
Cerebro: A Data System for Optimized
Deep Learning Model Selection

Supun Nakandala, Yuhao Zhang, and Arun Kumar
University of California, San Diego

{snakanda, yuz870, arunkk}@eng.ucsd.edu

ABSTRACT
Deep neural networks (deep nets) are revolutionizing many
machine learning (ML) applications. But there is a major
bottleneck to wider adoption: the pain and resource inten-
siveness of model selection. This empirical process involves
exploring deep net architectures and hyper-parameters, of-
ten requiring hundreds of trials. Alas, most ML systems
focus on training one model at a time, reducing through-
put and raising overall resource costs; some also sacrifice re-
producibility. We present Cerebro, a new data system to
raise deep net model selection throughput at scale without
raising resource costs and without sacrificing reproducibility
or accuracy. Cerebro uses a new parallel SGD execution
strategy we call model hopper parallelism that hybridizes
task- and data-parallelism to mitigate the cons of these prior
paradigms and offer the best of both worlds. Experiments
on large ML benchmark datasets show that Cerebro offers
3x to 10x runtime savings relative to data-parallel systems
like Horovod and Parameter Server and up to 8x memo-
ry/storage savings or up to 100x network savings relative
to task-parallel systems. Cerebro also supports heteroge-
neous resources and fault tolerance.

1. INTRODUCTION
Deep learning is revolutionizing many ML applications.

Their success at large Web companies has created excite-
ment among practitioners in other settings, including do-
main sciences, enterprises, and small Web companies, to try
deep nets for their applications. But training deep nets is a
painful empirical process, since accuracy is tied to the neu-
ral architecture and hyper-parameter settings. A common
practice to choose these settings is to empirically compare as
many training configurations as possible for the user. This
process is called model selection, and it is unavoidable be-
cause it is how one controls underfitting vs. overfitting [64].
Model selection is a major bottleneck for the adoption of
deep learning among enterprises and domain scientists due
to both the time spent and resource costs. Not all ML users
can afford to throw hundreds of GPUs at their task and burn
resources like the Googles and Facebooks of the world.

Case Study. We present a real-world model selection sce-
nario. Our public health collaborators at UC San Diego
wanted to try deep nets for identifying different activities
(e.g., sitting, standing, stepping, etc.) of subjects from body-
worn accelerometer data. The data was collected from a co-
hort of about 600 people and is labeled. Its size is 864 GB.
During model selection, we tried different deep net archi-

tectures such as convolution neural networks (CNNs), long
short-term memory models (LSTMs), and composite models
such as CNN-LSTMs, which now offer state-of-the-art re-
sults for multivariate time-series classification [35, 56]. Our
collaborators also wanted to try different prediction win-
dow sizes (e.g., predictions generated every 5 seconds vs. 15
seconds) and alternative target semantics (e.g., sitting–
standing–stepping or sitting vs. not sitting). The training
process also involves tuning various hyper-parameters such
as learning rate and regularization coefficient.

In the above scenario it is clear that the model selection
process generates dozens, if not hundreds, of different mod-
els that need to be evaluated in order to pick the best one
for the prediction task. Due to the scale of the data and the
complexity of the task, it is too tedious and time-consuming
to manually steer this process by trying models one by one.
Parallel execution on a cluster is critical for reasonable run-
times. Moreover, since our collaborators often changed the
time windows and output semantics for health-related anal-
yses, we had to rerun the whole model selection process
over and over several times to get the best accuracy for
their evolving task definitions. Finally, reproducible model
training is also a key requirement in such scientific settings.
All this underscores the importance of automatically scaling
deep net model selection on a cluster with high throughput.

System Desiderata. We have the following key desiderata
for a deep net model selection system.

1) Scalability. Deep learning often has large training
datasets, larger than single-node memory and sometimes
even disk. Deep net model selection is also highly compute-
intensive. Thus, we desire out-of-the-box scalability to a
cluster with large partitioned datasets (data scalability) and
distributed execution (compute scalability).

2) High Throughput. Regardless of manual grid/ran-
dom searches or AutoML searches, a key bottleneck for
model selection is throughput : how many training config-
urations are evaluated per unit time. Higher throughput
enables ML users to iterate through more configurations in
bulk, potentially reaching a better accuracy sooner.

3) Overall Resource Efficiency. Deep net train-
ing uses variants of mini-batch stochastic gradient descent
(SGD) [7, 10, 11]. To improve efficiency, the model selec-
tion system has to avoid wasting resources and maximize
resource utilization for executing SGD on a cluster. We
have 4 key components of resource efficiency: (1) per-epoch
efficiency : time to complete an epoch of training; (2) con-

Model Search/AutoML Procedures

Grid/Random

Search PBT HyperBand … ASHA

Distributed Data

Cerebro/MOP

Deep Learning Systems

Partition 1 Partition 2 Partition p…

Model Hopper Parallelism (Cerebro)
+ high throughput
+ high data scalability
+ low communication cost
+ no memory/storage wastage

Task Parallelism
+ high throughput
 - low data scalability
 - memory/storage wastage

Data Parallelism
+ high data scalability
 - low throughput
 - high communication cost

Task-Parallel Systems

Bulk
(Partitions)

Fine-grained
(Mini-batches)

Async.

Sync.

Data-Parallel Systems

Dask, Celery,
Vizier, Spark-

HyperOpt

Async. Param.
Server

Sync. Param.
Server,
Horovod

Spark or
TF Model
Averaging

MOP/CEREBRO
(This Work)

No Partitioning
(Full replication)

(A) (B) (C)

Figure 1: (A) Cerebro combines the advantages of both task- and data-parallelism. (B) System design phi-
losophy and approach of Cerebro/MOP (introduced in [52]): “narrow waist” architecture in which multiple
model selection procedures and multiple deep learning tools are supported–unmodified–for specifying/exe-
cuting deep net computations. MOP is our novel resource-efficient distributed SGD execution approach. (C)
Model Hopper Parallelism (MOP) as a hybrid approach of task- and data-parallelism. It is the first known
form of bulk asynchronous parallelism, filling a major gap in the parallel data systems literature.

vergence efficiency : time to reach a given accuracy met-
ric; (3) memory/storage efficiency : amount of memory/stor-
age used by the system; and (4) communication efficiency :
amount of network bandwidth used by the system. In cloud
settings, compute, memory/storage, and network all mat-
ter for overall costs because resources are pay-as-you-go; on
shared clusters, which are common in academia, wastefully
hogging any resource is unethical.

4) Reproducibility. Ad hoc model selection with dis-
tributed training is a key reason for the “reproducibility cri-
sis” in deep learning [68]. While some Web giants may not
care about unreproducibility for some use cases, this is a
showstopper issue for many enterprises due to auditing, reg-
ulations, and/or other legal reasons. Most domain scientists
also inherently value reproducibility.

Limitations of Existing Landscape. We compared exist-
ing approaches to see how well they cover the above desider-
ata. Unfortunately, each approach falls short on some major
desiderata, as we summarize next. Figure 3 and Section 2.2
present our analysis in depth.

1) False Dichotomy of Task- and Data-Parallelism.
Prior work on model selection systems, primarily from the
ML world, almost exclusively focus on the task-parallel set-
ting [32, 42, 43]. This ignores a pervasive approach to scale
to large data on clusters: data partitioning (sharding). A
disjoint line of work on data-parallel ML systems do con-
sider partitioned data but focus on training one model at a
time, not model selection workloads [44, 63]. Model selec-
tion on partitioned datasets is important because parallel
file systems (e.g., HDFS for Spark), parallel RDBMSs, and
“data lakes” typically store large datasets in that manner.

2) Resource Inefficiencies. Due to the false dichotomy,
naively combining the above mentioned approaches could
cause overheads and resource wastage (Section 2 explains
more). For instance, using task-parallelism on HDFS re-
quires extra data movement and potential caching, substan-
tially wasting network and memory/storage resources. An
alternative is remote data storage (e.g., S3) and reading re-
peatedly at every iteration of SGD. But this leads to or-
ders of magnitude higher network costs by flooding the net-
work with lots of redundant data reads. On the other hand,
data-parallel systems that train one model at a time (e.g.,

Horovod [63] and Parameter Servers [44]) incur high com-
munication costs, leading to high runtimes.

Overall, we see a major gap between task- and data-
parallel systems today, which leads to substantially lower
overall resource efficiency, i.e., when compute, memory/s-
torage, and network are considered holistically.

Our Proposed System. We present Cerebro, a new sys-
tem for deep learning model selection that mitigates the
above issues with both task- and data-parallel execution.
As Figure 1(A) shows, Cerebro combines the advantages
of both task- and data-parallelism, while avoiding the limi-
tations of each. It raises model selection throughput without
raising resource costs. Our target setting is small clusters
(say, tens of nodes), which covers a vast majority (over 90%)
of parallel ML workloads in practice [60]. We focus on the
common setting of partitioned data on such clusters. Fig-
ure 1(B) shows the system design philosophy of Cerebro:
a narrow-waist architecture inspired by [40] to support mul-
tiple AutoML procedures and deep net frameworks.

Summary of Our Techniques. At the heart of Cere-
bro is a simple but novel hybrid of task- and data-
parallelism we call model hopper parallelism (MOP) that
fulfills all of our desiderata. MOP is based on our insight
about a formal optimization theoretic property of SGD: ro-
bustness to the random ordering of the data. Figure 1(C) po-
sitions MOP against prior approaches: it is the first known
form of “Bulk Asynchronous” parallelism, a hybridization of
the Bulk Synchronous parallelism common in the database
world and task-parallelism common in the ML world. As
Figure 2 shows, MOP has the network and memory/storage
efficiency of BSP but offers much better ML convergence
behavior. Prior work has shown that the BSP approach for
distributed SGD (also called “model averaging”) has poor
convergence behavior [20]. Overall, considering all resources
holistically–compute, memory/storage, and network–MOP
can be the resource-optimal choice in our target setting.

With MOP as its basis, Cerebro devises an optimizing
scheduler to efficiently execute deep net model selection on
small clusters. We formalize our scheduling problem as a
mixed integer linear program (MILP). We compare alter-
nate candidate algorithms with simulations and find that
a simple randomized algorithm has surprisingly good per-
formance on all aspects (Section 5). We then extend our

Co
m

m
un

ic
at

io
n

Co
st

 p
er

 E
po

ch

Memory/storage Wastage

Parameter
Server

BSP

Task-Parallel w/ full remote reads**

(Controllable: Replication rate)
Higher

H
ig

he
r Horovod*

O
nc

e
pe

r
m

in
i-

ba
tc

h
O

nc
e

pe
r

pa
rt

it
io

n

No replica. Full replica.

MOP/Cerebro

Task-Parallel w/
full replication

(Controllable: Caching rate)

Figure 2: Conceptual comparison of
MOP/Cerebro with prior art on two key axes
of resource efficiency: communication cost per
epoch and memory/storage wastage. Dashed line
means that approach has a controllable parameter.
*Horovod uses a more efficient communication
mechanism than Parameter Server (PS), leading
to a relatively lower communication cost. **Task-
Parallelism with full remote reads has varying
communication costs (higher or lower than PS)
based on dataset size.

scheduler to support replication of partitions, fault toler-
ance, and elasticity out of the box (Sections 5.5 and 5.6).
Such systems-level features are crucial for deep net model
selection workloads, which can often run for days. We also
weigh a hybrid of Cerebro with Horovod for model selec-
tion workloads with low degrees of parallelism.

Overall, this paper makes the following contributions:

• We present a new parallel SGD execution approach
we call model hopper parallelism (MOP) that satisfies
all the desiderata listed earlier by exploiting a formal
property of SGD. MOP is applicable to any ML models
trained with SGD. We focus primarily on deep nets due
to their growing popularity combined with the pressing
issue of their resource-intensiveness.

• We build Cerebro, a general and extensible deep net
model selection system using MOP. Cerebro can sup-
port arbitrary deep nets and data types, as well as
multiple deep learning tools and AutoML procedures.
We integrate it with TensorFlow and PyTorch.

• We formalize the scheduling problem of Cerebro and
compare 3 alternatives (MILP solver, approximate,
and randomized) using simulations. We find that a
randomized scheduler works well in our setting.

• We extend Cerebro to exploit partial data replication
and also support fault tolerance and elasticity.

• We perform extensive experiments on real model selec-
tion workloads with two large benchmark ML datasets:
ImageNet and Criteo. Cerebro offers 3x to 10x run-
time gains over purely data-parallel systems and up to
8x memory/storage gains over purely task-parallel sys-
tems. Cerebro also exhibits linear speedup behavior.

