has many
tries, which means searching could become slow if we do it
naively. Thus, we now present a simple optimization that
prunes out most of the tries without altering the search out-
put. Our intuition is to bound the edit distance from both
below and above. Given two strings of length m and n
(without loss of generality, m > n), the lowest edit distance
is obtained with m − n deletes. Similarly, highest edit dis-
tance is obtained with m deletes and n inserts. This leads

4

Algorithmus 1 Dynamic Programming Algorithm
1: if token in KeywordDict then Wtoken = WK

2: else if token in SplCharDict then Wtoken = WS

3: else Wtoken = WL

4: dp(i,0) = i for 0 ≤ i ≤ n; dp(0,j) = j for 0 ≤ j ≤ m
5: if a(i) == b(j) then dp(i,j) = dp(i-1,j-1) = DpPrvCol(row-1)
6: else dp(i,j) = min(Wtoken+dp(i-1,j), Wtoken+dp(i,j-1))
7: DpPrvCol(row) = dp(i,j-1)
8: DpCurCol(row-1) = dp(i-1,j)
9: insertCost = DpPrvCol(row) + Wtoken

10: deleteCost = DpCurCol(row-1) + Wtoken

us to the following:
Proposition 1. Given two query structures with m and

n tokens, their edit distance d satisfies the following bounds:
|m− n| ·WL ≤ d ≤ |m+ n| ·WK .
Here, the lower bound denotes the best case scenario with
|m − n| deletes and minimum possible weight of WL. The
upper bound denotes the worst case scenario with m deletes,
n inserts and maximum possible weight of WK . To illustrate
how our bounds could be useful, we present an illustrative
example in the Appendix.
Overall Search Algorithm. Our main idea is to skip
searches on tries that are pruned by our bidirectional bounds
in Proposition 1. For the tries that are not pruned, we re-
cursively traverse every children of the root node. At every
node, we use the dynamic program to calculate edit distance
with TransOut. When we reach a leaf node and see that the
edit distance with current node is less than MinEditDist,
then we update MinEditDist and the corresponding struc-
ture. This algorithm does not affect accuracy, i.e., it returns
the same string as searching over all the tries. Its worst case
time complexity is O(pkn), where n is the length of the
TransOut, p is the number of nodes in the largest trie, and
k is the number of tries. The space complexity is O(pk).
The complete search procedure along with the proofs of the
complexity analysis can be found in the appendix. We also
study two additional accuracy-latency tradeoff algorithms
that further reduce runtime by trading off some accuracy,
which can be found in the appendix. Note that we do not
use the approximation techniques by default in SpeakQL,
but users can choose to enable them, if they want even lower
latency.

4. LITERAL DETERMINATION
The goal of this component is to “fill in" the values for the

placeholder variables in the syntactically correct SQL struc-
ture delivered by the Structure Determination component.
Literals can be table names, attribute names, or attribute
values. Table names and attribute names are from a finite
domain determined by the database schema but the vocab-
ulary size of attribute values can be infinite. This presents
a challenge to this component because the most prominent
information that it can use to identify a literal for any place-
holder variable is the raw ASR transcription output. This
transcription is typically erroneous and unusable directly be-
cause ASR can either split the out-of-vocabulary tokens into
a series of tokens, incorrectly transcribe it, or simply not
transcribe it at all. Even for in-vocabulary tokens, ASR is
bound to make mistakes due to homophones (see Table 1).
These observations about how ASR fails helps us to identify
two crucial design decisions for Literal Determination.

1. Leveraging phonetic representation. In contrast
to string-based similarity search, a similarity search on a

𝑥1 → 𝐴
𝑥2 → 𝑇

TransOut: SELECT first name FROM employers
BestStruct: SELECT x1 FROM x2

Category
Assignment

𝐴 = 𝑓𝑖𝑟𝑠𝑡, 𝑛𝑎𝑚𝑒, 𝑓𝑖𝑟𝑠𝑡𝑛𝑎𝑚𝑒
𝐵 = 𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒, 𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒

first
name

firstname

FirstName

LastName

𝐴 = 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑟𝑠
𝐵 = 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠, 𝑆𝑎𝑙𝑎𝑟𝑖𝑒𝑠

employers
Employees

Salaries

TransOut
Segmentation

Literal Assignment

𝑥1

𝑥2

x1: FirstName

x2: Employees

Figure 4: Literal Determination component example

pre-computed phonetic representation of the existing Liter-
als in the database can help us disambiguate the words from
TransOut that sound similar. This motivates us to exploit
a phonetic algorithm called Metaphone that utilizes 16 con-
sonant sounds describing a large number of sounds used in
many English words. We use it to build a dictionary for
indexing the table names, attribute names, and attribute
values (only strings, excluding numbers or dates) based on
their English pronounciation. For example, phonetic repre-
sentations of table names Employees and Salaries are given
by EMPLYS and SLRS respectively.

2. Handling out-of-vocabulary tokens. Literal Deter-
mination has to be made aware of the splitting of tokens
(out-of-vocabulary from ASR’s perspective) into sub-tokens
so that it can decide when and how to merge them. Figure
4 shows the workflow of this component with TableNames=
{Employees (EMPLYS),Salaries (SLRS)} and AttributeNames
={FirstName(FRSTNM), LastName(LSTNM)}. The inputs are
TransOut and best structure (BestStruct) obtained from
the Structure Determination. As output, we want to map
a literal each to every placeholder variable in BestStruct.
To do so, we first identify the type of the placeholder vari-
able (table name, attribute name, or attribute value). This
lets us reduce the number of Literals to consider for a place-
holder. We denote the set containing relevant Literals for
a placeholder variable by set B. Next, we use TransOut to
identify what exactly was spoken for Literals. We segment
TransOut to identify a set of possible tokens to consider
and form set A. Finally, we identify the most phonetically
similar literal by computing edit distance between the pho-
netic representations of the two sets A and B. The algo-
rithm pseudocode can be found in the appendix. Its worst-
case time complexity is O(n2m), where n is the length of
TransOut and m is the domain size of Literals. The space
complexity is O(n2 +m).

4.1 Category Assignment
We constrain the space of possible Literals to consider for

any given placeholder variable in BestStruct. Each variable
can be a table name (type = T), an attribute name (category
type = A) or an attribute value (type = V). We assign a cat-
egory type to the placeholder variable using SQL grammar.
In Figure 4, the category assigned to x2 is type T, and x1
is type A. Given a placeholder variable in BestStruct, we
retrieve the phonetic representation of the relevant Literals.
For example, if the placeholder variable is of type T, then
the set B of phonetic representations for all the table names
is returned.

4.2 Transcription Output Segmentation
We now determine the exact literal to “fill in" a place-

holder. This requires using TransOut to identify transcribed
tokens for Literals. We segment TransOut such that only

5

A B
Figure 5: SpeakQL Interface[48]. (A) The Interactive Display showing the dictated query after being processed by the
SpeakQL engine, as well as the touch-based editing functionalities and clause-level redictation capabilty. (B) Our simple SQL
keyboard designed for touch-based editing of the rendered query string.

relevant tokens are retrieved to be compared against set
B items. For a placeholder in BestStruct, we first iden-
tify a window in TransOut where the literal is likely to be
found. In our example, the window for x1 starts at to-
ken first and ends at token name. We then enumerate
all the possible substrings (phonetic representation) of Lit-
erals occurring in the window in set A. For variable x1,
A = {first,name,firstname} and B is the set of attribute
names.

4.3 Literal Assignment
As the final step, we retrieve the most likely literal for a

placeholder variable by comparing the enumerated strings
in set A and relevant Literals in set B. The comparison is
based on the character level edit distance of the strings in
phonetic representation. Our algorithm is given below.
(1) For an item a in set A, compute pairwise edit distance
with every item in set B. (2) Pick an item b ∈ B that has
least edit distance. Hence, a has so-called “voted" for b. (3)
Repeat this process of voting for every item a ∈ A.
We return the literal with the maximum number of votes.

We fetch top k Literals overall for each placeholder variable.
The ties in votes are resolved in lexicographical order. In
our running example, the returned literal for the variable x1
is FirstName, while for x2 is Employees.

5. INTERFACE
Figure 5(A) shows our interface. We demonstrated our

interface at [48]. This interface allows users to dictate SQL
query and interactively correct it, if the transcribed query
is erroneous. Such interactive query correction can be per-
formed using both touch/click and speech. The “Record"
button at the bottom right allows the user to dictate the
entire query in one go. At the same time, the interface al-
lows the user to dictate or correct (through re-dictation) the
queries at the clause level (using record button to the left
of each clause). For example, the user can choose to dic-
tate only the SELECT clause or WHERE clause. We find from
user study (Section 6.4) that this clause-level functionality

helps users in reducing their cognitive load while speaking
significantly. Such a design makes our interface more speech-
friendly.
Figure 5(B) shows the novel “SQL Keyboard" that con-

sists of entire lists of SQL Keywords, table names, and
attribute names. Since attribute values (including dates)
can be potentially infinite, they cannot be seen in a list
view. But the user can type with the help of an auto
complete feature. Dates can be specified easily with the
help of a scrollable date picker. Our keyboard design al-
lows for a quick in-place editing of stray incorrect tokens,
present anywhere in the SQL query string. We find from
user study (Section 6.4) that such a design makes our in-
terface more correction-friendly. In the worst case, if our
system fails to identify the correct query structure and/or
Literals, the user can type one token, multiple tokens, or the
whole query from scratch in the query display box, or redic-
tate the clauses or the whole query again. Thus, overall,
SpeakQL’s novel multimodal query interface allows users to
easily mix speech-driven query specification with speech/-
touch interactive query correction.

6. EXPERIMENTAL EVALUATION
We now present a thorough empirical evaluation of SpeakQL.

We first present the new dataset of spoken SQL queries. We
define the accuracy metrics and evaluate SpeakQL end-to-
end on them. We then present our findings from actual user
studies with SpeakQL. Next, we dive deeper into evaluat-
ing SpeakQL’s components. Finally, we compare SpeakQL
against NLIs on two existing large-scale datasets.

