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ABSTRACT
The tedious grunt work involved in data preparation is a
major impediment for real-world ML applications which re-
duces the data scientist’s productivity. It is also a road-
block to industrial-scale cloud AutoML workflows that build
ML models for millions of datasets. In this work, we tar-
get a major task in data preparation: ML feature type in-
ference. Datasets are typically exported from DBMSs into
tools such as Python and R as CSV files. The semantic gap
between attribute types (e.g., strings, numbers etc.) in a
DBMS and feature types (e.g., numeric or categorical) in
ML necessitates ML feature type inference. At scale, han-
dling this task fully manually is slow, expensive, or even
impossible. We formalize this task as a novel ML clas-
sification problem. We manually annotate and construct
a labeled dataset with around 9000 examples. We mimic
human-level intuition behind manual labelling into the ML
models by extracting relevant signals and hand-crafted fea-
tures from the raw CSV files. We present an extensive em-
pirical analysis of several ML approaches on our dataset.
Our results shows that our applied ML approach delivers an
enormous 30% gain in identifying numeric attributes com-
pared to existing rule-based or syntactic tools. We finally
release a community-led repository with our labeled dataset
and pre-trained models to invite further contributions. All
of our code and datasets are available for download from
https://adalabucsd.github.io/sortinghat.

1. INTRODUCTION
Several surveys of data science practitioners repeatedly

show that most data scientists typically spend upto 80% of
their time on data preparation (prep) and only 20% on real
analytics [34, 33]. Data prep involves diverse tasks such
as identifying feature types for ML, extracting, standardiz-
ing and cleaning feature values. Such tasks are mostly per-
formed manually by data scientists in tools like Python and
R, hence reducing their overall productivity. Furthermore,
cloud vendors have released AutoML platflorms such as
Google’s Cloud AutoML [32] and Salesforce’s Einstein [35]
that automates the end-to-end ML workflow including data
prep. However, the formalization of different data prep steps
in these platforms is ill-understood and there exist no ob-
jective benchmarks to evaluate them.

Automating specific data prep tasks and creating bench-
mark labeled datasets will not only help practitioners
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Figure 1: (A) Current dominant approach to infer ML fea-
ture types. (B) Our proposed SortingHat tool that semi-
automates the inference of ML feature types.

in reducing their grunt work but will also contribute to
objectively benchmarking AutoML platforms. Considering
this, in this paper, we focus on objectively quantifying a
ubiquitous data prep step when applying ML over relational
data: ML Feature Type Inference.

Problem: ML Feature Type Inference. Figure 1(A)
shows the current dominant approach to infer ML feature
types. Datasets are typically exported from DBMSs as flat
CSV or JSON files into ML tools such as Python and R.
Before ML, the data scientist has to manually decide upon
the feature type of an attribute. Almost all ML models
recognize only two types of features: numeric (a continuous
set), or categorical (a discrete set) [19]. But the data files
store only the names and values of the attribute, while the
type of the attribute has to be inferred manually.

Challenge: Semantic Gap. This data prep task is
hard to automate because of the gap between the DB
schema and the ML schema. Analogous to attribute types
and integrity constraints in a DB schema, the ML schema
tells us the feature types and potential integrity constraints
on the domains of the features. In this work, we only focus
on feature type inference and leave inference of integrity
constraints in the ML schema to future work. The key
distinction between the DB schema and the ML schema is
that the DB schema is primarily syntactic, while the ML
schema is semantic. The DB schema tells us the datatype
of an attribute such as integer, real, or string (VARCHAR in
most DBMSs). On the other hand, the ML schema tells us
the type of a feature such as numeric or categorical. The
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Name
𝑉𝐴𝑅𝐶𝐻𝐴𝑅 (30)

CustID
𝐼𝑁𝑇𝐸𝐺𝐸𝑅

Gender
𝐶𝐻𝐴𝑅 (1)

Age
𝐼𝑁𝑇𝐸𝐺𝐸𝑅

ZipCode
𝐼𝑁𝑇𝐸𝐺𝐸𝑅

XYZ
𝑉𝐴𝑅𝐶𝐻𝐴𝑅 (5)

Income
𝑉𝐴𝑅𝐶𝐻𝐴𝑅 (20)

Churn
𝑉𝐴𝑅𝐶𝐻𝐴𝑅 (3)

Alice 1501 F 25 92092 005 USD 15000 Yes

Bob 1704 M 34 78712 003 25384 No

Figure 2: A simplified Customers dataset used for customer
churn prediction.

semantic gap between DB and ML schemas means reading
syntax as semantics often leads to nonsensical results. We
explain this further with an example.

Example. Consider a simplified dataset for a com-
mon ML task, customer churn prediction in Figure 2.

We immediately see two major issues caused by the gap
between the DB and ML schemas. First, attributes such as
Name, Gender, Income and Churn are stored as strings, but
not all of them are useful as categorical features for ML. For
instance, Income is actually a numeric feature but some of
its values have a string prefix. Second, attributes such as
CustID, Age, ZipCode and XYZ are stored as integers, but
only Age is useful as a numeric feature for ML. CustID is
unique for every customer, hence it can not be generalized
for ML. Inspecting only the column XYZ, it is difficult to
decide if the feature is numeric or categorical. ZipCode is
categorical, even though it is stored as integers. A tool like
Python Pandas will treat it as a numeric feature. Hence, a
human has to manually convert to categorical feature for the
ML model. This issue is ubiquitous in real-world datasets,
since categories are often encoded as integers. e.g. item
code, state code, etc.

Even worse, real-world datasets often have hundreds to
thousands of columns. Asking a data scientist to spend even
1min to infer the feature type of a column could easily lead
to hours, if not days, of pure grunt work! Also, real-world
databases are seldom static because DB schemas evolve
over time, which requires data scientists to manually infer
the ML feature types every time. Overall, it is a pressing
problem to close the gap between the DB and ML schemas
and help reduce the human time spent on data prep for ML
and/or improve the accuracy of AutoML systems.

Our Approach. To meet the above challenge, we apply a
simple yet powerful philosophy: using ML to semi-automate
data prep for ML. We cast the problem of ML feature type
inference as an ML classification problem to exploit the
ability of ML models to bride this semantic gap. As shown
in Figure 1(B), we create a tool called SortingHat that uses
our best performing ML models to semi-automatically infer
the feature types from the raw CSV file. It gives a ranked
list of attributes with a confidence score for its prediction.
The data scientist may inspect only the attributes that
are marked less confident by SortingHat. The key limiting
factor to achieve this nature of automation is not ML
algorithmic advances, but the availability of large high
quality labeled dataset. For instance, availability of the
ImageNet dataset has stirred several advances in computer
vision today [11]. Considering this, we create the first
labeled dataset for the task of ML feature type inference.

Label Vocabulary and Labeled Dataset. Creat-
ing labeled data for our task is challenging because of two
reasons. First, each example in the labeled dataset is an
entire feature column in a raw data file. A data file with 1M
records and 10 columns will only give 10 examples! Hence, a

lot of manual work needs to be done in order to collect raw
data files. Second, there is usually not enough information
in just the data file to identify the class (numeric or
categorical) correctly. For instance, consider column XYZ
in Figure 2. Is it numeric or categorical? This problem is
non-trivial even for a human to make a judgement. Thus,
we need more classes apart from just Numeric and Categor-
ical class. We create 3 more classes that captures different
variety of the columns: ones with messy syntax, ones that
are non-generalizable and the ones that are “hard” to make
a judgement. This intuitive 5-class prediction vocabulary
will allow a human to quickly comprehend the semantics of
an attribute. We manually label around 9000 columns from
the real data files we collected into the one of the five classes.

Featurization and ML models. Given a raw data
file, in order to identify the feature type, a human reader
would look at the attribute (or column) name, some sample
values in the column and even descriptive statistics about
the column such as number of NaNs or number of distinct
values. For instance, just by inspecting the attribute name
such as ZipCode, an interpretable string, a human would
know that the feature type is categorical. We replicate
this human-level intuition into the ML models. We ex-
tract information from the raw data files that a human
reader would look at: attribute name, sample values and
descriptive statistics about the column. We summarize this
information in a feature set, which we use to build popular
ML models: logistic regression, support vector machine
with radial basis kernel, Random Forest, k-nearest neighbor
(k-NN) and character-level convolutional neural model.