2. BACKGROUND AND TRADEOFFS
We briefly explain mini-batch SGD, the method used for

training deep nets. We then compare existing approaches
for parallel deep net training and their tradeoffs.

2.1 Deep Net Training with Mini-batch SGD
Deep net training is a non-convex optimization prob-

lem [25]. It is solved by mini-batch SGD or its variants (e.g.,
Adam [36] and RMSprop [17]). SGD is an iterative process
that performs multiple passes over the data. Each pass is
called an epoch. In an epoch, it randomly samples a batch of
examples without replacement–called a mini-batch–and uses
that to estimate the gradient and make a model update.
Large datasets have 1000s to millions of mini-batches; so,
an epoch makes as many model updates. SGD is inherently
sequential; deviating from sequential execution may lead to
poor convergence behavior, typically raising the number of
epochs needed for a given accuracy. We refer the interested
reader to [7, 10] for more technical details on SGD.

2.2 Systems for Distributed Deep Net Training
Most deep learning tools (e.g., TensorFlow) focus on the

latency of training one model at a time, not on throughput.
A popular way to raise throughput is parallelism. Thus,
various multi-node parallel execution approaches have been
studied. All of them fall short on some desiderata, as Fig-
ure 3 shows. We group these approaches into 4 categories:

Embarrassingly Task Parallel. Tools such as Python
Dask, Celery, Vizier [23], and Ray [48] can run different
training configurations on different workers in a task-parallel
manner. Each worker can use logically sequential SGD,
which yields the best convergence efficiency. This is also re-
producible. There is no communication across workers dur-
ing training, but the whole dataset must be copied to each
worker, which does not scale to large partitioned datasets.
Copying datasets to all workers is also highly wasteful of re-
sources, both memory and storage, which raises costs. Alter-
natively, one can use remote storage (e.g., S3) and read data
remotely every epoch. But such repeated reads wastefully
flood the network with orders of magnitude extra redundant
data, e.g., see a realistic cost calculation in Table 2..

Bulk Synchronous Parallel (BSP). BSP systems such as
Spark and TensorFlow with model averaging [1] parallelize
one model at a time. They partition the dataset across work-
ers, yielding high memory/storage efficiency. They broad-
cast a model, train models independently on each worker’s
partition, collect all models on the master, average the
weights (or gradients), and repeat this every epoch. Alas,
this approach converges poorly for highly non-convex mod-
els; so, it is almost never used for deep net training [65].

Centralized Fine-grained. These systems also parallelize
one model at a time on partitioned data but at the finer
granularity of each mini-batch. The most prominent ex-
ample is Parameter Server (PS) [44]. PS is a set of sys-
tems for data-parallel ML. A typical PS consists of servers
and workers; servers maintain the globally shared model
weights, while workers compute SGD gradients on a locally
stored data partition. Workers communicate with servers
periodically to update and retrieve model weights. Based
on the nature of these communications, PS has two variants:
synchronous and asynchronous. Asynchronous PS is highly
scalable but unreproducible; it often has poorer convergence
than synchronous PS due to stale updates but synchronous
PS has higher overhead for synchronization.

All PS-style approaches have high communication due to
their centralized all-to-one communications, which is pro-

Desiderata
Embarrassing

Task Parallelism
(e.g., Dask, Celery, Vizier)

Data Parallelism

Bulk Synchronous
(e.g., Spark, Greenplum)

Centralized Fine-grained
(e.g., Async Parameter Server)

Decentralized Fine-grained
(e.g., Horovod)

Reproducibility

Model Hopper
Parallelism
(Our Work)

Data Scalability

SGD Convergence
Efficiency

Per-Epoch
Efficiency

Memory/Storage
Efficiency

Yes

Highest

High

No (Full Replication)
Wasteful (Remote Reads)

Lowest

Yes

High

Lowest

Yes

High

No

Lowest

High

High

Yes

Yes

Yes

High

Low

Medium Highest

Yes

High

Yes

High

Figure 3: Qualitative comparisons of existing systems on key desiderata for a model selection system.

Table 1: Notation used in Section 3

Symbol Description

S Set of training configurations

p Number of data partitions/workers

k Number of epochs for S to be trained

m Model size (uniform for exposition sake)

b Mini-batch size

D Training dataset (〈D〉 : dataset size, |D| :
number of examples)

portional to the number of mini-batches and orders of mag-
nitude higher than BSP, e.g., 10,000x in Table 2.

Decentralized Fine-grained. The best example is
Horovod [63]. It adopts HPC-style techniques to enable syn-
chronous all-reduce SGD. While this approach is bandwidth
optimal, communication latency is still proportional to the
number of workers, and the synchronization barrier can be-
come a bottleneck. The total communication overhead is
also proportional to the number of mini-batches and orders
of magnitude higher than BSP, e.g., 9,000x in Table 2.

3. MODEL HOPPER PARALLELISM
We first explain how MOP works and its properties. Ta-

ble 1 presents some notation. We also theoretically compare
the communication costs of MOP and prior approaches.

3.1 Basic Idea of MOP
We are given a set S of training configurations (“configs”

for short). For simplicity of exposition, assume for now each
runs for k epochs–we relax this later1. Shuffle the dataset
once and split into p partitions, with each partition located
on one of p worker machines. Given these inputs, MOP
works as follows. Pick p configs from S and assign one per
worker (Section 5 explains how we pick the subset). On each
worker, the assigned config is trained on the local partition
for a single sub-epoch, which we also call a training unit.
Completing a training unit puts that worker back to the
idle state. An idle worker is then assigned a new config that
has not already been trained and also not being currently
trained on another worker. Overall, a model “hops” from

1Section 4.2 (Supporting Multiple AutoML Procedures) ex-
plains further how Cerebro can support different configs
being trained for different numbers of epochs.

one worker to another after a sub-epoch. Repeat this process
until all configs are trained on all partitions, completing one
epoch for each model. Repeat this every epoch until all
configs in S are trained for k epochs. The invariants of
MOP can be summarized as follows:

• Completeness: In a single epoch, each training config
is trained on all workers exactly once.

• Model training isolation: Two training units of the
same config are not run simultaneously.

• Worker/partition exclusive access: A worker executes
only one training unit at a time.

• Non-preemptive execution: An individual training unit
is run without preemption once started.

Insights Underpinning MOP. MOP exploits a formal
property of SGD: any random ordering of examples suf-
fices for convergence [7, 10]. Each of the p configs visits
the data partitions in a different (pseudorandom) yet in se-
quential order. Thus, MOP offers high accuracy for all mod-
els, comparable to sequential SGD. While SGD’s robustness
has been exploited before in ML systems, e.g., in Parameter
Server [44], MOP exploits it at the partition level instead of
at the mini-batch level to reduce communication costs. This
is possible because we connect this property with model se-
lection workloads instead of training one model at a time.

Positioning MOP. As Figure 1(C) shows, MOP is a
new hybrid of task- and data-parallelism that is a form
of “bulk asynchronous” parallelism. Like task-parallelism,
MOP trains many configs in parallel but like BSP, it runs
on partitions. So, MOP is more fine-grained than task par-
allelism but more coarse-grained than BSP. MOP has no
global synchronization barrier within an epoch. Later in
Section 5, we dive into how Cerebro uses MOP to sched-
ule S efficiently and in a general way. Overall, while the core
idea of MOP is simple–perhaps even obvious in hindsight–it
has hitherto not been exploited in its full generality in ML
systems.

Reproducibility. MOP does not restrict the visit ordering.
So, reproducibility is trivial in MOP: log the worker visit
order for each configuration per epoch and replay with this
order. Crucially, this logging incurs very negligible overhead
because a model hops only once per partition, not for every
mini-batch, at each epoch.

3.2 Communication Cost Analysis

Table 2: Communication cost analysis of MOP and
other approaches. ?Full replication. †Remote reads.
‡Parameters for the example: k = 20, |S| = 20, p =
10, m = 1GB, 〈D〉 = 1TB, and |D|/b = 100K.

Comm. Cost Example‡

Model Hopper Parallelism kmp|S|+m|S| 4 TB

Task Parallelism (FR?) p〈D〉+m|S| 10 TB
Task Parallelism (RR†) k|S|〈D〉+m|S| 400 TB

Bulk Synchronous Parallelism 2kmp|S| 8 TB

Centralized Fine-grained 2kmp|S|
⌈
|D|
bp

⌉
80 PB

Decentralized Fine-grained 2km(p− 1)|S|
⌈
|D|
bp

⌉
72 PB

We summarize the communication costs of MOP and
other approaches in Table 2. It also illustrates the com-
munication costs in bytes for a realistic example based on
our case study in Section 1. MOP reaches the theoretical
minimum cost of kmp|S|. Crucially, note that this cost does
not depend on batch size, which underpins MOP’s higher
efficiency. BSP also has the same asymptotic cost but un-
like MOP, BSP typically converges poorly for deep nets and
lacks sequential-equivalence. Fine-grained approaches like
PS and Horovod have communication costs proportional to
the number of mini-batches, which can be orders of mag-
nitude higher. In our setting, p is under low 10s, but the
number of mini-batches can even be 1000s to millions based
on the batch size.

4. SYSTEM OVERVIEW
We present an overview of Cerebro, an ML system that

uses MOP to execute deep net model selection workloads.

4.1 User-facing API
Cerebro API allows users to do 2 things: (1) register

workers and data; and (2) issue a deep net model selection
workload. Workers are registered by IP addresses. As for
datasets, Cerebro expects a list of data partitions and their
availability on each worker. We assume shuffling and parti-
tioning are already handled by other means, since these are
well studied. This common data ETL step is also orthogonal
to our focus and is not a major part of the total runtime for
iterative deep net training.

Cerebro takes the reference to the dataset, set of ini-
tial training configs, the AutoML procedure, and 3 user-
defined functions: input fn, model fn, and train fn. It
first invokes input fn to read and pre-process the data. It
then invokes model fn to instantiate the neural architec-
ture and potentially restore the model state from a previ-
ous checkpointed state. The train fn is invoked to perform
one sub-epoch of training. We assume validation data is
also partitioned and use the same infrastructure for evalu-
ation. During evaluation, Cerebro marks model param-
eters as non-trainable before invoking train fn. We also
support higher-level API methods for AutoML procedures
that resemble the popular APIs of Keras [57]. Note that
model fn is highly general, i.e., Cerebro supports all neu-
ral computational graphs on all data types supported by
the underlying deep learning tool, including CNNs, RNNs,
transformers, etc. on structured data, text, images, video,

Cerebro API

Data
Catalog

Resource
 Catalog

Resource
Monitor

Model
Hopper

Scheduler

Task Executor

Task
Launcher

Hyperband

Grid Search

TensorFlow
Handler

PyTorch Handler

PBT

Cluster

Interactions

Invokes

Flow of data, results,
and information

(1) Register workers and data

(2) Launch model selection workload

 and get results

Catalog

Extensible Components

Figure 4: System architecture of Cerebro.

etc. Due to space constraints, more details of our APIs, in-
cluding full method signatures and a fleshed out example of
how to use Cerebro are provided in the appendix of our
technical report [53].

4.2 System Architecture
We adopt an extensible architecture, as Figure 4 shows.

This allows us to easily support multiple deep learning tools
and AutoML procedures. There are 5 main components: (1)
API, (2) Scheduler, (3) Task Executor, (4) Catalog, and (5)
Resource Monitor. Scheduler is responsible for orchestrating
the entire workload. It relies on worker and data availabil-
ity information from the Catalog. Task Executor launches
training units on the cluster and also handles model hops.
Resource Monitor is responsible for detecting worker failures
and updating the Resource Catalog. Section 5 explains how
the Scheduler works and how we achieve fault tolerance and
elasticity. Next, we describe how Cerebro’s architecture
enables high system generality.

Supporting Multiple Deep Learning Tools. The func-
tions input fn, model fn, and train fn are written by users
in the deep learning tool’s APIs. We currently support Ten-
sorFlow and PyTorch (it is simple to add support for more).
To support multiple such tools, we adopt a handler-based ar-
chitecture to delineate tool-specific aspects: model training,
checkpointing and restoring. Note that checkpointing and
restoring is how Cerebro realizes model hops. Task Ex-
ecutor automatically injects the tool-specific aspects from
the corresponding tool’s handler and runs these functions
on the workers. Overall, Cerebro’s architecture is highly
general and supports virtually all forms of data types, deep
net architectures, loss functions, and SGD-based optimizers.

