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ABSTRACT
Speech-driven data retrieval has become popular in many
applications on smartphones, tablets, and even conversa-
tional assistants. However, such querying has largely been
restricted to app-specific structured knowledge bases and
limited query sophistication. Typing queries in the Struc-
tured Query Language (SQL) is the gold standard for sophis-
ticated structured querying over arbitrary schemas, but it is
painful in constrained environments. In this work, we pro-
pose to bridge this gap by designing a speech-driven query
system and interface for structured data we call SpeakQL.
We support a practically useful subset of regular SQL and
allow users to query in any domain with infinite vocabulary
with the help of touch/speech based human-in-the-loop cor-
rection mechanisms. Automatic speech recognition (ASR)
introduces myriad forms of errors in transcriptions when
querying in such domains, presenting us with a technical
challenge. We characterize such errors and exploit our obser-
vations along with SQL’s unambiguous context-free gram-
mar to first correct the query structure. We then utilize pho-
netic representation of the queried database to identify the
correct Literals, hence delivering the corrected transcribed
query. We present the first dataset of spoken SQL queries
and a generic approach to generate them for any arbitrary
schema. Through experimental evaluation, we show that
SpeakQL can help automatically correct a large fraction
of the errors in ASR transcriptions. Through user studies,
we demonstrate that SpeakQL can help users specify SQL
queries significantly faster and saves a significant amount of
user effort. This work is a step towards a larger vision of
making structured data querying more speech-friendly.

1. INTRODUCTION
Speech-based inputs have seen widespread adoption in

many applications on emerging device environments such as
smartphones and tablets and even personal conversational
assistants such as Siri, Cortana, and Alexa. Inspired by this
recent success of speech-driven interfaces, in this work, we
consider an important fundamental question: How should
one design a speech-driven system to query structured data?

Recent works have studied new querying modalities like
visual [8, 40], touch-based [15, 27], and natural language in-
terfaces (NLIs) [21, 23], especially for constrained querying

environments such as tablets, smartphones, and conversa-
tional assistants. The commands given by the user are trans-
lated to the Structured Query Language (SQL). Hence, this
would allow users to query without specifying SQL. How-
ever, what is missing from the prior work is a speech-driven
interface for regular SQL or other structured querying.

One might ask: Why dictate structured queries and not
just use NLIs or visual interfaces? Structured data query-
ing is practiced by users in many domains such as enterprise,
Web, C-suite, and healthcare. Typing queries in SQL is
the current common approach for such querying. However,
typing SQL is really painful in constrained settings such as
smartphones and tablets. Having a spoken SQL interface
could help them speed up the query specification process.
More importantly, existing typed or spoken NLIs are lim-
ited by the ability of natural language tools to parse and
detect the semantics of the natural language. For example,
conversational assistants allow users to query over only cu-
rated app-specific datasets, and not any arbitrary database
schemas. Moreover, they often fail to understand query in-
tent because the ambiguities introduced by the natural lan-
guage are simply hard to fix. Hence, they compromise query
sophistication in order achieve high usability as illustrated
in Figure 1(A) [13]. As a result, current NLIs increasingly
rely on more keywords and structured interactions to resolve
such ambiguities [2, 21], as shown by Figure 1(B). They are
moving to the right towards the “cliff” of ambiguity, where
on the right hand side of the cliff, we have languages with
unambiguous context-free grammars (CFG).

On the other hand, SQL is already a structured English
query language. Key to SQL’s appeal is query sophistica-
tion and lack of ambiguity due to its CFG and succinct-
ness. In this work, we study the complementary direction
of achieving SQL-level query sophistication, while also im-
proving ease of use, as shown in Figure 1(A). This would al-
low users to interact with the structured data using spoken
queries over any arbitrary database schema. Thus, instead
of forcing all users to only use NLIs, we study how to lever-
age ASR for SQL and make spoken querying more “natural”
without losing the sophistication of unambiguous CFGs.

In this work, as the first major step in our vision, we
build a spoken querying system for a subset of SQL. We
call this system SpeakQL 1.0. In future work, we intend
to rethink SQL itself for the speech-first era, as well as in-
tegrate our ideas with NLIs. Complementary to existing
visual, NLIs, and touch-based interfaces, we offer the follow-
ing. First, we support regular SQL with a tractable subset
of the CFG grammar, although our architecture and meth-
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Figure 1: (A) Qualitative comparison of trade-off between
ease of use and currently feasible query sophistication. (B)
Contrasting SpeakQL’s goals and current NLIs in terms of
the “naturalness” of the query language.

ods will be applicable to any SQL query in general. Second,
we leverage an existing modern state of the art Automatic
Speech Recognition (ASR) technology instead of reinventing
the wheel. Third, and most importantly, we support queries
in any application domain over any database schema. Fi-
nally, we support multimodal interactive query correction
using touch (or clicks) and speech with a screen display.
Overall, we build an open-domain, speech-driven, and mul-
timodal querying system for regular SQL wherein users can
dictate the query and perform interactive correction using
touch and/or speech.

Unlike regular English speech, SQL speech gives rise to
interesting and novel challenges from the ASR output stand-
point. SQL offers infinite types of literal instances, such as
CUSTID 1729A. A single token from SQL’s perspective might
get split by ASR into many tokens. Thus, it is impossible
for an ASR to correctly transcribe such tokens, since they
are simply not present in their vocabulary. Such out-of-
vocabulary tokens are more likely in SQL than natural En-
glish. We call this the unbounded vocabulary problem, and it
is a central technical challenge for SpeakQL. Note that this
problem has not been solved even for spoken NLIs such as
Alexa, which responds “I’m sorry, I don’t understand the
question” every time an out-of-vocabulary token is spoken.
Thus, addressing this problem may benefit spoken NLIs too.
Even for in-vocabulary tokens, the transcriptions might be
wrong due to homophony, e.g., “sum” vs. “some”. Hence,
ASR can introduce myriad forms of transcription errors, pre-
senting us with yet another technical challenge.

This motivates our design decision of decomposing the
problem of correcting the erroneous transcription produced
by ASR into two tasks: 14 structure determination and lit-
eral determination. In the structure determination task, we
leverage the underlying rich structure of SQL using its CFG.
This helps us to deliver a syntactically correct SQL structure
where Literals are masked out and placeholder variables are
used for them, given the transcription output. In the task
of literal determination, we leverage the information about
database instances being queried. Having a pre-computed
phonetic representation of the instances helps us identify
the Literals for the placeholder variables. Segregating the
task of structure determination from the task of literal de-
termination lets us effectively handle the unbounded vocab-
ulary problem. If the transcription generated by SpeakQL is
still incorrect, the users can correct the query interactively

through both speech and/or touch-based mechanisms.
SpeakQL has to be tested on real data in order to validate

effectiveness of our approach. Since there is no known pub-
licly available dataset of spoken SQL queries, we create the
first such dataset using real-world database schemas. Using
several accuracy metrics such as precision, recall and edit
distance, we show that SpeakQL can correct large propor-
tions of errors in the transcriptions produced by a modern
ASR. For example, we noticed an average lift of 130% in
Word Recall Rate. Empirically, we show that SpeakQL can
achieve real-time latency and can potentially reduce a signif-
icant amount of user effort in correcting the query. Through
user studies, we show that SpeakQL allows users to compose
queries significantly faster, achieving an average speedup of
2.7x relative to raw typing. Moreover, with SpeakQL, users
require less effort in specifying the query, achieving an av-
erage speedup of 10x relative to the raw typing effort.

Overall, the contributions of this paper are as follows:

• To the best of our knowledge, this is the first paper to
present an end-to-end speech-driven system for making
spoken SQL querying effective and efficient.

• We propose a similarity search algorithm based on
weighted edit distances and a literal voting algorithm
based on phonetic representation for effective structure
and literal determination, respectively.

• We present the first public dataset of spoken SQL
queries. Our data generation process is scalable and
applies to any arbitrary database schema.

• We demonstrate through quantitative evaluation on
real-word database schemas that SpeakQL can correct
a significant portion of errors in ASR transcription.

• We demonstrate through user studies that SpeakQL
helps users reduce time and effort in specifying SQL
query significantly.

2. SYSTEM ARCHITECTURE
Modern ASR engines powered by deep neural networks

have become the state of the art for any industrial strength
application. Hence, to avoid replicating the engineering
efforts in creating a SQL-specific ASR, we exploit an
existing ASR technology. This decision allows us to focus
on issues concerning only SQL as described below.

