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ABSTRACT
The paradigm of AutoML has created an opportunity to enable ML
for the masses. While many works have looked into the automated
model selection or hyper-parameter search in AutoML, little work
has studied how good automated data preparation (prep) is. For-
malizing data prep tasks and creating benchmark labeled datasets
can help objectively validate and improve AutoML platforms. In
this work, we objectively benchmark a critical data prep task: ML
feature type inference. The semantic gap between attribute types
(e.g., strings, numbers) in databases/files and ML feature types (e.g.,
Numeric, Categorical) necessitates type inference. We formalize and
standardize this task by creating the first ever benchmark labeled
dataset. Our dataset has 9921 examples and a 9-class label vocabu-
lary. Our labeled data also offers an alternative approach to auto-
mate this task than existing rule-based or syntax-based approaches:
use ML itself to predict feature types. We collate a benchmark suite
of 30 classification and regression tasks to assess the importance of
type inference for downstream models. Empirical comparison on
our labeled data shows that an ML-based approach delivers a lift of
an average 14% and up to 38% in accuracy for identifying feature
types compared to prominent industrial tools. Our downstream
benchmark suite reveals that the ML-based approach outperforms
existing industrial-strength tools for 47 out of 60 downstream mod-
els. We release our labeled dataset, models, and downstream bench-
marks in a public repository with a leaderboard. They are available
for download from https://adalabucsd.github.io/sortinghat.

1 INTRODUCTION
Surveys of data science practitioners show that Machine Learning
(ML) over structured data is gaining popularity [38]. Several suit-
able data preparation (prep) steps are performed before building
any ML model on such data. This makes data prep particularly
challenging and laborious because it involves many diverse tasks
such as inferring feature types, performing feature transformations,
and cleaning feature values.

With the promise of automating the end-to-end ML workflow,
including data prep, cloud vendors have released AutoML plat-
forms such as Google’s Cloud AutoML [6] and Salesforce’s Ein-
stein [8] that build ML models on millions of datasets from thou-
sands of small-and-medium enterprises automatically. There exist
open-source tools such as TransmogrifAI in Einstein [10], Tensor-
flow Data Validation (TFDV) in TensorFlow Extended [15], and
AutoGluon from AWS [17] that automate many data prep tasks for
structured data. But the effectiveness of their data prep automation
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Figure 1: Typical workflow in AutoML platforms.

is not known because there are no objective benchmarks for eval-
uation. Benchmark tasks and datasets for ML data prep will help
advance the science of AutoML platforms by enabling answers to
key questions: How good is data prep in such AutoML tools? How
can one do better? How does data prep accuracy affect downstream
ML model accuracy?

Our Focus.We take a step towards answering such questions by
initiating work on benchmarking the accuracy of data prep steps
systematically. In this paper, we focus on the very first and a critical
data prep step for ML over structured data:ML feature type inference.
We formalize and standardize this task by creating a benchmark
labeled dataset. This will enable an objective progress measurement,
akin to ImageNet’s role in vision [35], except we go further because
data prep is still an ill-defined space. Note that, data prep has many
other important steps too. But it is impractical to study all steps
in-depth in one paper; thus, we leave other steps to future work.
Problem: ML Feature Type Inference. Features could be Nu-
meric, Categorical,or something else, as shown in Figure 1. Depend-
ing upon the inferred types, suitable data transformation steps may
be applied, and then the downstream model is built. For instance, if
a column is inferred with type Timestamp, then several useful fea-
tures such as day, month, and year can be extracted automatically
to build the downstream model. Thus, the accuracy of ML feature
type inference is critical for the downstream model’s accuracy be-
cause the AutoML platform can then deal with features accordingly.
Even more importantly, the predictions are more interpretable with
accurate feature types.
Importance. Our conversations with AutoML platform engineers
at Google and SalesForce revealed that their tools are used on over
tens of thousands of datasets, adding up to millions of features in
production settings. Forcing users to manually annotate features
can lead to a tedious, slow, and error-prone process that also vio-
lates the promise of end-to-end AutoML. Thus, AutoML platform
engineers prefer ever more accurate automation of type inference.

https://adalabucsd.github.io/sortinghat


CustID Gender Age ZipCode XYZ Income HireDate Churn

1501 ‘F’ 25 92092 005 ‘USD 15000’ ‘05/01/1992’ ‘Yes’

1704 ‘M’ 34 78712 003 ‘25384’ ‘12/09/2008’ ‘No’

Figure 2: A simplified Customers data for churn prediction.

Challenge.We explain why feature type inference is hard to auto-
mate for existing rule-based or syntax-based systems. Datasets are
typically loaded from RDBMSs, data lakes, or filesystems as flat CSV
files into the AutoML platforms. Thus, there exists a semantic gap
between feature types for ML and attribute types in databases/files.
The latter tells us the syntactic datatypes of columns such as in-
teger, real, or string. This semantic gap means reading syntax as
semantics often leads to nonsensical results.
Example. Consider the dataset for a common ML task, customer
churn prediction in Figure 2. We immediately see two major issues
caused by the semantic gap. (1) Attributes such as HireDate, Gender,
Income, andChurn are stored as strings, but not all of them are useful
as Categorical features. For instance, Income is actually Numeric
but some of its values have a string prefix. (2) Attributes such as
CustID, Age, ZipCode, and XYZ are stored as integers, but only Age
is useful as Numeric. CustID is unique for every customer, hence it
can not be generalized for ML. Inspecting only the column XYZ, it
is difficult to decide if the feature is Numeric or Categorical. ZipCode
is Categorical, even though it is stored as integers. In fact, this
issue is ubiquitous in real-world datasets, since categories are often
encoded as integers, e.g., item code, state code, etc.

We ran TFDV on a dataset as above and found the following.
It wrongly calls many Categorical features with integer values as
Numeric, e.g., ZipCode. This can cause the downstream model to
produce garbage results. Moreover, Income is inferred as Categorical
even though it has numbers embedded. Such issues can lead to
loss of information and can potentially reduce the accuracy of the
model, or even cause it to fail in some scenarios. Thus, it is critical
to objectively measure not only the accuracy of the type inference
task but also its impact on the downstream model’s accuracy.
Our Labeled Dataset and Label Vocabulary. Creating labeled
data for the task requires a common formalized label vocabulary,
which is important to create because the dichotomy of Numeric
vs. Categorical is not usually enough for categorizing feature types
of raw columns. For instance, column HireDate in Figure 2 stores
Date type values. Thus, we need more classes. We surveyed existing
AutoML data prep tools and collected them into a common and
practically useful set of labels that are alreadywidely used: ones that
require some type of processing before being used as a feature, ones
that are non-generalizable, and the ones that are “hard” to judge
purely automatically.We gather and hand-label the very first large
meta-dataset for benchmarking feature type inference. Our dataset
has 9921 columns from 1240 real data files. Our labeling process
took about 90 man-hours across 5 months.
Approaches to Type Inference. There are open-source tools such
as Pandas [31], TransmogrifAI [10], TFDV [15], and AutoGluon [17]
that automate this task. They all happen to be either rule-based or
syntax-based. In contrast to prior approaches, our labeled dataset
also presents an alternative approach to type inference: use ML
itself to automate this task. We cast ML feature type inference as a
multi-class classification problem and use ML models to bridge the

semantic gap. We extract signals from raw data files that a typical
data scientist may look at to identify the feature type.We summarize
the signals in a feature set, which we use to build standard ML
models on our labeled data. We empirically compare the ML-based
approach enabled by our labeled data and existing public tools on
our labeled test dataset.
Downstream Benchmark Suite. To understand the impact of
the accuracy of ML feature type inference task on the downstream
models, we create a downstream benchmark: 30 curated real-world
datasets containing classification and regression tasks from di-
verse application domains such as healthcare, retail, sports, etc.
The benchmark enables us to answer two key questions: (1) How
does wrong type inference affect downstream performance? (2)
How accurate are the downstream models delivered by the prior
tools and the ML-based approach using our labeled data relative to
performance with true feature types?
Empirical Evaluation and Analysis. An empirical comparison
of different approaches on our labeled data shows that the ML-
based approach delivers a lift of an average 14% and up to 38% in
accuracy compared to existing tools for identifying feature types.
We then evaluate and compare different ML models on our dataset.
Overall, Random Forest outperforms the other models and achieves
the best 9-class accuracy of 92.6%. We perform an ablation study
on our ML models to characterize what types of features are useful.

Our empirical evaluation on the downstream benchmark suite
shows that an ML-based approach using our labeled data delivers
the most accurate downstream model against the prior tools for 47
out of 60 downstream models. In addition, we find that the wrong
types inferred by existing tools often lead to a significant decrease
in the downstream model’s accuracy relative to their true accuracy.
For instance, Pandas underperforms over truth in 45 out of 60 cases.
Furthermore, we notice that the current label vocabulary of many
tools is not sufficient for building an accurate downstreammodel. Fi-
nally, we release a repository containing our labeled dataset, trained
ML models, downstream benchmarks, and announce a leaderboard
for community contributions.
In summary, our work makes four key contributions.
1. Formalization of a key data prep task. We formalize and
standardize the type inference task with our benchmark labeled
dataset and a readily practically useful 9-class label vocabulary.

2. Utility of our labeled dataset. Using the benchmark dataset
we created, we show that off-the-shelf ML models with standard
featurization can outperform the industrial-strength public tools.

3. Downstream benchmark suite. The curated benchmark offers
evidence that the downstream model’s performance can benefit by
accurately determining feature types. Moreover, we show that an
ML-based approach using our labeled dataset is even valuable to
produce accurate downstream models.

4. Real-world impact. Google is collaborating with us to adopt
the best performing models on our labeled dataset into TDFV to im-
prove its inference of Categorical type. We release a public competi-
tion on our labeled dataset to invite contributions to create/augment
datasets, better featurization schemes, and models.