Supporting Multiple AutoML Procedures Meta-
heuristics called AutoML procedures are common for explor-
ing training configs. We now make a key observation about
such procedures that underpins our Scheduler. Most Au-
toML procedures fit a common template: create an initial set
of configs (S) and evaluate them after each epoch (or every
few epochs). Based on the evaluations, terminate some con-
figurations (e.g., as in Hyperband [42] and PBT [32]) or add
new configurations (e.g., as in PBT). Grid/random search
is a one-shot instance of this template. Thus, we adopt this

Model
Config A B C D E

Runtime 6 3 3 3 6

A

B D

C E

1

2

3

1 2 3 4 5 6 7 8 9

W
or

ke
r B E C D A

A C B E D

C D B E A

1 2 3 4 5 6 7 8 9

A B C D E

B D C E A

C E A B D

1 2 3 4 5 6 7 8 9
(A) Per-epoch runtimes (B) An optimal task-parallel schedule (C) A non-optimal MOP schedule (D) An optimal MOP schedule

Figure 5: Gantt charts of task-parallel and MOP schedules for a sample model selection workload.

Table 3: Additional notation used in the MOP
MILP formulation

Symbol Description

T ∈ IR|S|×p Ti,j is the runtime of unit
si,j (ith configuration on jth

worker)

C Makespan of the workload

X ∈ IR|S|×p Xi,j is the start time of the ex-
ecution of ith configuration on
jth partition/worker

Y ∈ {0, 1}|S|×p×p Yi,j,j′ = 1 ⇐⇒ Xi,j < Xi,j′

Z ∈ {0, 1}|S|×|S|×p Zi,i′,j = 1 ⇐⇒ Xi,j < Xi′,j

V Very large value (Default: sum
of training unit runtimes)

template for our Scheduler. Given S, Cerebro trains all
models in S for one epoch and passes control back to the
corresponding AutoML procedure for convergence/termina-
tion/addition evaluations. Cerebro then gets a potentially
modified set S′ for the next epoch. This approach also lets
Cerebro support data re-shuffling after each epoch. But
the default (and common practice) is to shuffle only once
upfront. Grid/random search (perhaps the most popular in
practice), Hyperband, and PBT (and more procedures) con-
form to this common template and are currently supported.

ASHA [43] and Hyperopt [6] are two notable exceptions
to the above template, since they do not have a global
synchronized evaluation of training configs after an epoch
and are somewhat tied to task-parallel execution. While
MOP/Cerebro cannot ensure logically same execution as
ASHA or HyperOpt on task-parallelism, it is still possi-
ble to emulate them on MOP/Cerebro without any mod-
ifications to our system. In fact, our experiments with
ASHA show that ASHA on Cerebro has comparable–even
slightly better!–convergence behavior than ASHA on pure
task-parallelism (Section 6.3).

4.3 System Implementation Details
We prototype Cerebro in Python using XML-RPC

client-server package. Scheduler runs on the client. Each
worker runs a single service. Scheduling follows a push-based
model–Scheduler assigns tasks and periodically checks the
responses from the workers. We use a shared network file
system (NFS) as the central repository for models. Model
hopping is realized implicitly by workers writing models to
and reading models from this shared file system. Tech-
nically, this doubles the communication cost of MOP to
2kmp|S|, still a negligible overhead. Using NFS greatly re-
duces engineering complexity to implement model hops.

5. CEREBRO SCHEDULER
Scheduling training units on workers properly is critical

because pathological orderings can under-utilize resources
substantially, especially when deep net architectures and/or
workers are heterogeneous. Consider the model selection
workload shown in Figure 5(A). Assume workers are homo-
geneous and there is no data replication. For one epoch
of training, Figure 5(B) shows an optimal task-parallel
schedule for this workload with a 9-unit makespan. Fig-
ure 5(C) shows a non-optimal MOP schedulewith also 9
units makespan. But as Figure 5(D) shows, an optimal MOP
schedule has a makespan of only 7 units. Overall, we see that
MOP’s training unit-based scheduling offers more flexibility
to raise resource utilization. Next, we formally define the
MOP-based scheduling problem and explain how we design
our Scheduler.

5.1 Formal Problem Statement as MILP
Suppose the runtimes of each training unit, aka unit times,

are given. These can be obtained with, say, a pilot run for
a few mini-batches and then extrapolating (this overhead
will be marginal). For starters, assume each of the p data
partitions is assigned to only one worker. The objective
and constraints of the MOP-based scheduling problem is as
follows. Table 3 lists the additional notation used here.

Objective: min
C,X,Y,Z

C (1)

Constraints:

∀i, i′ ∈ [1, . . . , |S|] ∀j, j′ ∈ [1, . . . , p]

(a) Xi,j ≥ Xi,j′ + Ti,j′ − V · Yi,j,j′

(b) Xi,j′ ≥ Xi,j + Ti,j − V · (1− Yi,j,j′)

(c) Xi,j ≥ Xi′,j + Ti′,j − V · Zi,i′,j

(d) Xi′,j ≥ Xi,j + Ti,j − V · (1− Zi,i′,j)

(e) Xi,j ≥ 0

(f) C ≥ Xi,j + Ti,j

(2)

We need to minimize makespan C, subject to the con-
straints on C, unit start times X, model training isolation
matrix Y , and worker/partition exclusive access matrix Z.
The constraints enforce some of the invariants of MOP listed
in Section 3. Equations 2.a and 2.b ensure model training
isolation. Equations 2.c and 2.d ensure worker exclusive ac-
cess. Equation 2.e ensures that training unit start times are
non-negative and Equation 2.f ensures that C captures the
time taken to complete all training units.

Given the above, a straightforward approach to schedul-
ing is to use an MILP solver like Gurobi [27]. The start
times X then yield the actual schedule. But our problem
is essentially an instance of the classical open-shop schedul-
ing problem, which is known to be NP-Hard [24]. Since |S|
can even be 100s, MILP solvers may be too slow (more in
Section 5.4); thus, we explore alternative approaches.

5.2 Approximate Algorithm-based Scheduler
For many special cases, there are algorithms with good

approximation guarantees that can even be optimal un-
der some conditions. One such algorithm is “vector rear-
rangement” [21, 70]. It produces an optimal solution when
|S| � p, which is possible in our setting.

The vector rearrangement based method depends on two
values: Lmax (see Equation 3), the maximum load on any
worker; and Tmax (see Equation 4), the maximum unit time
of any training configuration in S.

Lmax = max
j∈[1,...,p]

|S|∑
i=1

Ti,j (3)

Tmax = max
i∈[1,...,|S|],j∈[1,...,p]

Ti,j (4)

If Lmax ≥ (p2 + p − 1) · Tmax, this algorithm’s output is
optimal. When there are lots of configs, the chance of the
above constraint being satisfied is high, yielding us an opti-
mal schedule. But if the condition is not met, the schedule
produced yields a makespan C ≤ C∗+ (p− 1) ·Tmax, where
C∗ is the optimal makespan value. This algorithm scales to
large |S| and p because it runs in polynomial time in contrast
to the MILP solver. For more details on this algorithm, we
refer the interested reader to [21,70].

5.3 Randomized Algorithm-based Scheduler
The approximate algorithm is complex to implement in

some cases, and its optimality condition may be violated of-
ten. Thus, we now consider a much simpler scheduler based
on randomization. This approach is simple to implement
and offer much more flexibility (explained more later). Al-
gorithm 1 presents our randomized scheduler.

Given S, create Q = {si,j : ∀i ∈ [1, ..., |S|], j ∈ [1, .., p]},
the set of all training units. Note that si,j is the train-
ing unit of configuration i on worker j. Initialize the state
of all models and workers to idle state. Then find an idle
worker and schedule a random training unit from Q on it.
This training unit must be such that its configuration is not
scheduled on another worker and it corresponds to the data
partition placed on that worker (Line 10). Then remove the
chosen training unit from Q. Continue this process until
no worker is idle and eventually, until Q is empty. After
a worker completes training unit si,j mark its model i and
worker j as idle again as per Algorithm 2.

5.4 Comparing Different Scheduling Methods
We use simulations to compare the efficiency and

makespans yielded by the three alternative schedulers. The
MILP and approximate algorithm are implemented using
Gurobi. We set a maximum optimization time of 5min for
tractability sake. We compare the scheduling methods on 3
dimensions: 1) number of training configs (two values: 16
and 256), 2) number of workers (two values: 8 and 16), 3)
homogeneity/heterogeneity of configs and workers.

Sub-epoch training time (unit time) of a training con-
fig is directly proportional to the compute cost of the con-
fig and inversely proportional to compute capacity of the
worker. For the homogeneous setting, we initialize all train-
ing config compute costs to be the same and also all worker
compute capacities to be the same. For the heterogeneous
setting, training config compute costs are randomly sampled
(with replacement) from a set of popular deep CNNs (n=35)
obtained from [3]. The costs vary from 360 MFLOPS to

Algorithm 1 Randomized Scheduling

1: Input: S
2: Q = {si,j : ∀i ∈ [1, . . . , |S|], ∀j ∈ [1, . . . , p]}
3: worker idle← [true, . . . , true]
4: model idle← [true, . . . , true]
5: while not empty(Q) do
6: for j ∈ [1, . . . , p] do
7: if worker idle[j] then
8: Q← shuffle(Q)
9: for si,j′ ∈ Q do

10: if model idle[i] and j′ = j then
11: Execute si,j′ on worker j
12: model idle[i]← false

13: worker idle[j]← false

14: remove(Q, si,j′)
15: break

16: wait WAIT TIME

Algorithm 2 When si,j finishes on worker j

1: model idle[i]← true

2: worker idle[j]← true

21000 MFLOPS with a mean of 5939 MFLOPS and stan-
dard deviation of 5671 MFLOPS. Due to space constraints
we provide these computational costs in the Appendix of
our technical report [53]. For worker compute capacities,
we randomly sample (with replacement) compute capacities
from 4 popular Nvidia GPUs: Titan Xp (12.1 TFLOPS/s),
K80 (5.6 TFLOPS/s), GTX 1080 (11.3 TFLOPS/s), and
P100 (18.7 TFLOPS/s). For each setting, we report the
average of 5 runs with different random seeds set to the
scheduling algorithms and also the min and max of all 5
runs. All makespans reported are normalized by the ran-
domized scheduler’s makespan.

The MILP scheduler sometimes performs poorer than the
other two because it has not converged to the optimal in
the given time budget. The approximate scheduler performs
poorly when both the configs and workers are heterogeneous.
It is also slower than the randomized scheduler.

Overall, the randomized approach works surprisingly well
on all aspects: near-optimal makespans with minimal vari-
ance across runs and very fast scheduling. We believe this
interesting superiority of the randomized algorithm against
the approximation algorithm is due to some fundamental
characteristics of deep net model selection workloads, e.g.,
large number of configurations and relatively low differences
in compute capacities. We leave a thorough theoretical anal-
ysis of the randomized algorithm to future work. Based on
these results, we use the randomized approach as the default
Scheduler in Cerebro.

5.5 Replica-Aware Scheduling
So far we assumed that a partition is available on only one

worker. But some file systems (e.g., HDFS) often replicate
data files, say, for reliability sake. We now exploit such
replicas for more scheduling flexibility and faster plans.

The replica-aware scheduler requires an additional input:
availability information of partitions on workers (an avail-
ability map). In replica-aware MOP, a training configura-
tion need not visit all workers. This extension goes beyond
open shop scheduling, but it is still NP-Hard because the

M
ak

es
pa

n
Sc

he
d.

 T
im

e
(s

)

Cluster Size

A
16 Configs
Homo. cluster and configs

256 Configs
B
16 Configs

Hetero. cluster and configs
256 Configs

Cluster Size

MILP
Approximate
Randomized

Figure 6: Scheduler runtimes and makespans of the
schedules produced in different settings. Makespans
are normalized with respect to that of Randomized.
(A) Homogeneous cluster and homogeneous train-
ing configs. (B) Heterogeneous cluster and hetero-
geneous training configs.

open shop problem is a special case of this problem with
a replication factor of one. We extended the MILP sched-
uler but it only got slower. So, we do not use it and skip
its details. Modifying the approximate algorithm is also
non-trivial because it is tightly coupled to the open shop
problem; so, we skip that too. In contrast, the randomized
scheduler can be easily extended for replica-aware schedul-
ing. The only change needed to Algorithm 1 is in Line 10:
instead of checking j′ = j, consult the availability map to
check if the relevant partition is available on that worker.