Empirical evaluation and analysis. We first com-
pare our models against existing rule-based or syntax-based
approaches: Python Pandas [18], TensorFlow Data Valida-
tion (TFDV) [8], and Salesforce’s TransmogrifAI [2]. We
found that our ML models delivers a massive 30% lift in
accuracy compared to these tools for identifying numeric
features among the attributes. We then evaluate and
compare different ML approaches on our dataset. Overall,
we found that Random Forest model outperforms all ML
models and achieves the best 5-class accuracy of 89.4%.
The neural model and k-NN perform comparatively with
88.3% and 88.8% accuracy. We perform an ablation study
on our ML models to characterize what types of features are
useful. We also analyze and intuitively explain the behavior
of Random Forest and neural model by considering their
predictions on different types of column values such as
integers, float, dates etc. Finally, we release a repository
containing our labeled dataset and trained ML models and
announce a competition for community-led contributions.

In summary, our work makes the following contributions:

• To the best of our knowledge, this is the first paper
to formalize the ML feature type inference as an ML
classification problem and create its label vocabulary.

• We create the first labeled dataset for the task of ML
feature type inference.

• We compare several ML approaches on our dataset to
understand how well they do in automating this task.

• We intuitively analyze the behaviour of Random Forest
and the neural model on our dataset. Our analysis
of errors gives several interesting findings useful for
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further research on this work.

• We release a public competition and leaderboard on
our labeled dataset in order to invite further contribu-
tions in this direction.

Outline. Section 2 presents background, prior work, as-
sumptions, and scope. Section 3 present our overall Ap-
proach. Section 4 presents our manually labeled dataset.
Section 5 presents several ML approaches used for compari-
son. Section 6 presents an in-depth experimental study and
analysis of errors. We discuss the key takeaways for prac-
titioners and researchers in Section 7 and finally conclude
with related work in Section 8.

2. BACKGROUND
2.1 ML Terms and Concepts.

We explain the ML concepts, terms, and models intu-
itively and refer readers to [28, 20, 31] for more background.

Concepts. This work focuses solely on the classification
task, which is an instance of supervised learning. It in-
volves learning where a training dataset of correctly labeled
examples is available. The ML classification models learn
their parameters from the training dataset and then uses
this learning to classify new unseen test examples. There
exist different types of classification models: logistic regres-
sion, support vector machine (SVM), decision tree, Ran-
dom Forest, and k-nearest neighbor (k-NN). The model’s
prediction accuracy is reported on the test dataset. k-fold
cross-validation is a popular testing methodology where the
labeled dataset is partitioned into k equal subsets, with k-1
subsets used for training and validation, and the remaining
subset used for testing. The k accuracy results are finally
averaged to obtain a single estimate.

Classical ML Models. Logistic regression is a linear clas-
sifier that finds a hyperplane to separate two classes. To
distinguish multiple classes, “one-vs-rest” logistic regression
trains a separate model for each class, predicting whether
an example belongs to that class or not. SVM with radial
basis kernel applies implicit transformations to the features
to map them to a higher-dimensional space and use this to
identify examples that help in separating classes. A decision
tree classifies examples by learning a disjunction of conjunc-
tive predicates. Random Forest is an ensemble model that
learns multiple decision trees and predicts the mode of the
classes given by individual trees. k-NN picks the plurality
vote of k nearest training examples to a given test example.

CNNs. Convolution Neural Network (CNN) is a type of
deep network that exploits spatial locality in data. CNNs
contains layers of different types, each performing differ-
ent transformation. A Convolution layer applies filters to
the input in order to extract features (also called feature
maps), where the filter weights are learned during training.
A ReLU layer introduces non-linearity in CNN by applying
an element wise operation and replaces all negative values
in the feature maps by zero. A Pooling layer such as Max-
Pool and AvgPool reduces the dimensionality of each fea-
ture map while retaining the most important information.
A Fully Connected layer is a traditional Multi Layer Per-
ceptron (MLP) that has every neuron in a layer connected
to every neuron in the next layer. A deep CNN stacks such
layers multiple times.

2.2 Prior Art.
Tensorflow Data Validation (TFDV) is a tool to ana-

lyze and transform ML data in Tensorflow Extended (TFX)
pipeline [8]. TFDV uses conservative heuristics to infer ini-
tial ML feature types from the descriptive statistics about
the column. The users then review the inferred feature types
and update them manually to capture any domain knowl-
edge about the data that the heuristics might have missed.
While this tool certain reduces manual effort in identify-
ing ML feature types, it still requires users to manually go
through individual descriptive statistics of all the columns,
rather than the source data files. Pandas is a Python library
that provides tools for data analysis and data transforma-
tions. It only infers syntactic types such as integer, float,
or something else [18]. TransmogrifAI is an automated ML
library for structured data in Salesforces’ AutoML platform
called Einstein [2]. TransmogrifAI supports rudimentary au-
tomatic feature type inference over primitive types such as
Integer, Real and Text. It also has an extensive vocabulary
for feature types such as email, phone numbers, zipcodes,
etc. However, users have to manually specify these feature
types for their data. Overall, all these prior art tools are
limited in scope for feature type inference because they are
primarily rule-based or syntactic.

2.3 Assumptions and Scope
Our current focus is on relational/tabular data, the most

commonly analyzed form of data in practice [34]. Such
datasets are typically stored with DB schemas in RDBMSs
or data warehouses or as “schema-light” files (CSV, JSON,
etc.) on data lakes and filesystems. Either way, we assume
the dataset is a single table with all column names available.
To build ML models on such data, the first thing most data
scientists do is to load it into Python or R “dataframe.” This
is when the laborious process of preparing this dataframe
for an ML training library (e.g., Scikit-learn) begins. This
stage is the focus of our work. Note that our focus is not
on feature engineering over prepared data. Also, to avoid
ambiguity, we call the ML model(s) to be trained on the
prepared data the “target model.” For example, one might
load a customer table to train a target model for predicting
customer churn.

3. OVERVIEW OF OUR APPROACH
Figure 3 gives an end-to-end overview of the ML feature

type inference workflow on a dataframe before target model
training begins. Recall that we cast ML feature type in-
ference as an applied ML classification task. To make this
possible, we need the following four components.

Label Vocabulary. We find that usually just the di-
chotomy of numeric or categorical is not enough for cate-
gorizing the ML feature types. Hence, we add more classes
to our label vocabulary to classify the attributes beyond just
the numeric and categorical class. We explain this in depth
in Section 4.1.

Labeled Dataset. We need a large labeled dataset for
ML feature type inference. There exists no publicly avail-
able dataset for this task. Thus, we manually annotate a
large labeled dataset containing more than 9000 examples.
Section 4.2 to Section 4.4 covers this in depth.

Features. In order to identify signals that would be useful
in the model building, we imitate the human intuition for ex-
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Raw CSV file (DB schema)

Base 
Featurization

#
Attribute

Name

Descriptive Statistics Sample Values
Label

Mean % Distinct Vals … Sample1 Sample2 …

1 Age 42.75 75 34 56 Numeric

2 CustID 102.5 100 102 104 Not-Generalizable

3 XYZ 2.5 75 002 001 Context-Specific

4 ZipCode 92092.75 50 92093 92092 Categorical

5 Income 100 USD 100 1000 Needs-Extraction

CustID
(Varchar)

Zipcode
(Integer)

Income
(Varchar)

Age 
(INT)

XYZ
(Varchar)

101 92092 12000 25 005

102 92093 USD 100 56 001

103 92093 50000 34 002

104 92093 1000 56 002

Model-specific 
feature extraction

#
3-gram on

Attribute Name
Descriptive

Statistics
3-grams on

Sample Values

1 age … 34

2 cus,ust,sti,tid … 102

3 xyz … 002

4 zip,ipc,pco,cod,ode … 920,209,093

5
inc,nco,

com,ome
…

usd,sd ,d 1,
10,100

Trained ML model

Gender CompName

M AMAZ

F MSFT

M GOOGL

M MSFT

Label
Confidence

Gender CompName

Numeric 0.0 0.0

Categorical 0.99 0.45

Needs-Extraction 0.0 0.0

Context-Specific 0.01 0.50

Not-Generalizable 0 0.05

Data Scientist may
only inspects 
the less 
confident columns

Training

new CSV file

Model Predictions

Offline Phase

Online Phase
SortingHat

Figure 3: ML feature type inference workflow. In the offline phase, we extract 3 signals from the raw CSV file: attribute
name, descriptive statistics and 5 sample values. We then extract hand-crafted n-gram feature set from the attribute name
and sample values. We finally use these feature sets to train ML models. In the online phase, we use the trained model to
infer feture types for new CSV files.

tracting features from the raw CSV file. We transform each
column in the raw CSV file into a feature vector contain-
ing the column name, descriptive statistics about the col-
umn such as mean, standard deviation etc., and 5 randomly
sampled column values. We call this step Base Featuriza-
tion. We explain this step in depth in Section 4.3. Some ML
models cannot operate on the raw characters of attribute
names or sample values. Hence, we extract hand-crafted
feature sets such as n-grams from the attribute names and
sample values. We explain this step in depth in Section 5.