First, unlike regular English, there are only three types of
tokens that arises in SQL: Keywords, Special Characters
(“SplChar”), and Literals. SQL Keywords (such as SELECT,
FROM etc.) and SplChars (such as * , = etc.) have a finite
set of elements that occurs only from the SQL grammar [9].
A literal can either be a table name, an attribute name or
an attribute value. Table names and attribute names have
a finite vocabulary but the attribute value can be any value
from the database or any generic value. Hence, the domain
size of the Literals would likely be infinite.

Second, the ASR engine can fail in several interesting
ways when transcribing. Due to homophones, the ASR
might convert Literals into Keywords or SplChars and vice
versa. For example, SQL keyword sum detected as “some.”
Even a single-token transcription might be completely
wrong because the token is simply not present in the ASR’s
vocabulary. Worse still, ASR might split a token like
CUSTID 1729A into a series of tokens in the transcription
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Figure 2: End-to-end Architecture of SpeakQL. We show an example of a simple spoken SQL query, and how it gets converted
to a query displayed on a screen, which the user can correct interactively.

output, possibly intermixed with Keywords and SplChars.

These observations related to SQL suggest that a cor-
rectly recognized set of Keywords and SplChars can help
us deliver the correct structure of a SQL query. Correct
structure combined with the correct Literals can give
us the correct valid query. Based on this observation,
we make an important architectural design decision to
decouple structure determination from literal determination
and we present the complete four-component end-to-end
system in Figure 2. This decoupling of structure and literal
determination is a critical design decision that helps us
tackle the unbounded vocabulary problem. The entire system
has four major components: Automatic Speech Recognition
(ASR) Engine, Structure Determination module, Literal
Determination module and Interactive Display module. We
describe each component below.

ASR Engine. This component processes the recorded
spoken SQL query to obtain a transcription output. A
modern speech recognition system consists of two major
components: acoustic model and the language model. The
acoustic model captures the representation of sounds for
words, and a language model captures both vocabulary and
the sequence of utterances that the application is likely
to use. We utilize Azure’s Custom Speech Service [5] to
create a custom language model by training on the dataset
of spoken SQL queries (explained in Section 6.1). For the
acoustic model, we use Microsoft’s state-of-the-art search
and dictation model. For the dictated query in Figure 2,
the result returned by ASR engine could be select sales

from employers wear first name equals Jon.

Structure Determination. This component pro-
cesses the ASR output to obtain a syntactically correct
SQL statement with numbered placeholder variables for
Literals, while Keywords and SplChars are fixed. It exploits
CFG of our currently supported subset of SQL to generate
all possible ground truth structures. A ground truth
structure is a syntactically correct SQL string obtained
from our SQL grammar by applying the production rules
recursively. The closest matching structure is retrieved
by doing a similarity search based on edit distances with
the ground truth structures. In our running example, the
detected structure is Select x1 From x2 Where x3 = x4.
Here, the Keywords and SplChars are retained, while the
Literals are shown as placeholder items x1, x2, x3 and x4.
We dive into Structure Determination in depth in Section3.

Literal Determination. The Literal Determination
component finds a ranked list of Literals for each place-
holder variable using both the raw ASR output and a
pre-computed phonetic representation of the database
being queried. For example, variable x1 is replaced as a
top k list of attribute names. Phonetically, among all the
attribute names, Salary is the closest to Sales, and thus,
x1 would be bound to Salary. This component is explained
in depth in Section 4.

Interactive Display. This component displays a
single SQL statement that is the best possible transcription
generated by our system. Even with our query determina-
tion algorithms, it might turn out that some of the tokens
in the transcription are incorrect, especially for Literals not
present in ASR vocabulary (“out-of-vocabulary” Literals).
Thus, we support user-in-the-loop interactive query correc-
tion through speech or touch/click-based mechanisms. The
user can either choose to dictate/re-dictate queries at the
clause level or make use of a novel SQL keyboard tailored
to reduce their effort in correcting the displayed query. The
database’s schema will always be displayed to help users
pose their queries. Section 5 explains the interface in depth.

3. STRUCTURE DETERMINATION
We now discuss the technical challenges of the structure

determination component and present our algorithms to
tackle them. The goal of this component is to get a syntac-
tically correct SQL statement given transcription output
from ASR as input. Figure 3(A) presents the architecture
of this component. Next, we describe each sub-component.

Supported SQL Subset. In this first work on this
problem, for tractability sake, we restrict ourselves to only
a subset of regular SQL Data Manipulation Language
(DML) that is meaningful and practically useful for spoken
data retrieval and analysis. Our currently supported subset
includes most Select-Project-Join-Aggregation (SPJA)
queries along with LIMIT and ORDER BY, without any
limits on the number of joins or aggregates, as well as on
predicates. We do not currently support nested queries or
queries belonging to Data Definition Language (DDL). We
use the production rules of SELECT statements of standard
SQL in BNF (Backus-Naur Form) [4]. We provide the
grammar in Appendix. We find that our subset already
allows many structurally sophisticated retrieval and analy-
sis queries that may arise in speech-driven environments;
we provide many examples in the appendix. That said,
we do plan to systematically expand our subset to offer
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more SQL functionalities in future work. In contrast, note
that some NLIs impose much more stringent structural
restrictions. For instance, the state-of-the-art reinforcement
learning-based NLI Seq2SQL [39] allows queries over only
one table and with only one aggregate.

3.1 SplChar Handling and Literal Masking
We create a dictionary of the supported SQL Keywords

and SQL SplChars, namely, KeywordDict and SplCharDict.
The two dictionaries are given below:
KeywordDict: Select, From, Where, Order By, Group

By, Natural Join, And, Or, Not, Limit, Between,

In, Sum, Count, Max, Avg, Min

SplCharDict: * = < > ( ) . ,

The ASR engine often fails to correctly transcribe
SplChars and produces the output in words. For exam-
ple, < in the transcription output can become less than.
Thus, we replace the substrings in the transcription out-
put (TransOut) containing less than with <. Similarly, we
repeat this for other SplChars in SplCharDict. Then, we
mask out all tokens in the transcribed text that are not in
KeywordDict or SplCharDict by using a placeholder variable
for them. In our running example, the masked out transcrip-
tion output (MaskOut) is SELECT x1 FROM x2 x3 x4 = x5.

3.2 Structure Generator
This component would apply the production rules of SQL

grammar recursively to generate a sequence of tokens. This
sequence of tokens is a string representing a SQL ground
truth structure. Since the number of tokens that can be
generated is potentially infinite, we restrict the number of
tokens in the string to a maximum of 50. This leads to gen-
eration of roughly 1.6M ground truth structures. Our ba-
sic idea is to compare MaskOut with these set of generated
ground truth structures and select the ground truth string
that has minimum edit distance value. Thus, the knowl-
edge of the grammar let us effectively invert the traditional
approach of parsing strings to extract structure. We found
that parsing is an overkill for our setting, since the grammar
for spoken queries is more compact than the full grammar
of SQL. Furthermore, the myriad forms of errors that can
be present in the ASR output means deterministic parsing
will almost always fail. Early on, we also tried a probabilis-
tic CFG and probabilistic parsing [28], but it turned out
to be impractical because configuring all the probabilities
correctly is tricky and parsing was much slower.

3.3 Indexer
Clearly, comparing the transcription output with every

ground truth string is infeasible as we want our system
to have a real-time latency. Thus, we index the gener-
ated ground truth strings such that only a small subset of
those can be retrieved by the Search Engine to be com-
pared against TransOut. A challenge is that the number of
strings to index is large. But we observe that there is a lot
of redundancy, since many strings share prefixes. This ob-
servation leads us to consider a trie structure to index all
strings. A path from root to leaf node represents a string
from the ground truth structures. Every node in the path
represents a token in the string. Thus, such structured trees
can not only save memory but can also save computations
with respect to common prefixes. The computations can be
saved further by making the search engine more aware about
the length of strings in the trie as explained in the Section
3.4. Hence, packing all strings into a single trie leads to a
higher latency. Since latency is a major concern for us, we
trade off memory to reduce latency by storing many tries,
one per structure length. Thus, we have 50 disjoint tries in
all. Storing the strings in a directed acyclic graph (DAG)
can reduce memory footprint further. But, we observe that
building and maintaining DAG is computationally more ex-
pensive. Hence, we trade off space to optimize for latency
by storing strings in a trie data structure.