5.6 Fault Tolerance and Elasticity
We now explain how we make our randomized scheduler

fault tolerant. Instead of justQ, we maintain two data struc-
tures Q and Q′. Q′ is initialized to be empty. The process
in Algorithm 1 continues until both Q and Q′ are empty.
When a training unit is scheduled, it will be removed from
Q as before but now also added to Q′. It will be removed
from Q′ when it successfully completes its training on the
assigned worker. But if the worker fails before the training
unit finishes, it will be moved back from Q′ to Q. If the
data partitions present on the failed worker are also avail-
able elsewhere, the scheduler will successfully execute the
corresponding training units on those workers at a future
iteration of the loop in Algorithm 1.

Cerebro detects failures via the periodic heart-beat
check between the scheduler and workers. Because the
trained model states are always checkpointed between train-
ing units, they can be recovered and the failed training units
can be restarted. Only the very last checkpointed model
is needed for the failure recovery and others can be safely
deleted for reclaiming storage. The same mechanism can
be used to detect availability of new compute resources and
support seamless scale-out elasticity in Cerebro.

5.7 Extension: Horovod Hybrid
Some AutoML procedures (e.g., Hyperband) start with

large |S| but then kill some non-promising configs after some
epochs. So, only a few configs may train till convergence.
This means at the later stages, we may encounter a situa-
tion where |S| goes below p. In such cases, Cerebro can
under-utilize the cluster. To overcome this limitation, we
explored the possibility of doubly hybridizing MOP with

Table 4: Dataset details. All numbers are after pre-
processing and sampling of the datasets.

Dataset On-disk size Count Format Class

ImageNet 250 GB 1.2M HDF5 1000
Criteo 400 GB 100M TFRecords Binary

data-parallelism by implementing a hybrid of Cerebro and
Horovod. Just like Cerebro, Horovod is also equivalent to
sequential SGD; so, the hybrid is reproducible. The basic
idea is simple: divide the cluster into virtual sub-clusters
and run Horovod within each sub-cluster and MOP across
sub-clusters. Due to space constraints, we explain this hy-
brid architecture further in Appendix.

6. EXPERIMENTAL EVALUATION
We empirically validate if Cerebro can improve overall

throughput and efficiency of deep net model selection. We
then evaluate Cerebro in depth. Finally, we demonstrate
Cerebro’s ability to support multiple AutoML procedures.

Datasets. We use two large benchmark datasets: Ima-
geNet [18] and Criteo [14]. ImageNet is a popular image
classification dataset. We choose the 2012 version and re-
shape the images to 112× 112 pixels2. Criteo is an ad click
classification dataset with numeric and categorical features.
It is shipped under sparse representation. We one-hot en-
code the categorical features and densify the data. Only
a 2.5% random sample of the dataset is used2. Table 4.
summarizes the dataset statistics.

Workloads. For our first end-to-end test, we use two
different neural architectures and grid search for hyper-
parameters, yielding 16 training configs for each dataset.
Table 5 offers the details. We use Adam [36] as our SGD
method. To demonstrate generality, we also present results
for HyperOpt and ASHA on Cerebro in Section 6.3.

Experimental Setup. We use two clusters: CPU-only
for Criteo and GPU-enabled for ImageNet , both on Cloud-
Lab [19]. Each cluster has 8 worker nodes and 1 master
node. Each node in both clusters has two Intel Xeon 10-
core 2.20 GHz CPUs, 192GB memory, 1TB HDD and 10
Gbps network. Each GPU cluster worker node has an extra
Nvidia P100 GPU. All nodes run Ubuntu 16.04. We use
TensorFlow v1.12.0 as Cerebro’s underlying deep learning
tool. For GPU nodes, we use CUDA version 9.0 and cuDNN
version 7.4.2. Both datasets are randomly shuffled and split
into 8 equi-sized partitions.

6.1 End-to-End Results
We compare Cerebro with 5 systems: 4 data-parallel–

synchronous and asynchronous TensorFlow Parameter
Server, Horovod, BSP-style TensorFlow model averaging–
and 1 task-parallel (Celery). For Celery, we replicate
datasets to each worker beforehand and stream them from
disk, since they do not fit in memory. I/O time is trivial for
deep nets, where computation dominates; thus, they can be
interleaved. We use TensorFlow features to achieve this. For
all other systems, each worker node has one in-memory data
partition. We do not include data copying in the end-to-end

2We made this decision only so that all of our experiments
can complete in reasonable amount of time. This decision
does not alter the takeaways from our experiments.

System

ImageNet Criteo

Runtime
(hrs)

GPU
Utili.

(%)

Storage
Footprint

(GB)
Runtime

(hrs)
CPU
Utili.

(%)

Storage
Footprint

(GB)

TF PS -
Async 19.00 8.6 250 28.80 6.9 400

Horovod 5.42 92.1 250 14.06 16.0 400

TF Model
Averaging 1.97 72.1 250 3.84 52.2 400

Celery 1.72 82.4 2000 3.95 53.6 3200

Cerebro 1.77 79.8 250 3.40 51.9 400

(A) Per-epoch makespans and CPU/GPU utilization.

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

)

40

55

70

85

100

Epoch
1 2 3 4 5 6 7 8 9 10

TF Model Averaging Cerebro Horovod
TF Parameter Server - Async. Celery

(B) Learning curves of the resp. best configs on ImageNet.

Figure 7: End-to-end results on ImageNet and Criteo. For Celery, we report the runtime corresponding to
the lowest makespan schedule. Celery’s per-epoch runtime varies between 1.72-2.02 hours on ImageNet; on
Criteo, 3.95-5.49 hours. Horovod uses GPU kernels for communication; hence its high GPU utilization.

Table 5: Workloads.?architectures similar to VGG16 and ResNet50, respectively.†serialized sizes.

Dataset Model arch. Model size/MB† Batch size Learning rate Regularization Epochs

ImageNet {VGG16?, ResNet50?} VGG16: 792, ResNet50: 293 {32, 256} {10−4, 10−6} {10−4, 10−6} 10
Criteo 3-layer NN, 1000+500 hidden units 179 {32, 64, 256, 512} {10−3, 10−4} {10−4, 10−5} 5

runtimes. For scheduling, Celery uses a FIFO queue and
Cerebro uses the randomized scheduler. All other systems
train models sequentially.

Figure 7 presents the results. Cerebro significantly im-
proves the efficiency and throughput of model selection. On
ImageNet, Cerebro is over 10x faster than asynchronous
PS, which has a GPU utilization as low as 9%! Synchronous
PS was even slower. Cerebro is 3x faster than Horovod.
Horovod has high GPU utilization because it uses GPU for
communication. Cerebro’s runtime is comparable to model
averaging, which is as expected. But note model averaging
converges poorly. Celery’s runtime is dependent on the ex-
ecution order and thus we report the runtime on the opti-
mal schedule. On ImageNet, Celery’s runtime is compara-
ble to Cerebro. But note that Celery has a highly bloated
8x memory/storage footprint. Overall, Celery and Cere-
bro have the best learning curves–this is also as expected
because MOP ensures sequential equivalence for SGD, just
like task-parallelism. Horovod converges slower due to its
larger effective mini-batch size.

On Criteo, Cerebro is 14x faster than synchronous PS
and 8x faster than asynchronous PS. Both variants of PS
report severe CPU under-utilization (< 7%). Cerebro is
also 4x faster than Horovod. Cerebro’s runtime is compa-
rable to model averaging, with about 52% CPU utilization.
Celery is somewhat slower than Cerebro due to a straggler
issue caused by the highly heterogeneous model configs for
Criteo. Cerebro’s MOP approach offers higher flexibility
to avoid such straggler issues. A more detailed explanation
is given in the appendix of our technical report [53]. All
methods have almost indistinguishable convergence behav-
ior on this dataset: all reached 99% accuracy quickly, since
the class label is quite skewed.

Overall, Cerebro is the most resource-efficient approach
when compute, memory/storage, and network are consid-
ered holistically. It also has the best accuracy behavior, on
par with task-parallelism.

Cluster Size

(A) Speedup (Strong Scaling)

Epoch

(B) Fault Tolerance
Sp

ee
du

p
Ag

ai
ns

t 1
 W

or
ke

r

Pe
r-E

po
ch

 T
im

e
(m

in
ut

es
)

W2 Fails

W1 Fails W1 Recovers

W2 Recovers

1 2 4 8
1
2
3
4
5
6
7
8
9

1 2 4 53
26
28
30
32
34
36
38
40

Figure 8: (A) Speedup plot (strong scaling). (B)
Fault-tolerance.

6.2 Drill-down Experiments
Unless specified otherwise, we now show experiments on

the GPU cluster, ImageNet, and a model selection work-
load of 8 configs (4 learning rates, 2 regularization values,
and ResNet architectures) trained for 5 epochs. Each data
partition is placed on only one worker.

Scalability. We study the speedups (strong scaling) of
Cerebro and Horovod as we vary the cluster sizes. Fig-
ure 8(A) shows the speedups, defined as the workload com-
pletion time on multiple workers vs a single worker. Cere-
bro exhibits linear speedups due to MOP’s marginal com-
munication costs; in fact, it seems slightly super-linear here
because the dataset fits entirely in cluster memory com-
pared to the minor overhead of reading from disk on the
single worker. In contrast, Horovod exhibits substantially
sub-linear speedups due to its much higher communication
costs with multiple workers.

Fault Tolerance. We repeat our drill-down workload with
a replication factor of 3. We first inject two node failures
and bring the nodes back online later. Figure 8(B) shows the
time taken for each epoch and the points where the work-
ers failed and returned online. Overall, we see Cerebro’s
replica-aware randomized scheduler can seamlessly execute
the workload despite worker failures.

Batch Size Batch Size

Ru
nt

im
e

(h
ou

rs
)

(A) Runtime (B) Validation Error

Va
lid

at
io

n
er

ro
r a

t 1
0

ep
oc

hs
 (%

)

Figure 9: Effect of batch size on communication
overheads and convergence efficiency. (A) Runtime
against batch size. (B) The lowest validation error
after 10 epochs against batch size.

Effect of Batch Size. We now evaluate the effect of train-
ing mini-batch size for Cerebro and Horovod. We evaluate
5 batch sizes and report makespans and the validation er-
ror of the best model for each batch size after 10 epochs.
Figure 9 presents the results. With batch size 32, Horovod
is 2x slower than Cerebro. However, as the batch size
increases, the difference narrows since the relative commu-
nication overhead per epoch decreases. Cerebro also runs
faster with larger batch size due to better hardware utiliza-
tion. The models converge slower as batch size increases.
The best validation error is achieved by Cerebro with a
batch size of 32. With the same setting, Horovod’s best
validation error is higher than Cerebro; this is because its
effective batch size is 256 (32×8). Horovod’s best validation
error is closer to Cerebro’s at a batch size of 256. Overall,
Cerebro’s efficiency is more stable to the batch size, since
models hop per sub-epoch, not per mini-batch.

Network and Storage Efficiency. We study the trade-
off between redundant remote reads (wastes network) vs
redundant data copies across workers (wastes memory/s-
torage). Task parallelism forces users to either duplicate
the dataset to all workers or store it in a common reposito-
ry/distributed filesystem and read remotely. Cerebro can
avoid both forms of resource wastage. We assume the whole
dataset cannot fit on single-node memory. We compare
Cerebro and Celery in the following 2 settings:

Reading from remote storage (e.g., S3). In this setting, Cel-
ery reads data from a remote storage repeatedly each epoch.
For Cerebro each worker remotely reads one data parti-
tion and caches it. We change the data scale to evaluate
effects on the makespan and the amount of remote reads.
Figure 10 shows the results. Celery is slightly slower than
Cerebro due to remote read overheads. The most signifi-
cant advantage of Cerebro is its network bandwidth cost,
which is over 10x lower than Celery’s. After the initial read,
Cerebro only communicates models weights during train-
ing. In situations where reads and networks are not free
(e.g., cloud providers), Celery will incur higher monetary
costs than Cerebro. These results show it is perhaps better
to partition the dataset on S3, cache partitions on workers
on the first read, and then run Cerebro instead of Celery
with full dataset reads from S3 per epoch to avoid copying.

Reading from distributed storage (e.g., HDFS). In this set-
ting, the dataset is partitioned, replicated, and stored on 8
workers. We then load all local data partitions into each
worker’s memory. Celery performs remote reads for non-
local partitions. We vary the replication factor to study its
effect on the makespan and the number of remote reads.

Data Scale Data ScaleDa
ta

 re
ad

 b
y

a
w

or
ke

r (
G

B)

Ru
nt

im
e

(h
ou

rs
)

(A) Runtime (B) Network Cost

Figure 10: Reading data from remote storage.