6.1 New Dataset for Spoken SQL
Why are existing datasets not enough? The exist-

ing large-scale datasets created for NLIs such as Spider [54]
and WikiSQL [55] are not directly tailored towards evalu-
ating a spoken querying system. This is because the major
difficulty metric for spoken querying and typed querying are
different. The difficulty for typed NLI lies in inferring join
paths and building nested queries [27, 26]. While for spoken

6

Metric

Top 1 Top 5

Employees Yelp Employees Yelp

Train Test Test Train Test Test

KPR 0.99 0.98 0.94 0.99 0.99 0.98

SPR 0.99 0.98 0.98 0.99 0.99 0.99

LPR 0.92 0.85 0.72 0.97 0.93 0.81

WPR 0.95 0.91 0.81 0.98 0.96 0.9

KRR 0.99 0.97 0.95 0.99 0.99 0.99

SRR 0.98 0.98 0.98 0.99 0.99 0.99

LRR 0.88 0.8 0.64 0.95 0.91 0.69

WRR 0.92 0.88 0.78 0.96 0.95 0.82

Table 2: End-to-end mean accuracy metrics on real data for
query string corrected by SpeakQL.

querying, the difficulty metric is the number of tokens in the
query. For instance, even a natural language query with 50
tokens can be very simple for a typed NLI but not necessar-
ily for a spoken NLI. Conversely, a short query with many
joins may be simple for SpeakQL but very hard for an NLI.
We confirm this observation by comparing SpeakQL against
state-of-the-art NLIs on Spider and WikiSQL datasets in the
appendix.
Procedure to generate dataset on arbitrary schema.
To the best of our knowledge, there are no publicly available
datasets for spoken SQL queries. Hence, we create our own
dataset using a scalable procedure described below.
1. We use two publicly available database schemas: Em-
ployees Sample Database from MySQL [21] and the Yelp
Dataset [25]. We get the table names, attribute names,
and attribute values in each database.
2. Use our SQL subset’s CFG to generate a random struc-
ture (e.g., SELECT x1 FROM x2 WHERE x3 = x4).
3. Identify the category type of each literal placeholder vari-
ables from section 4.1 (e.g {x2} ∈ tablenames; {x1,x3} ∈
attributenames; {x4} ∈ attributevalues).
4. Replace the placeholder variables with the literal belong-
ing to its respective category type randomly. We first bind
the table names, followed by the attribute names, and fi-
nally, attribute values.
5. Repeat the steps 2, 3 and 4 until we get a dataset of
1250 SQL queries (750 for training and 500 for testing) from
Employees and 500 SQL queries from the Yelp dataset (for
testing). We use the 750 training queries from the Employ-
ees database to customize our ASR engine, Azure’s Custom
Speech API. We are also interested in testing the generaliz-
abilty of our approach to new database schemas. Hence, we
do not include queries from Yelp database for customizing
the API.
6. Use Amazon Polly speech synthesis API to generate spo-
ken SQL queries from these queries in text. Amazon Polly
offers voices of 8 different US English speakers with naturally
sounding voices. We found that voice output is of high qual-
ity even for Literals. We sampled and heard a few queries to
verify this. Especially for dates, we found that Polly auto
converts format ‘month-date-year’ to spoken dates. Polly
also allow us to vary several aspects of speech, such as pro-
nunciation, volume, pitch, and speed rate of spoken queries.
Note that our procedure for data generation applies to

any arbitrary schema where tablenames, attributenames

C
D

F

B

C
D

F

Token Edit Distance Time (in sec)

A

ASR only

SpeakQL

Figure 6: (A) Evaluation of SpeakQL on Token Edit Dis-
tance (B) Runtime of SpeakQL.

and attributevalues are user-pluggable. Since the steps 2,
3 and 4 of the above procedure can be repeated for infinitely
many times, the procedure is scalable. We make all our
dataset publicly available on our project webpage [6].

6.2 Metrics
For evaluating accuracy, we first tokenize a query text

to obtain a multiset of tokens (Keywords, SplChars, and
Literals). We then compare the multiset A of the refer-
ence query (ground truth SQL query) with the multiset B of
the hypothesis query (transcription output from SpeakQL).
We use the following error metrics: Keyword Precision Rate
(KPR), SplChar Precision Rate (SPR), Literals Precision
Rate (LPR), Word Precision Rate (WPR), Keyword Recall
Rate (KRR), SplChar Recall Rate (SRR), Literals Recall
Rate (LRR) and Word Recall Rate (WRR). For example,
WPR = |A∩B|

|B| , WRR = |A∩B|
|A| , and the rest are defined

similarly. Any incorrectly transcribed token will result in
loss of accuracy and will force users to spend time and ef-
fort correcting it. Thus, we are also interested in finding
out how far the output generated by SpeakQL is from the
ground truth. For this purpose, we include one more accu-
racy metric: Token Edit Distance (TED), which allows for
only insertion and deletion of tokens between the reference
query and the hypothesis query. The latency is evaluated
with running time in seconds.

6.3 End-to-End Evaluation
Experimental Setup. All objective experiments were run
on a commodity laptop with 16GB RAM and Windows 10.
We use Cloudlab OpenStack profile with Ubuntu16.04 and
256GB RAM for running backend server during user stud-
ies [45].
Results. Table 2 reports the mean accuracy metrics for
queries on the Employees and Yelp database. For additional
insights, we present both top 1 outputs and “best of" top 5
outputs. We present the CDF of the accuracy metrics in the
appendix. We see that with SpeakQL, we achieve almost
maximum possible precision and recall (mean of roughly
0.98) for Keywords and SplChars on both Employees train
and test dataset. Even for Literals, the accuracy improves
significantly on both databases compared to ASR. In addi-
tion, on Yelp, the precision and recall are considerably high.
Since ASR is customized on the training data from Employ-
ees, SpeakQL is more likely to correctly detect its schema
Literals than for other schemas. Hence, on Yelp, the fraction
of relevant tokens successfully retrieved is less. This leads
to a lower recall rate (mean of 0.64) for Literals.
Figure 6(A) shows the CDF of TED on the Employees test

set. TED is a surrogate for the amount of effort (touches)
that the user needs when correcting a query. Higher TED
means more user effort. Almost 90% of the queries have

7

Query Number

Sp
ee

d
u

p
 in

 T
im

e

R
ed

u
ct

io
n

 in
 E

ff
o

rt
s

Query Number

A

B

Simple Queries Complex Queries

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

Median time
to completion

17 34.4 36.4 40 40.5 31.6 143 165.3 160.9 120 62.5 119.7

Median units
of effort

5 13 7 5 8 8 37 43 19 49 14 43

C

Figure 7: Simple queries are marked from 1 to 6 and the rest are complex. (A) Speedup in time to completion for queries
using SpeakQL vs raw typing (B) Reduction in units of efforts for queries composed with SpeakQL vs raw typing (C) Median
time to completion and units of effort for queries composed with SpeakQL.

TED of less than 6. Hence, from the user end, correcting
most queries require only a handful of touches. Figure 6(B)
shows the CDF of latency of SpeakQL. We notice that for
almost 90% of the queries on Employees, the runtime is well
within 2 seconds and only 1% of the queries took more than
5 seconds.

6.4 User Study
Setup. We choose a tablet device with 2GB RAM and
1.6GHz processor for the user study. We prioritize users
and queries on the tablet to get more confidence for our
results. Thus, we leave study with phones to future work.
Since typing on phones can be even harder, the study with
a tablet would give a lower bound on the benefits of our
system. We conducted a preliminary user study that helped
us learn several key lessons in making our interface more
speech-friendly and correction-friendly. We describe the pi-
lot study and the lessons learned in the appendix.
Actual User Study. We conduct user study with 15 par-
ticipants where the recruitment was conducted through a
short SQL quiz. Each participant is first made familiar with
our interface through an introductory video [7]. Each par-
ticipant composes 12 queries (q1 to q12) on a browser-based
SpeakQL interface on the tablet given the natural language
description of the query along with the schema. We com-
pare two conditions for specifying the query with a within-
subjects design. In the first condition, the participant has
access to our SpeakQL interface that allows them to dic-
tate the SQL query and perform interactive correction. In
the second condition, the participant types the SQL query
from scratch with no access to our interface. We record the
time to complete the query for both the conditions. Also,
we log every interaction of the user with our system, i.e.,
the number of corrections and re-dictation attempts. We
evaluate our system using 180 data points (15 participants,
12 queries).
Study Design. The queries were divided into two seg-
ments: simple and complex. We define simple queries as
those with less than 20 tokens; the rest are considered com-
plex. Thus, composing a complex query imposes a higher
cognitive load relative to a simple query. Participant p1
was asked to speak query q1 first and type q1 next. p1 will
then type q2 first and dictate q2 next. We alternate this
order across the 12 queries. Similarly, this order is alter-
nated across participants, i.e., p2 will type query q1 first and
dictate q1 next. This design lets us account for the inter-
leaving of thinking and speaking/typing when constructing
SQL queries and reduce the bias caused by a reduced think-
ing time when re-specifying the same query in a different

CD
F

Token Edit Distance

A

CD
F

Recall Rate

Table Name
Attribute Name
Attribute Value

B

Figure 8: (A) Structure Determination component evalua-
tion on Token Edit Distance (TED) (B) Literal Determina-
tion component evaluation. CDF of Recall Rates for differ-
ent Literal types.

condition (typing or speaking).
Results. Figure 7 shows the median time to completion
with SpeakQL, median units of efforts spent on our inter-
face, speedup in time to completion (i.e., time to completion
of typing vs time to completion of SpeakQL), and reduc-
tion in efforts for the 12 queries. The queries from 1-6 are
simple and the rest are complex. Units of effort is defined
as number of touches/clicks (including keyboard strokes)
or dictation/re-dictation attempts made when composing a
query. The main takeaways are given below.
(1) Plot A shows that SpeakQL leads to significantly higher
speedup in time to completion compared to raw typing. The
speedup is higher for complex queries (average of 2.9x) than
the simple ones (average of 2.4x).
(2) Plot B shows that SpeakQL leads to significantly less
units of effort than raw typing. The average reduction factor
is 12x and 7.5x for simple and complex queries respectively.
(3) From table C we notice that the median time to com-
pletion and units of effort for the complex queries is consid-
erably higher than the simple ones, which is expected.
Hypothesis Tests. Hypothesis tests shows that the time
to complete a query, the time spent editing a query, and
the total units of efforts with SpeakQL is statistically sig-
nificantly lower than than the typing condition. We discuss
the tests in depth in the appendix.