Fitness for EAB track: To the best of our knowledge, this is the
first paper to present a benchmark dataset for the task of feature
type inference. We perform an empirical comparison of existing
tools and ML-based methods on our data. We also present a down-
stream benchmark suite and an empirical comparison of different
approaches on it. Thus, we believe this paper is a good fit for EAB.

2 BACKGROUND
2.1 ML Terms and Concepts
We explain the ML terms and concepts relevant to this work intu-
itively and refer the interested readers to [23, 32] for a complete
background. We focus on supervised ML models that require a
dataset with labeled examples to learn their parameters. A trained
model’s prediction error (or accuracy) is measured using a test
dataset not used for training. The test error has three components:
bias, variance, and noise [37]. Bias quantifies the error occurring
due to assumptions made by the model representing its complex-
ity. Variance quantifies the error resulting due to changes in the
training data. Thus, a simpler model with few parameters has high
bias and low variance, while a complex model with large number
of parameters has a higher variance but a lower bias; this is the
bias-variance trade-off. It is used to quantify generalization ability
of the model given by the difference between test and train error.

2.2 Assumptions and Scope
We focus on relational data, which is typically stored with schemas
in RDBMSs or as “schema-light” files (CSV, JSON, etc.) on data lakes
and filesystems. Either way, we assume the dataset is logically a
single table with all column names available. Several data prep
steps must be applied to build ML models on such data. We focus
on a major step, the ML feature type inference. We leave other data
prep steps to future work. Note that our focus is not on feature
engineering over prepared data. Also, to avoid ambiguity, we call
the ML model to be trained on the prepared data the “downstream
model.” For example, one might load a customer table to train a
downstream model for predicting customer churn.

3 OUR DATASET
This section discusses our efforts in creating the labeled dataset.
We discuss how we design the label vocabulary, the data sources,
the signals we extract from the columns that enable us to inspect
the columns succinctly, and the labelling process.

3.1 Label Vocabulary
Most ML models ultimately operate over only 2 (final) feature types:
Numeric (continuous set) and Categorical (discrete set). Thus, each
example (or column) has to be labelled as either of the two classes.
However, we find that this bifurcation is not enough. This is because
many other column types such as Date, URL, and Primary Keys are
inevitable in the raw data file. Moreover, we find that the data
file may not contain enough information to determine the feature
type of a column, even for humans, e.g., column XYZ in Figure 2.
Thus, we need more classes. We surveyed how the existing open
source data prep tools such as Google’s TFDV [15], TransmogrifAI
in Salesforce Einstein [10], and AutoGluon from Amazon AWS [17]
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approach type inference and perform type-specific feature transfor-
mations. Figure 3 shows the feature type vocabulary of these tools.
Inspired by this, we distill a common and practically useful set of
labels for our vocabulary. We discuss the labels below.

(1) Numeric. These attributes are quantitative in nature and can
directly be utilized as a Numeric feature for the downstream ML
model. For instance, Age is Numeric, while ID attributes such as
CustID or integers representing encodings of discrete levels are not.
Note that all numbers can always be represented as categories by
discretizing them. Thus, it is indeed possible to give numbers as a
Categorical feature. However, most ML models benefit by operating
on numbers directly because they can create infinite feature spaces.
In contrast, a discrete set of categories is only a finite space. There
is a loss of information going from numeric to a discrete category.

(2) Categorical. These attributes contain qualitative values that
can directly be utilized as Categorical features for the downstream
ML model. There are two major sub-classes: nominal and ordinal.
Ordinal features have a notion of ordering among its values, while
nominal do not. For instance, Year is ordinal, while ZipCode is
nominal. Names and coded real-world entities from a known finite
domain set are also Categorical. One often needs to alter the syntax
of Categorical features for the downstream model, e.g., one-hot
encoding in Scikit-learn or explicitly cast as a “factor” variable in R.

(3) Datetime. This class represents attributes containing date or
timestamp values, e.g., “7/11/2018”, and “21hrs:15min:3sec.” One may
choose to extract custom features, either Numeric or Categorical
or both through standard featurization routines. For instance, the
month of the year can be Categorical, while time can be Numeric.
Note that, such feature engineering decisions are not focus of this
work since they are typically application-specific.

(4) Sentence. This class represents attributes containing textual
values with semantic meaning. For instance, a passage of text may
provide rich semantic information for a sentiment analysis applica-
tion. One may choose to extract custom features, either Numeric or
Categorical, or both through standard featurization routines. For
instance, the AutoML platform developer can route such columns
to an 𝑛-gram featurization routine or a routine to get Word2Vec
embeddings from an English sentence for the downstream model.
Again, we leave such downstream feature engineering decisions
that come after type inference to the AutoML platform developer.



(5) URL. This class is for attributes whose values follow the URL
standards [13]. This requires that the attribute values begin with
a protocol followed by a sub-domain and a domain name. Any
following information such as a file path is optional.

(6) Embedded Number. This class denotes attributes with “messy”
syntax that preclude their direct use as Numeric or Categorical
features. Thus, they require some form of processing before being
used as as features. For instance, a number may be present along
with string(s) denoting a measurement unit (“30 Mhz” or “USD
45” ) and/or special characters (“5,00,000” ). In all cases, a number
is typically extracted and the units are standardized (if applicable).
One would typically use regular expressions or custom Python/R
scripts for such extraction, e.g., converting “USD 45” to 45.

(7) List. These attributes contain a list of items separated by a
delimiter. One may write custom scripts to extract the domain of
the list values and then get new features from the list domain for
the downstream model.

(8) Not-Generalizable. An attribute in this class is a primary key
in the table or has (almost) no informative values to be useful as
a feature. Similarly, a column with only one unique value in the
whole table offers no discriminative power and is thus useless. Such
attributes are most unlikely to be used as features for the down-
stream model because they are not “generalizable.” For example,
CustID belongs to this class, since every future customer will have a
new CustID. It is quite unlikely that one can get any useful features
from it. Note that an attribute categorized as Not-Generalizable does
not mean that it can never be useful for the downstream model.
One may obtain some features from such attributes through more
custom processing or domain knowledge. On the other hand, even
though attributes such as Income and Date may have all unique val-
ues in their columns, they are still generalizable. Thus, they belong
to Embedded Numbers and Datetime respectively since it is highly
likely that one can extract useful features from them.

(9) Custom-Specific. This class is a catch-all for attributes that
require human intervention either to determine their feature types
and/or to inspect their values to build custom featurization routines.
The following examples illustrate this class. (1) Attributes wherein
the data file does not have enough information even for a human
to judge its feature type. Such columns typically have meaningless
names, e.g., XYZ in Figure 2. Judging the feature type would require
manually tracing down the provenance of how this column came to
be using external “data dictionaries” maintained by the application
or speaking to the data creator. (2) Attributes whose values require
manual inspection for extracting useful features, e.g., JSON objects,
geo-locations, addresses, or other complex objects that contain
information dump about the data.

Our 9-class label vocabulary, while limited, is already practi-
cally useful for AutoML platforms. The label vocabulary can also
give other insights to an AutoML platform developer. For instance,
they could look for tables to join when faced with a large-domain
Categorical feature such as ZipCode. They could route attributes
marked as Embedded Numbers or Datetime to suitable Python/R
scripts. Moreover, they could dispatch the columns that are marked
Not-Generalizable for any missing values or errors in data entry to

appropriate libraries. Finally, they could prompt for user interven-
tion on only the columns that are marked Context-Specific. This can
reduce user time spent on annotation significantly.

3.2 Data Sources
We gather 1240 CSV data files from sources such as Kaggle and UCI
ML repository. Each column of the CSV file is just one example
for our task. We obtain 9921 examples from all data files. Note that
we do not always use all the columns from a single data file for
labeling. We explain this in Section 3.4. Kaggle and UCI ML are the
largest public data sources that are closest to real-world datasets.
However, we note a caveat that the files on Kaggle and UCI ML
may have undergone some pre-processing. It is almost impossible
for researchers to get access to large numbers of truly “in-the-wild”
data from enterprises and other organizations and make them pub-
licly available due to legal restrictions. We hope this paper starts
a conversation around enhancing such benchmark datasets. We
are already working with industry collaborators towards this goal
of deploying the models in-the-wild. But the crux of our point in
this paper is this: even on data files from Kaggle and UCI, existing
open-source and industrial tools yield relatively poor accuracy com-
pared to the ML models trained on our data (Section 5.2). Thus, we
believe our work is a promising start towards objectively evaluating
AutoML platforms.

3.3 Base Featurization
To identify the feature type of a raw column, a human data scientist
may look at the column name, some sample values in the column,
and even descriptive stats about the column. For instance, just
by reading the attribute name, ZipCode, an interpretable string, a
human can tell its feature type is Categorical. Thus, we represent
the columns in a more concise way such that it emulates what a
typical data scientist may look at to determine the feature type.
We call this step Base Featurization. We extract the following base
features for every column in the raw data file.
(1) Column name. We extract the column name as it can give
crucial semantic clues for the feature type.
(2) Column values. A human would typically inspect some values
in the column to make sure they make sense. For instance, values
with decimal points are likely to mean Numeric features, while
values with delimiters are likely lists. Thus, we extract 5 randomly
sampled distinct attribute values from the column.
(3) Descriptive statistics. Finally, a human would look at some
descriptive stats about the column. For instance, if the human finds
that all values in the column are NaNs, then they might classify
the column as Not-Generalizable. Based on this observation, we
extract 25 descriptive statistics for a column such as percentage of
distinct values, percentage of NaNs, mean, standard deviation, mini-
mum value, maximum value, and an average number of whitespace-
separated tokens. We provide the complete list of these 25 features
in the appendix.