3.4 Search Engine
Given a MaskOut, the search engine aims to find the closest

matching structure by comparing against the ground truth
strings from the index. This comparison is based on edit
distance, a popular way to quantify similarity between two
strings by counting the number of operations required to
transform one string into another. There are many variants
of edit distance differing in the set of operations involved.
For example, Levenshtein distance [20] allows for insertion,
deletion and substitution. We use a weighted longest com-
mon subsequence edit distance [29] operating at the token
level, which allows only insertion and deletion operations.

Typically, all operations in an edit distance function are
equally weighted. But we introduce a twist in our setting
based on a key observation of ASR outputs. We find that
the ASR engine is far more likely to correctly recognize Key-
words than Literals, with SplChars falling in the middle.
Thus, we assign different weights to these three kinds of to-
kens. We assign the highest weight WK to Keywords, next
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highest weight WS to SplChars, and lowest weight WL to
Literals. We choose WK = 1.2,WS = 1.1 and WL = 1.
One could set these weights differently by training an ML
model, but we find that the exact weight values are not
that important; it is the ordering that matters. Thus, these
fixed weights suffice for our purpose. The matrix that com-
putes the edit distance between MaskOut string SELECT x x

FROM x and ground truth (GrndTrth) string SELECT * FROM

x incrementally using the dynamic programming approach
is shown in Figure 3 (B). We introduce some notation to
explain our weighted edit distance. We will need this no-
tation for algorithms we present later. Denote the source
string as a = a1a2...an and target string as b = b1b2...bm.
Let dp denote a matrix with m+1 columns and n+1 rows,
and dp(i, j) be the edit distance between the prefix a1a2...ai
and b1b2...bj . We use the dynamic programming algorithm
to compute the matrix as shown in Algorithm 1.

Algorithm 1 Dynamic Programming Algorithm

1: if token in KeywordDict then Wtoken = WK

2: else if token in SplCharDict then Wtoken = WS

3: else Wtoken = WL

4: dp(i,0) = i for 0 ≤ i ≤ n; dp(0,j) = j for 0 ≤ j ≤ m
5: if a(i) == b(j) then dp(i,j) = dp(i-1,j-1) = DpPrvCol(row-1)
6: else dp(i,j) = min(Wtoken+dp(i-1,j), Wtoken+dp(i,j-1)

7: DpPrvCol(row) = dp(i,j-1)
8: DpCurCol(row-1) = dp(i-1,j)
9: insertCost = DpPrvCol(row) + Wtoken

10: deleteCost = DpCurCol(row-1) + Wtoken

We observe that computing dp(i,j) requires using
only the previous column (DpPrvCol) and current column
(DpCurCol) of the matrix. Moreover, if for a node n,
min(DpCurCol) > MinEditDist, then we can stop exploring
it further. Given this behavior of the dynamic program,
we now present an optimization that can reduce the
computational cost of searching over our index.
Bidirectional Bounds (BDB). Recall that our index
has many tries, which means searching could become
slow if we do it naively. Thus, we now present a simple
optimization that prunes out most of the tries without
altering the search output. Our intuition is to bound
the edit distance from both below and above. Given two
strings of length m and n (without loss of generality,
m > n), the lowest edit distance is obtained with m − n
deletes. Similarly, the highest edit distance is obtained with
m deletes and n inserts. This leads us to the following result:

Proposition 1. Given two query structures with m
and n tokens, their edit distance d satisfies the following
bounds: |m− n| ·WL ≤ d ≤ |m+ n| ·WK .

Here, the lower bound denotes the best case scenario
with |m − n| deletes and minimum possible weight of WL.
The upper bound denotes the worst case scenario with m
deletes, n inserts and maximum possible weight of WK .
To illustrate how our bounds could be useful, Figure 3
shows an example. TransOut is a string of length 3: A

B A. Ground truth strings are indexed from keys 1 to 50
by their length (m). The first row denotes the range of
possible edit distances with TransOut. We first go in the
direction of decreasing m from m = 3 to m = 1. We
start comparisons of strings in the Trie for m = 3 with
TransOut. We find that the MinEditDist is 2 with string
A B C. With m = 2, the lower bound on edit distance is 1,

Algorithm 2 Structure Determination Algorithm

1: Let k = Max Tokens possible in GrndTrth (50)
2: LowerBound = Array of size k; MinEditDist = INT MAX
3: m = CountTokens(TransOut); result[MinEditDist] = ""
4: for i from 1 to k do
5: LowerBound[i] = |m-i|*WL

6: for j from m to 0 do
7: if MinEditDist < LowerBound[j] then j--
8: else SearchTrie(j)

9: for j from m to k do
10: if MinEditDist < LowerBound[j] then j++
11: else SearchTrie(j)

12: return result[MinEditDist]
13:
14: procedure SearchTrie(j)
15: TrieRoot = RetrieveStrings(j):
16: DpPrvCol = [1,2,...,m]
17: for token in TrieRoot.children do
18: SearchRecursively(TrieRoot.children[token],token,DpPrvCol)

19:
20: procedure SearchRecursively(node,token,DpPrvCol):
21: rows = CountTokens(MaskOut) + 1
22: DpCurCol = [DpPrvCol[0]+1]
23: for row from 1 to rows do
24: if MaskOut[row-1] == token then
25: DpCurCol.append(DpPrvCol[row-1])
26: else
27: if DpPrvCol[row] < DpCurCol[row-1] then
28: insertCost = DpPrvCol[row] + Wtoken

29: DpCurCol.append(insertCost)
30: else
31: deleteCost = DpCurCol[row-1] + Wtoken

32: DpCurCol.append(deleteCost)

33: if node is leaf and DpCurCol[rows] < MinEditDist then
34: MinEditDist = DpCurCol[rows]
35: result[MinEditDist] = node.sentence

36: if min(DpCurCol) ≤ MinEditDist then
37: for token in node.children do
38: SearchRecursively(node.children[token],token,DpCurCol)

which is less than MinEditDist found so far. Hence, we
explore the trie for m = 2. We find that the MinEditDist

is 1 with string A B. With m=1, the lower bound on edit
distance is 2, which is more than MinEditDist found so
far. Hence, there’s no way we can find a ground truth
string in the Trie that can deliver MinEditDist. Thus,
we skip its exploration. In the next pass, we go from
m = 4 to m = 50. When m > 4, we find that MinEditDist

> 1. Hence, we skip all the tries for values of m from 5 to 50.

Overall Search Algorithm. The central idea of this al-
gorithm is to skip searches on tries that were pruned out by
our bidirectional bounds in Proposition 1. For the tries that
are not pruned, we recursively traverse every children of the
root node using SearchRecursively procedure. At every
node, we use the dynamic programming algorithm (Algo-
rithm 2) to calculate edit distance with TransOut, and build
a column of the memo as shown in Figure 3(B). When we
reach a leaf node and see that the edit distance with current
node is less than MinEditDist, then we update MinEditDist
and the corresponding structure (node.sentence). This al-
gorithm does not affect accuracy, i.e., it returns the same
string as searching over all the tries. The worst case time
complexity of the algorithm is O(pkn), where n is the length
of the TransOut, p is the number of nodes in the largest trie,
and k is the number of tries. The space complexity is O(pk).
Proofs of these analysis can be found in appendix.
Accuracy-Latency Tradeoff Techniques. We propose
two additional algorithms that uniquely exploit the way SQL
strings are stored in the tries. This helps us to reduce run-
time further by trading off some accuracy.
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Diversity-Aware Pruning (DAP): We observe that
many paths from root to leaf in a trie differ in
only one token that is either from the keyword set
{AVG,COUNT,SUM,MAX,MIN}, {AND,OR} or the SplChar set
{=, <,>}. We call the union of 3 sets, a prime superset.
Instead of exploring all the branches, we can instead skip
many branches that differ only in one token from the prime
superset. Based on this observation, we propose the fol-
lowing technique. Given a trie T and transcription output
TransOut, if a node n has p children nodes (Ci, 1 ≤ i ≤ p)
belonging to any set in the prime superset, and Ck gives
the minimum edit distance with TransOut, while the other
siblings Ci, i 6= k does not give minimum edit distance, then
skip exploration of all the descendants of Ci, i 6= k. i.e., for
every children Ci of a node in the prime superset, the node
to explore is argmini(DpCurColCi(lastrow))

However, this optimization can skip the branch leading
to the minimum edit distance, resulting in a decrease in
accuracy. This optimization is introduced to have more
diversity in the returned top k structures. Rather than
overloading the system to find the most correct structure,
the system can find an approximately correct structure
which misses only in certain keywords like {AND,OR} or
{AVG,COUNT,SUM,MAX,MIN} or SplChars like {=, <,>}.
Doing this would require more amount of user effort in
order to correct the query. However, if the user effort is
just 1-5 touches/clicks, then this is justifiable.