Replication Factor Replication FactorDa
ta

 re
ad

 b
y

a
w

or
ke

r (
G

B)

Ru
nt

im
e

(h
ou

rs
)

(A) Runtime (B) Network Cost

Figure 11: Reading data from distributed storage.

Figure 10 presents the results. For replication factors 1 (no
replication), 2, and 4, Cerebro incurs 100x less network
usage and is slightly faster than Celery. But at a replication
factor of 8 (i.e., full replication), Cerebro is slightly slower
due to the overhead of model hops. For the same reason,
Cerebro incurs marginal network usage, while Celery has
almost no network usage other than control actions. Note
that the higher the replication factor for Celery, the more
memory/storage is wasted. Cerebro offers the best overall
resource efficiency–compute, memory/storage, and network
put together–for deep net model selection.

Experiments with Horovod Hybrid. Our experiment
with the Horovod Hybrid gave an anti-climactic result: the
intrinsic network overheads of Horovod meant the hybrid is
often slower than regular Cerebro with some workers be-
ing idle! We realized that mitigating this issue requires more
careful data repartitioning. We deemed this complexity as
perhaps not worth it. Instead, we propose a simpler resolu-
tion: if |S| falls below p but above p/2, use Cerebro; if |S|
falls below p/2, just switch to Horovod. This switch incurs
no extra overhead. Due to space constraints, we skip the de-
tails here and explain this experiment further in Appendix.

6.3 Experiments with AutoML Procedures
We experiment with two popular AutoML procedures:

HyperOpt [6] and ASHA [43]. For HyperOpt, we compare
Cerebro and Spark as the execution backends. Spark is
a backend supported natively by HyperOpt; it distributes
only the models, i.e., it is task-parallel on fully replicated
data. For ASHA, we compare Cerebro and Celery as the
execution backends. We use ImageNet, GPU cluster, and
PyTorch. Training configs are sampled from the grid shown
in Table 6. For Cerebro data is partitioned without repli-
cation; for Spark and Celery the dataset is fully replicated.

Both HyperOpt and ASHA keep exploring different con-
figs until a resource limit is reached. For HyperOpt, this
limit is the maximum number of configs; for ASHA, it is the
maximum wall-clock time. During the exploration Hyper-
Opt uses Bayesian sampling to generate new configs; ASHA
uses random sampling. For both methods, the generated
configs are dependent on the completion order of configs
across task-parallel workers. Thus, it is impossible for Cere-
bro to exactly replicate HyperOpt or ASHA ran with task-
parallelism. However, we can closely emulate HyperOpt and

Table 6: Parameter grid used to randomly sample
configuration for Section 6.3.

Values sampled from

Model [ResNet18, ResNet34]
Learning rate [10−5, . . . , 10−1]
Weight decay coefficient [10−5, . . . , 10−1]
Batch size [16, . . . , 256]

Time (Hours) Time (Hours)

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

) (A) HyperOpt on Spark (B) HyperOpt on Cerebro
To

p-
5

Va
lid

at
io

n
Er

ro
r (

%
)

Figure 12: HyperOpt learning curves by time.

ASHA on Cerebro by making the number of simultane-
ously trained configs (|S|) equal to the number of workers
(p) and without making any changes to Cerebro.

HyperOpt. We run an experiment using HyperOpt with
a max config budget of 32. We train each config for
10 epochs. With this configuration, HyperOpt on Cere-
bro (resp. Spark) took 31.8 (resp. 25.9) hours. Figure 12
shows all learning curves. We found that the slightly higher
(23%) runtime of Cerebro is mainly due to the lower degree
of parallelism (|S| = 8). However, this issue can be miti-
gated by increasing the number of simultaneously trained
configs. Although individual configs are not comparable
across the two systems, the best errors achieved are close
(34.1% on Cerebro; 33.2% on Celery).

ASHA. We use ASHA with a max epoch budget (R) of 9,
a selection fraction (η) of 3, and a time limit of 24hr. With
these settings, ASHA trains for a maximum of 13 epochs
over 3 stages: 1, 3, and 9 epochs. Only the more promis-
ing configurations are trained for more epochs. In the given
time limit, ASHA on Cerebro (resp. Celery) explored 83
(resp. 67) configs. Figure 13 shows all learning curves. Like
HyperOpt, even though the configs are not directly compa-
rable, the best errors achieved are close (31.9% on Cerebro;
33.2% on Celery). More details about this experiment and
experiments with another AutoML procedure (HyperBand)
are presented in the appendix of our technical report [53].

7. DISCUSSION AND LIMITATIONS
Applications. Cerebro is in active use for time series
analytics for our public health collaborators. In the case
study from Section 1, Cerebro helped us pick 16 deep net
configs to compare. To predict sitting vs. not-sitting, these
configs had accuracies between 62% and 93%, underscoring
the importance of rigorous model selection. The best configs
gave a large lift of 10% over their prior RandomForest model
based on hand-engineered time series features. We plan to
use Cerebro for more domain science applications in the
future on time series, video, graph, and text data.

Hours

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

) (B) ASHA on Cerebro

Hours

(A) ASHA on Celery

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

)

Figure 13: ASHA learning curves by time.

Open Source Systems. Cerebro is open sourced and
available for download [2]. MOP’s generality also enabled
us to emulate it on existing data-parallel systems. Piv-
otal/VMware collaborated with us to integrate MOP into
Greenplum by extending the MADlib library [28] for running
TensorFlow on Greenplum-resident data [47, 67]. Green-
plum’s customers are interested in this for enterprise ML
use cases, including language processing, image recognition,
and fraud detection. We have also integrated Cerebro into
Apache Spark [16]. Cerebro-Spark can run MOP on ex-
isting resource managers such as YARN and Mesos. Al-
ternatively, one can also deploy Cerebro as a standalone
application by wrapping it as tasks accepted by the resource
manager. We leave such an extension to future work.

Other ML Model Families. We focused primarily on
deep nets due to their growing popularity, high sensitivity to
model configurations, and resource intensiveness. However,
note that MOP and Cerebro’s ideas are directly usable for
model selection of any ML models trainable with SGD. Ex-
amples include linear/logistic regression, some support vec-
tor machines, low-rank matrix factorization, and conditional
random fields. In fact, since linear/logistic regression can be
trivially expressed in the deep learning tools’s APIs, Cere-
bro will work out of the box for them. Cerebro’s high
memory efficiency makes it easier for users to store the en-
tire large datasets in distributed memory, which can signif-
icantly reduce runtimes of such I/O-bound ML models. We
leave an empirical analysis of these less compute-intensive
models to future work.

Model Parallelism and Batching. Cerebro currently
does not support model parallelism (for models larger than
single-node memory) or model batching (running multiple
models on a worker at a time). It is possible to remove
these two limitations from Cerebro. For instance, model
parallelism can be supported with the notion of virtual nodes
composed of multiple physical nodes that together hold a
very large model. Model batching can be supported with
multiple virtual nodes mapped to a physical node. We leave
these extensions to future work.

8. RELATED WORK
Systems for Model Selection. Google Vizier [23], Ray
Tune [46], Dask-Hyperband [61], SparkDL [15], and Spark-
Hyperopt [31] are systems for model selection. Vizier, Ray,
and Dask-Hyperband are pure task-parallel systems that im-
plement some AutoML procedures. SparkDL and Spark-
Hyperopt use Spark for execution but distribute configs in a
task-parallel manner with full data replication Cerebro of-

fers higher overall resource efficiency compared to pure task-
or pure data-parallel approaches.

AutoML Procedures. AutoML procedures such as Hy-
perband [42] and PBT [32] are orthogonal to our work
and exist at a higher abstraction level. They fit a com-
mon template of per-epoch scheduling in Cerebro. While
ASHA [43] does not fit this template, Cerebro can still
emulate it well and offer similar accuracy. Bayesian opti-
mization is a class of AutoML procedures, some of which
have a high degree of parallelism for searching configs (e.g.,
Hyperopt [6]); Cerebro supports such procedures. Some
others run a sequential search, leading to a low degree of
parallelism (e.g., [5, 37]); these may not be a fit for Cere-
bro.

Distributed SGD Systems. There is much prior work
on data-parallel distributed SGD, including centralized fine-
grained (e.g., [30, 34, 58, 73]) and decentralized fine-grained
(e.g., [45, 58, 69]). These are all complementary to our
work because they train one model at a time, while we fo-
cus on parallel model selection. As we showed, such ap-
proaches have higher communication complexity and thus,
higher runtimes than MOP in our setting. Also, since Cere-
bro performs logically sequential SGD, it ensures theoreti-
cally best convergence efficiency. CROSSBOW [38] proposes
a new variant of model averaging for single-server multi-
GPU setting. But it is also complementary to our work,
since it also trains one model at a time. Overall, our work
breaks the dichotomy between data- and task-parallel ap-
proaches, thus offering better overall resource efficiency.

Hybrid Parallelism in ML Systems. MOP is inspired
by the classical idea of process migration in OS multiprocess-
ing [4]. We bring that notion to the data-partitioned cluster
setting. This generic idea has been used before in limited
contexts in ML systems [8, 39]. The closest to our work
is [13], which proposes a scheme for training many homoge-
neous CNNs on a homogeneous GPU cluster. They propose
a ring topology to migrate models, resembling a restricted
form of MOP. But their strong homogeneity assumptions
can cause stalls in general model selection workloads, e.g.,
due to heterogeneous neural architectures and/or machines.
In contrast, we approach this problem from first principles
and formalize it as an instance of open shop scheduling.
This powerful abstraction lets Cerebro support arbitrary
deep nets and data types, as well as heterogeneous neural
architectures and machines. It also enables Cerebro to
support replication, fault tolerance, elasticity, and arbitrary
AutoML procedures, unlike prior work. SystemML also sup-
ports a hybrid of task- and data-parallelism for better plan
generation for linear algebra-based classical ML on top of
MapReduce [9]. Cerebro is complementary due to its fo-
cus on deep nets and SGD’s data access pattern, not lin-
ear algebra-based classical ML. Finally, a recent benchmark
study suggested that communication bottlenecks inherent in
pure data-parallelism imply hybrid parallelism is crucial for
scalable ML systems [66]. Our work validates that sugges-
tion for deep learning workloads.

Multi-Query and Other System Optimizations. MOP
is also inspired by multi-query optimization (MQO) [62]. A
recent line of work in the database literature studies MQO
for deep learning, including staging and sharing work in
CNN transfer learning [49] and batched incremental view

maintenance for CNN inference [50, 51, 59]. Cerebro fur-
thers this research direction. All these MQO techniques are
complementary and can be used together. Several works op-
timize the internals of deep net or SGD systems, including
communication-computation pipelining [54], new compila-
tion techniques [33], model batching [55], and execution on
compressed data [41]. They are complementary to Cere-
bro, since they optimize lower-level issues. MOP’s general-
ity enables Cerebro to be hybridized with such ideas.

Scheduling. Gandiva [71], Tiresias [26], and SLAQ [72] are
cluster scheduling frameworks for deep learning. They fo-
cus on lower-level primitives such as resource allocation and
intra-server locality for reducing mean job completion times.
Cerebro is complementary as it exists at a higher abstrac-
tion level and focuses on model selection throughput. How
compute hardware is allocated is outside our scope. There
is a long line of work on job scheduling in the operations
research and systems literatures [12,22,29]. Our goal is not
to create new scheduling algorithms but to apply known
techniques to a new ML systems setting.

9. CONCLUSIONS AND FUTURE WORK
Simplicity that still achieves maximal functionality and

efficiency is a paragon of virtue in real-world systems. We
present a simple but novel and highly general form of paral-
lel SGD execution, MOP, that raises the resource efficiency
of deep net model selection without sacrificing accuracy or
reproducibility. MOP is also simple to implement, which we
demonstrate by building Cerebro, a fault-tolerant deep net
model selection system that supports multiple popular deep
learning tools and model selection procedures. Experiments
with large ML benchmark datasets confirm the benefits of
Cerebro. As for future work, we plan to hybridize MOP
with model parallelism and batching and also support more
complex model selection scenarios such as transfer learning.

Acknowledgments. This work was supported in part by a
Hellman Fellowship, the NIDDK of the NIH under award
number R01DK114945, an NSF CAREER Award under
award number 1942724, and a gift from VMware. The con-
tent is solely the responsibility of the authors and does not
necessarily represent the views of any of these organizations.
We thank the members of UC San Diego’s Database Lab
and Center for Networked Systems, Loki Natarajan and our
public health collaborators at UC San Diego, Frank McQuil-
lan and the Apache MADlib/Greenplum team at VMware,
Carlo Curino, Matteo Interlandi, and Julian McAuley for
their feedback on this work.