Each column in the raw data file is an example in the new base
featurized file and we manually label every example of the base
featurized file. The base featurization step also helps to deliver an
ML-based approach to type inference (Section 4.3).



3.4 Labelling Process
We first use base featurized columns from 360 source files to label
them in one of the nine classes. But, we find that they only contain a
small handful of examples for the classes:URL, List, Sentence, Embed-
ded Number, and Datetime. Thus, we use an additional 880 source
data files to only label the examples for the under-represented
classes. In addition, we find that many data files have a series of
column names such as xyz1, xyz2, and so on. Thus, we drop the
columns with repeating series of names.

To reduce the cognitive load of labelling, we follow the following
process. Initially, we manually label 500 examples. We then use
Random Forest with 100 estimators to perform 5-fold nested cross-
validation (CV). The model achieves a classification accuracy of
around 74% on the test set (average across 5 folds).We use thismodel
to predict a class label on all of the 9921 examples. We then group
all the examples by these predicted labels and inspect all of them
manually. Such grouping helps reduce the cognitive load caused
by class context switches during labeling. The labeling process took
about 90 man-hours across 5 months.

We also tried to crowdsource labels on the FigureEight platform
but abandoned this effort because the label quality was too low
across two trial runs. We suspect high noise arises because this task
is too technically nuanced for lay crowd workers relative to popular
crowdsourcing tasks like image recognition. Devising better crowd-
sourcing schemes for our task with lower label noise is an avenue
for future work. We summarize the results of our crowdsourcing
effort in the appendix.

3.5 Data Statistics
The distribution of class labels in our labeled dataset is: Numeric
(36.6%), Categorical (23.3%), Datetime (7%), Sentence (3.9%), URL
(1.5%), Embedded Number (5.7%), List (2.4%), Not-Generalizable
(10.6%), and Custom-Specific (8.9%). We provide a complete break-
down of the cumulative distribution by class for different descriptive
stats in the appendix.

4 APPROACHES COMPARED
In this section, we discuss the different approaches to type infer-
ence. We first discuss existing open-source tools that all happen
to be either rule-based or syntax-based. We then briefly discuss an
intuitive rule-based baseline to check if a set of rules can accurately
capture our labeled dataset. Finally, we explain how our labeled
dataset is used to build ML models.

4.1 Existing Tools
Figure 3 shows the feature type vocabulary of these tools and how
they map to our label vocabulary.
Tensorflow Data Validation (TFDV). TFDV is a tool to analyze
and transformML data in TensorFlow Extended (TFX) pipeline [15].
TFDV uses conservative heuristics to infer ML feature types such
as numeric, categorical, time or date domain, or natural language
text from the descriptive statistics about the column. The users
can then review the inferred feature types and can update them
manually to capture any domain knowledge about the data that the
heuristics might have missed.

Pandas. Pandas is a Python library that provides tools for data
analysis and data transformations. It infers syntactic types such as
integer, float, or object [31]. It also provides a utility function that
can check the column for the datetime type.
TransmogrifAI. This is an AutoML library for structured data in
Salesforce’s AutoML platform called Einstein [10]. TransmogrifAI
supports rudimentary automatic feature type inference over primi-
tive types such as Integer, Long, Double, Timestamp, and String. It
also has an extensive vocabulary for feature types such as email,
phone numbers, zipcodes, etc. However, users have to manually
specify these feature types for their data.
AutoGluon-Tabular. AutoGluon is an end-to-end AutoML frame-
work from AWS [17]. It classifies each column into numeric, cat-
egorical, date/time, text, or columns that needs to be discarded
because they can’t be classified into any of the classes.

4.2 Rule-based Baseline
We develop a rule-based baseline approach to validate if a set of
rules can accurately represent our labeled dataset. We write 11
rules to capture all the classes using a flowchart-like structure. As
an example, if % of NaN values in the column are greater than
99.99% then we mark it as Not-Generalizable. We describe our rule-
based approach in-depth in the appendix. We find that it is highly
cumbersome and perhaps even infeasible to hand-craft a perfect
rule-based classifier.

4.3 ML-based Approach using our Data
As shown in Figure 4, we use our labeled data to build standard
ML models. Base Featurization is a common step for all ML models.
Some ML models cannot operate on the raw characters of attribute
names or sample values. Thus, we extract hand-crafted feature sets
from the attribute names and sample values. We then train several
classical ML models, 𝑘-NN with a distance function tuned for our
task, and a CNN. Finally, the pre-trained model is used to infer
feature types for columns in an “unseen” CSV file. At the scale of
AutoML platforms where there are potentially millions of columns,
human intervention can be costly and slow. The models output
predictions and the corresponding confidence scores for each class.
Thus, an ML-based approach allows users to intervene to prioritize
their effort towards Context-Specific types or columns with low
confidence scores that may need more human attention.

4.3.1 Feature Extraction. The attributeswith similar names can
likely belong to the same class. For instance, both attributes temper-
ature_jan and temperature_feb are Numeric. Similarly, knowing that
the sequence of characters are numbers followed by a “/,” can give
an indication of Datetime. Based on these intuitions, we extract an
𝑛-gram feature set from the attribute names and sample values.
Notation.We denote the descriptive stats by X𝑠𝑡𝑎𝑡𝑠 , the attribute
name by X𝑛𝑎𝑚𝑒 , and the randomly sampled attribute values by
X𝑠𝑎𝑚𝑝𝑙𝑒 (first sampled value is referred to asX𝑠𝑎𝑚𝑝𝑙𝑒1 and similarly
for other values). We leverage the commonly used bigram feature
set on the attribute name (denoted by X2𝑛𝑎𝑚𝑒 ) and sample value
(denoted by X2𝑠𝑎𝑚𝑝𝑙𝑒 ).

4.3.2 Classical ML models. We consider classical models: Lo-
gistic Regression, RBF-SVM, and Random Forest. Note that they can-
not operate on raw characters of attribute names or sample values.



Raw CSV file1. Base 
Featurization

# Attribute
Name

Descriptive Statistics Sample Values

Mean % Distinct Vals … Sample1 Sample2 …

1 Age 42.75 75 34 56

2 CustID 102.5 100 102 104

3 XYZ 2.5 75 002 001

4 ZipCode 92092.75 50 92093 92092

5 Income 100 USD 100 1000

CustID
(Varchar)

Zipcode
(Int)

Income
(Varchar)

Age 
(Int)

XYZ
(Varchar)

101 92092 12000 25 005

102 92093 USD 100 56 001

103 92093 50000 34 002

104 92093 1000 56 002

3. Model-specific 
feature extraction

# bigrams 
on Name Stats bigrams 

on sample1

1 ag,ge … 34

2 cu, us, st, … … 10, 02

3 xy, yz … 00, 02

4 zi, ip, pc, … … 92,20, …

5 in, nc, … … us, sd, …

ML model 
trained on our 
labeled data

Gender CName

M AMAZ

F MSFT

M GOOGL

M MSFT

Label
Confidence

Gender CName

Numeric 0 0

Categorical 0.99 0.45

Context-Specific 0.01 0.55

… … …

User may intervene 
to inspect Context-
Specific or less 
confident columns 

4. Training

New CSV file

Model Predictions

# Labels

1 Numeric

2 Not-Generalizable

3 Context- Specific

4 Categorical

5 Embedded Number

2. Manual  
Labeling
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Figure 4: Workflow showing our labeling process and how our data is used for ML-based feature type inference.

Thus, we use features: X𝑠𝑡𝑎𝑡𝑠 , X2𝑛𝑎𝑚𝑒 , X2𝑠𝑎𝑚𝑝𝑙𝑒1, and X2𝑠𝑎𝑚𝑝𝑙𝑒2.
For scale-sensitive models such as RBF-SVM and logistic regression,
we standardize X𝑠𝑡𝑎𝑡𝑠 to have mean 0 and standard deviation 1.

4.3.3 Nearest Neighbor. Most implementations of 𝑘-NN use a
simple Euclidean distance. But, we can adapt the distance function
for the task at hand to do better. Thus, we define the weighted
distance function as:

𝑑 = 𝐸𝐷 (𝑋𝑛𝑎𝑚𝑒 ) + 𝛾 · 𝐸𝐶 (𝑋𝑠𝑡𝑎𝑡𝑠 )

Here, 𝐸𝐷 (resp. 𝐸𝐶) is the edit distance (resp. euclidean distance)
between 𝑋𝑛𝑎𝑚𝑒 (resp. 𝑋𝑠𝑡𝑎𝑡𝑠 ) of a test example and a training ex-
ample. 𝛾 is the parameter that needs to be tuned during training.

4.3.4 CNN. Inspired by the success of CNN on short text classifi-
cation tasks [43, 44], we leverage a character-level CNN for our task.
We present the architecture and layers of CNN in the appendix.
The network takes attribute name, descriptive stats, and sample
values as input and outputs the class from the label vocabulary. The
attribute name and descriptive stats are fed into the CNN module
consisting of 3 cascading layers: 2 1-D CNN and a global max-
pooling layer. We concatenate all CNN modules with descriptive
stats and feed them to an MLP. The whole network can be trained
end-to-end using backpropagation.

5 EMPIRICAL STUDY AND ANALYSIS
We now empirically compare the industrial open source tools and
ML models on the accuracy of type inference. This is the very
first empirical comparison of this sort of these tools, thanks to our
new benchmark labeled dataset. The headline result is that our ML
models substantially surpass these prior tools on test accuracy.