Inverted Indexes (INV): We can utilize the knowl-
edge about the different keywords occurring in TransOut

in order to build an inverted index of all the unique
keywords (except SELECT, FROM, WHERE) appearing in the
ground truth strings. Hence, for each keyword, we directly
retrieve a list of strings in which it appears. When multiple
keywords exist in the TransOut, we select the index that
has the minimum number of strings corresponding to it.
This can reduce the computation time, as we only retrieve
a fraction of relevant strings. Although, this optimization
leads to runtime efficiency, it heavily relies on the fact that
ASR engine is very unlikely to misrecognize SQL Keywords.
As any ASR engine cannot be perfect, we anticipate a drop
in accuracy.

4. LITERAL DETERMINATION
The central goal of the Literal Determination component

is to “fill in” the values for the placeholder variables in
the syntactically correct SQL structure delivered by the
Structure Determination component. Literals can be table
names, attribute names or attribute values. Table names
and attribute names are from a finite domain determined
by the database schema but the vocabulary size of attribute
values can be infinite. This presents a challenge to the
Literal Determination component because the most promi-
nent information that it can use to identify a literal for any
placeholder variable is the raw transcription output ob-
tained from ASR. This transcription is typically erroneous
and unusable directly because ASR can either split the
out-of-vocabulary tokens into a series of tokens, incorrectly
transcribe it, or simply not transcribe it at all. Even for
in-vocabulary tokens, ASR is bound to make mistakes due
to homophones. These observations about how ASR fails
to generate correct transcription helps us to identify 2 cru-
cial design choices for the Literal Determination component.

𝑥1 → 𝐴
𝑥2 → 𝑇

TransOut: SELECT  first  name  FROM  employers
BestStruct: SELECT  x1  FROM  x2

Category 
Assignment

𝐴 = 𝑓𝑖𝑟𝑠𝑡, 𝑛𝑎𝑚𝑒, 𝑓𝑖𝑟𝑠𝑡𝑛𝑎𝑚𝑒
𝐵 = 𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒, 𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒

first
name

firstname

FirstName

LastName

𝐴 = 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑟𝑠
𝐵 = 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠, 𝑆𝑎𝑙𝑎𝑟𝑖𝑒𝑠

employers
Employees

Salaries

TransOut
Segmentation

Literal Assignment

𝑥1

𝑥2

x1: FirstName

x2: Employees

Figure 4: Literal Determination component example

(1) In contrast to string-based similarity search, a similarity
search on a pre-computed phonetic representation of the ex-
isting Literals in the database can help us disambiguate the
words from TransOut that sounds similar. This motivates
us to exploit a phonetic algorithm called Metaphone that
utilizes 16 consonant sounds describing a large number of
sounds used in many English words [30]. We use it to build
a dictionary for indexing the table names, attribute names,
and attribute values (only strings, excluding numbers or
dates) based on their English pronounciation. For example,
phonetic representations of table names Employees and
Salaries are given by EMPLYS and SLRS respectively.

(2) The Literal Determination component has to be
made aware of the splitting of tokens into sub-tokens, so
that it can decide when and how to merge these sub-tokens.
Figure 4 shows the workflow of the Literal Determination
component with TableNames = {Employees (EMPLYS),

Salaries (SLRS)} and AttributeNames = {FirstName
(FRSTNM), LastName (LSTNM)}. The inputs given to
the Literal Determination component are TransOut and
best structure (BestStruct) obtained from the Structure
Determination component. As output, we want to map a
literal each to every placeholder variable in BestStruct.
To do so, we first identify the type of the placeholder
variable (table name, attribute name, or attribute value).
This lets us reduce the number of Literals to consider for a
placeholder variable. We denote the set containing relevant
Literals for a placeholder variable by set B. Next, we use
TransOut to identify what exactly was spoken for Literals.
We segment TransOut to identify a set of possible tokens
to consider and form set A. Finally, we identify the most
phonetically similar literal by computing edit distance
between the phonetic representation of the two sets A and
B. Algorithm 3 describes this in depth. The worst-case
time complexity of the algorithm is O(n2m), where n is the
length of TransOut and m is the domain size of Literals.
The space complexity is O(n2 +m).

4.1 Category Assignment
We constrain the space of possible Literals to consider for

any given placeholder variable in BestStruct. Each place-
holder variable can be a table name (category type = T),
an attribute name (category type = A) or an attribute value
(category type = V). Using SQL grammar, we assign a cat-
egory type to the placeholder variable. In Figure 4, the
category assigned to x2 is type T, and x1 is type A. Given a
placeholder variable in BestStruct, the RetrieveCategory

procedure (from Algorithm 3) would deliver the phonetic
representation of the relevant Literals. For example, if the
placeholder variable is of type T, then the set B of phonetic
representations for all the table names is returned.

4.2 Transcription Output Segmentation
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In the previous step, we identified a set of possible Liter-
als that can take up the value of a placeholder variable. But
still, we have not found the exact literal to “fill in”. This re-
quires using raw TransOut to identify transcribed tokens for
Literals. In this step, we segment TransOut such that only
relevant tokens are retrieved to be compared against items
in set B. For a placeholder variable in BestStruct, we first
identify a window in TransOut, denoting where the literal in
TransOut is likely to be found. In our example, the window
for x1 starts at token first and ends at token name. We
then enumerate all the possible substrings (phonetic repre-
sentation) of Literals occurring in the window in set A . The
maximum possible length of the substring is given by a pa-
rameter, WindowSize. WindowSize needs to be tuned based
on how many sub-tokens ASR splits a single token into. For
example, a token like CUSTID 1729A can be split into 7 sub-
tokens ({CUSTID, ,1,7,2,9,A}). Thus, setting WindowSize
of 7 lets our algorithm merge all sub-tokens into one. This
also presents a tradeoff with the running time, i.e., increas-
ing WindowSize would lead to a higher accuracy but also an
increase in latency. From our initial experiments with the
dataset mentioned in Section 6.1, we found that ASR often
splits many schema Literals into 2 or 3 subtokens. Thus,
we set WindowSize = 3. In our running example, for place-
holder variable x1, the set A is given by {first, name,

firstname}, while set B is the set of attribute names.

4.3 Literal Assignment
As final step, we retrieve the most likely literal for a

placeholder variable by comparing the enumerated strings
in set A and relevant Literals in set B. The comparison is
based on the character level edit distance of the strings in
phonetic representation. One straightforward approach is
to do an all pairs comparison to retrieve the item in set B
that gives the minimum edit distance with any item in set
A. However, this approach does not necessarily give the
correct desired literal. We observe that ASR is likely to
break apart a large token into a series of sub-tokens with
some sub-tokens erroneously transcribed. Hence, there
can exist a literal that has minimum edit distance with a
correctly transcribed sub-token but not necessarily overall.
Moreover, resolving ties with this approach is non-trivial
and requires more tedious heuristics. Two examples below
illustrates this issue.

Example 1. Set A = {FRONT (FRNT), DATE (TT),

FRONTDATE (FRNTTT)} and set B = {FROMDATE (FRMTT),

TODATE (TTT)}. The ground truth literal is FROMDATE. But,
the minimum edit distance occurs between pair DATE and
TODATE. Hence, the approach of returning a literal in set B
that gives minimum edit distance with any item in set A
would simply not work.

Example 2. Set A = {RUM (RM), DATE (TT), RUMDATE

(RMTT)} and set B = {FROMDATE (FRMTT), TODATE (TTT)}.
The ground truth literal is again FROMDATE. However, both
FROMDATE and TODATE give minimum edit distance of 1
with RUMDATE and DATE respectively. To resolve this tie, we
can use an additional information that RUM has less edit
distance with FROMDATE, than with TODATE. Hence, now
we have 2 out of 3 items in set A for which edit distance
with FROMDATE is less than edit distance with TODATE. This
would help us retrieve FROMDATE with a greater confidence.