6.5 Component-level Drill Down
Structure Determination Evaluation. We evaluate the
structures returned by this component relative to the ground
truth structure. Figure 14(A) shows the CDF of TED for
the Employees test set queries. The correct structure is
delivered for about 86% of the queries. We report the CDF
of this component’s latency in the appendix.
Literal Determination Evaluation. Figure 14(B) presents
the CDF of recall rates for table names, attribute names, and
attribute values. We see that recall rates for table names and

8

attribute names are considerably high, with a mean of 0.90
and 0.83, respectively. But for attribute values, recall rate is
low (mean of 0.68). To see why this is the case, we present
the CDF of edit distance for different type of attribute values
with the ground truth in the appendix.

6.6 Comparison with NLIs
We compare SpeakQL against state-of-the-art NLIs with

typed and speech inputs on two large-scale human-annotated
datasets containing pairs of natural language and SQL queries:
Spider [54] and WikiSQL [55]. We find that the accuracy of
NLIs decreases significantly when queries are speech-based
than typing-based due to a variety of errors in the transcrip-
tion. Moreover, we observe that SpeakQL achieves signifi-
cantly higher accuracy than the state-of-the-art NLIs with
speech inputs. For instance, lift of 50% in execution accu-
racy on WikiSQL. We present the complete evaluation and
additional insights in the appendix.

7. RELATED WORK
Speech-driven Querying Systems. Speech recognition
for data querying has been explored in some prior systems.
Nuance’s Dragon Naturally Speaking allows users to query
using spoken commands to retrieve the text content of a
document [22]. Several systems such as Google’s Search
by Voice [47, 49] and Microsoft’s Model M [57] have ex-
plored the possibility of searching by voice. Conversational
assistants such as Alexa, Google Home, Cortana, and Siri
allow users to query over only an application-specific knowl-
edge bases and not over an arbitrary database. In contrast,
SpeakQL allows users to interact with structured data using
spoken queries over any arbitrary database schema.
Other Non-typing Query Interfaces. Query Interfaces
that help non-technical users explore relational databases
have been studied for several decades. There has been a
stream of research on visual interfaces [56, 23, 32]. Tabular
tools such as [56] allow users to query by example, [23] allows
users to create drag-and-drop based interfaces, and keyword-
search based interfaces such as [32] help users formulate SQL
queries by giving query suggestions. More recently, non-
keyboard based touch interfaces [41, 42, 30, 35, 51] have
received attention because of the potentially lower user effort
to provide input. At the user level, almost all of these query
interfaces obviate the need to type SQL. This rich body of
prior work inspired our touch-based multimodal interface for
query correction that augments spoken input. But unlike
these tools, our first version of SpeakQL does not aim to
obviate SQL but rather embraces and exploits its persistent
popularity among data professionals.
Natural Language Interfaces. There is a long line of
work on NLIs for databases in order to allow layman users
to ask questions in natural lanuage [46, 50, 52, 53, 54, 33, 34,
55, 38]. NLIs are orthogonal to this paper’s focus. Inspired
from regular human to human conversations, Echoquery [38]
is designed as a conversational NLI in form of an Alexa
skill. Although, this system certainly enables non-experts
to query data easily and directly, ASR can cause a series
of errors and would restrict users from specifying “hard"
queries. In addition, such a system might impose a higher
cognitive load [40, 44] on users when a large query result is
returned; a screen mitigates such issues, e.g., as in the Echo
Show.

Natural Language Processing (NLP). Recent work in
NLP community has emphasized the fact that incorporating
linguistic structure can help prune the space of generated
queries and thus help in avoiding the NLU problem [55, 31,
29, 39, 36]. This recent trend of incorporating structural
knowledge into the modeling offers a form of validation for
our approach of directly exploiting rich structure of SQL
using its grammar.

8. CONCLUSIONS AND FUTURE WORK
We pursue an exploratory research direction on speech-

driven query interfaces that is complementary to NLIs and
visual interfaces. Inspired by our conversations with diverse
data querying professionals, we build the first end-to-end
multimodal querying system for a practical subset of SQL
that combines speech and touch interactions. Our empiri-
cal findings suggest that SpeakQL achieves significant im-
provements over ASR on all accuracy metrics. Through user
studies, we show that our system helps users to speed up
their SQL query specification process. As for future work,
we would like to modify SQL itself to make it more speech-
friendly. Our empirical results show that Literals are the
biggest bottleneck for accuracy. Hence, we plan to rewrite
our SQL subset’s CFG in a manner that focuses more on
literals and de-emphasizes structure.

Acknowledgments. This material is based upon work sup-
ported in part by the National Science Foundation under
Grant No. IIS-1816701. We thank the members of UC San
Diego’s Database Lab and Ndapa Nakashole for their feed-
back on this work.

9. REFERENCES
[1] Blended Learning for SQL.

https://link.springer.com/chapter/10.1007%2F978-
3-319-59360-9_30.

[2] Oracle Business Intelligence Cloud Service Mobile.
https://docs.oracle.com/en/cloud/paas/bi-cloud/
bilug/viewing-content-mobile-devices.html.

[3] Oracle Business Intelligence Mobile. http:
//www.oracle.com/us/solutions/ent-performance-
bi/business-intelligence/bi-mobile-1993624.pdf.

[4] Oracle Sales Cloud Mobile.
http://docs.media.bitpipe.com/io_11x/io_116852/
item_1033327/Oracle%20Sales%20Cloud_%
20Smartphones_Tablets_Datasheet.pdf.

[5] Power BI Mobile. https:
//www.clearpeaks.com/mobile-bi-using-power-bi/.

[6] Speakql project webpage.
https://adalabucsd.github.io/speakql.

[7] SpeakQL: Towards Speech-driven Multimodal
Querying of Structured Data (Tutorial Video).
https://youtu.be/KsgNo-CkE8Y.

[8] SQL Server Mobile Reporting.
https://docs.microsoft.com/en-us/sql/reporting-
services/mobile-reports/create-mobile-reports-
with-sql-server-mobile-report-publisher?view=
sql-server-ver15.

[9] SQL Server Mobile Reporting Tutorial.
https://www.mssqltips.com/sqlservertutorial/
4100/ssrs-mobile-reports-tutorial-outline/.

9

https://link.springer.com/chapter/10.1007%2F978-3-319-59360-9_30
https://link.springer.com/chapter/10.1007%2F978-3-319-59360-9_30
https://docs.oracle.com/en/cloud/paas/bi-cloud/bilug/viewing-content-mobile-devices.html
https://docs.oracle.com/en/cloud/paas/bi-cloud/bilug/viewing-content-mobile-devices.html
http://www.oracle.com/us/solutions/ent-performance-bi/business-intelligence/bi-mobile-1993624.pdf
http://www.oracle.com/us/solutions/ent-performance-bi/business-intelligence/bi-mobile-1993624.pdf
http://www.oracle.com/us/solutions/ent-performance-bi/business-intelligence/bi-mobile-1993624.pdf
http://docs.media.bitpipe.com/io_11x/io_116852/item_1033327/Oracle%20Sales%20Cloud_%20Smartphones_Tablets_Datasheet.pdf
http://docs.media.bitpipe.com/io_11x/io_116852/item_1033327/Oracle%20Sales%20Cloud_%20Smartphones_Tablets_Datasheet.pdf
http://docs.media.bitpipe.com/io_11x/io_116852/item_1033327/Oracle%20Sales%20Cloud_%20Smartphones_Tablets_Datasheet.pdf
https://www.clearpeaks.com/mobile-bi-using-power-bi/
https://www.clearpeaks.com/mobile-bi-using-power-bi/
https://adalabucsd.github.io/speakql
https://youtu.be/KsgNo-CkE8Y
https://docs.microsoft.com/en-us/sql/reporting-services/mobile-reports/create-mobile-reports-with-sql-server-mobile-report-publisher?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/mobile-reports/create-mobile-reports-with-sql-server-mobile-report-publisher?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/mobile-reports/create-mobile-reports-with-sql-server-mobile-report-publisher?view=sql-server-ver15
https://docs.microsoft.com/en-us/sql/reporting-services/mobile-reports/create-mobile-reports-with-sql-server-mobile-report-publisher?view=sql-server-ver15
https://www.mssqltips.com/sqlservertutorial/4100/ssrs-mobile-reports-tutorial-outline/
https://www.mssqltips.com/sqlservertutorial/4100/ssrs-mobile-reports-tutorial-outline/

[10] SQL Server Voice Dictation. https:
//www.reddit.com/r/SQLServer/comments/7nogtn/
best_voice_dictation_software_for_sql_server/.

[11] Tableau Forum asking for Alexa Integration.
https://community.tableau.com/thread/226682.

[12] Tableau Forum asking for Alexa Integration.
https://community.tableau.com/thread/255574.

[13] Tableau Forum asking for voice integration.
https://community.tableau.com/thread/270545.

[14] Tableau Forum Voice Commands.
https://community.tableau.com/thread/276723.

[15] Tableau Forum Voice Commands. https:
//community.tableau.com/message/786209#786209.

[16] Tableau Voice-based Dashboard.
https://medium.com/@bhavasarhemang/tableau-
with-voice-commands-9d9d9664853f.

[17] Talking to Tableau Dashboard.
https://www.datablick.com/blog/2017/12/29/
talking-to-tableau-via-react.

[18] Alexa commands, Accessed April 12, 2020.
https://www.cnet.com/how-to/amazon-echo-the-
complete-list-of-alexa-commands.

[19] Amazon polly speech synthesis api, Accessed April 12,
2020. Available from https://aws.amazon.com/polly.