5.1 Methodology and Setup
Methodolody. We partition our labeled dataset into a train and
held-out test set with 80:20 ratio. We perform 5-fold nested cross-
validation of the train set, with a random fourth of the examples in
a training fold being used for validation during hyper-parameter
tuning. We use a standard grid search for hyper-parameter tuning.
The grids are described in the appendix. We also did a 5-fold leave-
data file out cross-validation to “stress-test” the ML models for
new data files. The raw data files were split into 60:20:20 train,
validation, and test partitions where each partition has all columns

of a particular data file. Thus, the test partition has columns of the
raw data files that the model has not seen before. The trends of the
leave-data file out approach are similar to the former approach; so,
we defer its details to the appendix.
Experimental Setup. We use CloudLab [16] with custom Open-
Stack profile running Ubuntu 18.04 with 10 Intel Xeon cores and
192GB of RAM. For TFDV, Transmogrifai, AutoGluon, and Pandas,
we use version number 0.22.2, 0.7.0, 0.0.11, and 0.25.3 respectively.
Metrics. Our key metric is prediction accuracy, both for the 9-class
task and class-specific binarizations. We also report full confusion
matrices in the appendix.

5.2 Comparison of All Approaches
We compare ML models trained on our dataset against the open-
source tools on our labeled data. Figure 3 showed the feature type
vocabulary of these tools and how they map to our label vocabulary.
Since none of these tools support our full 9-class vocabulary, we
report the results on binarization of our vocabulary: Numeric vs.
all Non-Numeric, Categorical vs. all Non-Categorical, and similarly
for other classes.
Results. Table 1 presents the precision, recall, and overall 2 x 2
diagonal accuracy results of all tools on our benchmark labeled test
set. We also report the performance of the models trained on our
benchmark labeled train set. We present the results in-depth below.
(1) We see that the ML models achieve significantly higher accuracy
than all industrial tools across the board for all feature types. For
instance, we see a lift of 28% and 14% in accuracy in predicting
Categorical compared to TFDV and AutoGluon respectively. Of all
approaches, Random Forest achieves the best accuracy in inferring
the feature types.
(2) Interestingly, all the existing tools have a high recall on Numeric
but very low precision. This is because their heuristics are syntactic,
which leads them to wrongly classify many Categorical features
such as ZipCode as Numeric. The ML models have a slightly lower
recall on Numeric. This is because with many features thrown, they
get slightly confused and could wrongly predict a Numeric type as
non-numeric. But, the ML models have much higher precision and
high overall accuracy.



Feature Type Metric
Open-source Industrial Tools Baseline Models trained on our data

TFDV Pandas TransmogrifAI AutoGluon Rule-based Log Reg CNN Rand Forest

Numeric

Precision 0.657 0.614 0.605 0.646 0.773 0.909 0.929 0.934

Recall 1 1 1 1 0.946 0.943 0.941 0.984

Accuracy 0.814 0.776 0.767 0.805 0.882 0.946 0.953 0.97

Categorical

Precision 0.396

- -

0.667 0.577 0.808 0.846 0.913

Recall 0.652 0.534 0.457 0.884 0.928 0.943

Accuracy 0.691 0.831 0.798 0.925 0.945 0.966

Datetime

Precision 0.985 0.956 1 1 0.559 0.951 0.925 0.945

Recall 0.475 0.915 0.454 0.844 0.135 0.972 0.965 0.972

Accuracy 0.962 0.991 0.961 0.989 0.931 0.994 0.992 0.994

Sentence

Precision 0.472

- -

0.516 1 0.913 0.725 0.865

Recall 0.457 0.902 0.043 0.793 0.804 0.902

Accuracy 0.951 0.956 0.956 0.987 0.977 0.989

Not-
Generalizable

Precision

- - -

0.465 0.216 0.732 0.81 0.934

Recall 0.53 0.507 0.732 0.66 0.86

Accuracy 0.883 0.747 0.947 0.937 0.978

Context-
Specific

Precision

-

0.08 0.074

-

0.211 0.747 0.741 0.859

Recall 0.295 0.295 0.195 0.621 0.663 0.705

Accuracy 0.609 0.582 0.853 0.944 0.946 0.961

Table 1: Binarized class-specific accuracy of different approaches on our benchmark labeled held-out test dataset. The bold
fonts highlight the most accurate approach/model per class.

(3) Heuristics for identifying Datetime by all the existing tools have
high precision, even higher than the ML models. However, their
rules do not capture manyDatetime type instances (e.g., an attribute
named BirthDate “19980112”); thus, they have a much lower recall.
(4) The heuristic rules of AutoGluon and TFDV are largely depen-
dent upon the number of words in a string for accurately inferring
Sentence type. Thus, a column with most of its values having a large
number of words will likely get inferred as Sentence by these tools.
However, a Categorical or Context-Specific column (e.g., containing
JSON object) can satisfy the criteria provided by the rules. Thus,
AutoGluon and TFDV have low precision on Sentence. On the other
hand, the ML-based approaches have much higher precision.
Other Commercial Tools. There exist other commercial tools that
also automate the ML feature type inference task such as Google
AutoML Tables [5], DataRobot [2], and Trifacta [11]. However,
since these systems are closed source, we do not know how these
tools work. It is also hard to evaluate their accuracy because: (1)
DataRobot has no public/free trial version of their platform. We got
no response to our demo request. (2) AutoML Tables and Trifacta
only offer GUI-based usage where users must upload the raw CSV
files manually to identify the feature types. Both these tools do
not provide any programmatic way for evaluation. So, we cannot
evaluate their accuracy automatically. Wemanually uploaded 5 CSV
files from our raw data. All 15 categoricals encoded as integers were

(wrongly) classified as numeric by both tools. So, they will likely
have the same issues as TFDV, AutoGluon, and TransmogrifAI.

5.3 Comparison of ML-based Approaches
Rule-based Baseline. The 9-class classification accuracy on the
held-out test set is only 0.54. We observe that this approach achieves
95% and 46% recall in classifying Numeric and Categorical respec-
tively. The recall for Categorical is low because a number encoded
as a category is wrongly classified as Numeric. Admittedly, our rules
are not exhaustive and one can always come up with more rules to
improve the accuracy. However, writing rules for every little corner
case is excruciating and will likely never be comprehensive. We
present the confusion matrix in the appendix.

Classical MLModels. Table 2 presents the 9-class accuracy results
of the classical ML models using different feature sets. We present
the 5-fold held-out train and validation accuracy in the appendix.
For logistic regression, we see that the descriptive stats alone are
not enough, as it achieves an accuracy of just 69% on the held-out
test set. But, for RBF-SVM and Random Forest, the accuracy with
stats alone is already 82% and 91% respectively. Incorporating 2-
gram features of the attribute name into logistic regression leads
to a whopping 15% lift in accuracy. Random Forest achieves an
impressive 93% accuracy using just 2-gram feature set along with
descriptive stats.



Xstats X*name X*sample1 Xstats, X*name Xstats, X*sample1 X*name, X*sample1 X*sample1, X*sample2
Xstats, X*name,
X*sample1

Xstats, X*name,
X*sample1, X*sample2

Logistic
Regression 0.6862 0.7293 0.6603 0.8428 0.7763 0.8043 0.7144 0.8578 0.8643

RBF-SVM 0.8213 0.777 0.6521 0.8724 0.7845 0.8159 0.7131 0.8761 0.8712

Random
Forest 0.9121 0.7785 0.6657 0.9259 0.8956 0.8346 0.7374 0.9216 0.9096

CNN 0.6809 0.8019 0.6805 0.8692 0.7965 0.8655 0.7763 0.8788 0.8701

k-NN 0.8605 0.7839 - 0.8796 - - - - -

Table 2: Full 9-class test accuracy of the ML models trained on our data with different feature sets. 𝑋 ∗
𝑛𝑎𝑚𝑒 , 𝑋

∗
𝑠𝑎𝑚𝑝𝑙𝑒1, 𝑋

∗
𝑠𝑎𝑚𝑝𝑙𝑒2

denote bigram features (𝑋2𝑛𝑎𝑚𝑒 , 𝑋2𝑠𝑎𝑚𝑝𝑙𝑒1, 𝑋2𝑠𝑎𝑚𝑝𝑙𝑒2) for classical ML models and raw character-level features
(𝑋𝑛𝑎𝑚𝑒 , 𝑋𝑠𝑎𝑚𝑝𝑙𝑒1, 𝑋𝑠𝑎𝑚𝑝𝑙𝑒2) for CNN and 𝑘-NN. The bold fonts highlight the most accurate feature set for that model.

Adding bigram features of a random sample value lifts the accu-
racy further by 2% for logistic regression. However, as the complex-
ity of the model increases, the bigrams on a sample value do not
provide a boost in accuracy. Also, adding more sample values does
not give any rise in accuracy, except for logistic regression. Overall,
Random Forest achieves the best 9-class accuracy of 93% using
bigrams on the attribute name along with descriptive statistics.

CNN. Table 2 also shows the CNN accuracy. We see that with just
𝑋𝑛𝑎𝑚𝑒 , the accuracy is already 82%. The descriptive stats lift the
accuracy further by 8%. We find that sample values are not that
useful, yielding only a minor lift.