ML models. We finally use our feature set on our labeled
dataset to build ML models. We compare several ML ap-
proaches in depth in Section 5.3 to Section 5.5.

The above steps are carried out once offline. In the on-
line phase, a trained ML model can be used to infer feature
types for columns in an “unseen” CSV file. We desire that
the ML models should also output confidence scores for each
class. Hence, this allows users to quickly dispose of easy
features and prioritize their effort towards features with low
confidence scores that need more human attention. Further-
more, our trained ML models can also help automate feature
type inference in AutoML platforms and can help raise their
overall performance.

4. OUR DATASET
This section discusses our efforts in creating the labeled

dataset for the task of ML feature type inference: the label
vocabulary, the data sources, the type of raw signals we
extract from the columns, and the labelling process.

4.1 Label Vocabulary
The target model accepts only two classes: numeric or

categorical. Hence, each example (or attribute) has to be
labelled as either of the two classes. But we find that there
is often not enough information in just the data file to dis-
tinguish between the two classes correctly, even for humans.
Thus, we need more classes. More importantly, there is a
trade-off between having too many classes and not having
enough labeled data versus too few classes to be useful in
practice. We balance this trade-off by considering 5 intu-
itive classes: Numeric, Categorical, Needs-Extraction, Not-
Generalizable, and Context-Specific. These classes represent

the prediction vocabulary of our ML model. We now explain
each class and give examples.

Numeric. These attributes represents numeric values that
are quantitative in nature and which can directly be utilized
as a numeric feature for the target ML model. For instance,
Age is Numeric. ID attributes such as CustID or integers
representing encodings of discrete levels does not belong to
this class. Note that all numbers can always be represented
as categories by discretizing them. Hence, it is indeed pos-
sible to give numbers as categorical feature. However, ML
models benefit by operating on numbers directly because
they will have infinite feature spaces. On the other hand,
discrete set of categories is only a finite space. There is a
loss of information going from numeric to a discrete category.
Hence, a typical data scientist would give a numeric feature
as a numeric feature and not discretize it to categories.

Categorical. These attributes contain qualitative values
that can directly be utilized as categorical features for the
target ML model. There are two major sub-classes of cat-
egorical features: nominal and ordinal. Ordinal attributes
have a notion of ordering among its values, while nominal at-
tributes do not have such a notion. For instance, ShoeSize is
an ordinal attribute. While, Zipcode is a nominal attribute.
Names and coded real-world entities from a known finite do-
main set are also categorical. For instance, Gender taking
values from {M, F, O} is a categorical feature. Note that
attributes such as ShoeSize and ZipCode are syntactically a
number. Hence, we need to alter its syntax slightly for a tar-
get model, e.g., convert it to string in Python or explicitly
cast it as a “factor” variable in R.

Needs-Extraction. This class represents attributes with
“messy” syntax that preclude its direct use as numeric or
categorical feature. This class is orthogonal to the Numeric
vs Categorical dichotomy because these attribute values re-
quire some form of processing before being used as features.
The following examples illustrates this class.

(a) A number present along with string, denoting a mea-
surement unit. e.g., “30 Mhz”, “USD 45” and “500,000”.
In all cases, a number is typically extracted and the units
are standardized (if applicable). A data scientist would typi-
cally write a regular expressions or custom Python/R scripts
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to extract usable feature values from such column, e.g., con-
verting “USD 45” to 45.

(b) A text field with semantic meaning, consisting of ei-
ther sentences, URL, address, geo-location, or even a list
of items separated by a delimiter. The data scientist may
choose to extract custom features, either numeric or categor-
ical, or both through standard featurization routines. For
instance, they can extract features such as n-grams, or even
Word2Vec embeddings from an English sentence for the tar-
get model. Note that, such feature engineering decisions are
not focus of this work, since they are mostly application-
specific. We leave such downstream featurization routines
for custom processing to the user.

(c) Date or time stamp, e.g., “7/11/2018”, and
“21hrs:15min:3sec.” The extracted features can be used
as numeric or categorical, depending upon the feature ex-
tracted. For instance, month of the year can be categorical,
while time can be numeric. Again, we leave such down-
stream feature engineering decisions to the user.

Not-Generalizable. An attribute in this class is a primary
key in the table or has (almost) no informative values to be
useful as a feature. Similarly, a column with only one unique
value in the whole table offers no discriminative power and
is thus useless. Such attributes are most unlikely to be used
as features for the target model because they are not “gen-
eralizable.” For example, CustID belongs to this class, since
every future customer will have a new CustID. It is quite un-
likely that one can get any useful features from it. Note that
an attribute categorized as Not-Generalizable does not mean
that it can never be useful for the target model. One may
obtain some feature from this attribute through more cus-
tom processing or domain knowledge. On the other hand,
even though, attributes such as Income and Date has all
unique values in its domain, they are generalizable. Thus,
they belong to Needs-Extraction class, since it is highly likely
that one can extract useful features from their domain.

Context-Specific. This class is for attributes wherein the
data file does not have enough information even for a hu-
man to judge its feature type. Such columns typically have
meaningless names. For example, XYZ attribute has integer
values but it is hard to decide if its feature type is numeric or
categorical without any additional information. Clearly, an-
swering this question would require manually tracing down
the provenance of how this column came to be using ex-
ternal “data dictionaries” maintained by the application or
speaking to the data creator.

We believe that our 5-class label vocabulary, while lim-
ited, is reasonable and useful. The label vocabulary can
also give other insights to a data scientist. For instance, they
could look for tables to join when faced with a large-domain
Categorical feature such as ZipCode. They could offload
attributes marked as Needs-Extraction to a software engi-
neer for writing Python/R scripts. In addition, they could
inspect the columns that are marked Not-Generalizable for
any missing values or errors in data entry.

4.2 Data Sources
We obtain over 360 real datasets as CSV files from several

sources such as Kaggle [3], UCI ML repository [4] and our
prior work [25, 17]. Each attribute (or column) of the CSV
file is just one example for our ML task. We obtain over 9000
such examples (or columns) from all data files put together.

4.3 Base Featurization
We replicate the human-level intuition into ML models by

extracting the following information from the raw CSV files
that a human reader would look at:

(1) Column name. Suppose, that a human would like
to classify ZipCode into one of our five classes. Just by
inspecting an interpretable name such as ZipCode, a human
would know that the attribute would likely be Categorical.
Hence, we extract the attribute name from the raw CSV file.

(2) Column values. A human would typically inspect
some values in the column to make sure they make sense.
For instance, if the human finds that some values are neg-
ative in the ZipCode column, then the column has to be
treated appropriately for any missing values or data errors.
Considering this, we extract 5 randomly sampled attribute
values from the column.

(3) Descriptive statistics. Finally, the human would look
at some descriptive statistics about the column. For in-
stance, if the human finds that roughly 99.99% of the values
in the column are NaNs, then the human would classify the
ZipCode column as Not-Generalizable. Based on this obser-
vation, we extract several descriptive statistics for a column:
percentage of distinct values out of total values, percentage
of NaNs out of total values, mean, standard deviation, min-
imum value, maximum value, castability as number (e.g.,
“123” is a number embedded in string), extractability of
number (e.g., “12 years” has a number that can be extracted
using regular expressions) and average number of tokens in
the values.

We summarize these extracted signals in a feature set
that will be used to build ML models. Overall, as shown
in Figure 3, we featurize the raw CSV files by extracting at-
tribute name, descriptive statistics and 5 randomly sampled
attribute values. Each column in the raw CSV files is an
example (or row) in the new base featurized file. We have
9000 such examples.