[20] Custom speech service, Accessed April 12, 2020.
https://azure.microsoft.com/en-us/services/
cognitive-services/custom-speech-service/.

[21] Mysql employees sample database, Accessed April 12,
2020. Available from
https://dev.mysql.com/doc/employee/en/.

[22] Nuance’s Dragon Speech Recognition, Accessed April
12, 2020. https://www.nuance.com/dragon.html.

[23] Oracle SQL Developer, Accessed April 12, 2020.
blogs.oracle.com/smb/what-is-visual-builder-
and-why-is-it-important-for-your-business.

[24] SQL grammar, Accessed April 12, 2020.
http://forcedotcom.github.io/phoenix.

[25] Yelp database, Accessed April 12, 2020. Available from
https:
//www.kaggle.com/yelp-dataset/yelp-dataset.

[26] C. Baik, H. Jagadish, and Y. Li. Bridging the
Semantic Gap with SQL Query Logs in Natural
Language Interfaces to Databases. In 2019 IEEE 35th
International Conference on Data Engineering
(ICDE), pages 374–385. IEEE, 2019.

[27] F. Basik, B. Hättasch, A. Ilkhechi, A. Usta,
S. Ramaswamy, P. Utama, N. Weir, C. Binnig, and
U. Cetintemel. DBPal: A Learned NL-Interface for
Databases. In Proceedings of the 2018 International
Conference on Management of Data, SIGMOD ’18,
pages 1765–1768, New York, NY, USA, 2018. ACM.

[28] D. Chandarana, V. Shah, A. Kumar, and L. Saul.
SpeakQL: Towards Speech-driven Multi-modal
Querying. In Proceedings of the 2nd Workshop on
Human-In-the-Loop Data Analytics, pages 1–6, 2017.

[29] T. Cohn, C. D. V. Hoang, E. Vymolova, K. Yao,
C. Dyer, and G. Haffari. Incorporating Structural
Alignment Biases into an Attentional Neural
Translation Model. arXiv preprint arXiv:1601.01085,
2016.

[30] A. Crotty, A. Galakatos, E. Zgraggen, C. Binnig, and

T. Kraska. Vizdom: Interactive Analytics Through
Pen and Touch. Proceedings of VLDB Endowment,
8(12):2024–2027, 2015.

[31] C. Dyer, A. Kuncoro, M. Ballesteros, and N. A.
Smith. Recurrent Neural Network Grammars. arXiv
preprint arXiv:1602.07776, 2016.

[32] J. Fan, G. Li, and L. Zhou. Interactive SQL Query
Suggestion: Making Databases User-friendly. In Data
Engineering (ICDE), 2011 IEEE 27th International
Conference on, pages 351–362. IEEE, 2011.

[33] J. Guo, Z. Zhan, Y. Gao, Y. Xiao, J.-G. Lou, T. Liu,
and D. Zhang. Towards Complex Text-to-SQL in
Cross-Domain Database with Intermediate
Representation. arXiv preprint arXiv:1905.08205,
2019.

[34] W. Hwang, J. Yim, S. Park, and M. Seo. A
Comprehensive Exploration on WikiSQL with
Table-Aware Word Contextualization. arXiv preprint
arXiv:1902.01069, 2019.

[35] S. Idreos and E. Liarou. dbTouch: Analytics at your
Fingertips. In CIDR 2013, Sixth Biennial Conference
on Innovative Data Systems Research, Asilomar, CA,
USA, January 6-9, 2013, Online Proceedings.
www.cidrdb.org, 2013.

[36] Y. Kim, C. Denton, L. Hoang, and A. M. Rush.
Structured Attention Networks. arXiv preprint
arXiv:1702.00887, 2017.

[37] F. Li and H. Jagadish. Constructing an Interactive
Natural Language Interface for Relational Databases.
Proceedings of the VLDB Endowment, 8(1):73–84,
2014.

[38] G. Lyons, V. Tran, C. Binnig, U. Cetintemel, and
T. Kraska. Making the Case for Query-by-Voice with
EchoQuery. In Proceedings of the 2016 International
Conference on Management of Data, pages 2129–2132.
ACM, 2016.

[39] D. Marcheggiani and I. Titov. Encoding Sentences
with Graph Convolutional Networks for Semantic Role
Labeling. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2017, Copenhagen, Denmark, September
9-11, 2017, pages 1506–1515. Association for
Computational Linguistics, 2017.

[40] G. A. Miller. The Magical Number Seven, Plus or
Minus Two: Some Limits on our Capacity for
Processing Information. Psychological review, 63(2):81,
1956.

[41] A. Nandi. Querying Without Keyboards. In
Proceedings of the biennial Conference on Innovative
Data Systems Research (CIDR), 2013.

[42] A. Nandi, L. Jiang, and M. Mandel. Gestural query
specification. Proceedings of the VLDB Endowment,
7(4):289–300, 2013.

[43] S. B. Needleman and C. D. Wunsch. A General
Method Applicable to the Search for Similarities in
the Amino Acid Sequence of Two Proteins. Journal of
molecular biology, 48(3):443–453, 1970.

[44] T. V. Raman. Audio System for Technical Readings,
volume 1410 of Lecture Notes in Computer Science.
Springer, 1998.

[45] R. Ricci, E. Eide, and C. Team. Introducing
CloudLab: Scientific Infrastructure for Advancing

10

https://www.reddit.com/r/SQLServer/comments/7nogtn/best_voice_dictation_software_for_sql_server/
https://www.reddit.com/r/SQLServer/comments/7nogtn/best_voice_dictation_software_for_sql_server/
https://www.reddit.com/r/SQLServer/comments/7nogtn/best_voice_dictation_software_for_sql_server/
https://community.tableau.com/thread/226682
https://community.tableau.com/thread/255574
https://community.tableau.com/thread/270545
https://community.tableau.com/thread/276723
https://community.tableau.com/message/786209#786209
https://community.tableau.com/message/786209#786209
https://medium.com/@bhavasarhemang/tableau-with-voice-commands-9d9d9664853f
https://medium.com/@bhavasarhemang/tableau-with-voice-commands-9d9d9664853f
https://www.datablick.com/blog/2017/12/29/talking-to-tableau-via-react
https://www.datablick.com/blog/2017/12/29/talking-to-tableau-via-react
https://www.cnet.com/how-to/amazon-echo-the-complete-list-of-alexa-commands
https://www.cnet.com/how-to/amazon-echo-the-complete-list-of-alexa-commands
https://aws.amazon.com/polly
https://azure.microsoft.com/en-us/services/cognitive-services/custom-speech-service/
https://azure.microsoft.com/en-us/services/cognitive-services/custom-speech-service/
https://dev.mysql.com/doc/employee/en/
https://www.nuance.com/dragon.html
blogs.oracle.com/smb/what-is-visual-builder-and-why-is-it-important-for-your-business
blogs.oracle.com/smb/what-is-visual-builder-and-why-is-it-important-for-your-business
http://forcedotcom.github.io/phoenix
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset

Cloud Architectures and Applications. ; login:: the
magazine of USENIX & SAGE, 39(6):36–38, 2014.

[46] D. Saha, A. Floratou, K. Sankaranarayanan, U. F.
Minhas, A. R. Mittal, and F. Özcan. ATHENA: an
Ontology-driven System for Natural Language
Querying over Relational Data Stores. Proceedings of
the VLDB Endowment, 9(12):1209–1220, 2016.

[47] J. Schalkwyk, D. Beeferman, F. Beaufays, B. Byrne,
C. Chelba, M. Cohen, M. Kamvar, and B. Strope.
“Your word is my command”: Google Search by Voice:
A Case Study. In Advances in speech recognition,
pages 61–90. Springer, 2010.

[48] V. Shah, S. Li, K. Yang, A. Kumar, and L. Saul.
Demonstration of SpeakQL: Speech-driven
Multimodal Querying of Structured Data. In
Proceedings of the 2019 International Conference on
Management of Data, pages 2001–2004, 2019.

[49] J. Shan, G. Wu, Z. Hu, X. Tang, M. Jansche, and
P. J. Moreno. Search by Voice in Mandarin Chinese.
In Eleventh Annual Conference of the International
Speech Communication Association, pages 354–357,
2010.

[50] A. Simitsis, G. Koutrika, and Y. Ioannidis. Précis:
from Unstructured Keywords as Queries to Structured
Databases as Answers. The VLDB Journal—The
International Journal on Very Large Data Bases,
17(1):117–149, 2008.

[51] P. Terlecki, F. Xu, M. Shaw, V. Kim, and R. Wesley.
On Improving User Response Times in Tableau. In
Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, pages 1695–1706.
ACM, 2015.

[52] X. Xu, C. Liu, and D. Song. SqlNet: Generating
Structured Queries from Natural Language without
Reinforcement Learning. arXiv preprint
arXiv:1711.04436, 2017.

[53] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig.
SQLizer: Query Synthesis from Natural Language.
Proceedings of the ACM on Programming Languages,
1(OOPSLA):63:1–63:26, 2017.

[54] T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang,
Z. Li, J. Ma, I. Li, Q. Yao, S. Roman, Z. Zhang, and
D. Radev. Spider: A Large-Scale Human-Labeled
Dataset for Complex and Cross-Domain Semantic
Parsing and Text-to-SQL Task. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 3911–3921, 2018.

[55] V. Zhong, C. Xiong, and R. Socher. Seq2SQL:
Generating Structured Queries from Natural
Language using Reinforcement Learning. arXiv
preprint arXiv:1709.00103, 2017.

[56] M. M. Zloof. Query by Example. In National
Computer Conference and Exposition, 1975.

[57] G. Zweig and S. Chang. Personalizing Model M for
Voice-Search. In Twelfth Annual Conference of the
International Speech Communication Association,
pages 609–612. ISCA, 2011.

APPENDIX
A. INTERVIEW STUDY
To better understand the querying practices of data pro-

fessionals, we conducted an interview study with 26 SQL
users from 17 different sectors. We performed this study in
two rounds. In the first round, we interviewed SQL users
to get information about the style of queries they compose,
the kinds of challenges they encounter, and if they are inter-
ested in using a speech-driven multimodal interface. In the
second round, we contacted the interested users and gave
them access to our system to get feedback on the utility of
our system.