Algorithm 3 The Literal Determination Algorithm

1: procedure LiteralFinder(TransOut,BestStruct):
2: RunningIndex = 0; FilledOut = BestStruct
3: for every placeholder xj in BestStruct do
4: while TransOut(RunningIndex) ∈ (KeywordDict or

SplCharDict) do
5: RunningIndex++

6: BeginIndex(xj) = RunningIndex
7: EndIndex(xj) = RightmostNonLiteral(RightNonLiteral(xj))
8: A, positions = EnumerateStrings(BeginIndex(xj),

EndIndex(xj)))
9: B = RetrieveCategory(xj)

10: literal, k = LiteralAssignment(A,B,positions)
11: FilledOut(xj) = literal
12: RunningIndex = k+1

13: return FilledOut
14:
15: procedure EnumerateStrings(BeginIndex, EndIndex):
16: results = {};positions = {}; i = 0
17: while i 6= EndIndex do
18: j = i; k=0; curstr = ""
19: while TransOut(j) /∈ (KeywordDict or SplCharDict) AND

(j < EndIndex) AND (k < WindowSize) do
20: curstr = curstr + TransOut(j)
21: results.append(PhoneticRep(curstr))
22: positions.append(j)
23: j++;k++

24: i++
25: return results, positions

26:
27: procedure LiteralAssignment(A, B, positions):
28: for every item b in B do
29: Initialize count(b) = 0; location(b) = -1

30: for every item a in A do
31: set(a) = φ; minEditDist = ∞
32: for every item b in B do
33: if EditDist(a,b) < minEditDist then
34: set(a) = φ; set(a).add(b)
35: minEditDist = EditDist(a,b)
36: else if EditDist(a,b) == minEditDist then
37: set(a).add(b)

38: for every item b in set(a) do
39: count(b)++
40: location(b) = max(location(b),positions(a))

41: literal = argmaxb∈B (count(b))
42: k = location(b)
43: return literal, k

Inspired by this, we propose the following literal voting
algorithm.
1. For an item a in set A, compute pairwise edit distance
with every item in set B.
2. Pick an item b ∈ B that has least edit distance. Hence,
a has so-called “voted” for b.
3. Repeat this process of voting for every item a ∈ A.

We return the literal that wins the maximum number of
votes. Literals with the next highest votes will be the second
returned literal, and similarly we fetch top k Literals for each
placeholder variable. If there exist ties in votes, we resolve
it in lexicographical order. In our running example, the
returned literal for the placeholder variable x1 is FirstName,
while for x2 is Employees.

5. INTERFACE
Figure 5 (A) shows the SpeakQL interface. This interface

allows users to dictate SQL query and interactively correct
it, if the transcribed query is erroneous. Such interactive
query correction can be performed using both touch/click
and speech. The “Record” button at the bottom right al-
lows the user to dictate the entire query in one go. At the
same time, the interface allows the user to dictate or correct
(through re-dictation) the queries at the clause level (using
record button to the left of each clause). For example, the
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A B
Figure 5: SpeakQL Interface. (A) The Interactive Display showing the dictated query after being processed by the SpeakQL
engine, as well as the touch-based editing functionalities and clause-level redictation capabilty. (B) Our simple SQL keyboard
designed for touch-based editing of the rendered query string.

user can choose to dictate only the SELECT clause or WHERE

clause. +/- buttons allows for easy insertion/deletion of
Keywords and Literals from the query. The notable </> but-
ton allows for a quick insertion or removal of SplChars. If the
displayed literal is incorrect, the user can touch its box and a
drop-down menu will display the ranked lists of alternatives
for that placeholder. Figure 5 (B) shows the novel “SQL
Keyboard” that consists of the entire lists of SQL Keywords,
table names, and attribute names. Since the attribute val-
ues (including dates) can be potentially infinite, they cannot
be seen in a list view. But the user can type with the help of
an auto complete feature. Dates can be specified easily with
the help of a scrollable date picker. Our keyboard design
allows for a quick in-place editing of stray incorrect tokens,
present anywhere in the SQL query string. In the worst
case, if our system fails to identify the correct query struc-
ture and/or Literals, the user can type one token, multiple
tokens, or the whole query from scratch in the query display
box, or redictate the clauses or the whole query again. Thus,
overall, SpeakQL’s novel multimodal query interface allows
users to easily mix speech-driven query specification with
speech-driven or touch-driven interactive query correction.

6. EXPERIMENTAL EVALUATION
In this section, we present a thorough empirical evalua-

tion of our system. We start with our procedure to generate
the dataset of spoken SQL queries. This procedure applies
to any arbitrary database schema and is scalable. We then
define the accuracy and runtime metrics used for the eval-
uation and evaluate SpeakQL end-to-end on these metrics.
In addition, we dive deeper into evaluation of each of our
components. Finally, we present our findings from the ac-
tual user studies that show that SpeakQL can help reduce
the query specification time significantly.

6.1 Data
To the best of our knowledge, there are no publicly avail-

able datasets for spoken SQL queries. Hence, we create our
own dataset using the scalable procedure described below.

1. We use two publicly available database schemas: Em-
ployees Sample Database from MySQL [6] and the Yelp
Dataset [10]. We get the table names, attribute names,
and attribute values in each database.
2. Use our unambiguous SQL subset context free grammar
described in Section 3.2 to generate a random structure (e.g
SELECT x1 FROM x2 WHERE x3 = x4).
3. Identify the category type of each literal placeholder vari-
ables from section 4.1 (e.g {x2} ∈ tablenames; {x1,x3} ∈
attributenames; {x4} ∈ attributevalues).
4. Replace the placeholder variables with the literal belong-
ing to its respective category type randomly. We first bind
the table names, followed by the attribute names, and fi-
nally, attribute values.
5. Repeat the steps 2, 3 and 4 until we get a dataset of 1250
SQL queries (750 for training purpose and 500 for testing
purpose) from the Employees database and 500 SQL queries
from the Yelp database (for testing purpose). We use the
750 training queries from the Employees database to cus-
tomize our ASR engine, Azure’s Custom Speech API. We
are also interested in testing the generalizabilty of our ap-
proach to new database schemas. Hence, we do not include
queries from Yelp database for customizing the API.
6. Use Amazon Polly speeech synthesis API [3] to gener-
ate spoken SQL queries from these queries in text. Amazon
Polly offers voices of 8 different US English speakers with
naturally sounding voices. We found that voice output is
of high-quality even for value Literals. We sample and hear
a few queries to verify this. Especially for dates, we found
that Polly auto converts textual format ‘month-date-year’
to spoken dates. Polly also allow us to vary several aspects
of speech, such as pronunciation, volume, pitch and speed
rate in the spoken queries.

This procedure for the generation of data applies to any
arbitrary schema where tablenames, attributenames and
attributevalues are user pluggable. Since, the steps 2, 3
and 4 of the above procedure can be repeated for infinite
number of times, the procedure is scalable. All our datasets
are available for download on our project webpage [36].

6.2 Metrics
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Figure 6: Cumulative distribution of accuracy metrics for top 1 results from Employees test dataset.

Metric

Top 1 Top 5

Employees Yelp Employees Yelp

Train Test Test Train Test Test

KPR 0.99 0.98 0.94 0.99 0.99 0.98

SPR 0.99 0.98 0.98 0.99 0.99 0.99

LPR 0.92 0.85 0.72 0.97 0.93 0.81

WPR 0.95 0.91 0.81 0.98 0.96 0.9

KRR 0.99 0.97 0.95 0.99 0.99 0.99

SRR 0.98 0.98 0.98 0.99 0.99 0.99

LRR 0.88 0.8 0.64 0.95 0.91 0.69

WRR 0.92 0.88 0.78 0.96 0.95 0.82

Table 1: End-to-end mean accuracy metrics on real data for
query string corrected by SpeakQL.