Nearest Neighbor.We observe that with only Euclidean distance
on descriptive statistics, the accuracy is already 86% on the held-out
test set. With only edit distance on attribute name, the accuracy is
78%. Finally, with our weighted edit distance function from Section
4.4, 𝑘-NN achieves a high 88% accuracy.
5.4 Analysis of Errors
We now explain the behavior of the best performing Random Forest
on our held-out test dataset (shortened henceforth as "OurRF") by
inspecting the raw datatype of the column values. We categorize
the data type into integers, floats, negative numbers, strings, strings
with one token, and strings with more than one space-separated
token. Table 3 shows the confusion matrix of the predicted class
by OurRF vs actual data type of the attribute value. Table 4 shows
examples of columns and the corresponding prediction made by
OurRF. We intuitively explain the errors by class below.
Numeric. We see that when the actual label is Numeric (Table 3
(A1)), OurRF is less likely to misclassify an attribute whose values
are floats or negative numbers compared to integers. We observe
that with integers, OurRF gets most confused with Context-Specific
class, e.g., s1p1c2area (Table 4 example(A)). This is possibly because
of the non-sensical attribute name.
Categorical. As shown in Table 3 (A2), when the sample values are
strings with number of tokens greater than 1, there is more chance
for OurRF to misclassify Categorical as Sentence or Context-Specific
(Table 4 example(B)). In contrast, for one-token strings, OurRF is
more accurate in predicting Categorical.
Not-Generalizable. From Table 3(A8), we notice that OurRF
often confuse Not-Generalizable with Categorical. For instance,

q19TalToolResumeScreen (Table 4 example(G)) is Not-Generalizable,
because its domain contains only 2 values: “NULL!” and “Resume
screening.” However, OurRF treats “NULL!” as a separate category.
Thus, OurRF is lacking in its semantic understanding ability of
sample values.
Context-Specific. We find that our model performs worst in ac-
curately inferring this type, with a recall of just 71%. Integers are
most commonly misclassified with Numeric (Table 4 example(H)).
Again, it seems that OurRF is missing the human-level intuition of
accurately identifying the attributes with meaningless names.
Other types.We find that our model achieves high precision and
recall in inferring other types such asDatetime and URL. In addition,
List types are often confused with Embedded Number (Table 4 ex-
ample(C)) even though there is no number available for extraction.
This can be due to few available training examples for List type.

5.5 Prediction Runtimes
We evaluate the running time of ML models in the online phase, i.e,
to make predictions on a new column. This involves base featuriza-
tion, model-specific feature extraction (only needed for the classical
models), and inference time. The measurements were made on the
test set and averaged. All the models finish in under 0.2 sec per
column. For the classical models, the additional feature extraction
dominates overall runtime. Since SVM and 𝑘-NN are distance-based
methods, they have the highest runtime. Overall, CNN is the fastest
on prediction. We present the time breakdown in the appendix.

6 DOWNSTREAM BENCHMARK SUITE
To complete the loop on type inference, we now empirically study if
doing feature type inference accurately is essential for downstream
model accuracy. Thus, we verify if there are cases where doing
wrong type inference may improve, reduce, or match the down-
stream accuracy relative to true feature types. From Section 5.3, we
saw that type inference accuracy is highest for the Random Forest
(OurRF) among all ML-based approaches. Thus, we compare the
OurRF against the industrial and open source tools on a suite of
downstream tasks we collected and curated.

6.1 Datasets
The impact of type inference is dependent on the dataset and the
downstream prediction task. Since there are unboundedly many



(A1) Numeric (A2) Categorical (A3) 
DT

(A4) 
ST

(A5) 
URL

(A6)   
EN

(A7)   
List

(A8) 
Not-Generalizable

(A9) 
Context-Specific

Integer Float Negative
Number Number String 

(> 1 token)
String 

(1 token) String String String String String Number String Number String Precision

Numeric 369 327 212 12 1 2 34 93.4

Categorical 2 1 209 99 125 2 3 2 5 1 3 10 8 4 91.3

Datetime 137 1 6 1 94.5

Sentence 4 83 3 4 2 86.5

URL 30 1 96.8

Embedded 
Number 2 92 5 92.9

List 43 100

Not -
Generalizable 1 1 1 3 91 93 1 6 93.4

Context-
Specific 6 5 4 3 1 3 109 21 85.9

Recall 97.6 99.4 100 92.5 92.5 99.2 97.2 90.2 93.8 92.9 82.7 92.9 83.8 71.2 63.6

Table 3: Breakdown of Random Forest’s prediction for different types of column values on the held-out test set. Confusion
matrices (Predicted class on the rowvs. Actual type of the attribute on the column)when the ground-truth label is (A1)Numeric:
NU, (A2) Categorical: CA, (A3) Datetime: DT, (A4) Sentence: ST, (A5) Embedded Number: EN, (A6) URL, (A7) List: LST, (A8) Not-
Generalizable: NG, and (A9) Context-Specific: CS. Blank cells denote zero predictions.

# Attribute 
Name

Sample
Value

Total 
Values

% Distinct
Values

% NaNs Label RF
Prediction

A s1p1c2area 50 9597 3.6 45.2 NU CS

B Tenure Status Own house,
rent lot

41544 0.02 0 CA ST

C End March 4, 1797 45 97.8 2.2 DT EN

D Name Battle of 
Riverrun

38 100 0 ST NG

E %White 18.90% 192 58.9 0 EN CA

F Countries ru; uk; mx 1359 32.9 46.3 LST EN

G q19TalToolResumeScreen #NULL! 25090 0.008 6 NG CA

H Livshrmd 151 9597 1.17 42.3 CS NU

I Name Technic 614 65.5 0 CS NG

Table 4: Examples of errors made by RandomForest.

datasets and downstream tasks, for the sake of tractability we got 30
“unseen” datasets fromKaggle, UCIML repository, andOpenML [40]
for evaluation. Since classification tasks are more common in prac-
tice, we got 25 datasets for such tasks, and 5 for regression tasks.
We ensure representation of various combinations of feature types
with many different data types (ints, floats, string, dates, timestamps,
and even primary keys). We did not cherry-pick a dataset to particu-
larly suit one approach over another. Overall, we have 566 columns
across 30 downstream datasets. We manually label all the columns
with their true feature type. The datasets and their source details
are available on our Github repo [4].

6.2 Models and Metrics
In terms of downstreammodel evaluation, we present both extremes
of bias-variance tradeoff [19]: L2-regularized Logistic regression
(high bias, low variance) for classification, L2-regularized Linear
regression (high bias, low variance) for regression, and Random
Forest (low bias, high variance) for both classification and regres-
sion. Thus, we have 60 downstream models in total. We use the
accuracy metric scaled to 100 for the classification tasks and root
mean squared error (RMSE) metric for the regression tasks.

6.3 Tools compared
We compare Pandas, TFDV, AutoGluon, and OurRF, relative to the
truth on 30 downstream datasets. We map the feature types inferred
by these tools to our label vocabulary as per Figure 3. Columns that
are inferred Numeric are retained as is, Categorical columns are
one-hot encoded, Sentence columns are routed through TF-IDF [33]
and character-level bigrams, URLs are specially processed through
a word-level bigrams, Not-Generalizable columns are dropped, and
the rest of the types are featurized with bigrams. After featurization,
we use the same methodology as Section 5.1 for evaluation. Note
that, one can plug-in any alternate featurization scheme to derive
more useful features. However, such feature engineering decisions
can be application-specific and are not the focus of this work.

6.4 Results
6.4.1 Type Inference Results. Table 6 (A) shows the type in-
ference accuracy of all tools on the downstream datasets. We see
that OurRF can correctly infer the feature types for 516 out of 566
columns in these 30 datasets. Pandas has a seemingly high accuracy
of 90% but note the low coverage of columns by its vocabulary,
which makes it benefit from high recall. It cannot predict on the
other columns at all. The accuracy of TFDV and AutoGluon is much
lower than OurRF; their coverage is also slightly lower than OurRF.

6.4.2 Downstream Model Performance. Table 5 presents the
massive end-to-end comparison of downstream models built with
feature types inferred by Pandas, AutoGluon, TFDV, and OurRF rel-
ative to the true feature types. Table 6 (B) offers summary statistics
on how the tools perform relative to the ground truth and other
tools. We find that, for a given dataset and a downstream model,
OurRF performs worse than the best performing tool for only 13 out
of 60 downstream models. Moreover, relative to the truth, OurRF
underperforms for only 20 downstream models. In contrast, Pandas,
TFDV, and AutoGluon underperform for significantly more models:
44, 35, and 35 respectively. We explain the results in-depth below.



Feature 
Types

Raw Attribute 
Types Dataset |A| |Y|

Logistic Regression Random Forest

Truth PD TFDV AGL OurRF Truth PD TFDV AGL OurRF

NU
Int, Float Cancer 9 2 60.8 +0 +0 +0 +0 66.7 +0 +0 +0 +0

Int Mfeat 216 10 92.5 +0 +0 +0 -2.7 91.8 +0 +0 +0 -2.3

CA

String Nursery 8 5 92.8 -0.9 +0 +0 +0 98.2 -3.9 +0 +0 +0

String Audiology 69 24 73 -1.3 +0 -1.3 +0 72.2 -0.9 +0 -1.3 +0

Int Hayes 4 3 74.1 -14.1 -14.1 -14.1 +0 78.5 -14.1 -14.1 -14.1 +0

Int Supreme 7 2 99.3 -14.5 -17.1 -14.5 +0 99.4 +0 +0 +0 +0

Int, String Flares 10 2 90.8 +0 +0 +0 +0 89.2 +0.3 +0.3 +0.3 +0

Int, String Kropt 6 18 39.4 -6.9 -6.9 -6.9 +0 68.8 -3.4 -3.4 -3.4 +0

Int, String Boxing 3 2 80.7 -24.4 -25.2 -25.2 -34.1 78.5 -17 -11.9 -11.9 -28.9

NU + CA

Int, String Flags 28 2 68.2 -6.2 -3.6 -6.7 -4.1* 75.9 -1 -2.6 -2.6 -3.1*

Int,Float,String Diggle 8 2 99.9 +0 +0 +0 -5.8 99.9 +0 +0 +0 +0

Int, Float Hearts 13 2 84.9 -0.7 -1.6 -0.7 +0 86.2 -1.3 -3 -1.3 +0

Int, Float Sleuth 10 2 68.9 -3.3 -3.3 -3.3 +0 76.7 +0 +0 +0 +0

CA + NG Int, String Apnea2 3 2 92 -6.7 -0.6 -0.6 -0.6 90.1 -2.3 -0.8 -0.8 -0.8

NU + CA + ST Int, String Auto-MPG 8 3 89.1 -4.8 -8.6 -8.6 -15.9 95.2 +0.5 -18.9 -18.9 -20.5