Part A. We first interviewed 26 SQL users from 17 dif-
ferent sectors such as finance, healthcare, insurance, retail,
social housing, telecom, etc. We recruited interviewees by
emailing working professionals in the business school and
medical school of UC San Diego, and by contacting individ-
uals on LinkedIn. The interviewees had many different job
titles such as Data Analyst, Business Intelligence Analyst,
Risk Analyst, Executive, Management Information Analyst,
Data Architect, etc. We asked them many questions to un-
derstand the following:

• What all kinds of queries do they compose?
• What all kinds of query complexity do they have to deal
with?
• What sort of environment do they use to retrieve/analyze
their data?
• What kinds of challenges do they encounter when com-
posing an SQL query on their environment?
• Do they see a speech-driven multimodal interface enhanc-
ing their data querying abilities?

The list of all questions along with their responses is pre-
sented in Appendix H. We summarize the takeaways below.

1. Almost all the users are well-versed with SQL and they
compose SQL queries routinely. 21 out of 26 users rated
their SQL expertise level at 4 or 5 out of 5. 17 of them
actually compose SQL queries a lot almost everyday
and 25 of them compose queries at least a few times a
week.

2. Most users (24 out of 26) compose ad hoc queries over
arbitrary tables instead of following fixed template of
queries. Thus, from our interactions with the users,
we realize that dashboards that supports fixed query
templates are not enough for them.

3. While all users perform data retrieval and analysis queries,
only a handful of them (5 out of 26) compose complex
queries such as the ones from TPC-H benchmark. We
find that 3 of these 5 users are non-DevOps DBAs,
which are anyways not the primary target audience for
our system.

4. We find that non-trivial fraction of users (11 out of 26)
typically query over 1 to 3 tables and they encounter
up to 50 tokens in their query. This makes querying on
constrained environment ideal for many scenarios. We
do not claim to support all possible type of querying
scenarios.

5. For two-third of the users, a typical query either in-
volves a join over multiple tables or aggregation over

11

multiple joined table. Only fifth of the users typically
perform complex nested queries. We are happy to see
that our currently supported subset of SQL can already
satisfy the common cases of many users.

6. Overall, a non-trivial fraction of users (11 out of 26) was
really interested in trying out interface. We admit that
there is heavy polarization on the responses received.
For instance, non-DevOps DBAs find tablet/phone en-
vironments too small and are not inclined towards using
a speech-based system. As we explained in Figure 1 of
the paper, such ultra-sophisticated SQL users are not
the primary target of our system.

Part B. In the second round, we followed up with the inter-
ested users, gave them access to our system, and asked them
to use our system. We asked them to fill-up another google
form questionnaire to receive feedback of our system. The
list of all questions along with their responses is presented
in Appendix I. We summarize the takeaways below.

1. We asked users to rate their difficulty with typing SQL
queries vs using the SpeakQL interface on a scale from
1 to 10, where 1 being “most difficult/painful” and 10
being “very easy and seamless” on the device. We
find that the median rating of the 7 users who
used tablet/smartphone device improved from 4
(score when typing) to 8 (score with SpeakQL).
We consider this as a very significant jump.

2. Overall, we only see 3 cases where the rating score with
SpeakQL is less than the score with typing. However, 2
of these users were querying on desktop/laptop device
to interface (contrary to our stated request) where typ-
ing is more convenient (recall that deskptop/laptop are
not our target device environments). For the 1 other
user, the drop was from 8 to 7, which is minor.

3. Almost all the users found the ability to speak out the
query useful. We quote some of the use case scenarios
where users foresee our speech-driven multimodal in-
terface on smartphone/tablet enhancing their querying
abilities below:
“It would make pulling ad-hoc data during meetings sim-
pler”
“Don’t use tablets/smartphones to query data mostly
due to the pain of writing the sentences. Usually query
process related data from PPM DBs”
“When I am outside of my usual working environment
and want to see data.”
“Training in front of a class”
“90% of the time I can tell what the issue is (and make
decisions) from my phone. I have my laptop with me
for the other 10%. it would be very useful to run some
queries based on different alerts I get throughout the
day.”

Overall, from the interview study we find that there is
a non-trivial user base who is really interested in exploring
such speech-driven interfaces.

Part C. We went through websites of existing industrial
tools like Oracle BI, Tableau, SQL Server, and Power BI
and we find that there is recurring interest in industry in
the following two directions:

Box 1: SQL Grammar Production Rules
1: Q → S F | S F W
2: S → SEL LST | SEL L C | SEL SEL_OP BP L EP | SEL SEL_OP BP

L EP C | SEL CNT BP ST EP | SEL CNT BP ST EP C
3: C → COM L | C COM L | COM SEL_OP BP L EP | C COM SEL_OP BP

L EP
4: CF → COM L | CF COM L
5: F → FRO L | FRO L CF
6: W → WHE WD | WHE AGG
7: WD → EXP | EXP AN WD | EXP OR WD
8: EXP → L OP L | WDD OP L | WDD OP WDD | L OP WDD
9: WDD → L DO L

10: AGG → WD CLS L | WD CLS WDD | WD LMT L | L BTW L AN L | L
NT BTW L AN L | L IN BP L EP | L IN BP L CS EP

11: CS → COM L | CS COM L
12: CLS → ODB1 ODB2 | GRP1 ODB2
13: LST → L | ST
14: COM → ‘,’
15: SEL → ‘SELECT’
16: FRO → ‘FROM’
17: ST → ‘*’
18: L → ‘x’
19: OP → ‘=’ | ‘<’ | >’
20: AN → ‘AND’
21: OR → ‘OR’
22: NT → ‘NOT’
23: BTW → ‘BETWEEN’
24: WHE → ‘WHERE’
25: DO → ‘.’
26: ODB1 → ‘ORDER’
27: ODB2 → ‘BY’
28: GRP1 → ‘GROUP’
29: LMT → ‘LIMIT’
30: SEL_OP → ‘AVG’ | ‘SUM’ | ‘MAX’ | ‘MIN’ | ‘COUNT’
31: CNT → ‘COUNT’
32: BP → ‘(’
33: EP → ‘)’
34: IN → ‘IN’

1. Creating apps on smartphones/tablets to allow users
to interact with their data on-the-go with Oracle BI [2,
4, 3], PowerBI [5], and SQL Server [8, 9]. In addition,
in the blended learning literature, it has been found
that allowing students to learn SQL right from their
phones/tablets improves their SQL learning ability sig-
nificantly [1].

2. Request for features to query with voice-based com-
mands on Tableau [14, 15, 16, 17, 13], SQL Server [10],
and even request for integration with Alexa as a Tableau
assistant [11, 12]. Although these tools are orthogo-
nal to our focus, we think that the interest of indus-
try in designing on-the-go speech-driven tools that are
SQL-aware is encouraging for an exploratory research
project like ours.

B. COMPARISON AGAINST SPOKEN NLI
Table 3 shows a qualitative comparison of a spoken SQL

system against a spoken NLI system on different issues that
we identified based on our conversations. Although a spoken
SQL system expects knowledge of SQL and database schema
being queried, it offers four major advantages that many
data professionals find useful. (1) SQL is unambiguous due
to its CFG. In contrast, NLIs can fail to understand query in-
tent because the ambiguities introduced by natural language
are hard to fix. (2) With SQL, users always know that the re-
sults will match their query. However, NLIs may find it hard
to offer such firm guarantees on result correctness. (3) NLIs
often rely on lexical databases or word embeddings to map
tokens in the posed query with schema literals. Thus, for
non-dictionary tokens (e.g., CUSTID_1729A), NLIs may

12

fail to obtain a correct mapping. In contrast, SQL’s syn-
tactic and semantic properties makes non-dictionary tokens
easier to support. (4) ASR can introduce errors in the tran-
scription and can cause the errors to propagate further in
NLIs. For instance, even a simple wrong transcription of
the token “and” to “in” can change the meaning of the query
completely and can cause the NLI to fail. A spoken SQL
querying system can leverage the rich structure of SQL and
the database schema to potentially correct such errors in
transcription and thus can deliver much higher accuracy, as
confirmed by our initial comparison (Appendix F.9).

ASR + SQL ASR + NLI

Prior knowledge Subset of SQL & Schema Tables queried

Ambiguity of query intent None Possible

Result Correctness guarantee Always Unclear how to support

Non-dictionary schema literal
Can be supported

(user knows schemas)
Unclear how to support

Resolving ASR errors
Can exploit SQL

grammar & schema
Unclear how to support

Main difficulty metric for queries Token length
Number of join paths,

aggregates, and nesting

Table 3: Contrasting Spoken NLI systems against Spoken
SQL systems on different attributes.

C. SQL GRAMMAR
The production rules of the supported SQL grammar are

shown in Box 1.

D. STRUCTURE DETERMINATION
D.1 Algorithm
The central idea of this algorithm is to skip searches on

tries that were pruned out by our bidirectional bounds in
Proposition 1. For the tries that are not pruned, we recur-
sively traverse every children of the root node using SearchRe-
cursively procedure. At every node, we use the dynamic
programming algorithm (Box 2) to calculate edit distance
with TransOut, and build a column of the memo as shown
in Figure 9. When we reach a leaf node and see that the
edit distance with current node is less than MinEditDist,
then we update MinEditDist and the corresponding struc-
ture (node.sentence). This algorithm does not affect accu-
racy, i.e., it returns the same string as searching over all the
tries.

SELECT * FROM x

0 1.2 2.3 3.5 4.5

SELECT 1.2 0 1.1 2.3 3.3

x 2.2 1 2.1 3.3 2.3

x 3.2 2 3.1 4.3 3.3

FROM 4.4 3.2 4.3 3.1 4.1

x 5.4 4.2 5.3 4.1 3.1

Figure 9: Dynamic programming memo that computes edit
distance between the MaskOut and GrndTrth.