4.4 Labelling Process
We followed the following process to reduce the cognitive

load of labelling. Initially, we manually labelled 500 ex-
amples into a class. We then use Random Forest with 100
estimators to perform 5-fold nested CV. The model achieves
a classification accuracy of around 74% on the test set (av-
erage across 5 folds). We use the trained model to predict a
class label on all of the 9000 examples. This process allowed
us to group together examples that were likely to belong to
the same class label. Finally, we manually labelled all exam-
ples into one of the five classes. The labelling process took
about 75 man-hours across 4 months. The complete labeled
dataset is available on our project webpage [27].

We also tried to crowdsource labels on the FigureEight
platform but abandoned this effort because the label quality
was too low across two trial runs. In the first run, we got
5 workers each for 100 examples; in the second, 7 each for
415. The “golden” dataset were the 500 examples we labeled
manually. We listed several rules and guidelines for the five
classes and provided many examples for worker training.
But in the end, we found the results too noisy to be useful:
in the first run, 4% of examples had 4 unique labels, 27% had
3, and 69% had 2; in the second run, these were 5%, 21%,
and 42%. Majority voting gave the wrong answer in over
half of the examples we randomly checked. We suspect such
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Figure 4: Cumulative distribution of descriptive statistics in the featurized data file.
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Figure 5: Distribution of 5-class labels on our labeled data.

Numeric
Needs-

Extraction
Categorical

Not-
Generalizable

Context-
Specific

Overall

# chars in 
Attribute Name

16 11 10 10 9 10

# chars in 
Sample Value

5 15 3 3 3 4

# words in
Sample Value

1 2 1 1 1 1

% Distinct Vals 18.09 5.87 0.04 0.01 0.52 0.96

% NaNs 0 0.002 0 15.84 33.9 0

Table 1: Median of different Descriptive Statistics by class
in the base featurized data file.

high noise arises because ML feature type inference is too
technically nuanced for lay crowd workers relative to popular
crowdsourcing tasks like image recognition. Devising better
crowdsourcing schemes for our task with lower label noise is
an interesting avenue for future work.

4.5 Data Statistics
Figure 5 shows the distribution of class labels in our la-

beled dataset. We observe that majority of labels (∼60%)
are either Numeric or Categorical. While, Needs-Extraction
and Not-Generalizable are less frequent in our dataset. Fig-
ure 4 plots the cumulative distribution functions (CDF) of
different descriptive statistics obtained by base featuriza-
tion. Table 1 reports the median for the same descriptive
statistics. Due to space constraints, we provide a complete
breakdown of the cumulative distribution by class in our
technical report [26]. We observe that Numeric attributes
have longer names than others. Attribute values for Needs-
Extraction, as expected, have more number of characters
and words than other classes. In addition, we observe that
all sample values in Numeric and 80% of the sample values
in Categorical are single token strings. Furthermore, we find
that almost 90% of the attributes in Categorical have less
than 1% unique values in its columns. Interestingly, Not-
Generalizable have either very few unique values or only
NaN values in their domain.

5. APPROACHES COMPARED
In this section, we initially discuss the type of features

we extract from the base featurized file since some ML ap-
proaches do not operate at the raw character or word level.
We then develop an intuitive rule-based approach as a base-
line. Finally, we discuss how we apply several classical ML

Column (or attribute)

String

Not-
Generalizable

Needs-
Extraction

float, int
Number

Numeric

Categorical

Greater 
than 99 %

Same as 
pre-comp 
Std Dev

Yes

Greater 
than 99 %

Regex 
extraction

Greater 
than 4

Greater 
than 99 %

Get 
Data 
Type

t1:

% NaNst2:

Check 
Std Dev

t3:

Cast to 
Number

t4:

t2: % NaNs

Number 
Extraction

t5:

Number 
of  Tokenst6:

% Distinct 
values

t7:

Figure 6: Flowchart of the rule based system. Diamond-
shaped nodes are the decision nodes that represents a
“check” on the attribute. The final outcome is shown in
orange rectangular boxes.

models, k-NN with a distance function tuned for our task
and a convolution-based neural model.

5.1 Feature Extraction
We observe that attributes with similar names often be-

long to the same class. For instance, both attributes
temperature in jan and temperature in feb are Numeric.
Hence, a set of n consecutive characters extracted from both
the words would be highly similar. Based on this intuition,
we extract an n-gram feature set (set of all combinations of
adjacent characters) from the attribute names. Similarly, we
extract n-gram feature set from the attribute values. This
can be helpful because knowing that the sequence of the
characters are numbers followed by a /, can give an indi-
cation of date attribute which belongs to Needs-Extraction
class. We use an one-hot encoding-based representation to
obtain a feature vector where each feature indicates the pres-
ence or absence of that n-gram.

Notation. We denote the descriptive statistics by Xstats,
attribute name by Xname and a set of 5 randomly sampled
attribute values by Xsample (first random attribute value
is referred as Xsample1 and similarly for other values). We
leverage the commonly used bi-gram and tri-gram feature
sets. We denote the 2-gram and 3-gram features on the
attribute name by X2name and X3name respectively. Simi-
larly, we denote the 2-gram and 3-gram features on the at-
tribute value by X2sample and X3sample. Xstats, Xname,
Xsample, X2name, X3name, X2sample and X3sample are
used as feature sets for the compared ML models.

5.2 Rule based Baseline
We develop a rule based approach that mimics the human
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thought process to arrive at the label. The rule based model
uses a flowchart-like structure as shown in Figure 6. Each
internal node is a “check” on an attribute, each branch is
the outcome of the check, and each leaf node represents a
class label. Note that Context-Specific is not included in
the rule-based approach. We manually recognized this class
when labelling, but automating this in rule is difficult. We
describe all the checks on the attribute below.

t1. We query the data type of 5 random sample values of
an attribute using Python. We then take the mode of the
returned data type. If the mode is integer or float, we
mark it as a number; otherwise, we mark it as a string.

t2. For an attribute with a value marked as a number,
we find the percentage of NaN values in its column. If this
is greater than 99%, we classify it as Not-Generalizable.

t3. We find the standard deviation of the attribute values,
denoted by sd. Denote the total number of attribute values
as n and the standard deviation of integers from 1, 2, ..., n
with presd. If sd is equal to presd, then the attribute is a
serial number and we classify it as Not-Generalizable. Oth-
erwise, we classify it as Numeric.

t4. For an attribute with a value marked as string, we
check if we can cast the string into a number. We repeat this
“castability” check (0 or 1) for 5 random sample values. We
finally take mode of castability check result for the decision.

t5. We check if we can extract number from the marked
string using regular expressions. We classify such attributes
as Needs-Extraction.

t6. If the number of tokens in the sample value is large,
then the sample value contains a text field that requires
further processing to extract features. So, it is classified as
Needs-Extraction.

t7. We count the percentage of distinct values present
in an column. If this percentage is greater than 99%,
then the attribute would not be able to generalize when
used as feature for ML. We classify such attributes as Not-
Generalizable; otherwise, we classify it as Categorical.

The above steps are not exhaustive, and it is indeed pos-
sible to craft more rules. But, it is highly cumbersome and
perhaps even infeasible to hand-craft a perfect rule-based
classifier. Thus, we instead leverage existing ML algorithms
for this classification task.

5.3 Classical ML models
We consider classical ML models: logistic regression,

RBF-SVM, and Random Forest. The features are: Xstats,
X2name, X3name, X2sample1, X3sample1, X2sample2 and
X3sample2. Note that they cannot operate on raw characters
of attribute names or sample values; thus, Xname, Xsample

are not used. For scale-sensitive ML models such as RBF-
SVM and logistic regression, we standardize Xstats features
to have mean 0 and standard deviation 1. The confidence
of a model’s prediction is defined as follows.

Logistic Regression. We use sigmoid function
(1/(1 + exp(−θT · x))) to determine the confidence of pre-
diction for a given example. The parameter vector θ is
learned during training.

RBF-SVM. We use Platt scaling
(1/(1 + exp(A ∗ f(x) +B))) to calibrate the SVM to
produce probabilities in addition to class predictions [21].

f(x) is the distance of a given example from the deci-
sion boundary generated by the SVM. A and B are the
parameters learned through training.

Random Forest. The confidence score for class A is given
by nA/n, that is, the number of examples of class A (nA)
captured by the leaf node over the total number of exam-
ples (n) captured by that leaf during the training process.
The confidence score of the whole forest for a particular
class (say, class A) is calculated by taking average of the
confidence score from the decision trees that classified the
example as class A.