10. REFERENCES

[1] Script for Tensorflow Model Averaging, Accessed
January 31, 2020. https:
//github.com/tensorflow/tensor2tensor/blob/

master/tensor2tensor/utils/avg_checkpoints.py.

[2] Cerebro Documentation, Accessed July 5, 2020.
https://adalabucsd.github.io/cerebro-system/.

[3] S. Albanie. Memory Consumption and FLOP Count
Estimates for Convnets, Accessed January 31, 2020.
https://github.com/albanie/convnet-burden.

[4] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau.
Operating Systems: Three Easy Pieces.
Arpaci-Dusseau Books LLC, 2018.

[5] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl.
Algorithms for Hyper-Parameter Optimization. In
Advances in Neural Information Processing Systems
24: 25th Annual Conference on Neural Information
Processing Systems 2011, pages 2546–2554, 2011.

[6] J. Bergstra, D. Yamins, and D. D. Cox. Making a
Science of Model Search: Hyperparameter
Optimization in Hundreds of Dimensions for Vision
Architectures. In Proceedings of the 30th International
Conference on Machine Learning, ICML 2013,
volume 28 of JMLR Workshop and Conference
Proceedings, pages 115–123. JMLR.org, 2013.

[7] D. P. Bertsekas. A New Class of Incremental Gradient
Methods for Least Squares Problems. Society for
Industrial and Applied Mathematics Journal on
Optimization, 7(4):913–926, Apr. 1997.

[8] M. Boehm, A. Kumar, and J. Yang. Data
Management in Machine Learning Systems. Synthesis
Lectures on Data Management. Morgan & Claypool
Publishers, 2019.

[9] M. Boehm, S. Tatikonda, B. Reinwald, P. Sen,
Y. Tian, D. R. Burdick, and S. Vaithyanathan. Hybrid
Parallelization Strategies for Large-Scale Machine
Learning in SystemML. PVLDB, 7(7):553–564, 2014.

[10] L. Bottou. Curiously Fast Convergence of some
Stochastic Gradient Descent Algorithms. Unpublished
open problem offered to the attendance of the
Symposium on Learning and Data Science 2009
conference, 2009.

[11] S. Boyd and L. Vandenberghe. Convex Optimization.
Cambridge University Press, 2004.

[12] P. Brucker. Scheduling Algorithms. Springer-Verlag,
3rd edition, 2001.

[13] C. R. Chen, G. G. C. Lee, Y. Xia, W. S. Lin,
T. Suzumura, and C. Lin. Efficient Multi-training
Framework of Image Deep Learning on GPU Cluster.
In 2015 IEEE International Symposium on
Multimedia, ISM 2015, pages 489–494. IEEE
Computer Society, 2015.

[14] CriteoLabs. Kaggle Contest Dataset Is Now Available
for Academic Use!, Accessed January 31, 2020.
https://ailab.criteo.com/category/dataset.

[15] databricks. Deep Learning Pipelines for Apache Spark,
Accessed January 31, 2020. https:
//github.com/databricks/spark-deep-learning.

[16] Databricks. Resource-efficient Deep Learning Model
Selection on Apache Spark, Accessed May 30, 2020.
https://bit.ly/3esN3JT.

[17] Y. N. Dauphin, H. de Vries, J. Chung, and Y. Bengio.
Rmsprop and Equilibrated Adaptive Learning Rates
for Non-convex Optimization. CoRR, abs/1502.04390,
2015.

[18] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and F. Li.
Imagenet: A Large-scale Hierarchical Image Database.
In 2009 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR
2009), pages 248–255. IEEE Computer Society, 2009.

[19] D. Duplyakin, R. Ricci, A. Maricq, G. Wong,
J. Duerig, E. Eide, L. Stoller, M. Hibler, D. Johnson,
K. Webb, A. Akella, K. Wang, G. Ricart,
L. Landweber, C. Elliott, M. Zink, E. Cecchet, S. Kar,
and P. Mishra. The design and operation of CloudLab.
In Proceedings of the USENIX Annual Technical
Conference (ATC), pages 1–14, July 2019.

[20] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a
Unified Architecture for In-RDBMS Analytics. In
Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’12,
pages 325–336. Association for Computing Machinery,
2012.

[21] T. Fiala. An Algorithm for the Open-shop Problem.
Mathematics of Operations Research, 8(1):100–109,
1983.

[22] J. V. Gautam, H. B. Prajapati, V. K. Dabhi, and
S. Chaudhary. A Survey on Job Scheduling
Algorithms in Big Data Processing. In 2015 IEEE
International Conference on Electrical, Computer and
Communication Technologies (ICECCT), pages 1–11,
2015.

[23] D. Golovin, B. Solnik, S. Moitra, G. Kochanski,
J. Karro, and D. Sculley. Google Vizier: A Service for
Black-box Optimization. In Proceedings of the 23rd
ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17,
pages 1487–1495. Association for Computing
Machinery, 2017.

[24] T. Gonzalez and S. Sahni. Open Shop Scheduling to
Minimize Finish Time. J. ACM, 23(4):665–679, Oct.
1976.

[25] I. Goodfellow, Y. Bengio, and A. Courville. Deep
Learning. MIT press, 2016.

[26] J. Gu, M. Chowdhury, K. G. Shin, Y. Zhu, M. Jeon,
J. Qian, H. H. Liu, and C. Guo. Tiresias: A GPU
Cluster Manager for Distributed Deep Learning. In
16th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2019, pages
485–500. USENIX Association, 2019.

[27] Gurobi. Gurobi Optimization, Accessed January 31,
2020. https://www.gurobi.com.

[28] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang,
E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng,
K. Li, and A. Kumar. The MADlib Analytics Library:
Or MAD Skills, the SQL. PVLDB, 5(12):1700–1711,
2012.

[29] W. Herroelen, B. D. Reyck, and E. Demeulemeester.
Resource-constrained Project Scheduling: A Survey of
Recent Developments. Computers & Operations
Research, 25(4):279–302, 1998.

[30] Y. Huang, T. Jin, Y. Wu, Z. Cai, X. Yan, F. Yang,
J. Li, Y. Guo, and J. Cheng. FlexPS: Flexible

https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/avg_checkpoints.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/avg_checkpoints.py
https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/avg_checkpoints.py
https://adalabucsd.github.io/cerebro-system/
https://github.com/albanie/convnet-burden
https://ailab.criteo.com/category/dataset
https://github.com/databricks/spark-deep-learning
https://github.com/databricks/spark-deep-learning
https://bit.ly/3esN3JT
https://www.gurobi.com

Parallelism Control in Parameter Server Architecture.
PVLDB, 11(5):566–579, 2018.

[31] HyperOpt. Scaling out Search with Apache Spark,
Accessed January 31, 2020. http:
//hyperopt.github.io/hyperopt/scaleout/spark/.

[32] M. Jaderberg, V. Dalibard, S. Osindero, W. M.
Czarnecki, J. Donahue, A. Razavi, O. Vinyals,
T. Green, I. Dunning, K. Simonyan, C. Fernando, and
K. Kavukcuoglu. Population Based Training of Neural
Networks. CoRR, abs/1711.09846, 2017.

[33] Z. Jia, M. Zaharia, and A. Aiken. Beyond Data and
Model Parallelism for Deep Neural Networks. In
Proceedings of Machine Learning and Systems 2019,
MLSys 2019. mlsys.org, 2019.

[34] J. Jiang, B. Cui, C. Zhang, and L. Yu.
Heterogeneity-Aware Distributed Parameter Servers.
In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD 17,
pages 463–478. Association for Computing Machinery,
2017.

[35] T.-Y. Kim and S.-B. Cho. Predicting Residential
Energy Consumption Using CNN-LSTM Neural
Networks. Energy, 182:72–81, 2019.

[36] D. P. Kingma and J. Ba. Adam: A Method for
Stochastic Optimization. CoRR, abs/1412.6980, 2015.

[37] A. Klein, S. Falkner, S. Bartels, P. Hennig, and
F. Hutter. Fast Bayesian Optimization of Machine
Learning Hyperparameters on Large Datasets. In
Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, AISTATS 2017,
volume 54 of Proceedings of Machine Learning
Research, pages 528–536. PMLR, 2017.

[38] A. Koliousis, P. Watcharapichat, M. Weidlich, L. Mai,
P. Costa, and P. Pietzuch. Crossbow: Scaling Deep
Learning with Small Batch Sizes on Multi-GPU
Servers. PVLDB, 12(11):1399–1412, 2019.

[39] A. Kumar, M. Boehm, and J. Yang. Data
Management in Machine Learning: Challenges,
Techniques, and Systems. In Proceedings of the 2017
ACM International Conference on Management of
Data, SIGMOD ’17, pages 1717–1722. Association for
Computing Machinery, 2017.

[40] A. Kumar, R. McCann, J. Naughton, and J. M. Patel.
Model Selection Management Systems: the Next
Frontier of Advanced Analytics. SIGMOD Rec.,
44(4):1722, May 2016.

[41] F. Li, L. Chen, Y. Zeng, A. Kumar, X. Wu, J. F.
Naughton, and J. M. Patel. Tuple-Oriented
Compression for Large-Scale Mini-Batch Stochastic
Gradient Descent. In Proceedings of the 2019
International Conference on Management of Data,
SIGMOD ’19, pages 1517–1534. Association for
Computing Machinery, 2019.

[42] L. Li, K. G. Jamieson, G. DeSalvo, A. Rostamizadeh,
and A. Talwalkar. Hyperband: A Novel Bandit-based
Approach to Hyperparameter Optimization. J. Mach.
Learn. Res., 18:185:1–185:52, 2017.

[43] L. Li, K. G. Jamieson, A. Rostamizadeh, E. Gonina,
J. Ben-tzur, M. Hardt, B. Recht, and A. Talwalkar.
Massively Parallel Hyperparameter Tuning. In
Proceedings of Machine Learning and Systems 2020,
MLSys 2020. mlsys.org, 2020.

[44] M. Li, D. G. Andersen, J. W. Park, A. J. Smola,
A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and
B. Su. Scaling Distributed Machine Learning with the
Parameter Server. In 11th USENIX Symposium on
Operating Systems Design and Implementation, OSDI
’14, pages 583–598. USENIX Association, 2014.

[45] X. Lian, W. Zhang, C. Zhang, and J. Liu.
Asynchronous Decentralized Parallel Stochastic
Gradient Descent. In Proceedings of the 35th
International Conference on Machine Learning, ICML
2018, volume 80 of Proceedings of Machine Learning
Research, pages 3049–3058. PMLR, 2018.

[46] R. Liaw, E. Liang, R. Nishihara, P. Moritz, J. E.
Gonzalez, and I. Stoica. Tune: A Research Platform
for Distributed Model Selection and Training. CoRR,
abs/1807.05118, 2018.

[47] MADLib. User Documentation for Apache MADlib,
Accessed May 30, 2020. https://bit.ly/3epbEyS.

[48] P. Moritz, R. Nishihara, S. Wang, A. Tumanov,
R. Liaw, E. Liang, M. Elibol, Z. Yang, W. Paul, M. I.
Jordan, and I. Stoica. Ray: A Distributed Framework
for Emerging AI Applications. In 13th USENIX
Symposium on Operating Systems Design and
Implementation, OSDI 2018, pages 561–577. USENIX
Association, 2018.

[49] S. Nakandala and A. Kumar. Vista: Optimized
System for Declarative Feature Transfer from Deep
CNNs at Scale. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’20, pages 1685–1700. Association for
Computing Machinery, 2020.

[50] S. Nakandala, A. Kumar, and Y. Papakonstantinou.
Incremental and Approximate Inference for Faster
Occlusion-Based Deep CNN Explanations. In
Proceedings of the 2019 International Conference on
Management of Data, SIGMOD ’19, pages 1589–1606.
Association for Computing Machinery, 2019.

[51] S. Nakandala, K. Nagrecha, A. Kumar, and
Y. Papakonstantinou. Incremental and Approximate
Computations for Accelerating Deep CNN Inference.
ACM Trans. Database Syst., 0(ja), 2020.

[52] S. Nakandala, Y. Zhang, and A. Kumar. Cerebro:
Efficient and Reproducible Model Selection on Deep
Learning Systems. In Proceedings of the 3rd
International Workshop on Data Management for
End-to-End Machine Learning, pages 1–4, 2019.