D.2 Bidirectional Bounds (BDB) Example
To illustrate how our bounds could be useful, Figure 10

shows an example. TransOut is a string of length 3: A B A.
Ground truth strings are indexed from keys 1 to 50 by their
length (m). The first row denotes the range of possible edit

Box 2: Structure Determination Algorithm
1: Let k = Max Tokens possible in GrndTrth (50)
2: LowerBound = Array of size k; MinEditDist = INT_MAX
3: m = CountTokens(TransOut); result[MinEditDist] = ""
4: for i from 1 to k do
5: LowerBound[i] = |m-i|*WL

6: end for
7: for j from m to 0 do
8: if MinEditDist < LowerBound[j] then j–
9: else SearchTrie(j)

10: end if
11: end for
12: for j from m to k do
13: if MinEditDist < LowerBound[j] then j++
14: else SearchTrie(j)
15: end if
16: end for
17: return result[MinEditDist]
18:
19: procedure SearchTrie(j)
20: TrieRoot = RetrieveStrings(j):
21: DpPrvCol = [1,2,...,m]
22: for token in TrieRoot.children do
23: SearchRecursively(TrieRoot.children[token],token,DpPrvCol)
24: end for
25: end procedure
26:
27: procedure SearchRecursively(node,token,DpPrvCol):
28: rows = CountTokens(MaskOut) + 1
29: DpCurCol = [DpPrvCol[0]+1]
30: for row from 1 to rows do
31: if MaskOut[row-1] == token then
32: DpCurCol.append(DpPrvCol[row-1])
33: else
34: if DpPrvCol[row] < DpCurCol[row-1] then
35: insertCost = DpPrvCol[row] + Wtoken

36: DpCurCol.append(insertCost)
37: else
38: deleteCost = DpCurCol[row-1] + Wtoken

39: DpCurCol.append(deleteCost)
40: end if
41: end if
42: if node is leaf and DpCurCol[rows] < MinEditDist then
43: MinEditDist = DpCurCol[rows]
44: result[MinEditDist] = node.sentence
45: end if
46: if min(DpCurCol) ≤ MinEditDist then
47: for token in node.children do
48: SearchRecursively(node.children[token],token,DpCurCol)
49: end for
50: end if
51: end for
52: end procedure

distances with TransOut. We first go in the direction of
decreasing m from m = 3 to m = 1. We start comparisons
of strings in the Trie for m = 3 with TransOut. We find
that the MinEditDist is 2 with string A B C. With m = 2,
the lower bound on edit distance is 1, which is less than
MinEditDist found so far. Hence, we explore the trie for
m = 2. We find that the MinEditDist is 1 with string A
B. With m=1, the lower bound on edit distance is 2, which
is more than MinEditDist found so far. Hence, there is no
way we can find a ground truth string in the trie that can
deliver MinEditDist. Thus, we skip its exploration. In the
next pass, we go from m = 4 to m = 50. When m > 4, we
find that MinEditDist > 1. Hence, we skip all the tries for
values of m from 5 to 50.

D.3 Accuracy-Latency Tradeoff Techniques
We propose two additional algorithms that uniquely ex-

ploit the way SQL strings are stored in the tries. This helps
us to reduce runtime further by trading off some accuracy.

Diversity-Aware Pruning (DAP): We observe that many

13

Edit Distance
Bounds [2,4.8] [1,6] [0,7.2] [1,8.4] [2,9.6] … [47,63.6]

m 1 2 3 4 5 … 50

A A

B C

A

B
C

C
E

A

B

C D

D E

TransOut (n=3):		A			B			A

MinEditDist skip 1 2 3 skip … skip

Figure 10: Bidirectional Bounds example.

paths from root to leaf in a trie differ in only one token that
is either from the keyword set {AVG,COUNT,SUM,MAX,MIN},
{AND,OR} or the SplChar set {=, <,>}. We call the union
of 3 sets, a prime superset. Instead of exploring all the
branches, we can instead skip many branches that differ
only in one token from the prime superset. Based on this
observation, we propose the following technique. Given a
trie T and transcription output TransOut, if a node n has
p children nodes (Ci, 1 ≤ i ≤ p) belonging to any set in
the prime superset, and Ck gives the minimum edit dis-
tance with TransOut, while the other siblings Ci, i 6= k does
not give minimum edit distance, then skip exploration of
all the descendants of Ci, i 6= k. i.e., for every children
Ci of a node in the prime superset, the node to explore is
argmini(DpCurColCi(lastrow))
However, this optimization can skip the branch leading to

the minimum edit distance, resulting in a decrease in accu-
racy. This optimization is introduced to have more diversity
in the returned top k structures. Rather than overloading
the system to find the most correct structure, the system can
find an approximately correct structure which misses only in
certain keywords like {AND,OR} or {AVG,COUNT,SUM,MAX,MIN}
or SplChars like {=, <,>}. Doing this would require more
amount of user effort in order to correct the query. How-
ever, if the user effort is just 1-5 touches/clicks, then this is
justifiable.

Inverted Indexes (INV): We can utilize the knowledge
about the different keywords occurring in TransOut in order
to build an inverted index of all the unique keywords (ex-
cept SELECT, FROM, WHERE) appearing in the ground truth
strings. Hence, for each keyword, we directly retrieve a list
of strings in which it appears. When multiple keywords exist
in the TransOut, we select the index that has the minimum
number of strings corresponding to it. This can reduce the
computation time, as we only retrieve a fraction of relevant
strings. Although, this optimization leads to runtime effi-
ciency, it heavily relies on the fact that ASR engine is very
unlikely to misrecognize SQL Keywords. As any ASR en-
gine cannot be perfect, we anticipate a drop in accuracy.

D.4 Proofs
Time and Space Complexity Analysis. Let n be the
length of TransOut, p be the number of nodes in the largest
trie, and k be the number of tries (value fixed to 50). In the
worst case, the algorithm would traverse each node of every
trie and would compute DpCurCol for each and every node.

Hence, the worst-case time complexity of the algorithm is
bounded by O(pkn). The maximum possible space required
by the algorithm is equivalent to number of tries times num-
ber of nodes in the largest trie. Hence, space complexity is
O(pk).

Box 3: The Literal Determination Algorithm
1: procedure LiteralFinder(TransOut,BestStruct):
2: RunningIndex = 0; FilledOut = BestStruct
3: for every placeholder xj in BestStruct do
4: while TransOut(RunningIndex) ∈ (KeywordDict or

SplCharDict) do
5: RunningIndex++
6: end while
7: BeginIndex(xj) = RunningIndex
8: EndIndex(xj) = RightmostNonLiteral(RightNonLiteral(xj))
9: A, positions = EnumerateStrings(BeginIndex(xj),

EndIndex(xj)))
10: B = RetrieveCategory(xj)
11: literal, k = LiteralAssignment(A,B,positions)
12: FilledOut(xj) = literal
13: RunningIndex = k+1
14: end for
15: return FilledOut
16: end procedure
17:
18: procedure EnumerateStrings(BeginIndex, EndIndex):
19: results = {};positions = {}; i = 0
20: while i 6= EndIndex do
21: j = i; k=0; curstr = ""
22: while TransOut(j) /∈ (KeywordDict or SplCharDict) AND

(j < EndIndex) AND (k < WindowSize) do
23: curstr = curstr + TransOut(j)
24: results.append(PhoneticRep(curstr))
25: positions.append(j)
26: j++;k++
27: end while
28: i++
29: end while
30: return results, positions
31: end procedure
32:
33: procedure LiteralAssignment(A, B, positions):
34: for every item b in B do
35: Initialize count(b) = 0; location(b) = -1
36: end for
37: for every item a in A do
38: set(a) = φ; minEditDist = ∞
39: for every item b in B do
40: if EditDist(a,b) < minEditDist then
41: set(a) = φ; set(a).add(b)
42: minEditDist = EditDist(a,b)
43: else if EditDist(a,b) == minEditDist then
44: set(a).add(b)
45: end if
46: end for
47: for every item b in set(a) do
48: count(b)++
49: location(b) = max(location(b),positions(a))
50: end for
51: end for
52: literal = argmaxb∈B (count(b))
53: k = location(b)
54: return literal, k
55: end procedure

E. LITERAL DETERMINATION
E.1 Algorithm
The inputs given to the Literal Determination compo-

nent are TransOut and best structure (BestStruct) obtained
from the Structure Determination component. As output,
we want to map a literal each to every placeholder vari-
able in BestStruct. To do so, we first identify the type
of the placeholder variable (table name, attribute name, or

14

Keyword Precision Rate SplChar Precision Rate Literal Precision Rate

Keyword Recall Rate SplChar Recall Rate Literal Recall Rate

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

C
D

F

ASR only

SpeakQL

Word Recall Rate

C
D

F
C

D
F

Word Error Rate

Figure 11: Cumulative distribution of accuracy metrics for top 1 results from Employees test dataset.

attribute value). This lets us reduce the number of Liter-
als to consider for a placeholder variable. We denote the
set containing relevant Literals for a placeholder variable by
set B. Next, we use TransOut to identify what exactly was
spoken for Literals. We segment TransOut to identify a set
of possible tokens to consider and form set A. Finally, we
identify the most phonetically similar literal by computing
edit distance between the phonetic representation of the two
sets A and B. Box 3 describes this in depth.

E.2 Literal Assignment Examples
As the final step of the literal determination algorithm,

we retrieve the most likely literal for a placeholder variable
by comparing the enumerated strings in set A and relevant
Literals in set B. The comparison is based on the character
level edit distance of the strings in phonetic representation.
One straightforward approach is to do an all-pairs compar-
ison to retrieve the item in set B that gives the minimum
edit distance with any item in set A. However, this approach
does not necessarily give the correct desired literal. We ob-
serve that ASR is likely to break apart a large token into a
series of sub-tokens with some sub-tokens erroneously tran-
scribed. Hence, there can exist a literal that has minimum
edit distance with a correctly transcribed sub-token but not
necessarily overall. Moreover, resolving ties with this ap-
proach is non-trivial and requires more tedious heuristics.
The two examples below illustrate this issue.