For evaluating accuracy, we first tokenize a query text to
obtain a multiset of tokens (Keywords, SplChars, and Lit-
erals). We then compare the multiset A of the reference
query (ground truth SQL query) with the multiset B of the
hypothesis query (transcription output from SpeakQL). We
use the error metrics defined in [13]: Keyword Precision
Rate (KPR), SplChar Precision Rate (SPR), Literals Pre-
cision Rate (LPR), Word Precision Rate (WPR), Keyword
Recall Rate (KRR), SplChar Recall Rate (SRR), Literals
Recall Rate (LRR) and Word Recall Rate (WRR). For ex-

ample, WPR = |A∩B|
|B| , WRR = |A∩B|

|A| , and the rest are

defined similarly. Any incorrectly transcribed token will re-
sult in loss of accuracy and will force users to spend time and
effort correcting it. Thus, we are also interested in finding
out how far the output generated by SpeakQL is from the
ground truth. For this purpose, we include one more accu-
racy metric: Token Edit Distance (TED), which allows for
only insertion and deletion of tokens between the reference
query and the hypothesis query [29]. For evaluating latency,
we simply use the running time in seconds.

6.3 End-to-End Evaluation
Experimental Setup. All experiments were run on a com-
modity laptop with 16GB RAM and Windows 10. We use
Cloudlab [33] for running backend server for the user studies.
We use a custom OpenStack profile running Ubuntu 16.04
with 256GB RAM. For the frontend, we use the chrome
browser of Samsung Tablet that has 2GB RAM and 1.6GHz
Processor. For ASR, we use Azure’s Custom Speech Service
because it allows us to customize the language model of the
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Figure 7: (A) Evaluation of SpeakQL on Token Edit Dis-
tance (B) Runtime of SpeakQL.

speech recognizer. Hence, training a language model with
the dataset of SQL queries would allow us to capture the vo-
cabulary of the underlying application. Employees training
dataset of 750 queries is used to train the language model.
We present the comparison of Azure’s Custom Speech Ser-
vice with other ASR tools in Appendix.
Results. Figure 6 plots the cumulative distribution func-
tions (CDF) of the error metrics for the queries in Employees
test dataset. Table 1 reports the mean error metrics for the
same. For additional insights, we present the results for both
top 1 outputs and “best of” top 5 outputs both from the
structure determination and literal determination. We can
see that the recall rates are already high for Keywords (mean
of roughly 0.92) and SplChars (mean of roughly 0.96) using
just the ASR. For Literals, however, the recall rate is quite
low (mean of 0.53). With SpeakQL, we achieve almost max-
imum possible precision and recall (mean of roughly 0.98)
for Keywords and SplChars on both Employees train and
test dataset. Even for Literals, the accuracy improves sig-
nificantly on both the Employees datasets. In addition, on
Yelp dataset as well, the precision and recall are consider-
ably high. Since the ASR is customized on the training data
from the Employees schema, SpeakQL is more likely to cor-
rectly detect the Employees schema Literals than any other
schema literal. Hence, on the Yelp test dataset, the fraction
of relevant tokens successfully retrieved is less. This leads
to a lower recall rate (mean of 0.64) for Literals.

Figure 7 (A) shows the CDF of TED for the Employees
test set. Here, TED is a surrogate for the amount of effort
(touches or clicks) that user needs to put in when correct-
ing a query. Higher TED almost surely means more user
effort. We saw that only 23% of the queries were success-
fully transcribed fully. The reasons for this would become
clear in our evaluation of the literal determination compo-
nent later. However, almost 90% of the queries have TED
of less than 6. Hence, from the user end, correcting most
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of the queries would require only a handful of touches or
clicks. This underscores the importance of having an in-
teractive system that allows for correction. The CDF of the
latency of SpeakQL is given in Figure 7 (B). We notice that,
for almost 90% of the queries in the Employees test set, the
final transcription output can be obtained well within 2 sec-
onds. Only, 1% of the queries took more than 5 seconds.

6.4 Structure Determination Drill Down
In this evaluation, we would like to see how correct is the

structure returned by this component relative to the ground
truth structure. Figure 9 (A) shows the CDF of the token
edit distances for the queries in the Employees test set. We
see that this component delivers the correct structure (TED
of 0) for about 86% of the queries in the test set. Almost
99% of the structures are within a TED of 10. Figure 9
(B) shows the CDF of time taken by this component. We
see that for almost 80% of the queries, the structure was
determined in less than 1 second. Moreover, the latency
is less than 1.5 second for almost 99% of the queries. In
order to see which optimizations in the component are more
relevant, we conduct an ablation study.
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Figure 8: Ablation study of Structure Determination Com-
ponent

Ablation Study. In this analysis, we would like to under-
stand how effective these different optimization techniques
are in reducing latency and how much they affect accuracy,
for the structure determination component. Figure 8 (A)
shows the CDF of TED. Note that the BDB is an accuracy
preserving optimization. When we consider all the opti-
mizations (SpeakQL Default + DAP + INV), we notice a
significant amount of drop in accuracy. Number of queries
having TED of 0 drops from 86% to 21%. Also, the TED to
deliver 99% of the correct structures increases to 23 (from
10, which was observed with SpeakQL Default). This is
expected because DAP does not explore all the branches
containing special characters such as {=,<,>} and keywords
such as {AVG,SUM,MAX,MIN,COUNT} and {AND,OR}. On the
other hand, INV leads to only a minor drop in accuracy.
This is because the ASR is good enough not doing a mistake
of recognizing a literal as a keyword or a special character. If
that happens, then INV is expected to mess up and lead to
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Figure 9: Structure Determination

a larger drop in accuracy. 8 (B) plots the CDF of running
time. When using only the prefix tries with BDB turned
off, we notice that an increase in running time by almost
2x. Thus, BDB helps in saving the running time by a factor
of 2. DAP leads to runtime gains of rougly 3.5x (compared
to SpeakQL Default) with almost 40% of the queries finish-
ing under 0.1 seconds. While, with INV runtime gain is of
roughly 1.7x. Thus, DAP and INV can be used to further
reduce the runtime, but would also lead to some amount of
drop in accuracy.

6.5 Literal Determination Drill Down
First, we would like to see what fraction of the relevant

Literals are retrieved by our literal determination compo-
nent. Figure 10 (A) presents the CDF plot of recall rates
for table names, attribute names and attribute values. We
notice that the recall rates for table names and attribute
names are considerably high with a mean of 0.90 and 0.83
respectively. But for attribute values, the recall rate is low
(mean of 0.68). To see why exactly this is the case, we break
down attribute value into different types.

The attribute values can be either a date, a real number or
a string value. Figure 10 (B) shows the CDF of the edit dis-
tance for different types of attribute values from the ground
truth. This is to show how much editing effort can poten-
tially be required by the user to correct an attribute value.
For example, almost 50% of the attribute values of type
string were correctly retrieved with a phonetic edit distance
of zero. Thus, no effort in terms of correcting would be re-
quired by the user. On the other hand, we found that only
35% of dates were returned perfectly as intended. About
85% of the dates can be found within an edit distance of
6. This is because dictating dates requires successfully tran-
scribing 3 tokens: day, month and year. We notice ASR
either omitting or wrongly transcribing one of the 3 tokens,
leading to an increase in user effort to correct dates. This
is what motivated our scroller design for dates in our SQL
Keyboard. In addition, we notice only 23% of the numbers
were detected exactly as spoken. This is because the asr
messes up when transcribing a number spoken with pauses.
For example, “forty five thousand three hundred twenty” is
transcribed as “45000 322”. We notice from the plot that
editing dates would require maximum units of effort (mean
edit distance of 3.9), followed by strings (mean edit distance
of 2.8) and finally numbers (mean edit distance of 2.2).

Next, we evaluate how much a similarity search on a pre-
computed phonetic representation of existing Literals in the
database help relative to a string-based similarity search.
That is, we intend to compare character-level edit distance
on phonetic representation with character-level edit distance
on the string. Phonetic representation helps us to provide
a more condensed representation of a literal. From Figure
11, we see that it requires less phonetic distance compared
to the character level edit distance in order to obtain the
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Figure 10: (A) CDF plot of Recall Rates for different types
of Literals (B) CDF plot of edit distances for different types
of attribute values from ground truth. Strings are evaluated
with phonetic edit distance, while Dates and Numbers are
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correct token. For example, the correct literal exists within
a character-level edit distance of 17 from the transcribed lit-
eral. But if we rely on the phonetic character-level edit dis-
tance, the correct Literals can be found within edit distance
of only 11. In addition, we see that, almost 70% of the table
names and attribute names have edit distance of 0, while the
character-level edit distance on the phonetic representation
is 0 for almost 80% of them. Thus, phonetic representation
can help in retrieving the extra 10% of the table names and
attribute names that were not found when doing the edit
distance on the full word representation. Overall, we find
phonetic representation helps in achieving higher accuracy.