5.4 Nearest Neighbor
k-NN is one of the oldest, yet powerful classifiers[10]. Its

accuracy is influenced by two main factors: distance function
used to determine the nearest neighbors and the number of
neighbors used to classify a new example. Most implemen-
tations of k-NN use a simple Euclidean distance. But, we
can adapt the distance function for the task at hand to do
better. Thus, we define the weighted distance function as:

d = ED(Xname) + γ · EC(Xstats)

In the above, ED (resp. EC) is the edit distance (resp.
euclidean distance) between Xname (resp. Xstats) of a test
example and a training example. γ is the parameter that
needs to be tuned during training. The confidence score for a
class at prediction time is given by the number of neighbors
out of k neighbors that voted for that class.

5.5 Neural Model
For text understanding tasks such as sentiment analysis

and text classification, character-level CNNs have achieved
state-of-the-art results [39, 38, 16]. Inspired by this, we pro-
pose a neural model for our task as shown in Figure 7(A).
The layers of CNN are shown in Figure 7(B). The network
takes attribute name, descriptive statistics and sample val-
ues as input and gives the prediction from the label vocab-
ulary as output.

The attribute name and sample values are first fed into
an embedding layer. The embedding layer takes as input
a 3D tensor of shape (NumSamples, SequenceLength, Vo-
cabsize). Each sample (attribute name or sample value) is
represented as a sequence of one-hot encoded characters.
SequenceLength represents the length of this character se-
quence and Vocabsize denotes the number of unique charac-
ters represented in the corpus. The embedding layer maps
characters to dense vectors and outputs a 3D tensor of shape
(NumSamples, SequenceLength, EmbedDim), where Embed-
Dim represents the dimensionality of the embedding space.
The weights are initialized randomly and during training
the word vectors are tuned such that the embedding space
exhibits a specialized structure for our task.

The resultant tensor from the embedding layers are fed
into a CNN module. The CNN architecture consists of three
cascading layers, 2 1-D Convolutions Neural Network, fol-
lowed by a global max pooling layer. The size of the filter
(FilterSize) and number of filters (NumFilters) are tuned
during training. We concatenate all CNN modules with de-
scriptive statistics and feed them to a multi-layer percep-
tron on top. In the output layer, we use softmax activation
function that assigns a probability to each class of the label
vocabulary. The whole network can be trained end-to-end
using backpropagation.
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TFDV Pandas TransmogrifAI Log Reg RBF-SVM k-NN Random Forest Neural Model

Num
Not-
Num

Num
Not-
Num

Num
Not-
Num

Num
Not-
Num

Num
Not-
Num

Num
Not-
Num

Num
Not-
Num

Num
Not-
Num

Precision 0.5117 0.9876 0.5418 0.9382 0.5130 0.9632 0.9331 0.9450 0.9324 0.9614 0.9583 0.9662 0.9722 0.9360 0.9445 0.9494

Recall 0.9915 0.4166 0.9502 0.4849 0.9711 0.4509 0.9093 0.9598 0.9377 0.9581 0.9447 0.9747 0.8909 0.9843 0.9164 0.9668

Accuracy 0.6359 0.6667 0.6451 0.9394 0.9512 0.9633 0.9508 0.9521

Table 2: Held-out test accuracy comparison of the tools TFDV, Pandas, and TransmogrifAI with our ML models.

Model [Xstats] [X2name]
[Xstats, 
X2name]

[Xstats, X2name,
X2sample1]

[Xstats, X2name,
X2sample1, X2sample2]

[X3name]
[Xstats,  
X3name]

[Xstats , X3name, 
X3sample1]

[Xstats, X3name, 
X3sample1,X3sample2]

Logistic 
Regression

Train 0.5652 0.8802 0.8959 0.9233 0.9361 0.9004 0.9266 0.9496 0.9566

Validation 0.5639 0.7522 0.8128 0.8284 0.8308 0.7953 0.8288 0.8408 0.8443

Test 0.5482 0.7609 0.8120 0.8341 0.8415 0.7609 0.8422 0.8582 0.8607

RBF-SVM

Train 0.8204 0.9169 0.9348 0.9278 0.9382 0.8941 0.9274 0.9489 0.9513

Validation 0.7400 0.7964 0.8482 0.8542 0.8532 0.7888 0.8497 0.8580 0.8612

Test 0.7351 0.7999 0.8565 0.8695 0.8706 0.7976 0.8587 0.8696 0.8742

Random
Forest

Train 0.9215 0.9155 0.9705 0.9616 0.9707 0.8770 0.9697 0.9643 0.9545

Validation 0.8143 0.7997 0.8830 0.8715 0.8816 0.7704 0.8857 0.8761 0.8622

Test 0.8118 0.7977 0.8923 0.8802 0.8871 0.7736 0.8939 0.8797 0.8683

Table 3: 5-fold training, cross-validation, and held-out test accuracy of classical ML models with different feature sets. The
bold fonts marks the cases where we noticed highest held-out test accuracy for that model.

Xname Xsample1Xstats

CNN CNN

Output layer
Multi-layer Perceptron

Embedding Embedding

Concatenation

Attribute 
name

Descriptive 
Statistics

Sample 
Value 1

“Zipcode” (91223, …) “92122”

1D Conv 
(NumFilters
,FilterSize)

1D Conv 
(NumFilters
, FilterSize)

Global 
MaxPool

Char-level 
embeddings

Output

(A)

(B)

Xsample2

CNN

Embedding

Sample 
Value 2

“92092”

…

Figure 7: (A) The end-to-end architecture of our deep neural
network. (B) The CNN block’s layers.

6. EMPIRICAL STUDY AND ANALYSIS
We first discuss our methodology, setup and metrics for

evaluating the ML models. We then compare the ML models
trained on our data against existing tools. We then present
the accuracy results of all models trained on our dataset and
intuitively explain the behavior of Random Forest and the
neural model. Finally, we present the prediction runtime of
all models on a given example.

6.1 Methodology, Setup and Metrics
Methodolody. We partition our labeled dataset into train
and held-out test set with 80:20 ratio. We then perform 5-
fold nested cross-validation of the train set, with a random
fourth of the examples in a training fold being used for val-
idation during hyper-parameter tuning. For all the classical
ML models, we use the Scikit-learn library in Python. For
the neural model, we use the popular Python library Keras
on Tensorflow. We use a standard grid search for hyper-
parameter tuning, with the grids described in detail below.

Logistic Regression: There is only one regularization
parameter to tune: C. Larger the value of C, lower
is the regularization strength, hence increasing the com-
plexity of the model. The grid for C is set as
{10−3, 10−2, 10−1, 1, 10, 100, 103}.

RBF-SVM : The two hyper-parameters to tune are C and
γ. The C parameter represents the penalty for misclassi-
fying a data point. Higher the C, larger is the penalty for
misclassification. The γ > 0 parameter represents the band-
width in the Gaussian kernel. The grid is set as follows: C ∈
{10−1, 1, 10, 100, 103} and γ ∈ {10−4, 10−3, 0.01, 0.1, 1, 10}.

Random Forest : There are two hyper-parameters to tune:
NumEstimator and MaxDepth. NumEstimator is the num-
ber of trees in the forest. MaxDepth is the maximum depth
of the tree. The grid is set as follows: NumEstimator
∈ {5, 25, 50, 75, 100} and MaxDepth ∈ {5, 10, 25, 50, 100}.

k-Nearest Neighbor : The hyper-parameter to tune are
the number of neighbors to consider (k) and the weight
parameter in our distance function (γ). We use all inte-
ger values from 1 to 10 for k. The grid for γ is set as
{10−3, 0.01, 0.1, 1, 10, 100, 103}.

Neural Model : We tune EmbedDim, numfilters and filter-
size of each Conv1D layer. The MLP has 2 hidden layers
and we tune the number of neurons in each layer. The grid
is set as follows: EmbedDim ∈ {64, 128, 256, 512}, numfil-
ters ∈ {32, 64, 128, 256, 512}, filtersize ∈ {2, 3}, and neurons
∈ {250, 500, 1000}. In order to regularize, we use dropout
with a probability from the grid: {0.25,0.5,0.75}. Rectified
linear unit (ReLU) is used as the activation function. We
use the Adam stochastic gradient optimization algorithm to
update the network weights. We use its default parameters.