NU + CA + EN Int,Float,String Churn 19 2 79.1 -0.7 +0.1 -0.1 +0.2 78.7 -0.2 -0.9 -0.8 -0.3

NU + DT + EN Int, Float,  
String, Date NYC 6 15 55.8 +0 -0.1 -0.3 -0.3 67.6 +0 +0.5 +0.8 +0.8

ST String BBC 1 5 97.1 -6.9 +0 +0 +0 96.3 -13.1 +0 +0 +0

DT + ST String, Date Articles 3 2 98.8 -2.1 +0 +0 +0 99.0 -3.2 +0 +0 +0

NU+CA+ST+NG Int,String,PK Clothing 10 5 66.7 -9.2 -9.1 -9.2 +0 64.2 -2.2 -4.9 -2.6 +0

NU + DT + NG Int, String, 
Time, PK IOT 4 2 83.8 -0.3 +0 +0 +3.6* 93.8 -1.4 +0 +0 +0*

NG + CA Int,String, PK Zoo 17 5 75.6 -13.4 -11.1 -8.9 -2.2 77.8 -15.6 -8.9 -6.7 -4.4

NU+CA+EN+NG Int,Float,String PBCseq 18 2 68.6 -1.3 +0.5 +0.5 +6.2* 73 -1.2 -0.1 -0.1 +2.2*

NU + CA + LST 
+ NG + CS

Int, Float, 
String, PK Pokemon 40 36 65.84 -52.2 -52.4 -52.6 -0.6 88.1 -3.9 -3.2 +0 +0

NU + CA + DT +
URL + NG + CS

Int,Float,Date,
String, Time President 26 57 39.5 -7.9 -7.9 -8 -0.9 81.7 -29.4 -23.1 -28.8 -2.1

Feature 
Types

Raw Attribute 
Types Dataset |A|

Linear Regression – L2 Regularization Random Forest

Truth PD TFDV AGL OurRF Truth PD TFDV AGL OurRF

CA Int MBA 2 0.363 +0.05 +0.05 +0.05 -0 0.384 +0.09 +0.08 +0.09 -0

NU + CA
Int Vineyard 3 2.97 +2 +2 +2 -0 2.7 +0.37 +0.37 +0.37 -0

Int, String Apnea 3 2206.2 +62.5 -0 -0 -0 1355.7 +1972.7 -0 -0 -0

DT Date Accident 1 466 -0 +384.6 -0 -0 589.7 -0 +474.8 -0 -0

NU + CA + 
EN + NG Int, String Car Fuel 11 11.3 -0.09 +0.16 +0.14 +0.01* 11.7 +0.33 +1.1 +0.9 +0.03*

(A)

(B)

Table 5: Accuracy comparison of downstream models using inferred types from Random Forest trained on our labeled data
(OurRF) against Pandas (PD), TFDV, and AutoGluon (AGL), relative to accuracy with true feature types. Datasets involve (A)
Classification taskswith accuracymetric (B) Regression taskswithRMSEmetric.Numeric(NU ),Categorical(CA),Datetime(DT ),
Sentence(ST ),Not-Generalizable (NG), Embedded Number (EN ), URL, List (LST ), and Context-Specific (CS) are feature types. |A|
is the number of columns/attributes in that dataset. |Y| is the number of target classes. PK denote primary keys. * denotes the
cases where OurRF prediction is either EN or CS, where user intervention can help improve model accuracy or generalization.



Logistic Regression Random Forest

PD TFDV AGL OurRF PD TFDV AGL OurRF
Underperform truth 23 18 19 11 21 17 16 9
Match truth 6 10 10 16 7 11 12 19
Outperform truth 1 2 1 3 2 2 2 2
Best performing 
tool for a dataset 9 11 10 23 10 14 16 24

(B)

Pandas TFDV AutoGluon OurRF

Column Coverage 300 535 553 566

Type inference accuracy 
given coverage 90.3% 75% 71.4% 91.2% 

(A)

Table 6: (A) Type Inference accuracy on downstream
datasets. (B)Number of downstreamdatasetswhere tools un-
derperform, match, or outperform the ground truth down-
stream performance or the best performing tool. OurRF is
the Random Forest for type inference trained on our data.
LR denotes downstream linear model (Logistic/Linear re-
gression) and RF denotes downstream Random Forest.

1.Whydoeswrong type inference hurt downstreamaccuracy?
Table 5 shows that wrong type inference almost always leads to
a drop in accuracy compared to the accuracy with true feature
types. Moreover, the amount of drop depends upon how many fea-
ture types are wrongly classified and how predictive those features
are for the target. For instance, wrong type inference leads Auto-
Gluon and TFDV to underperform on 35 out of 60 downstream
models. This led to a reduction of an average 7% and up to 52% in
accuracy compared to the ground truth-based model. Due to space
constraints, we only explain the two most common patterns of how
wrong type inference affected downstream accuracy below.
(a) MFeat has 216 Numeric integer columns, presenting a best-case
scenario for prior tools as they have the highest possible recall in
inferring Numeric. Thus, they classify all columns correctly. How-
ever, OurRF confuses 7 of them with Categorical, possibly because
of their low domain sizes, thus leading to a drop in accuracy. We
verified that this is the primary reason why OurRF underperforms
truth and prior tools on datasets like Auto-MPG and Diggle.

(b) On Zoo, out of 4 Not-Generalizable columns, 1 column is erro-
neously predicted as Categorical by OurRF. Thus, using a feature
that offers no discriminative power leads to a drop in accuracy com-
pared to the ground truth. On the other hand, AutoGluon classifies
all 4 of them incorrectly. Other tools like TFDV and Pandas do not
even support Not-Generalizable in their vocabulary. Thus, the drop
in accuracy is much larger for the prior tools. This underscores
the importance of identifying Not-Generalizable columns correctly.
We observe the same pattern across many datasets like Pokemon,
President, and Car Fuel.

2. Why does wrong type inference of integer Categorical of-
ten not hurt downstream Random Forest?
Although the categories encoded as integers in Supreme, Flags,
Sleuth, and Vineyard are misclassified by Pandas, AutoGluon, and
TFDV, the accuracy of Random Forest either does not drop or drops
only marginally. This is because the Categorical features in these
datasets are either ordinal and/or have binary domain size. Random

Forest has zero bias and thus can potentially represent all categories
by doing splits on integers. Linear models, which have lower VC-
dimension, cannot do this. Thus, the linear models often see much
higher accuracy with OurRF than prior tools.

3. How can OurRF exploit user intervention to help raise ac-
curacy?
(a) On Flags, a Categorical feature was erroneously predicted as
Context-Specific type by OurRF. If a human intervenes to inspect
such columns, then the accuracy of the downstream model can be
further improved.

(b) Car Fuel has two Embedded Number columns. Although they are
predicted correctly by OurRF, a human can intervene to extract their
values to use them as Numeric instead of the current bigramization
in our benchmark. Thus, a user-in-the-loop approach can further
boost downstream model accuracy.
4. Why is outperforming truth not necessarily beneficial?
(a) A Not-Generalizable unique identifier column denoting the “case
number” on PBCseq is predicted as Numeric by OurRF. Even though
we notice a significant lift in accuracy compared to the ground
truth, this is not necessarily beneficial in the deployment setting,
where every newly conducted study will have a new case number.
Thus, it is very unlikely that the downstream model will generalize.
(b) The other dataset where we observe a significant lift in accu-
racy relative to the truth is IOT, where a Numeric column called
“temp” (denoting temperature) is classified as Context-Specific. This
again may not be desired because interpretability can be a concern
in this application. Predictions are more explainable when using
temperature data as Numeric feature than bigrams. Thus, a human-
in-the-loop approach for handling Context-Specific prediction can
help resolve this issue.
6.5 Summary
Overall, we find that OurRF achieves a high accuracy of 91.2% for
inferring feature types on 30 unseen datasets from Kaggle, UCI ML
repo, and OpenML. Moreover, we find that wrong feature type infer-
ence almost always leads to an accuracy drop for the downstream
model relative to the ground truth, except for the Random Forest on
ordinal and/or binary domain Categorical. More importantly, our
labeled dataset is valuable to build an accurate downstream model
because even standard ML models like Random Forest trained on
our labeled data achieves the highest accuracy against existing tools
for 47 out of 60 downstream models. In addition, with some human
intervention for Context-Specific and Embedded Number types, the
accuracy of the downstream model can be further improved.

7 DISCUSSION
7.1 Public Release and Leaderboard
We have released a public repository on GitHub with our entire la-
beled data for theML feature type inference task [4]. We also release
the pre-trained ML models: k-NN, logistic regression, RBF-SVM,
Random Forest, and the CNN. The repository tabulates the preci-
sion, recall, and accuracy of all models and existing open-source
approaches. The repository includes a leaderboard for public com-
petition on the hosted dataset with 9-class classification accuracy
and per-class precision, recall, and binarization accuracy being the
metric. We release the downstream benchmark suite containing



30 datasets and the associated code for running the benchmark.
Also, we release the raw 1240 CSV files and we invite researchers
and practitioners to use our datasets and contribute to augmenting
them and creating better featurizations and models.

7.2 Takeaways
7.2.1 For Practitioners. We make all the models and featuriza-
tion routines available for use by wrapping them under functions in
a Python library [4]. The ML models can be integrated for feature
type inference into existing data prep environments. For visual tools
such as Excel and Trifacta [11], designing new user-in-the-loop
interfaces that account for both model’s prediction and human’s
judgement remains an open research question. We are currently in
the process of integrating our pre-trained models with TFDV in collab-
orations with Google engineers to improve its inference of Categorical
and Numeric feature types.

7.2.2 For Researchers. We see three main avenues of improve-
ment for researchers wanting to improve accuracy: better features,
better models, and/or getting more labeled data.