Example 1. SetA= {FRONT (FRNT), DATE (TT), FRONTDATE
(FRNTTT)} and setB = {FROMDATE (FRMTT), TODATE (TTT)}.
The ground truth literal is FROMDATE. But, the minimum edit
distance occurs between pair DATE and TODATE. Hence, the
approach of returning a literal in set B that gives minimum
edit distance with any item in set A would simply not work.

Example 2. Set A = {RUM (RM), DATE (TT), RUMDATE
(RMTT)} and set B = {FROMDATE (FRMTT), TODATE (TTT)}.
The ground truth literal is again FROMDATE. However, both
FROMDATE and TODATE give minimum edit distance of 1 with
RUMDATE and DATE respectively. To resolve this tie, we can
use an additional information that RUM has less edit distance
with FROMDATE, than with TODATE. Hence, now we have 2 out
of 3 items in set A for which edit distance with FROMDATE
is less than edit distance with TODATE. This would help us
retrieve FROMDATE with a greater confidence.

Query Number Query Number
%

 S
p

ea
ki

n
g

Ti
m

e

%
 S

Q
L

K
ey

b
o

ar
d

 T
im

e

A

B

Figure 12: Simple queries are marked from 1 to 6 and the
rest are complex. (A) Fraction of time spent in dictating the
query relative to the total end-to-end time (B) Fraction of
time spent in using the SQL keyboard relative to the total
end-to-end time.

F. END-TO-END EVALUATION

F.1 End-to-End system Accuracy
Figure 11 plots the CDF of the error metrics for the queries

on the Employees database.

F.2 User Study
Preliminary User Study. In our first pilot user study, we
recruited 15 participants; each composed 12 SQL queries on
the Employees database. Only English description of each
query was given. We compared two conditions for speci-
fying the query with a within-subjects design. In the first
condition, the participant had access to an old SpeakQL
interface that allowed them to dictate the SQL query and
perform interactive correction using only a drag-and-drop
touch interface. In the second condition, the participant
typed the SQL query from scratch with no access to our
interface. We record the end-to-end time taken and evalu-
ate our system using 144 data points (16 participants, 12
queries; some of the queries were not finished). We noticed
a speedup of just 1.2x when using SpeakQL in comparison
with raw typing. We realized this was because participants
were recruited without vetting them for their SQL knowl-
edge. Thus, many participants had little experience com-
posing SQL queries. As a result, many users dictated the
entire query twice or thrice and then used a drag and drop
based interface to correct the query.

Lessons Learned. This pilot user study taught us several
key lessons: (1) We did not vet the participants to ensure
they are representative of our target userbase. Unlike NLIs,
this version of SpeakQL is not aimed at lay users but rather

15

C
D

F

BC
D

F

Word Precision Rate Word Recall Rate

A

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 13: Cumulative Distribution of accuracy metrics for
top 1 results

KPR SPR LPR KRR SRR LRR

GCS 0.78 0.94 0.39 0.85 0.97 0.4

ACS 0.84 0.87 0.49 0.92 0.96 0.53

Table 4: Mean error metrics: Precision and Recall

data professionals that are already familiar with SQL and
the schemas they likely query regularly. Thus, we need more
vetting. (2) It was difficult for users to compose the entire
query in their head and dictate in one go. Research in cog-
nitive science also tells us that the human working memory
can retain a phrase or a context for a maximum of only
10 seconds [40, 44]. Although SQL was designed for typ-
ing, users often think of the query at the clause level, since
it has shorter contexts. Thus, supporting clause-level dic-
tation could make the interface more speech-friendly. (3)
Editing tokens in place required users to spend considerable
amount of time on drag and drop effort. Hence, support-
ing an SQL keyboard that allows users to quickly insert or
delete any incorrectly placed or transcribed token using just
a touch could make our interface more correction friendly.
In addition, an SQL keyboard will allow a user to correct a
query (or sub-query) out of order.

User Study Drill Down. We drill down deeper to see how
a user is interacting with SpeakQL. Figure 12 shows the %
time of the total end-to-end time that went into Speaking
out the query (plot A) and using the SQL Keyboard (plot
B). We notice that for the simple queries, SpeakQL is able
to get most of dictated queries correct. Hence, a user spends
most of their time in just dictating the query by either speak-
ing out the entire query or speaking out at the clause level.
Thus time spent in performing corrections using SQL key-
board is negligible or almost none. While for the complex
queries, the trend is exactly the opposite. Users prefer to
use the SQL Keyboard than speech when composing com-
plex queries.

F.3 ASR
We compare Google’s Cloud Speech Service (GCS) vs

Azure’s Custom Speech Service (ACS) on 500 test queries
belonging to the Employees database. We plot the CDF of
word precision and recall rates in the Figure 13. We notice
an improvement in word precision rate from mean of 0.62
for GCS to 0.67 for ACS and an improvement in word re-
call rate from mean of 0.65 for GCS to 0.73. For Google’s
Cloud Speech Service as shown in Table 4, we noticed that
the precision and recall rates for Keywords and SplChars are
high. This is because GCS allows them to be provided as
hints to the API. Hints are tokens that might be present in
the audio; they help the ASR engine pick between alternate
transcriptions. For example, if “=” is given as a hint, we

might get the “=” symbol instead of “equals” as text. De-
spite this, Azure’s Custom Speech Service fare significantly
well in recognizing Keywords and also Literals .

F.4 Structure Determination Latency
Figure 14 shows the CDF of time taken by this component.

We see that the latency is less than 1.5 s for almost 99% of
queries.

CD
F

Time (in sec)
Figure 14: Structure Determination component evaluation
on Latency.

F.5 Structure Determination Ablation Study
In this analysis, we would like to understand how effec-

tive these different optimization techniques are in reducing
latency and how much they affect accuracy, for the struc-
ture determination component. Figure 15 (A) shows the
CDF of TED. Note that the BDB is an accuracy preserv-
ing optimization. When we consider all the optimizations
(SpeakQL Default + DAP + INV), we notice a significant
amount of drop in accuracy. Number of queries having TED
of 0 drops from 86% to 21%. Also, the TED to deliver 99%
of the correct structures increases to 23 (from 10, which
was observed with SpeakQL Default). This is expected
because DAP does not explore all the branches contain-
ing special characters such as {=,<,>} and keywords such
as {AVG,SUM,MAX,MIN,COUNT} and {AND,OR}. On the other
hand, INV leads to only a minor drop in accuracy. This
is because the ASR is good enough not doing a mistake of
recognizing a literal as a keyword or a special character. If
that happens, then INV is expected to mess up and lead to
a larger drop in accuracy. Figure 15 (B) plots the CDF of
running time. When using only the prefix tries with BDB
turned off, we notice that an increase in running time by al-
most 2x. Thus, BDB helps in saving the running time by a
factor of 2. DAP leads to runtime gains of rougly 3.5x (com-
pared to SpeakQL Default) with almost 40% of the queries
finishing under 0.1 seconds. While, with INV runtime gain is
of roughly 1.7x. Thus, DAP and INV can be used to further
reduce the runtime, but would also lead to some amount of
drop in accuracy.

F.6 Literal Determination drill down
Figure 16(A) presents the CDF of recall rates for table

names, attribute names, and attribute values. We see that
recall rates for table names and attribute names are consid-
erably high, with a mean of 0.90 and 0.83, respectively. But
for attribute values, recall rate is low (mean of 0.68). To
see why this is the case, we break down attribute value into
different types.
Attribute values can either be a date, a real number, or

a string value. Figure 16(B) shows CDF of edit distance
for these different types with the ground truth. This shows
how much editing effort the user needs to correct an at-
tribute value. For example, almost 50% of the attribute

16

C
D

F

Token Edit Distance

A
SpeakQL Default

Default + DAP

Default + INV

Default + DAP + INV

C
D

F

B

Time (in sec)

SpeakQL Default

Default - BDB

Default + DAP + INV

Default + DAP

Default + INV

Figure 15: Ablation study of Structure Determination Com-
ponent

values of type string were correctly retrieved with a pho-
netic edit distance of 0. On the other hand, only 35% of
dates were returned perfectly. Dictating dates requires suc-
cessfully transcribing 3 tokens: day, month, and year; ASR
either omits or wrongly transcribes one of these 3 tokens,
leading to an increase in correction for dates. Finally, only
23% of numbers were detected exactly. This is because ASR
messes up when transcribing a number spoken with pauses.
e.g., “forty five thousand three hundred ten” is transcribed
as “45000 310.”

C
D

F

B

C
D

F

Recall Rate Edit Distance

A

Table Name
Attribute Name
Attribute Value

Dates
Strings
Numbers0.25

0.5

0.75

1.0

Figure 16: (A) CDF of Recall Rates for different Literal
types (B) CDF of edit distances for different attribute value
types. Edit distance evaluation for strings is phonetic, while
for Dates and Numbers is character-level.

F.7 Evaluation of Phonetic Edit distance
We evaluate how much a similarity search on a pre-computed

phonetic representation of existing Literals in the database
help relative to a string-based similarity search. That is,
we intend to compare character-level edit distance on pho-
netic representation with character-level edit distance on the
string. Phonetic representation helps us to provide a more
condensed representation of a literal. From Figure 17, we see
that it requires less phonetic distance compared to the char-
acter level edit distance in order to obtain the correct token.
For example, the correct literal exists within a character-
level edit distance of 17 from the transcribed literal. But
if we rely on the phonetic character-level edit distance, the
correct Literals can be found within edit distance of only 11.
In addition, we see that, almost 70% of the table names and
attribute names have edit distance of 0, while the character-
level edit distance on the phonetic representation is 0 for al-

most 80% of them. Thus, phonetic representation can help
in retrieving the extra 10% of the table names and attribute
names that were not found when doing the edit distance
on the full word representation. Overall, we find phonetic
representation helps in achieving higher accuracy.