We also tried tuning the following knobs of the neural
model, but it did not lead to any significant improvement in
accuracy: MLP architecture with 3 hidden layers, L1 and L2

regularization from the set {10−4, 10−3, 0.01, 0.1} and num-
ber of neurons from the set {5 · 103, 104}.
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Experimental Setup. All experiments were run on Cloud-
Lab [22]; we use a custom OpenStack profile running Ubuntu
16.10 with 10 Intel Xeon cores and 64GB of RAM.

Metrics. Our key metric is prediction accuracy, defined as
the diagonal of the 5 x 5 confusion matrix. We also report
the per-class accuracy and their confusion matrices.

6.2 Comparison with Prior Tools
We compare ML models trained on our dataset against 3

open-source and industrial tools: TFDV, Pandas and Trans-
mogrifAI. TFDV can infer only 2 types of features in our
vocabulary: numeric or everything else. Pandas can only
infer syntactic types: int, float, or object. TransmogrifAI
can only infer primitive types such as Integer, Real or Text.
Hence, we can not use our entire 5-class vocabulary for this
comparison. Instead, we report the results on a binariza-
tion of our vocabulary: numeric (Num) vs. all non-numeric
(Not-Num). Table 2 presents the precision, recall and over-
all classification accuracy results on the test set.

Results. We notice a huge lift of ∼30% in accuracy for
our approach against existing tools. Interestingly, all the
existing tools have high recall on numeric features but very
low precision. This is because their rule-based heuristics are
syntactic, which leads them to wrongly classify many cat-
egorical features such as ZipCode as numeric. Our models
have slightly lower recall on numeric features. This is be-
cause when many features are thrown into an ML model,
it gets slightly confused and could wrongly predict a nu-
meric type as non-numeric. But, our ML models have much
higher precision and high overall accuracy. Of all our ML
models, the weighted k-NN achieves the best accuracy in
identifying numeric type. Interestingly, k-NN also has the
highest recall for numeric type among our ML models. On
the other hand, Random Forest has the highest precision for
predicting numeric type among all approaches.

6.3 End-to-End Accuracy Results
Rule-based Heuristic. The overall 4-class classification ac-
curacy of rule-based baseline heuristic on the held-out test
set is 0.7160. Table 5(A) shows its confusion matrix. Note
that it excludes Context-Specific class. We observe that the
rule-based approach achieves 97% accuracy in classifying ex-
amples belonging to Numeric class. This is because when
presented with any number, it does not have enough rules
to confuse it into labelling it as another class. On the other
hand, on Categorical examples, it achieves only 37% accu-
racy. This is mainly because when it is presented with any
number encoded as a category, it mistakenly classifies as Nu-
meric. This approach achieves an high accuracy of 86% for
Not-Generalizable as it is simpler to come up with rules that
captures this class. Admittedly, our rules are not exhaustive
and one can always come up with more rules to improve the
performance of the approach. However, writing rules for ev-
ery little corner case is excruciating and will likely never be
comprehensive.

Classical ML Models. Table 3 presents the 5-class accu-
racy results of the classical ML models using different com-
binations of the feature sets. For logistic regression, we see
that the descriptive statistics alone are not enough, as it
achieves an accuracy of just 55% on the held-out test set.
But, for RBF-SVM and Random Forest, we notice that the
accuracy with descriptive statistics alone is already 74% and

81% respectively. Incorporating the 2-gram features of the
attribute name into logistic regression leads to a whopping
26% lift in accuracy on the test set. Random Forest achieves
a massive 89% accuracy using just 2-gram feature set along
with descriptive statistics. This underscores the importance
of 2-gram features on the attribute names.

Adding 2-gram features of a random sample value lifts
the accuracy further by 2% for logistic regression. How-
ever, as the complexity of the model increases, the 2-gram
features on a sample value do not provide boost in accu-
racy. Adding 2-gram features of more sample values does
not give any rise in accuracy, except for logistic regression.
More complex features such as 3-gram on logistic regression
model leads to more significant gains in accuracy relative to
the 2-gram features. However, for complex models such as
RBF-SVM and Random Forest, we notice that the lift in
accuracy with 3-gram features is only marginal relative to
the 2-gram features. Overall, Random Forest achieves the
best 5-class accuracy of 89% using the 3-gram features on
the attribute name along with descriptive statistics.

Table 5(B) shows confusion matrix of Random Forest. We
observe that it does well in predicting Numeric and Categor-
ical classes, achieving a recall of 96% and 94%, respectively.
On the other hand, recall for Not-Generalizable is only 74%,
which is worse than the rule-based heuristic. This is because
many examples belonging to Not-Generalizable are confused
with Categorical. We also observe that Random Forest is
skewed towards classifying many examples as Categorical.
As a result, it has more chances of confusing any class with
Categorical. We analyze the behavior of Random Forest in
depth in Section 6.4.

Nearest Neighbor. Table 4 presents the 5-class accuracy
of k-NN. We observe that when we use only Euclidean dis-
tance on descriptive statistics, the accuracy is already 74%.
With only edit distance on attribute name the accuracy is
80%. Finally, with our weighted edit distance function from
Section 5.4, k-NN achieves a massive 89% accuracy, compa-
rable to Random Forest. Table 5(C) shows confusion ma-
trix of k-NN. We see it does well in predicting Numeric and
Context-Specific, achieving a recall of 96% and 86%, respec-
tively. We also see it is skewed towards classifying many ex-
amples as Context-Specific. As a result, it has more chances
of confusing any class with Context-Specific.

Neural Model. Table 4 presents the accuracy of neural
model on different feature sets. We see that with justXname,
this model already achieves an accuracy of 81%. The de-
scriptive statistics lift the accuracy further by 7%. We no-
tice that sample values are not that useful here; they yield
only minor lift in accuracy. Table 5(D) shows the confusion
matrix. We see it does well in predicting Needs-Extraction
and Not-Generalizable classes, achieving a recall of 84% and
83%, respectively. On the other hand, recall for Categori-
cal is only 88%, which is worse than Random Forest. This
is because neural model confuses many examples belonging
to Categorical with Numeric class. We also see that neural
model is not particularly skewed towards classifying exam-
ples towards any class; rather it distributes examples over
different classeses proportionately, relative to other models.

6.4 Analysis of Errors
We now explain the behavior of Random Forest and the

neural model on our dataset by inspecting the raw datatype
of the attribute values. We categorize the data type into
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Model [Xstats] [Xname] [Xstats,Xname] [Xsample1] [Xname,Xsample1] [Xstats,Xsample1] [Xstats,Xname,Xsample1] [Xstats,Xname,Xsample1,Xsample2]

Neural

Train 0.6885 0.9297 0.9692 0.6906 0.9622 0.8636 0.9854 0.9902

Validation 0.6839 0.8088 0.8851 0.5868 0.8414 0.7466 0.8720 0.8715

Test 0.6839 0.8138 0.8803 0.5927 0.8471 0.7560 0.8831 0.8834

k-NN
Validation 0.7345 0.8004 0.8841

N/A
Test 0.7380 0.8023 0.8876

Table 4: Training, cross-validation and held-out test accuracy of Neural and k-NN model with different feature sets.

(A) Rule-based
Heuristic

Numeric
Needs-

Extraction
Categorical

Not-
Generalizable

Context-
Specific

Numeric 688 0 1 17 -

Needs-Extraction 34 43 60 6 -

Categorical 239 30 161 1 -

Not-Generalizable 8 2 13 144 -

Context- Specific - - - - -

(B) Random Forest Numeric
Needs-

Extraction
Categorical

Not-
Generalizable

Context-
Specific

Numeric 676 1 10 1 18

Needs-Extraction 2 114 22 0 5

Categorical 5 11 403 2 10

Not-Generalizable 4 6 24 124 9

Context- Specific 31 7 27 2 337

(C) k-NN Numeric
Needs-

Extraction
Categorical

Not-
Generalizable

Context-
Specific

Numeric 675 1 10 3 17

Needs-Extraction 4 111 14 4 10

Categorical 11 20 379 9 12

Not-Generalizable 5 8 16 132 6

Context- Specific 17 7 23 11 346

(D) Neural Model Numeric
Needs-

Extraction
Categorical

Not-
Generalizable

Context-
Specific

Numeric 616 0 15 5 25

Needs-Extraction 5 120 8 2 8

Categorical 16 13 380 13 9

Not-Generalizable 3 5 14 139 6

Context- Specific 27 7 27 7 336

Table 5: Confusion matrices (actual class on the row and predicted class on the column) of (A) Rule-based heuristic (B)
Random Forest model (C) k-NN model, and (D) Neural model.

several categories such as integers, floats, negative numbers,
dates, sentences with one token, and sentences with more
than one token. Table 6 (resp. Table 7) shows the the con-
fusion matrix of the predicted class by Random Forest (resp.
Neural model) vs actual datatype of the attribute value on
the test set. Table 8 shows examples of the attributes and
the corresponding prediction made by Random Forest and
the neural model. We explain the errors by class below.