[53] S. Nakandala, Y. Zhang, and A. Kumar. Cerebro: A
Data System for Optimized Deep Learning Model
Selection. https://adalabucsd.github.io/papers/
TR_2020_Cerebro.pdf, 2020. [Tech report].

[54] D. Narayanan, A. Harlap, A. Phanishayee,
V. Seshadri, N. R. Devanur, G. R. Ganger, P. B.
Gibbons, and M. Zaharia. PipeDream: Generalized
Pipeline Parallelism for DNN Training. In Proceedings
of the 27th ACM Symposium on Operating Systems
Principles, SOSP ’19, pages 1–15. Association for
Computing Machinery, 2019.

[55] D. Narayanan, K. Santhanam, A. Phanishayee, and
M. Zaharia. Accelerating Deep Learning Workloads
through Efficient Multi-Model Execution. In NeurIPS
Workshop on Systems for Machine Learning,
December 2018.

http://hyperopt.github.io/hyperopt/scaleout/spark/
http://hyperopt.github.io/hyperopt/scaleout/spark/
https://bit.ly/3epbEyS
https://adalabucsd.github.io/papers/TR_2020_Cerebro.pdf
https://adalabucsd.github.io/papers/TR_2020_Cerebro.pdf

[56] S. L. Oh, E. Y. Ng, R. S. Tan, and U. R. Acharya.
Automated Diagnosis of Arrhythmia Using
Combination of CNN and LSTM Techniques with
Variable Length Heart Beats. Computers in Biology
and Medicine, 102:278–287, 2018.

[57] T. O’Malley. Hyperparameter Tuning with Keras
Tuner, Accessed January 31, 2020.
https://blog.tensorflow.org/2020/01/

hyperparameter-tuning-with-keras-tuner.html?

linkId=81371017.

[58] B. C. Ooi, K.-L. Tan, S. Wang, W. Wang, Q. Cai,
G. Chen, J. Gao, Z. Luo, A. K. Tung, Y. Wang,
Z. Xie, M. Zhang, and K. Zheng. SINGA: A
Distributed Deep Learning Platform. In Proceedings of
the 23rd ACM International Conference on
Multimedia, MM ’15, pages 685–688. Association for
Computing Machinery, 2015.

[59] A. Ordookhanians, X. Li, S. Nakandala, and
A. Kumar. Demonstration of Krypton: Optimized
CNN Inference for Occlusion-Based Deep CNN
Explanations. PVLDB, 12(12):1894–1897, 2019.

[60] S. Pafka. Big RAM is Eating Big Data
- Size of Datasets Used for Analytics, Accessed
January 31, 2020. https://www.kdnuggets.com/2015/
11/big-ram-big-data-size-datasets.html.

[61] Scott Sievert, Tom Augspurger, and Matthew
Rocklin. Better and Faster Hyperparameter
Optimization with Dask. In Proceedings of the 18th
Python in Science Conference, pages 118–125, 2019.

[62] T. K. Sellis. Multiple-query Optimization. ACM
Trans. Database Syst., 13(1):23–52, Mar. 1988.

[63] A. Sergeev and M. D. Balso. Horovod: Fast and Easy
Distributed Deep Learning in TF. CoRR,
abs/1802.05799, 2018.

[64] S. Shalev-Shwartz and S. Ben-David. Understanding
Machine Learning: from Theory to Algorithms.
Cambridge University Press, 2014.

[65] H. Su and H. Chen. Experiments on Parallel Training
of Deep Neural Network using Model Averaging.
CoRR, abs/1507.01239, 2015.

[66] A. Thomas and A. Kumar. A Comparative Evaluation
of Systems for Scalable Linear Algebra-Based
Analytics. PVLDB, 11(13):2168–2182, 2018.

[67] VMware. Model Selection for Deep Neural Networks
on Greenplum Database, Accessed May 30, 2020.
https://bit.ly/2AaQLc2.

[68] P. Warden. The Machine Learning Reproducibility
Crisis, Accessed January 31, 2020.
https://petewarden.com/2018/03/19/

the-machine-learning-reproducibility-crisis.

[69] P. Watcharapichat, V. L. Morales, R. C. Fernandez,
and P. Pietzuch. Ako: Decentralised Deep Learning
with Partial Gradient Exchange. In Proceedings of the
Seventh ACM Symposium on Cloud Computing, SoCC
16, pages 84–97. Association for Computing
Machinery, 2016.

[70] G. J. Woeginger. The Open Shop Scheduling Problem.
In 35th Symposium on Theoretical Aspects of
Computer Science, STACS 2018, volume 96 of LIPIcs,
pages 4:1–4:12. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2018.

[71] W. Xiao, R. Bhardwaj, R. Ramjee, M. Sivathanu,
N. Kwatra, Z. Han, P. Patel, X. Peng, H. Zhao,
Q. Zhang, F. Yang, and L. Zhou. Gandiva:
Introspective Cluster Scheduling for Deep Learning. In
13th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2018, pages
595–610. USENIX Association, 2018.

[72] H. Zhang, L. Stafman, A. Or, and M. J. Freedman.
SLAQ: Quality-Driven Scheduling for Distributed
Machine Learning. In Proceedings of the 2017
Symposium on Cloud Computing, SoCC ’17, pages
390–404. Association for Computing Machinery, 2017.

[73] Y. Zou, X. Jin, Y. Li, Z. Guo, E. Wang, and B. Xiao.
Mariana: Tencent Deep Learning Platform and Its
Applications. PVLDB, 7(13):1772–1777, 2014.

APPENDIX
A. CEREBRO API USAGE EXAMPLE

In this Section, we present a detailed example on how the
Cerebro API can be used to perform the ImageNet model
selection workload explained in Section 4.1.

Before invoking the model selection workload users have
to first register workers and data. This can be done as per
the API methods shown in Listing 1 and Listing 2.

Listing 1: Registering Workers
API method to r e g i s t e r workers
wo rk e r i d : Id o f the worker
ip : worker IP
#
Example usage :
r e g i s t e r w o r k e r (0 , 1 0 . 0 . 0 . 1)
r e g i s t e r w o r k e r (1 , 1 0 . 0 . 0 . 2)
. . . .
r e g i s t e r w o r k e r (7 , 1 0 . 0 . 0 . 8)
#######################################
r e g i s t e r w o r k e r (worker id , ip)

Listing 2: Registering Data
API method to r e g i s t e r a d a t a s e t
name : Name o f the d a t a s e t
nu m pa r t i t i o ns : # of p a r t i t i o n s
#
Example usage :
r e g i s t e r d a t a s e t (ImageNet , 8)
#######################################
r e g i s t e r d a t a s e t (ImageNet , 8)

API method to r e g i s t e r p a r t i t i o n
a v a i l a b i l i t y
dataset name : Name o f the d a t a s e t
d a t a t y p e : t r a i n or e v a l
p a r t i t i o n i d : Id o f the p a r t i t i o n
worker : Id o f the worker
f i l e p a t h : f i l e p a t h on the
worker
#
r e g i s t e r p a r t i t i o n (ImageNet , t ra in ,
0 ,
0 , / data / imagenet / t r a i n 0)

https://blog.tensorflow.org/2020/01/hyperparameter-tuning-with-keras-tuner.html?linkId=81371017
https://blog.tensorflow.org/2020/01/hyperparameter-tuning-with-keras-tuner.html?linkId=81371017
https://blog.tensorflow.org/2020/01/hyperparameter-tuning-with-keras-tuner.html?linkId=81371017
https://www.kdnuggets.com/2015/11/big-ram-big-data-size-datasets.html
https://www.kdnuggets.com/2015/11/big-ram-big-data-size-datasets.html
https://bit.ly/2AaQLc2
https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis
https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis

#######################################
r e g i s t e r p a r t i t i o n (dataset name ,

data type ,
p a r t i t i o n i d , worker ,
f i l e p a t h)

Next, users need to define the initial set of training con-
figurations as shown in Listing 3.

Listing 3: Initial Training Configurations
S = []
for b a t c h s i z e in [6 4 , 1 2 8] :

for l r in [1 e−4, 1e−5] :
for reg in [1 e−4, 1e−5] :

for model in [ResNet , VGG] :
c o n f i g = {

b a t c h s i z e : ba t ch s i z e ,
l e a r n r a t e : l r ,
reg : reg ,
model : model

}
S . append (c o n f i g)

Users also need to define three functions: input fn,
model fn, and train fn. input fn as shown in Listing
4, takes in the file path of a partition, performs pre-
processing, and returns in-memory data objects. Inside the
input fn users are free to use their preferred libraries and
tools provided they are already installed on the worker ma-
chines. These in-memory data objects are then cached in
the worker’s memory for later usage.

Listing 4: input fn
User d e f i n e d input f u n c t i o n
f i l e p a t h : F i l e path o f a l o c a l
data p a r t i t i o n
#
Example usage :
p r o c e s s e d d a t a = i n p u t f n (f i l e p a t h)
#######################################
def i np u t fn (f i l e p a t h) :

data = r e a d f i l e (f i l e p a t h)
proce s s ed data = preproce s s (data)
return proce s s ed data

After the data is read into the worker’s memory, Cere-
bro then launches the model selection workload. This is
done by launching training units on worker machines. For
this Cerebro first invokes the user defined model fn. As
shown in Listing 5, it takes in the training configuration
as input and initializes the model architecture and training
optimizer based on the configuration parameters. Users are
free to use their preferred tool for defining the model ar-
chitecture and the optimizer. After invoking the model fn,
Cerebro injects a checkpoint restore operation to restore
the model and optimizer state from the previous check-
pointed state.

Listing 5: input fn
User d e f i n e d model f u n c t i o n
c o n f i g : Training c o n f i g .
#
Example usage :

model , opt = model fn (c o n f i g)
#######################################
def model fn (c o n f i g) :

i f c o n f i g [model] == VGG:
model = VGG()

else :
model = ResNet ()

opt = Adam(l r=c o n f i g [l e a r n r a t e])
return model , opt

After restoring the state of the model and the optimizer,
Cerebro then invokes the user provided train fn to per-
form one sub-epoch of training. As shown in Listing 5, it
takes in the data, model, optimizer, and training configura-
tion as input and returns convergence metrics. Training ab-
stractions used by different deep learning tools are different
and this function abstracts it out from the Cerebro sys-
tem. After the train fn is complete the state of the model
and the optimizer is checkpointed again.

Listing 6: input fn
User d e f i n e d t r a i n f u n c t i o n
data : Preprocessed data
model : Deep l e a r n i n g model
o p t i m i z e r : Training o p t i m i z e r
c o n f i g : Train c o n f i g .
#
Example usage :
l o s s = t r a i n f n (data , model ,
opt imizer , c o n f i g)
#######################################
def t r a i n f n (data , model , opt imizer , c o n f i g) :

X, Y = c r e a t e b a t c h e s (data ,
c o n f i g [b a t c h s i z e])

l o s s e s = []
for batch x , batch y in (X,Y) :

l o s s = t r a i n (model , opt ,
[batch x , batch y])

l o s s e s . append (l o s s)

return reduce sum (l o s s e s)

For evaluating the models, we assume the evaluation
dataset is also partitioned and perform the same process.
We mark the model parameters as non-trainable before pass-
ing it to the train fn. After a single epoch of training and
evaluation is done, Cerebro aggregates the convergence
metrics from all training units from the same configura-
tion to derive the epoch-level convergence metrics. Con-
vergence metrics are stored in a configuration state object
which keeps track of the training process of each training
configuration. At the end of an epoch, configuration state
objects are passed to the automl mthd implementation for
evaluation. It returns a set of configurations that needs to
be stopped and/or the set of new configurations to start.
For example in the case of performing Grid Search for 10
epochs, the automl mthd will simply check whether an ini-
tial configuration has been trained for 10 epochs, and if so
it will mark it for stopping.