6.6 User Study
Preliminary User Study. In our first pilot user study,
we recruited 15 participants without vetting them for their
SQL knowledge. Thus, many participants had little expe-
rience composing SQL queries. Each participant composed
12 SQL queries on Employees database, where only English
description of the query was given. We compared two
conditions for specifying the query with a within-subjects
design. In the first condition, the participant had access
to an old SpeakQL interface that allowed them to dictate
the SQL query and perform interactive correction using
only a drag and drop based touch interface. In the second
condition, the participant typed the SQL query from
scratch with no access to our interface. We record the
end-to-end time taken and evaluate our system using 144
data points (16 participants, 12 queries, some of the queries
were not finished). We noticed a speedup of just 1.2x,
when using SpeakQL interface in comparison with raw
typing. Many participants spent a lot of time figuring out
the correct query due to their poor knowledge of where and
how to use SQL Keywords. As a result, the users dictated
the entire query twice or thrice and then used a drag and
drop based interface to correct the query. We found that on
average 37% of total end-to-end time was spent idle either
figuring out the correct query or checking out the schema.
Query dictation constituted for only about 25% of the total

end-to-end time, while the rest went into query correction.
Lessons Learned. This pilot user study helped us
to learn several important lessons: (1) We did not vet
the participants to ensure they are representative of our
target userbase. Unlike NLIs, this version of SpeakQL
is not aimed at lay users but rather data professionals
that are already familiar with SQL and the schemas they
likely query regularly. Thus, we need more vetting of
participants. We also need to make them more familiar
with the schema to let them compose queries without
schema-related confusion. Such a design allows us to focus
on evaluating SpeakQL specifically rather than users’ grasp
of SQL itself. (2) We found that it was difficult for users
to compose the entire query in head and dictate in one
go. Research in cognitive science also tells us that the
human working memory can retain a phrase or a context
for maximum of only 10 seconds [25, 32]. Although SQL
was designed for typing, users often think of the query
at the clause level, since it has shorter contexts. Thus,
supporting clause-level dictation could make the interface
more speech-friendly. (3) Editing tokens in place required
users to spend considerable amount of time in drag and
drop effort. Hence, supporting SQL keyboard that allows
users to quickly insert or delete any incorrectly placed or
transcribed token using just a touch make the interface more
correction friendly. In addition, the SQL keyboard would al-
low a user to correct a query (or sub-query) out of the order.

Acutal User Study. Learning from our previous
experience, we revamped our interface to support: clause
level dictation of queries, allowing insertion and deletion of
tokens through a novel SQL keyboard (thus, dropping the
old drag and drop based interface) and auto-completion
of Literals, as mentioned in Section 5. We again conduct
another user study with 15 participants where the recruit-
ment was conducted through a short SQL quiz. This cohort
of participants was completely different from the previous
one. For the recruitment, the participants were asked 5
questions that resembled the questions in the actual user
study. Correctly answering at least 3 of them passes the
participant for the user study. We used the same database
for the quiz and the user study. Hence, this increased the
participant’s familiarity with the schema and the kinds of
queries to expect. Each participant was first made familiar
with our interface through an introductory video [1]. Again,
the participant composed 12 queries (say, from q1 to q12) to
a browser-based interface on a hand-held tablet. Natural
language description of the query along with the database
schema was provided to the participant. We use the same
two-condition within-subjects design as the first user study.

The queries were divided into two segments: simple and
complex. We define simple queries as those with less than 20
tokens; the rest are considered complex. Thus, composing
a complex query imposes a higher cognitive load relative to
a simple query. Participant p1 was asked to speak query q1
first and type q1 next. p1 will then type q2 first and dictate
q2 next. We alternate this order across the 12 queries. Simi-
larly, this order is alternated across participants, i.e., p2 will
type query q1 first and dictate q1 next. We think this design
lets us account for the interleaving of thinking and speak-
ing/typing when constructing SQL queries and reduce the
bias caused by a reduced thinking time when re-specifying
the same query in a different condition (typing or speaking).
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Figure 12: Simple queries are marked from 1 to 6 and the rest are complex. (A) Time to completion for queries composed with
SpeakQL (B) Speedup in time for queries composed with SpeakQL vs raw typing (C) Units of efforts for composed queries
when using SpeakQL interface (D) Speedup in units of efforts for queries composed with SpeakQL vs raw typing.

When speaking the query, the SpeakQL interface will
record the audio of the participant upon their pressing of the
“Record” button. The dictated query’s transcription that
is automatically corrected by SpeakQL will be displayed on
the interface screen upon their press of the “Stop” button.
If the query spoken is correct, then the response will be
automatically logged, and the participant moves on to the
next query. If not, then the participant will be instructed by
the interface to correct the query. This process is continued
until the participant gets the query right. We repeat this
for the typing mode. We record the time to complete the
query for both the conditions, i.e., when the participant
is dictating and when the participant is typing. Also, we
log every interaction of the user with our system, i.e., the
number of corrections through touch/clicks and number of
re-dictation attempts. We evaluate our system using 180
data points (15 participants, 12 queries).

Results. Figure 12 plots the time to completion, speedup
in time to completion (i.e., time to completion of typing
vs time to completion of SpeakQL), units of efforts and
speedup in units of efforts for the 12 queries. The queries
from 1-6 are the simple queries, and the rest are complex.
Units of effort is defined as number of touches/clicks
(including keyboard strokes) or dictation/re-dictation
attempts made when composing a query. From plots (B)
and (D), we see that SpeakQL leads to significantly higher
speedup in time to completion and units of effort than
raw typing SQL queries. In addition, from plots (A) and
(C), we notice that time to completion and units of effort
for the complex queries is considerably higher than the
simple ones. In terms of time to completion, the average
speedup is 2.4x for the simple queries and 2.9x for the
complex ones. On units of efforts, the average speedup is
12x for the simple queries and 7.5x for the complex ones.
This is because SpeakQL is more likely to get a spoken
simple query correct. Hence, it requires only minor editing
efforts. We observe that for simple and complex queries,
the fraction of time spent in dictation is an average of 43%
and 32% respectively of total time, while that time spent on
SQL Keyboard is an average of 17% and 47% respectively.
The remaining time is spent idle either checking the query
or looking at the schema. We present these results in
Appendix.

Hypothesis Tests. We conducted 5 hypothesis tests
with different measured quantities from the user study. The
first 3 tests focus on the time to complete a query, the time
spent editing a query, and the total units of efforts, with the
null hypothesis being that these quantities in the SpeakQL
condition are not significantly lower than than the typing

condition. The last 2 tests check if the speedups offered
by SpeakQL over typing on the complex queries are higher
than the simple queries in terms of time to completion, and
lower than the simple queries in terms of units of effort.
Overall, we found that the null hypotheses were rejected
at the α = 0.05 level. The p-values were between 0 and
0.008. In order to control for multiple hypothesis tests, we
also perform bonferroni correction by setting α = 0.01. We
again observe that all the null hypotheses are rejected at
the new α level.