Numeric. We see that when the actual label is Numeric
(Table 6, 7(A)), Random Forest and the neural model is less
likely to misclassify an attribute whose values are floats or
negative numbers compared to integers. We observe that
with integers, Random Forest gets confused with Context-
Specific class. For instance, s3area (Table 8 example(A)) is
predicted as Context-Specific. Looking at substring “area”
in the attribute, humans have this intuition that the column
is probably numeric. Although, Random Forest makes a
wrong prediction, the neural model captures this human-like
intuition. For other attributes involving sub-strings such as
count, value, etc., we observe the same trend: the neural
model captures this human-like intuition.

Needs-Extraction. As shown in Table 6 (B), Random For-
est does well in predicting Needs-Extraction when the col-
umn values are strings with number of tokens greater than
one. While, on one-token strings, Random Forest gets con-
fused with Categorical. For instance, a one-token string such
as “9years”, as shown in table 8 example(C) is predicted as
Categorical. Again, it seems that Random Forest, unlike
the neural model, is missing the human-level intuition that
an attribute can have values such as “years” or “months”
embedded in a sample value.

Categorical. Table 6(C) showcases the same behaviour.
We again observe that when the sample values are sen-
tences with number of tokens greater than 1, there is more
chance for Random Forest to misclassify Categorical as

Needs-Extraction. On the other hand, for one-token strings,
it does well for Categorical. Table 8 example(E) shows an
attribute “SMOD POPULATION” which has values such
as “-9999” as part of the encoded category. Random Forest
classifies it as Numeric. We observe that the neural model
performs worse than Random Forest in predicting Categor-
ical correctly. This is because when the number of unique
values in a column relative to the domain size is extremely
low (Table 8 example(G)), the neural model classifies such
examples as Not-Generalizable. Moreover, the neural model
misclassifies the categories encoded as integers to numeric
type in some cases, as Table 8 example(H) shows.

Not-Generalizable and Context-Specific. From Ta-
ble 6, 7(D), we notice that both the models often confuse
Not-Generalizable with Categorical. Table 8 example(F)
shows an attribute with only 2 sample values: “NULL!”
and “Others”. Hence, the actual ground-truth label is Not-
Generalizable. But, Random Forest treats “NULL!” as a
separate category. Furthermore, we see from Table 6, 7(E)
that both the models often classify Context-Specific as Nu-
meric when the values are integers. This is because they
lack in their semantic understanding ability to accurately
identify the attributes with meaningless names.

6.5 Prediction Runtimes
We evaluate the running time of the ML models in the

online phase, i.e, for inference to make predictions on an at-
tribute/column. As shown in Figure 3, we must first perform
Base Featurization of the column and then model-specific
feature extraction. The Base Featurization is a common
step across all the models. Model-specific feature extrac-
tion is only needed for the classical ML models. Figure 8
show the runtime of all 5 models, with breakdowns of Base
Featurization, model-specific feature extraction time, and
inference time. The measurements were made on the test
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(A) Numeric (B) Needs-Extraction (C) Categorical (D) Not-Generalizable (E) Context-Specific

Integers Floats
Negative
Numbers

Sentence
(length > 1)

Sentence
(length = 1)

Dates Numbers
Sentence 

(length > 1)
Sentence

(length = 1)
Numbers

Sentence 
(length > 1)

Sentence
(length = 1)

Numbers
Sentence 

(length > 1)
Sentence

(length = 1)

Numeric 386 284 194 0 2 0 7 0 0 3 0 0 31 0 1

Needs-
Extraction

0 0 0 70 44 23 0 10 1 1 3 4 0 5 2

Categorical 6 2 0 9 13 3 207 72 122 7 2 14 11 6 9

Not-
Generalizable

1 0 0 1 0 0 0 1 2 49 8 68 2 0 0

Context-
Specific

17 7 4 1 3 0 6 2 1 8 0 0 295 18 24

Table 6: Breakdown of Random Forest model’s prediction for different types of attribute values on the held-out test set.
Confusion matrices (Predicted class on the row vs. Actual type of the column value on the column) when the ground-truth
label is (A) Numeric, (B) Needs-Extraction, (C) Categorical, (D) Not-Generalizable, and (E) Context-Specific.

(A) Numeric (B) Needs-Extraction (C) Categorical (D) Not-Generalizable (E) Context-Specific

Integers Floats
Negative
Numbers

Sentence
(length > 1)

Sentence
(length = 1)

Dates Numbers
Sentence 

(length > 1)
Sentence

(length = 1)
Numbers

Sentence 
(length > 1)

Sentence
(length = 1)

Numbers
Sentence 

(length > 1)
Sentence

(length = 1)

Numeric 381 280 194 4 5 0 10 0 3 2 1 1 25 0 1

Needs-
Extraction

0 0 0 65 47 26 0 6 0 0 3 1 0 3 1

Categorical 8 1 0 9 4 0 203 75 114 5 2 10 8 12 8

Not-
Generalizable

3 0 0 0 0 0 2 2 8 57 6 74 11 0 1

Context-
Specific

18 12 4 3 6 0 5 2 1 4 1 0 295 14 25

Table 7: Breakdown of neural model’s prediction for different types of sample values on the held-out test set. Confusion
matrices (Predicted class on the row vs. Actual type of the column value on the column) when the ground-truth label is (A)
Numeric, (B) Needs-Extraction, (C) Categorical, (D) Not-Generalizable, and (E) Context-Specific.

#
Attribute 

Name
Sample
Value

% Distinct
Val

% NaNs Label
RF

Prediction
Neural

Prediction

A s3area 579 0.04 0.96 NU CS NU

B waitlist_count 45 0.09 0 NU CA NU

C q1AgeBeginCoding 9years 0.04 0 NX CA NX

D job_title
IT Support 
Technician 

85.3 0 CA NX NX

E SMOD_POPULATION -9999 0.1 0 CA NU CA

F q17HirChaOther #NULL! 0.008 30.24 NG CA NG

G SchoolDist2 0 0.001 0.24 CA CA NG

H outcome_month 5 0.04 0 CA CA NU

Table 8: Examples for illustrating errors made by Random
Forest and neural model. NU refers to Numeric, NX refers
to Needs-Extraction, CA refers to Categorical, NG refers to
Not-Generalizable, and CS refers to Context-Specific.

set and averaged. All the models run in well under 1 sec.
We also see that for the classical models, the additional fea-
ture extraction dominates overall runtime. Since SVM and
k-NN are distance-based ML models, they require highest
amount of time for inference. Overall, the neural model is
the fastest in inferring the ML feature type.

6.6 Public Release and Leaderboard
We have released a live public repository on GitHub with

our entire labeled data for the ML feature type inference
task [5]. We have also released our pre-trained ML models
in Python: k-NN, logistic regression, RBF-SVM, Random
Forest, and the character-level neural model. The repository
tabulates the accuracy of all these models. The repository
includes a leaderboard for public competition on the hosted
dataset with 5-class classification accuracy being the metric.
In addition, we also release the raw 360 CSV files and we
invite researchers and practitioners to use our datasets and
contribute to create better featurizations and models.
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Figure 8: Comparison of prediction runtimes and breakdown
for all models. Base Featurization is common for all models.
Model-specific feature extraction is needed only for the 3
classical ML models.

7. DISCUSSION AND TAKEAWAYS
Tool Release: We make all of our models and featurization
routines available for use by wrapping them under functions
in a Python library. The Python package is available on
our project webpage [27]. The data scientist can use the
library directly by giving their raw CSV data files in form of
a dataframe as input. The dataframe will be processed and
featurized by our library functions, and for each attribute,
a ranking of the classes from the label vocabulary based on
confidence score will be given as output.