B. SECTION 5.4 CNN COMPUTE COSTS

Model FLOPs

AlexNet 727 MFLOPs
CaffeNet 724 MFLOPs
SqueezeNet1-0 837 MFLOPs
SqueezeNet1-1 360 MFLOPs
VGG-f 727 MFLOPs
VGG-m 2 GFLOPs
VGG-s 3 GFLOPs
VGG-m-2048 2 GFLOPs
VGG-m-1024 2 GFLOPs
VGG-m-128 2 GFLOPs
VGG-vd-16-atrous 16 GFLOPs
VGG-vd-16 16 GFLOPs
VGG-vd-19 20 GFLOPs
GoogleNet 2 GFLOPs
ResNet18 2 GFLOPs
ResNet34 4 GFLOPs
ResNet50 4 GFLOPs
ResNet101 8 GFLOPs
ResNet152 11 GFLOPs
ResNext-50-32x4d 4 GFLOPs
ResNext-101-32x4d 8 GFLOPs
ResNext-101-64x4d 16 GFLOPs
Inception-V3 6 GFLOPs
SE-ResNet-50 4 GFLOPs
SE-ResNet-101 8 GFLOPs
SE-ResNet-152 11 GFLOPs
SE-ResNeXt-50-32x4d 4 GFLOPs
SE-ResNeXt-101-32x4d 8 GFLOPs
SENet 21 GFLOPs
SE-BN-Inception 2 GFLOPs
DenseNet121 3 GFLOPs
DenseNet161 8 GFLOPs
DenseNet169 3 GFLOPs
DenseNet201 4 GFLOPs
MobileNet 579 MFLOPs

Table 7: Computation costs of the CNNs used
for the simulation experiment comparing different
scheduling methods.

Table 7 lists the computational costs of the CNNs used for
the simulation experiment which compares different schedul-
ing methods. These costs were obtained from a publicly
available benchmark3.

C. STRAGGLER ISSUE IN CELERY
One potential issue that could impact task-parallel sys-

tems’ performance is load balancing. Given the large vari-
ance of runtimes for deep-nets training, the scheduling gen-
erated by Celery could lead to severe straggler issues that
impairs the end-to-end runtime of the whole workload. On
the other hand, Cerebro suffers far less from this prob-
lem because it operates on a finer granularity; our tasks are
chunked into sup-epochs and hence it is less likely for long-
running stragglers to appear.

We take the Criteo tests showed in Section 6.1 as example.
Without any prior or domain knowledge, it is impossible to

3https://github.com/albanie/convnet-burden

know the runtime of each task before-hand and therefore
Celery could schedule a plan like Figure 14. The execution
suffers from the straggler config#0 and needs 27.4 hrs to
run.

0 5 10 15 20 25

worker#7

worker#6

worker#5

worker#4

worker#3

worker#2

worker#1

worker#0

time/hrs

config#0

config#1

config#2

config#3

config#4

config#5

config#6

config#7

config#8

config#9

config#10config#11

config#12

config#13

config#14

config#15

Figure 14: An unbalanced work schedule generated
by Celery for Criteo tests.

However, if with a proper estimation/profiling of the run-
times/workloads, it is possible to fix this straggler issue with
a carefully curated schedule as showed in Figure 15. This
schedule drastically reduces the runtime to 19.7 hrs.

0 5 10 15 20

worker#7

worker#6

worker#5

worker#4

worker#3

worker#2

worker#1

worker#0

time/hrs

config#0

config#1

config#2

config#3

config#4

config#5

config#6

config#7 config#8

config#9

config#10

config#11

config#12

config#13

config#14

config#15

Figure 15: Best possible work schedule with Celery
for Criteo tests.

In Section 6.1, we decided to show the runtime with the
best-possible scheduling for Celery, as we do not wish to
unfairly punish the adversarial systems, and load balanc-
ing/runtime estimation of deep learning workloads are out
of the scope of this paper. We believe these decisions can
ultimately help the reader focus on the benefits and advan-
tages of our system.

D. EXTENSION: HOROVOD HYBRID
A typical model selection workflow begins with a large

number of model configs, and narrows down the scope grad-
ually over epochs, ending up with a handful of model configs
to train till convergence. It means that at the later stages,

https://github.com/albanie/convnet-burden

we may encounter scenarios where the number of model con-
figs, |S|, can be smaller than the number of workers, p. In
these scenarios Cerebro can lead to under-utilization of the
cluster.

We mitigate this issue by doubly hybridizing MOP with
data parallelism. To this end, we implement a hybrid version
of Cerebro with Horovod we call Horovod hybrid. Just
like Cerebro, Horovod is also equivalent to sequential SGD
concerning convergence behavior. Therefore the hybrid of
them will remain reproducible.

CEREBRO

HOROVOD HOROVOD HOROVOD

Chief worker

Regular Worker

Namespace of
Cerebro
Namespace of
Horovod

Figure 16: The architecture of Horovod Hybrid.
Within different namespaces, we run Cerebro and
Horovod, respectively. The chief workers, act-
ing as Cerebro workers, are responsible for driving
Horovod tasks and handling the communication be-
tween the two systems. In the figure, we show a
9-node cluster with 3 model configs to train.

Figure 16 summarizes the architecture of Horovod Hybrid,
where instead of workers, we have worker groups. Inside
each worker group, we run a data-parallel Horovod task.
Then after each worker group finishes their assigned task,
we hop the trained models just as the regular Cerebro.
We assume there are more workers than model configs. We
create an equal number of groups for the number of configs.
Workers are placed into these groups evenly.

1 2 4 6 8
Number of configs

2

4

6

8

El
ap

se
d

tim
e/

hr
s

Batch size: 128
Cerebro
Horovod Hybrid
Horovod

1 2 4 6 8
Number of configs

0.5

1.0

1.5

El
ap

se
d

tim
e/

hr
s

Batch size: 1024
Cerebro
Horovod Hybrid
Horovod

Figure 17: Performance tests of Horovod Hybrid
with varying batch size and |S| on 8-node clus-
ter. Configs: same model as in Section 4 Table 5,
learning rates drawn from {10−3, 10−4, 5× 10−5, 10−5},
weight decays drawn from {10−4, 10−5}. We test on
2 different batch sizes, respectively.

We now explore the possibility of hybridizing MOP with
Horovod to better utilizer resources in |S| < p regime. For
this we run an experiment using Criteo on the CPU cluster
with varying number of configs (|S|) and batch sizes. We
compare three different methods: (1) Horovod, (2) MOP,
and (3) Horovod Hybrid. Figure 17 shows the results.

Horovod’s runtime grows linearly with more configs, but
Cerebro is constant. For instance at batch size 128 and
|S| = 2, Cerebro matches Horovod’s performance. This
is because Cerebro’s communication costs are negligible.

Epoch

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

) (A) Hyperband on Cerebro (B) Hyperband on Celery

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

)

Epoch

Figure 18: Hyperband learning curves by epochs.

For the Horovod Hybrid the runtimes are comparable to
Horovod, except when |S| = p it reduces to Cerebro. This
is because Horovod Hybrid is bottlenecked by Horovod’s
network overheads; mitigating this issue will require care-
ful data re-partitioning, which we leave to future work. It
is interesting that even with underutilization Cerebro can
still outperform Horovod in most scenarios. Depending on
|S| and batch size, there is a cross-over point when the
three methods meet. Typically when |S| � p, Horovod
and Horovod Hybrid are faster as Cerebro is heavily un-
derutilizing the workers. We heuristically choose p/2 as the
dividing point: still run Cerebro if p/2 < |S|, otherwise
just run Horovod. Overall, the current Horovod Hybrid does
not provide much benefit over Horovod as it mainly opti-
mizes Horovod for its latency part of the communication
cost, which turns out to be marginal.

E. AUTOML PROCEDURES

E.1 Experiments with HyperBand
We compare Cerebro and Celery for executing Hyper-

band [42]; a popular AutoML search procedure. We use
ImageNet, GPU cluster, and PyTorch. Training configs
are randomly sampled from the grid shown in Table 6.
For Cerebro each data partition is only available on one
worker; for Celery the dataset is fully replicated.

Hyperband combines random search with early stopping.
It starts with a fixed set of model configs and trains them
for a given number of epochs in the first “rung.” After com-
pletion, it picks a subset of the best models and promotes
them to the next rung; this is repeated several times until
a max epoch budget is hit. We run an experiment with a
max resource budget (R) of 25 epochs and a downsampling
rate (η) of 3, two parameters from the Hyperband paper.
Figure 18 compares the learning curves of the configs run
by Hyperband on Cerebro and Celery.

We see that Cerebro and Celery have almost indistin-
guishable convergence behaviors, validating our claim that
MOP benefits from SGD’s robustness to random data order-
ing. As Figure 19 shows, both systems have similar comple-
tion times (42.1hr for Celery; 43.5hr for Cerebro). Some
configs finish sooner on Celery than their counterparts on
Cerebro. This is because Cerebro’s per-epoch scheduling
template enforces all configs to be scheduled for the same
epoch. But in Celery, configs in their last rung can finish
earlier without waiting for other configs.

E.2 Experiments with ASHA
ASHA combines random search with early stopping. It

starts with a set of model configs and trains them for a fixed

Time (Hours) Time (Hours)

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

) (A) Hyperband on Cerebro (B) Hyperband on Celery

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

)

Figure 19: Hyperband learning curves by time.

Number of Epochs

N
um

be
r o

f c
on

fig
ur

at
io

ns

(A) (B)
Fr

ac
tio

n
of

 to
ta

l c
on

fig
s

(%
)

Number of Epochs

Figure 20: Number of configs vs. the amount of
epochs they were run for by. (A) Count of configs
and (B) Fraction of total config count.

number of epochs in the first “rung.” After a training config
finishes its current rung, it is assigned to a pool of completed
configs for that rung. ASHA will then pick a promising
config from this pool based on a selection fraction (η) and
promote it to the next rung for training. If the selection
fraction is already exhausted, a new config will be created
and trained for the first rung. A model can be promoted
between rungs until it is trained for a maximum number of
rungs/epochs. This process is continued until the allocated
time budget for model selection workload is reached.

ASHA’s decisions on configs are dependent on the wall-
clock completion order of configs across task-parallel work-
ers. Thus, it is impossible to exactly replicate a run of ASHA
on task-parallelism in Cerebro. However, we can indeed
emulate ASHA on Cerebro without making any changes
to Cerebro. We run an experiment using ASHA with a
max resource budget (R) of 9 epochs, a selection fraction
(η) of 3, and a time limit of 24hr.

In the given time limit, ASHA on Cerebro (resp. Celery)
explored 83 (resp. 67) configs. Figure 13 shows all learn-
ing curves. Though the individual configs are not compa-
rable across the two systems, the best errors achieved are
close (31.9% on Cerebro ; 33.2% on Celery). A serendip-
ity is that ASHA-on-Cerebro seems to perform slightly
better than the regular task-parallel version in the ASHA!
We believe this is because the epoch-level synchronization
in Cerebro actually helps ASHA pick and promote better
configs due to its knowledge of a larger set of configs. Reg-
ular ASHA gains this knowledge spread over time, which
makes it prone to more wrong promotions. Figure 20 con-
firms our intuition: ASHA-on-Cerebro explores more con-
figs in the lower rungs than regular ASHA. Also, as Figure 21
shows, ASHA-on-Cerebro reaches lower errors for all rungs
sooner than regular ASHA. We leave a more rigorous sta-
tistical analysis of this apparent superiority of ASHA-on-
Cerebro over regular ASHA to future work.

To
p-

5
va

lid
at

io
n

er
ro

r (
%

)

Time (hours)

Figure 21: Best validation error for each rung of
ASHA.

F. GANTT CHART
Figure 22 presents the Gantt chart corresponding to the

scheduler produced by Cerebro for the ImageNet workload.
Each color bar corresponds to a different training configu-
ration (16 in total).

Runtime (hours)

1 2 3 4 5
Epoch

6 7 8 9 100

0 2 4 6 8 10 12 14 16 18

Figure 22: Gantt chart corresponding to the scheduler produced by Cerebro for the ImageNet workload.
Each color corresponds to a different training configuration. Best viewed in color.

	Introduction
	Background and Tradeoffs
	Deep Net Training with Mini-batch SGD
	Systems for Distributed Deep Net Training

	Model Hopper Parallelism
	Basic Idea of MOP
	Communication Cost Analysis

	System Overview
	User-facing API
	System Architecture
	System Implementation Details

	Cerebro Scheduler
	Formal Problem Statement as MILP
	Approximate Algorithm-based Scheduler
	Randomized Algorithm-based Scheduler
	Comparing Different Scheduling Methods
	Replica-Aware Scheduling
	Fault Tolerance and Elasticity
	Extension: Horovod Hybrid

	Experimental Evaluation
	End-to-End Results
	Drill-down Experiments
	Experiments with AutoML Procedures

	Discussion and Limitations
	Related Work
	Conclusions and Future Work
	References
	Cerebro API Usage Example
	Section 5.4 CNN Compute Costs
	Straggler Issue in Celery
	Extension: Horovod Hybrid
	AutoML Procedures
	Experiments with HyperBand
	Experiments with ASHA

	Gantt Chart