7. RELATED WORK
Speech-driven Querying Systems. Speech recognition
for data querying has been explored in some prior systems.
Nuance’s Dragon Naturally Speaking allows users to query
using spoken commands to retrieve the text content of a doc-
ument [7]. Several systems such as Google’s Search by Voice
[35, 37] and Microsoft’s Model M [41] have explored the pos-
sibility of searching by voice. Conversational assistants such
as Alexa, Google Home, Cortana, and Siri allow users to
query over only an application-specific knowledge bases and
not over an arbitrary database. In contrast, SpeakQL allows
users to interact with structured data using spoken queries
over any arbitrary database schema.
Other Non-typing Query Interfaces. Query Interfaces
that help non-technical users explore relational databases
have been studied for several decades. There has been a
stream of research on visual interfaces [40, 8, 17]. Tabular
tools such as [40] allow users to query by example, wherein
the user specifies results in terms of templates. [8] allows
users to create drag-and-drop based interfaces. Keyword-
search based interfaces such as [17] help users formulate
SQL queries by giving query suggestions. More recently,
non-keyboard based touch interfaces [26, 27, 15, 18, 38]
have received attention because of the potentially lower user
effort to provide input. In particular, [27] allows user to
query a database using a series of gestures, [15] is a pen-
based human-in-the-loop interactive analytics system, and
Tableau [38] offers touch-based visual analytics products.
At the user level, almost all of these query interfaces ob-
viate the need to type SQL. This rich body of prior work
inspired our touch-based multimodal interface for query cor-
rection that augments spoken input. But unlike these tools,
our first version of SpeakQL does not aim to obviate SQL
but rather embraces and exploits its persistent popularity
among data professionals.
Natural Language Interfaces. Previous works [31,
22, 12, 11] have studied natural language interfaces for
databases in order to allow layman users to ask questions
in natural lanuage such as English. NLIs are largely or-
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thogonal to this paper’s focus. As explained in Section 1,
we leave integration of our ideas with NLIs to future work.
However, we observe that current NLIs are yet to see mass
adoption except perhaps in some restricted domain-specific
settings with structural limitations. The ambiguity and ever
evolving nature of human language can often cause query
misunderstanding. The lack of well-defined semantics for
“correct” answers also exacerbates this situation, in con-
trast to SQL’s rigorous semantics. Previous work [21] takes
a step further, providing the user with explanations and
thus, allowing them to resolve ambiguities interactively.

Seq2SQL exploits reinforcement learning to translate nat-
ural language questions to SQL queries [39]. However, the
queries can be composed only over one table and with a
maximum of only one aggregate. Inspired from regular hu-
man to human conversations, Echoquery [23] is designed as
a conversational NLI in form of an Alexa skill. Although,
this system certainly enables non-experts to query data eas-
ily and directly, ASR can cause a series of errors and would
restrict users from specifying “hard” queries. In addition,
such a system might impose a higher cognitive load [25, 32]
on users when a large query result is returned; a screen mit-
igates such issues, e.g., as in the Echo Show. Moreover, a
recent user study [34] on a text messaging app conducted
by Baidu, showed that the input rate is significantly faster
when users uses speech to perform only the first dictation,
and then errors are corrected and refined through touch.
Natural Language Processing (NLP). Recent work in
NLP community has emphasized the fact that incorporat-
ing linguistic structure can help prune the space of generated
queries and thus help in avoiding the NLU problem [39, 16,
14, 24, 19]. The recent trend seen in the NLP community of
incorporating structural knowledge into the modeling offers
a form of validation for our approach of directly exploiting
the rich structure of SQL using its grammar.

8. CONCLUSIONS AND FUTURE WORK
We present the first end-to-end multimodal system for

speech-driven querying of structured data using SQL. We
find that raw ASR transcriptions are not usable directly
because of myriad errors introduced by out-of-vocabulary
tokens, homophones and other related issues. This moti-
vates our unique architectural design decision of separating
the structure determination component from literal deter-
mination component. In order to empirically evaluate our
system, we create the first dataset of spoken SQL queries.
Furthermore, we present a scalable procedure to generate
such data that applies to any arbitrary database schema.
Our empirical findings suggest that SpeakQL achieves sig-
nificant improvements over ASR on all accuracy metrics.
Through user studies, we show that our system helps users
to speedup their SQL query specification process and as a
result, saves a significant amount of their time and effort.

As for future work, we would like to modify SQL to make
it more amenable for spoken querying. From our empirical
evaluation, we saw that Literals are the bottleneck for ac-
curacy. Hence, we plan to rewrite our SQL subset’s CFG in
a manner that focuses more on literals and de-emphasizes
structure. For instance, we can add intuitive keywords such
as BEGIN/END (Literal) in order to properly demarcate a
complex literal. Finally, we would like to integrate our tech-

niques with existing typed NLIs to enable user who are com-
fortable with natural English to explore data with speech.
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APPENDIX
A. SQL GRAMMAR

The production rules of the supported SQL grammar are
shown in Box 1.

Box 1: SQL Grammar Production Rules

1: Q → S F | S F W
2: S → SEL LST | SEL L C | SEL SEL OP BP L EP | SEL SEL OP BP

L EP C | SEL CNT BP ST EP | SEL CNT BP ST EP C
3: C → COM L | C COM L | COM SEL OP BP L EP | C COM SEL OP BP

L EP
4: CF → COM L | CF COM L
5: F → FRO L | FRO L CF
6: W → WHE WD | WHE AGG
7: WD → EXP | EXP AN WD | EXP OR WD
8: EXP → L OP L | WDD OP L | WDD OP WDD | L OP WDD
9: WDD → L DO L

10: AGG → WD CLS L | WD CLS WDD | WD LMT L | L BTW L AN L | L
NT BTW L AN L | L IN BP L EP | L IN BP L CS EP

11: CS → COM L | CS COM L
12: CLS → ODB1 ODB2 | GRP1 ODB2
13: LST → L | ST
14: COM → ‘,’
15: SEL → ‘SELECT’
16: FRO → ‘FROM’
17: ST → ‘*’
18: L → ‘x’
19: OP → ‘=’ | ‘<’ | >’
20: AN → ‘AND’
21: OR → ‘OR’
22: NT → ‘NOT’
23: BTW → ‘BETWEEN’
24: WHE → ‘WHERE’
25: DO → ‘.’
26: ODB1 → ‘ORDER’
27: ODB2 → ‘BY’
28: GRP1 → ‘GROUP’
29: LMT → ‘LIMIT’
30: SEL OP → ‘AVG’ | ‘SUM’ | ‘MAX’ | ‘MIN’ | ‘COUNT’
31: CNT → ‘COUNT’
32: BP → ‘(’
33: EP → ‘)’
34: IN → ‘IN’

B. STRUCTURE DETERMINATION
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Figure 13: Cumulative Distribution of accuracy metrics for
top 1 results

KPR SPR LPR KRR SRR LRR

GCS 0.78 0.94 0.39 0.85 0.97 0.4

ACS 0.84 0.87 0.49 0.92 0.96 0.53

Figure 14: Mean error metrics: Precision and Recall

B.1 Proofs
Algorithm 2 Time and Space Complexity Analysis.
Let n be the length of TransOut, p be the number of nodes
in the largest trie, and k be the number of tries (value fixed
to 50). In the worst case, the algorithm would traverse each
node of every trie and would compute DpCurCol for each and
every node. Hence, the worst-case time complexity of the
algorithm is bounded by O(pkn). The maximum possible
space required by the algorithm is equivalent to number of
tries times number of nodes in the largest trie. Hence, space
complexity is O(pk).

C. ASR
We compare Google’s Cloud Speech Service (GCS) vs

Azure’s Custom Speech Service (ACS) on 500 test queries
belonging to the Employees database. Due to space con-
straints, we only plot the CDF of word precision and re-
call rates in the Figure 13. We notice an improvement in
word precision rate from mean of 0.62 for GCS to 0.67 for
ACS and an improvement in word recall rate from mean of
0.65 for GCS to 0.73. For Google’s Cloud Speech Service as

shown in Table 14, we noticed that the precision and recall
rates for Keywords and SplChars are high. This is because
GCS allows them to be provided as hints to the API. Hints
are tokens that might be present in the audio; they help
the ASR engine pick between alternate transcriptions. For
example, if “=” is given as a hint, we might get the “=”
symbol instead of “equals” as text. Despite this, Azure’s
Custom Speech Service fare significantly well in recognizing
Keywords and also Literals .
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Figure 15: Simple queries are marked from 1 to 6 and the
rest are complex. (A) Fraction of time spent in dictating the
query relative to the total end-to-end time (B) Fraction of
time spent in using the SQL keyboard relative to the total
end-to-end time.

D. USER STUDY
We drill down deeper to see how a user is interacting with

SpeakQL. Figure 15 shows the % time of the total end-to-
end time that went into Speaking out the query (plot A)
and using the SQL Keyboard (plot B). We notice that for
the simple queries, SpeakQL is able to get most of dictated
queries correct. Hence, a user spends most of their time in
just dictating the query by either speaking out the entire
query or speaking out at the clause level. Thus time spent
in performing corrections using SQL keyboard is negligible
or almost none. While for the complex queries, the trend is
exactly the opposite. Users prefer to use the SQL Keyboard
than speech when composing complex queries.
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