First, designing features that can perfectly capture human-level
reasoning is an open research question. We found that descriptive
statistics and attribute names are very useful for prediction. But,
raw attribute values have only marginal utility. Thus, one can con-
sider designing better featurization routines for them. Capturing
more semantic knowledge of attributes with an alternative neural
architecture is another open problem. Finally, based on our analysis
in Section 5.4, one potential way to increase the accuracy is to cre-
ate more labeled data in categories of examples where ML models
get confused, e.g., for List type. Weak supervision and denoising
with Snorkel [34] and/or Snuba [41] is one potential mechanism to
amplify labeled datasets and teach the ML models to learn better.

8 RELATEDWORK
AutoML Platforms. Several AutoML tools such as AutoWeka [39]
and Auto-sklearn [18] have an automated search process for model
selection, allowing users to spend no effort for algorithm selection
or hyper-parameter search. However, these AutoML systems do
not automate data prep tasks. AutoML platforms such as Einstein
AutoML [8], AutoML Tables [5], and AutoGluon [17] do automate
some data prep tasks. However, how good their existing automation
schemes are is not well-understood. We believe there is a pressing
need to formalize data prep tasks and create benchmark labeled
datasets for evaluating and comparing AutoML platforms on such
tasks. The ML models trained on our labeled dataset can be inte-
grated into such AutoML platforms to improve their accuracy on
type inference, as we are currently doing with TFDV. In addition,
other platforms for Machine Learning such as Airbnb’s Zipline [1],
Uber’s Michelangelo [12], Facebook’s FBLearner Flow [3], and com-
mercial AutoML platforms such as H20.AI [7] and DataRobot [2] are
complementary to our focus and they can also benefit by adopting
the models trained on our labeled data.
ML Data Prep and Cleaning. Sherlock [25] is a distantly-
supervised deep-learning-based tool that identifies 78 semantic
types such as Person, Code, Publisher, Religion, etc. for automated
schema matching and discovery. But such semantic types are not
directly usable for AutoML because the same semantic type can

span different ML feature types, e.g., Code can be Categorical orNot-
Generalizable, with different implications for downstreammodeling.
This is by design because the application motivations are different:
Sherlock is aimed at BI tool users to browse attributes more easily,
not AutoML platform users. So, our work is complementary. Our
focus is also on a novel benchmark dataset, not novel models. Auto-
Type [42] synthesize type detection logic for semantic types such
as EAN Code, Swift Code, etc. But it too is complementary and not
directly usable for AutoML just like Sherlock above.

DataLinter is a rule-based tool that inspects a data file and raises
potential data quality issues as warnings to the user [26]. However,
ML feature type inference must be done manually. Many works
study program synthesis-based approaches [21, 22, 24, 27] and/or
visual interfaces [11] to reduce manual data transformation grunt
work in data prep. There is also much work on reducing data vali-
dation and cleaning effort (e.g., [28, 29, 36]). Our work further this
general direction on reducing manual effort but it is complemen-
tary to all these prior works: our paper is the first to formalize and
benchmark ML feature type inference in AutoML platforms.
Database Schema Inference. DB schema inference has been ex-
plored in some prior work. Google’s BigQuery does syntactic
schema detection when loading data from external data ware-
houses [9]. [14] infers a schema from JSON datasets by performing
map and reduce operations using pre-defined rules. But DB schema
inference task is syntactic. For instance, the attribute type with in-
teger values has to be identified as an integer. In contrast, with ML
type inference the attributes with type integer can be Categorical.
Benchmarks. OpenML AutoML Benchmark focuses on under-
standing the automation of model selection and hyper-parameter
search components of the ML workflow [20]. However, they do not
cover any data prep steps. CleanML benchmark focuses on studying
the effect of data cleaning operations on downstream models [30].
However, they do not handle the feature type inference task. Thus,
both benchmarks are orthogonal to our work.
Data/Model Repositories. OpenML [40] is an open-source col-
laborative repository for ML practitioners and researchers to share
their models, datasets, and workflows for reuse and discussion. Our
labeled datasets can be made available to the OpenML community
to invite more contributions for augmenting the current labeled
dataset and for building more sophisticated models. Hence, our
work is complementary to OpenML.
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APPENDIX

A METHODOLOGY
For all the classical ML models, we use the Scikit-learn library in
Python. For CNN, we use the popular Python library Keras on
Tensorflow. We use a standard grid search for hyper-parameter
tuning, with the grids described in detail below.

Logistic Regression: There is only one regularization parameter to
tune: C. Larger the value of C, lower is the regularization strength,
hence increasing the complexity of the model. The grid for C is set
as {10−3, 10−2, 10−1, 1, 10, 100, 103}.

RBF-SVM: The two hyper-parameters to tune are C and 𝛾 .
The C parameter represents the penalty for misclassifying a data
point. Higher the C, larger is the penalty for misclassification.
The 𝛾 > 0 parameter represents the bandwidth in the Gaussian
kernel. The grid is set as follows: C ∈ {10−1, 1, 10, 100, 103} and
𝛾 ∈ {10−4, 10−3, 0.01, 0.1, 1, 10}.

Random Forest: There are two hyper-parameters to tune: NumEs-
timator and MaxDepth. NumEstimator is the number of trees in
the forest. MaxDepth is the maximum depth of the tree. The grid
is set as follows: NumEstimator ∈ {5, 25, 50, 75, 100} and MaxDepth
∈ {5, 10, 25, 50, 100}.

k-Nearest Neighbor : The hyper-parameter to tune are the num-
ber of neighbors to consider (𝑘) and the weight parameter in our
distance function (𝛾 ). We use all integer values from 1 to 10 for 𝑘 .
The grid for 𝛾 is set as {10−3, 0.01, 0.1, 1, 10, 100, 103}.

CNN Model: We tune EmbedDim, numfilters and filtersize of each
Conv1D layer. TheMLP has 2 hidden layers andwe tune the number
of neurons in each layer. The grid is set as follows: EmbedDim
∈ {64, 128, 256}, numfilters ∈ {32, 64, 128}, filtersize ∈ {2}, and
neurons ∈ {250, 500, 1000}. In order to regularize, we use dropout
with a probability from the grid: {0.25}. Rectified linear unit (ReLU)
is used as the activation function. We use the Adam stochastic
gradient optimization algorithm to update the network weights.
We use its default parameters.

B CROWDSOURCING EFFORTS
We tried to crowdsource labels for our dataset on the FigureEight
platform but abandoned this effort because the label quality was too
low across two trial runs. In our pilot run, we used a concise label
vocabulary with 5 classes: Numeric, Categorical, Needs-Extraction,
Not-Generalizable, and Context-Specific. Needs-Extraction includes
the classes: Datetime, Sentence, URL, Embedded Number, and List.
In the first run, we got 5 workers each for 100 examples; in the
second, 7 each for 415. The “golden” dataset were the 500 examples
we labeled manually. We listed several rules and guidelines and
provided many examples for worker training. But in the end, we
found the results too noisy to be useful: in the first run, 4% of exam-
ples had 4 unique labels, 27% had 3, and 69% had 2; in the second
run, these were 5%, 21%, and 49%. Majority voting gave the wrong
answer in half of the examples we randomly checked. We suspect
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Model Xstats X*name X*sample1 Xstats, X*name Xstats, X*sample1
X*name, 

X*sample1

X*sample1, 
X*sample2

Xstats, X*name,
X*sample1

Xstats, X*name,
X*sample1, X*sample2

Logistic 
Regression

Train 0.6954 0.8553 0.7139 0.9135 0.8288 0.9236 0.7975 0.9471 0.9571

Validation 0.6927 0.7438 0.6551 0.8477 0.7743 0.8226 0.7117 0.8668 0.8749

Test 0.6862 0.7293 0.6603 0.8428 0.7763 0.8043 0.7144 0.8578 0.8643

RBF-SVM
Train 0.892 0.9114 0.7133 0.9475 0.8779 0.9166 0.8392 0.9598 0.9605

Validation 0.8203 0.7768 0.6529 0.8691 0.7847 0.8308 0.718 0.8822 0.8780

Test 0.8213 0.7785 0.6521 0.8724 0.7845 0.8159 0.713 0.8761 0.8712

Random
Forest

Train 0.9771 0.9168 0.7404 0.9817 0.9734 0.9447 0.8406 0.9803 0.9787

Validation 0.9114 0.775 0.6604 0.9236 0.8938 0.837 0.7342 0.9195 0.9162

Test 0.9121 0.777 0.6657 0.9259 0.8956 0.8346 0.7374 0.9216 0.9096

CNN
Train 0.7077 0.9545 0.7433 0.9846 0.8798 0.9855 0.8588 0.9727 0.9891

Validation 0.7016 0.8167 0.6863 0.8768 0.7966 0.8892 0.7903 0.89 0.8821

Test 0.6808 0.8019 0.6805 0.8692 0.7965 0.8655 0.7763 0.8788 0.8701

k-NN
Validation 0.8728 0.8002 - 0.8889 - - - - -

Test 0.8605 0.7839 - 0.8796 - - - - -

Table 7: Full 9-class train, validation, and test accuracy of the ML models trained on our data with different feature sets.
𝑋 ∗
𝑛𝑎𝑚𝑒 , 𝑋

∗
𝑠𝑎𝑚𝑝𝑙𝑒1, 𝑋

∗
𝑠𝑎𝑚𝑝𝑙𝑒2 denote bigram features (𝑋2𝑛𝑎𝑚𝑒 , 𝑋2𝑠𝑎𝑚𝑝𝑙𝑒1, 𝑋2𝑠𝑎𝑚𝑝𝑙𝑒2) for classical ML models and raw character-level

features (𝑋𝑛𝑎𝑚𝑒 , 𝑋𝑠𝑎𝑚𝑝𝑙𝑒1, 𝑋𝑠𝑎𝑚𝑝𝑙𝑒2) for CNN and 𝑘-NN. The bold fonts highlight the most accurate feature set for that model.