C
D

F

B

Character level Edit Distance Phonetic level Edit Distance

A

Table Name
Attribute Name

Attribute Value

C
D

F

Figure 17: Evaluation of Character level Edit distance vs
Phonetic level Edit Distance

F.8 Evaluation with nested queries
To support one-level nested queries in SpeakQL, we em-

ployed a heuristic to detect if there exist a nested query
inside a query. If detected then we replace the substring
containing the nested query with a special placeholder vari-
able. We then apply our structure and literal determination
independently to both the original and the nested query.
Note that our dataset of spoken SQL queries does not con-
tain any nested queries. Since the major difficulty metric
for our system is not nesting but the number of tokens in
the query, this does not affect our evaluation. However, for
the sake of completeness, we evaluate SpeakQL on one-level
nested queries from Spider dataset [54] and present results
in Figure 18.

C
D

F
BC

D
F

Token Edit Distance Recall Rate

A

Table Name
Attribute Name
Attribute Value

Figure 18: Evaluation of nested queries in Spider dataset (A)
Structure Determination component with TED (B) Literal
Determination component with LRR.

F.9 Comparison against NLIs
In Section 1, we discussed that ASR can introduce a vari-

ety of errors in the transcription and can cause an NLI to fail
more when queries are spoken as to when queries are typed.
In this section, we show that the accuracy decreases signifi-
cantly when queries are speech-based than typing-based for
NLIs. In addition, we show that by leveraging “structure”
in SQL, SpeakQL can help bridge the gap in accuracy sig-
nificantly.

Datasets and NLIs. We use two large-scale human-annotated
datasets containing pairs of typed natural language queries
and typed SQL queries for evaluation: WikiSQL [55], con-
sisting of 15878 pairs and Spider [54], consisting of 1034 pairs
in the test set. For NLIs, we choose NaLIR [37] as baseline
and state-of-the-art (SOTA) ML-based approaches for se-
mantic parsing (natural language to SQL task): SQLova [34]
on WikiSQL and IRNet [33] on Spider. To the best of

17

WikiSQL Dataset Spider Dataset

Querying
system

Input
Modality

Spider
Accuracy

Execution
Accuracy

Spider
Accuracy

NaLIR
Typed 12.8 6.7 2.2

Speech 8.1 2.4 1.8

SOTA
(ML-based)

Typed 82.7 89.6 54.7

Speech 70.5 38.6 20.7

SpeakQL Speech 90.2 67.8 80.5

Table 5: Comparison of SpeakQL against NLIs.

our knowledge, there does not exist any general-purpose
open-source spoken NLI for evaluation. Thus, we adapt
existing typed NLI for speech-based inputs. We use Ama-
zon Polly [19] speech synthesis API to obtain both spoken
natural language and spoken SQL queries from the typed
queries. Next, we use Azure’s Speech Services’ API [20] to
obtain typed transcriptions. We then run the transcriptions
through different NLIs.

Evaluation Metric. We use 2 different metrics for ac-
curacy: (1) Spider’s exact match accuracy score [54]. This
evaluation script decomposes the query into different clauses
such as SELECT, WHERE, and so on. The predicted query
is correct only if the set of components match with those
of ground truth. (2) Execution accuracy of the query. The
predicted query is correct only if the results returned by
the predicted query and the ground query match exactly.
Note that the current text-to-SQL parsing task on the Spi-
der dataset does not involve generating values in the SQL
conditions. Thus, we can not evaluate execution accuracy
on Spider dataset.

Results with NLIs when queries are typed. We present
a comparison of SpeakQL against NLIs in Table 5. To
present a fair comparison with other approaches, we eval-
uate NaLIR in the non-interactive setting. We find that
NaLIR often fails when the query is posed as a question in
contrast to when posed as a statement. Thus, we convert
all queries with questions to statements for evaluating only
NaLIR. For example, “what is x?” is converted to “show me
x.” We find that the accuracy of NaLIR on both datasets is
quite low. This is because NaLIR is unable to resolve ambi-
guities automatically but rather relies on user interactions
for such resolution. On the other hand, SQLova and IRNet
achieve the best accuracy on respective datasets with typed
natural language queries.

Results with NLIs when queries are spoken. Interest-
ingly, with spoken natural language queries as input, the ac-
curacy drops significantly in comparison with typed queries.
For instance, the speech input on SQLova model leads to a
whooping 50% drop in the execution accuracy as compared
with the typed input. Wrong transcription of even a single
token (such as “and” transcribed to “in”) changes the mean-
ing of the query completely and “fools” the model into wrong
semantic parsing. We also conduct another experiment on
the Spider dataset where commas in the natural language
query are spoken out. We find that speaking out such struc-
tural element in the query raises the Spider accuracy score
of IRNet model by 2%. The lift in overall accuracy is not
high enough since there are only 5% queries with commas.
We find that speaking commas helped 34 out of 45 queries

to deliver the correct SQL, which is significant.

Results with SpeakQL. SpeakQL accepts spoken SQL
queries as input where all special characters are dictated.
We find that SpeakQL achieves significantly higher accuracy
than the SOTA NLIs with speech inputs. For instance, we
observe that the lift in Spider accuracy score is about 60% on
Spider dataset. However, on the WikiSQL dataset, the exe-
cution accuracy of typed SOTA NLI is better than SpeakQL.
This is because many literal values in the queries are long
with special characters such as ‘#21/#07 SS-Green Light
Racing’, leading to ASR transcription errors and therefore
causing SpeakQL to fail. In such cases, our human-in-the-
loop interface can help users to interactively correct such
errors. We also saw that the accuracy of SpeakQL largely
depends upon the number of tokens in the query. A longer
query can have more transcription errors than a shorter one
and thus correction becomes harder.

G. USER STUDY QUERY SET
Table 6 shows the query set used in the user studies.

H. GOOGLE FORM QUESTIONNAIRE RE-
SPONSES ROUND 1

I. GOOGLE FORM QUESTIONNAIRE RE-
SPONSES ROUND 2

18

Natural Language Query Ground Truth SQL Query

Simple Queries

Q1 What is the average salary of all employees? SELECT AVG (salary) FROM Salaries

Q2
Get the lastname of employees with salary more

than 70000
SELECT Lastname FROM Employees natural join Salaries WHERE Salary > 70000

Q3
Get the starting dates of the employees who are

working in department number d002
SELECT FromDate FROM DepartmentEmployee WHERE DepartmentNumber = 'd002'

Q4
Get the starting dates of the department managers
with the first name Karsten, sorted by hiring date

SELECT FromDate FROM Employees natural join DepartmentManager WHERE
FirstName = 'Karsten' ORDER BY HireDate

Q5
What is the total salary of all the employees who

joined on January 20th 1993?
SELECT SUM (salary) FROM Salaries WHERE FromDate = '1993-01-20'

Q6
What is the ending date and number of salaries for

each ending date of the employees?
SELECT ToDate , COUNT (salary) FROM Salaries GROUP BY ToDate

Complex Queries

Q7
Fetch the ending date, highest salary, least salary

and number of salaries for each ending date of the
employees whose joining date is March 20th 1990

SELECT ToDate , MAX (salary) , COUNT (salary) , MIN (salary) FROM Salaries
WHERE FromDate = '1990-03-20' GROUP BY ToDate

Q8
Fetch the joining date , ending date and salary of the
employees with first name either Tomokazu or Goh

or Narain or Perla or Shimshon

SELECT FromDate , salary , ToDate FROM Employees natural join Salaries WHERE
FirstName IN ('Tomokazu' , 'Goh' , 'Narain' , 'Perla' , 'Shimshon')

Q9
What is the first name and average salary for each

first name of the department managers?

SELECT FirstName , AVG (salary) FROM Employees , Salaries , DepartmentManager
WHERE Employees . EmployeeNumber = Salaries . EmployeeNumber AND

Employees . EmployeeNumber = DepartmentManager . EmployeeNumber GROUP
BY Employees . FirstName

Q10

Fetch all fields of the employees whose ending date
is October 9th 2001 or whose hiring date is May 10th
1996 or whose title is Engineer. Get only the first 10

records

SELECT * FROM Employees natural join Titles WHERE ToDate = '2001-10-09' OR
HireDate = '1996-05-10' OR title = 'Engineer' LIMIT 10

Q11
What is the gender, average salary , highest salary

for each gender type of the employees?
SELECT Gender , AVG (salary) , MAX (salary) FROM Employees natural join Salaries

GROUP BY Employees . Gender

Q12
Fetch the gender , birth date and salary of the

department managers, sorted by the first name

SELECT Gender , BirthDate , salary FROM Employees , Salaries , DepartmentManager
WHERE Employees . EmployeeNumber = Salaries . EmployeeNumber AND

Employees . EmployeeNumber = DepartmentManager . EmployeeNumber ORDER BY
Employees . FirstName

Table 6: Query set used for user study. Queries from 1 to 6 are simple and the rest are complex.

19

Round 1

20

Round 1

21

Round 1

22

Round 1

23

Round 1

24

Round 1

25

Round 1

26

Round 1

27

Round 1

28

Round 1

29

Round 2

30

Round 2

31

Round 2

32

Round 2

33

Round 2

34

	Introduction
	System Architecture
	Structure Determination
	SplChar Handling and Literal Masking
	Structure Generator
	Indexer
	Search Engine

	Literal Determination
	Category Assignment
	Transcription Output Segmentation
	Literal Assignment

	Interface
	Experimental Evaluation
	New Dataset for Spoken SQL
	Metrics
	End-to-End Evaluation
	User Study
	Component-level Drill Down
	Comparison with NLIs

	Related Work
	Conclusions and Future Work
	References
	Interview study
	Comparison against Spoken NLI
	SQL Grammar
	Structure Determination
	Algorithm
	Bidirectional Bounds (BDB) Example
	Accuracy-Latency Tradeoff Techniques
	Proofs

	Literal Determination
	Algorithm
	Literal Assignment Examples

	End-to-End Evaluation
	End-to-End system Accuracy
	User Study
	ASR
	Structure Determination Latency
	Structure Determination Ablation Study
	Literal Determination drill down
	Evaluation of Phonetic Edit distance
	Evaluation with nested queries
	Comparison against NLIs

	User Study Query set
	Google Form Questionnaire Responses Round 1
	Google Form Questionnaire Responses Round 2