For Practitioners. Our trained ML models can be in-
tegrated for feature type inference into existing data prep
environments. Programmatic tools such as TFDV and Pan-
das can leverage our models through APIs. Even, AutoML
system developers can productionize our models to enhance
their AutoML systems for data prep. For visual tools such
as Excel and Trifacta [36], designing new user-in-the-loop
interfaces that account for both model’s prediction and hu-
man’s judgement remains an open research question. We
leave this integration to future work.

For Researchers. We see three main avenues of improve-
ment for researchers wanting to improve accuracy: better
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features, better models, and/or getting more labeled data.
First, designing other features that can perfectly capture
human-level reasoning is an open research question. We
found that descriptive statistics and attribute names are
very useful for prediction. But, attribute values are only
marginally useful. Perhaps, one can consider designing bet-
ter featurization routines for sample values. For instance, in-
specting an attribute “q17HirChaOther” (example(F) from
Table 8) with value “NULL”, a human can tell that the value
denotes a missing or corrupt entry and is not supposed to be
taken as a category. Hence, designing a featurization scheme
that can capture the semantic meaning of attribute values
is an open research question.

Second, capturing more semantic knowledge of attributes
in a neural architecture is an open research question. Al-
though our current neural model captures several human-
level intuitions, it sometimes fails in recognizing categories
encoded as integers. For instance, looking at the attribute
with name “month” and sample values from 1 to 12, humans
know that the attribute is categorical feature.

Finally, based on our analysis in Section 5.4, one poten-
tial way to increase the accuracy is to create more labeled
data in the categories of examples where our model get con-
fused. For instance, we see that when strings such as “-999”
are used as categories, almost all ML models treat them as
numbers and predict Numeric. Getting more labelled ex-
amples can potentially teach the model to learn better. In
addition, we observe that attribute names are most useful
for prediction. Hence, one can try getting more labeled at-
tribute names without sample values. Finally, one can also
design richer label vocabularies. For instance, we showed
in Tables 6 and 7 a breakdown of Random Forest and neu-
ral model predictions on different types of sample values.
One can consider training models end-to-end using such a
fine-grained label vocabulary as well.

8. RELATED WORK
ML Data Prep and Cleaning. ML feature type inference
has been explored in some prior tools [8, 2, 1, 18]. Tensor-
flow Data Validation is a rule-based tool that infers ML
feature types from summary statistics about the column [8].
Pandas is a Python library that provides syntactic type in-
ference [18]. TransmogrifAI is a library used for data prep,
feature engineering, and ML model building in Salesforces’
Einstein AutoML platform [2]. It provides ML feature type
inference over primitive types such as integer, real number
or text. AutoML Tables is another AutoML platform for
structured data from Google [1]. It also suggests a feature
type for each attribute of the imported CSV file. Since, it
is available as a commercial tool, we do not have the avail-
ability to compare it with our work. Compared to existing
open-source tools, our ML-based approach raises accuracy of
ML feature type inference substantially by more than 30%.

DataLinter is a rule-based tool that inspects a data file
and raises potential data quality issues as warnings to the
user [15]. However, ML feature type inference must be done
manually. Deequ is a tool for validating data quality where
the integrity constraints specified by the user are interac-
tively verified [23]. However, it does not handle ML feature
type inference. Hence, they are orthogonal to our focus.

There are numerous tools that allows users to perform
data transformations tasks for data prep. Trifacta [36] has
visual data prep tools that allows users to perform tasks such

as substring extraction, value standardization etc. with a
human-in-the-loop. Programming-by-example (PBE) tools
such as FlashFill [13, 14] and [29] allows users to perform
syntactic string transformation tasks without the need to
write a program by learning from input/output examples.
These tools can be utilized to perform extraction of values
that are embedded into strings, the Needs-Extraction class.
However, they can run into scalability issues as the set of
programs that are consistent with the examples would be
huge. In any case, their goals are orthogonal to our focus.

Database Schema Inference. Inference for DB schema
has been explored in some prior work. Googles BigQuery
does syntactic schema detection when loading data from ex-
ternal data warehouses [6]. [7] infers a schema from JSON
datasets by performing 2 operations: map operation to infer
a data type for each value, and reduce operation that fuses
inferred types using pre-defined rules. Thus, DB schema in-
ference task is syntactic and rule-based. For instance, the
type of the attribute with integer values has to be identi-
fied as an integer. In contrast, ML feature type inference is
semantic and attributes with type integer can be categorical.

AutoML Platforms. Several AutoML systems such as
AutoWeka [30] and Auto-sklearn [12] have automated search
process for model selection, allowing users to spend no ef-
fort for algorithm selection or hyper-paramter search. How-
ever, these AutoML systems do not automate any data prep
tasks in the ML workflow. AutoML platforms such as Ein-
stein AutoML [35] and AutoML Tables [1] do automate some
data prep tasks. However, how good their existing automa-
tion schemes are is not well-understood. We believe there
is a pressing need to formalize the data prep tasks and cre-
ate benchmark labeled dataset for evaluating and compar-
ing AutoML platforms on such tasks. Our comparison with
TransmogrifAI and TFDV shows that they still fall short
on accuracy. Our ML models can be integrated into these
AutoML platforms to improve their accuracy in the future.

Data/Model Repositories. OpenML [37] is an open-
source collaborative repository for ML practitioners and re-
searchers to share their models, datasets, and workflows for
reuse and discussion. Our models and labeled datasets can
be made available to OpenML community to invite more
contributions on automated data prep tasks [24]. Hence,
our work is complementary to OpenML.
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APPENDIX
A. DATA STATISTICS

Figure 10 shows the CDF of the several descriptive statis-
tics by class (A) Numeric, (B) Needs-Extraction, (C) Cat-
egorical, (D) Not-Generalizable, and (E) Context-Specific.
Table 9 presents the mean, standard deviation and the max-
imum of the same descriptive statistics.
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B. RANDOM FOREST: EXPLANATIONS
We quantitatively explain the relevance of different fea-

tures using Gini importance for the random forest model [9].
Figure 9 shows the normalized importance of different fea-
tures from Xstats. Higher the value, the more important is
the feature and more is the feature used in internal feature
selection and partitioning in the decision trees. We observe
that features like % distinct values, standard deviation, %
NaNs and length of sample value are used repeatedly for par-
titioning inside decision trees. On the other hand, custom
features like castability and extractability are less relevant
for making prediction.
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Figure 9: Gini feature importance score of the Random For-
est model. y-axis shows different features from Xstats and
x-axis shows the normalized importance score.
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Statistics
Overall Numeric Needs-Extraction Categorical Not-Generalizable Context-Specific

Avg Std Dev MaxVal Avg Std Dev MaxVal Avg Std Dev MaxVal Avg Std Dev MaxVal Avg Std Dev MaxVal Avg Std Dev MaxVal

Number of chars in 
Attribute Name

12.74 7.72 91 16.34 8.18 91 11.65 9.35 43 11.42 6.42 49 11.03 6.16 33 8.49 4.56 64

Number of chars  in 
Sample Value

16.4 286.19 29.6K 5.98 5.39 398 152 1064 29.6K 6 10 150 7.96 33.3 689 5.22 7.36 141

Number of words in 
Sample Value

2.66 46.67 4900 1 0.08 7 22.4 174 4900 1.3 1.14 21 1.5 4.4 89 1.13 0.75 21

Mean 1.65E+14 1.03E+16 8.8E+17 3.6E+10 1.03E+12 5.6E+13 2.7E+12 2.4E+11 4.6E+13 2.5E+5 6.1E+6 2.05E+8 1.2E+10 3.2E+11 9.7E+12 7.7E+14 2.2E+16 8.8E+17

Standard Deviation 3.34E+15 1.31E+17 5.4E+18 1.9E+12 9.9E+13 5.9E+15 1.3E+13 2E+14 4.8E+15 2E+5 5.3E+6 2E+8 1E+9 2.2E+10 4.9E+11 1.6E+16 2.8E+17 5.4E+18

% Distinct vals 19.3 31.58 100 28.8 31.1 100 32.2 39.2 100 2.4 11.8 100 24.1 42.6 100 13.1 28.8 100

% NaNs 22.4 34.7 100 12.6 27.8 99.97 22.8 35.9 99.98 18.7 32.5 99.99 41.1 45.2 100 35.5 34.9 99.98

Table 9: Average, standard deviation, and maximum value of different descriptive statistics.
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Figure 10: Cumulative distribution of different descriptive statistics.
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