Descriptive Stats
Total number of values
Number of nans and % of nans
Number of unique values and % of unique values
Mean and std deviation of the column values, word count, stopword count,
char count, whitespace count,  and delimiter count   
Min and max value of the column
Regular expression check for the presence of url, email, sequence of
delimiters, and list on the 5 sample values
Pandas timestamp check on 5 sample values

Table 8: List of descriptive statistics features

Xname Xsample1Xstats

CNN CNN

Output layer
Multi-layer Perceptron

Embedding Embedding

Concatenation

Attribute 
name

Descriptive 
Statistics

Sample 
Value 1

“Zipcode” (91223, …) “92122”

1D Conv 
(NumFilters
,FilterSize)

1D Conv 
(NumFilters
, FilterSize)

Global 
MaxPool

Char-level 
embeddings

Output

(A)

(B)

Xsample2

CNN

Embedding

Sample 
Value 2

“92092”

…

Figure 5: (A) The end-to-end architecture of our deep neural
network. (B) The CNN block’s layers.

such high noise arises because this task is too technically nuanced
for lay crowd workers relative to popular crowdsourcing tasks like
image recognition. Devising better crowdsourcing schemes for our
task with lower label noise is an avenue for future work.

C DATA STATISTICS
Figure 8 plots the cumulative distribution functions (CDF) of differ-
ent descriptive statistics obtained by base featurization. Table 11
presents the mean, standard deviation and the maximum of the
same descriptive statistics. We observe that Numeric attributes have
longer names than others. Attribute values for Sentence, URL, and
List as expected, have more number of characters and words than
other classes. In addition, we observe that all sample values in Nu-
meric and 80% of the sample values in Categorical are single token
strings. Furthermore, we find that almost 90% of the attributes in
Categorical have less than 1% unique values in its columns. Inter-
estingly, Not-Generalizable have either very few unique values or
only NaN values in their domain.

D DESCRIPTIVE STATISTICS FEATURES IN
BASE FEATURIZATION

Table 8 present all the descriptive stats used for base featurization.

E CNN
Figure 5(A) shows the architecture of CNN model. The layers of
CNN are shown in Figure 5(B). The network takes attribute name,
descriptive stats, and sample values as input and outputs the class
from the label vocabulary. The attribute name and sample values
are first fed into an embedding layer. The embedding layer takes as
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Figure 6: Flowchart of the rule-based baseline.

(B) Numeric Categorical Datetime Sentence URL Embedded 
Numbers List Not-

Generalizable
Context-
Specific

Numeric 696 3 0 0 0 0 0 2 6

Categorical 12 431 0 4 0 0 0 1 9

Datetime 0 2 137 0 0 2 0 0 0

Sentence 0 3 0 83 0 0 0 3 3

URL 0 2 0 0 30 0 0 0 0

Embedded 
Numbers 0 5 1 0 0 92 0 0 1

List 0 1 0 3 0 5 43 0 0

Not-
Generalizable 3 13 6 4 1 0 0 185 3

Context-
Specific 34 12 1 2 0 0 0 7 134

(A) Numeric Categorical Datetime Sentence URL Embedded 
Numbers List Not-

Generalizable
Context-
Specific

Numeric 669 0 0 0 0 1 0 37 0

Categorical 52 209 8 0 0 2 1 128 57

Datetime 4 7 19 0 0 0 1 90 20

Sentence 0 25 0 4 0 0 2 24 37

URL 0 12 0 0 8 0 0 6 6

Embedded 
Numbers 0 35 4 0 0 18 0 37 5

List 1 6 0 0 0 0 0 42 3

Not-
Generalizable 35 59 0 0 0 2 0 109 10

Context-
Specific 105 9 3 0 0 1 3 32 37

Table 9: Confusionmatrices (actual class on row and predicted class on column) of (A) Rule-based baseline (B) Random Forest.

input a 3𝐷 tensor of shape (NumSamples, SequenceLength, Vocab-
size). Each sample (attribute name or sample value) is represented

as a sequence of one-hot encoded characters. SequenceLength rep-
resents the length of this character sequence and Vocabsize denotes
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Figure 7: Comparison of prediction runtimes and break-
down for all models. Base Featurization is common for all
models. Model-specific feature extraction is needed only for
the 3 classical ML models.

the number of unique characters represented in corpus. The em-
bedding layer maps characters to dense vectors and outputs a 3𝐷
tensor of shape (NumSamples, SequenceLength, EmbedDim), where
EmbedDim represents the dimensionality of embedding space. The
weights are initialized randomly and during training, the word vec-
tors are tuned such that the embedding space exhibits a specialized
structure for our task.

The resultant tensor from the embedding layers is fed into a
CNN module, which consists of three cascading layers, 2 1-D Con-
volutions Neural Network, followed by a global max-pooling layer.
The size of the filter (FilterSize) and number of filters (NumFilters)
are tuned during training. We concatenate all CNN modules with
descriptive statistics and feed them to a multi-layer perceptron
on top. In the output layer, we use a softmax activation function
that assigns a probability to each class of the label vocabulary. The
whole network can be trained end-to-end using backpropagation.

F RULE-BASED BASELINE
Figure 6 shows the rule-based approach using a flowchart-like
structure. The diamond-shaped nodes are the decision nodes that
represents a “check” on the attribute. The final outcome is shown in
orange rectangular boxes. Table 9 (A) shows the confusion matrix
of the rule-based approach.

G EMPIRICAL STUDY
G.1 End-to-End Accuracy Results
Table 7 shows the train, cross-validation, and test accuracy results
of all models trained on our dataset with 5-fold cross-validation

methodology. Table 9 (B) shows the confusionmatrix of the Random
Forest.

Model [Xstats,  X2name]

Logistic 
Regression

Train 0.9201

Validation 0.8376

Test 0.8411

RBF-SVM
Train 0.9612

Validation 0.8554

Test 0.8491

Random
Forest

Train 0.9821

Validation 0.9323

Test 0.9199

k-NN
Validation 0.8537

Test 0.8476

Table 10: 5-fold training, cross-validation, and held-out test
accuracy of models with leave-datafile-out methodology. 𝑘-
NN use our weighted edit distance function (Section 4.4).

G.2 Leave-datafile-out methodology
We perform 5-fold leave-datafile-out cross validation to “stress-
test” our models for new data files. In this methodology, the raw
data files are split into 60:20:20 train, validation, and test partitions
where each partition has columns of the same source data file. Thus,
the test partition has columns of the raw data file that model has
not seen before. Table 10 present the train cross-validation, and
test accuracy results of the classical ML models and 𝑘-NN with
this methodology on the 3-gram features from attribute name and
descriptive stats. We observe that the results are comparable to
what we found with 𝑘-fold cross-validation methodology.

G.3 Prediction Runtimes
Figure 7 shows the time breakdown of base featurization, model-
specific feature extraction time, and inference time of ML models.
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Figure 8: Cumulative distribution of different descriptive statistics features.



Statistics Number of chars in 
Attribute Name

Number of chars  in 
Sample Value

Number of words in 
Sample Value Mean % Distinct vals % NaNs

Overall

Avg 13 25.7 3.5 1.5E+14 30.2 16.7

Median 11 5 1 0 5.2 0

Std Dev 9.8 242.3 38.3 9.9E+15 39.1 31.8

Max 284 18584 3251 8.8E+17 100 100

Numeric

Avg 16.3 5.3 1 5.2E+10 29.1 11.9

Median 16 5 1 1.7 19 0

Std Dev 8.3 4.5 0.09 1.1E+12 30.9 27.1

Max 91 398 7 5.6E+13 100 100
sd

Categorical

Avg 11.9 6.4 1.4 3E+5 2.5 14.1

Median 10 3 1 0 0.04 0

Std Dev 7.2 10.9 1.2 6.5E+6 11.4 28.9

Max 112 158 21 2.1E+8 100 100

Datetime

Avg 7.1 7.8 1.1 6.4E+9 72 6.2

Median 4 6 1 0 100 0

Std Dev 5.6 4.6 0.6 8.4E+10 41.7 20.7

Max 32 119 18 1.5E+12 100 100

Sentence

Avg 11.8 282.3 44.4 0 67.8 13.6

Median 11 62 10 0 89.9 0

Std Dev 11 1134.5 186.5 0 37.4 29

Max 132 18584 3251 0 100 99
11

URL

Avg 10 65.2 1.2 0 79 11.2

Median 7 56 1 0 97 0

Std Dev 7.7 56.9 0.9 0 30.2 25.2

Max 43 632 7 0 100 94.8

Embedded 
Numbers

Avg 15.2 6.9 1.3 0 88.8 5.7

Median 10 6 1 0 100 0

Std Dev 14.3 2.7 0.5 0 27.5 15.9

Max 116 41 6 0 100 93.5

List

Avg 14 296.2 26.7 0 88.8 3

Median 8 191 18.5 0 100 0

Std Dev 32 341.5 30.5 0 27.5 13.8

Max 284 2417 203 0 100 97.7

Not-Generalizable

Avg 10.7 8.4 1.6 1.1E+10 22.7 47.2

Median 10 3 1 0 0.02 29.2

Std Dev 5.9 32.3 4.3 3E+11 41.6 46.4

Max 33 689 89 9.8E+12 100 100

Context-Specific

Avg 8.9 14.2 1.7 1.7E+15 12.7 27.8

Median 9 2 1 1.3 0.6 8.8

Std Dev 5.1 101 5.5 3.3E+16 26.8 31.8

Max 69 1964 134 8.8E+17 100 99.1

Table 11: Average, standard deviation, and maximum value of different descriptive statistics features.
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