ABSTRACT

The tedious grunt work involved in data preparation is a major impediment for real-world ML applications which reduces the data scientist’s productivity. It is also a roadblock to industrial-scale cloud AutoML workflows that build ML models for millions of datasets. In this work, we target a major task in data preparation: ML feature type inference. Datasets are typically exported from DBMSs into tools such as Python and R as CSV files. The semantic gap between attribute types (e.g., strings, numbers etc.) in a DBMS and feature types (e.g., numeric or categorical) in ML necessitates ML feature type inference. At scale, handling this task fully manually is slow, expensive, or even impossible. We formalize this task as a novel ML classification problem. We manually annotate and construct a labeled dataset with around 9000 examples. We mimic human-level intuition behind manual labelling into the ML feature type inference and leave inference of integrity constraints in a DB schema to future work. The key distinction between the DB schema and the ML schema. The key distinction between the DB schema and the ML schema is that the DB schema is primarily syntactic, while the ML schema is semantic. The DB schema tells us the datatypes of an attribute such as integer, real, or string (VARCHAR in most DBMSes). On the other hand, the ML schema tells us the type of a feature such as numeric or categorical. The
Figure 2: A simplified Customers dataset used for customer churn prediction.

The semantic gap between DB and ML schemas means reading syntax as semantics often leads to nonsensical results. We explain this further with an example.

Example. Consider a simplified dataset for a common ML task, customer churn prediction in Figure 2.

We immediately see two major issues caused by the gap between the DB and ML schemas. First, attributes such as Name, Gender, Income and Churn are stored as strings, but not all of them are useful as categorical features for ML. For instance, Income is actually a numeric feature but some of its values have a string prefix. Second, attributes such as CustID, Age, ZipCode and XYZ are stored as integers, but only Age is useful as a numeric feature for ML. CustID is unique for every customer, hence it can not be generalized for ML. Inspecting only the column XYZ, it is difficult to decide if the feature is numeric or categorical. ZipCode is categorical, even though it is stored as integers. A tool like Python Pandas will treat it as a numeric feature. Hence, a human has to manually convert to categorical feature for the ML model. This issue is ubiquitous in real-world datasets, since categories are often encoded as integers. e.g. item code, state code, etc.

Even worse, real-world datasets often have hundreds to thousands of columns. Asking a data scientist to spend even 1min to infer the feature type of a column could easily lead to hours, if not days, of pure grunt work! Also, real-world databases are seldom static because DB schemas evolve over time, which requires data scientists to manually infer the ML feature types every time. Overall, it is a pressing problem to close the gap between the DB and ML schemas and help reduce the human time spent on data prep for ML and/or improve the accuracy of AutoML systems.

Our Approach. To meet the above challenge, we apply a simple yet powerful philosophy: using ML to semi-automate data prep for ML. We cast the problem of ML feature type inference as an ML classification problem to exploit the ability of ML models to pride this semantic gap. As shown in Figure 1B), we create a tool called SortingHat that uses our best performing ML models to semi-automatically infer the feature types from the raw CSV file. It gives a ranked list of attributes with a confidence score for its prediction. The data scientist may inspect only the attributes that are marked less confident by SortingHat. The key limiting factor to achieve this nature of automation is not ML algorithmic advances, but the availability of large high quality labeled dataset. For instance, availability of the ImageNet dataset has stirred several advances in computer vision today [11]. Considering this, we create the first labeled dataset for the task of ML feature type inference.

Label Vocabulary and Labeled Dataset. Creating labeled data for our task is challenging because of two reasons. First, each example in the labeled dataset is an entire feature column in a raw data file. A data file with 1M records and 10 columns will only give 10 examples! Hence, a lot of manual work needs to be done in order to collect raw data files. Second, there is usually not enough information in just the data file to identify the class (numeric or categorical) correctly. For instance, consider column XYZ in Figure 2. Is it numeric or categorical? This problem is non-trivial even for a human to make a judgement. Thus, we need more classes apart from just Numeric and Categorical class. We create 3 more classes that captures different variety of the columns: ones with messy syntax, ones that are non-generalizable and the ones that are “hard” to make a judgement. This intuitive 5-class prediction vocabulary will allow a human to quickly comprehend the semantics of an attribute. We manually label around 9000 columns from the real data files we collected into the one of the five classes.

Featurization and ML models. Given a raw data file, in order to identify the feature type, a human reader would look at the attribute (or column) name, some sample values in the column and even descriptive statistics about the column such as number of NaNs or number of distinct values. For instance, just by inspecting the attribute name such as ZipCode, an interpretable string, a human would know that the feature type is categorical. We replicate this human-level intuition into the ML models. We extract information from the raw data files that a human reader would look at: attribute name, sample values and descriptive statistics about the column. We summarize this information in a feature set, which we use to build popular ML models: logistic regression, support vector machine with radial basis kernel, Random Forest, k-nearest neighbor (k-NN) and character-level convolutional neural model.

Empirical evaluation and analysis. We first compare our models against existing rule-based or syntax-based approaches: Python Pandas [18], TensorFlow Data Validation (TFDV) [8], and Salesforce’s Transmogrifier [2]. We found that our ML models delivers a massive 30% lift in accuracy compared to these tools for identifying numeric features among the attributes. We then evaluate and compare different ML approaches on our dataset. Overall, we found that Random Forest model outperforms all ML models and achieves the best 5-class accuracy of 89.4%. The neural model and k-NN perform comparatively with 88.3% and 88.8% accuracy. We perform an ablation study on our ML models to characterize what types of features are useful. We also analyze and intuitively explain the behavior of Random Forest and neural model by considering their predictions on different types of column values such as integers, float, dates etc. Finally, we release a repository containing our labeled dataset and trained ML models and announce a competition for community-led contributions.

In summary, our work makes the following contributions:

- To the best of our knowledge, this is the first paper to formalize the ML feature type inference as an ML classification problem and create its label vocabulary.
- We create the first labeled dataset for the task of ML feature type inference.
- We compare several ML approaches on our dataset to understand how well they do in automating this task.
- We intuitively analyze the behavior of Random Forest and the neural model on our dataset. Our analysis of errors gives several interesting findings useful for
further research on this work.

- We release a public competition and leaderboard on our labeled dataset in order to invite further contributions in this direction.

Outline. Section 2 presents background, prior work, assumptions, and scope. Section 3 present our overall Approach. Section 4 presents our manually labeled dataset. Section 5 presents several ML approaches used for comparison. Section 6 presents an in-depth experimental study and analysis of errors. We discuss the key takeaways for practitioners and researchers in Section 7 and finally conclude with related work in Section 8.

2. BACKGROUND

2.1 ML Terms and Concepts.

We explain the ML concepts, terms, and models intuitively and refer readers to [28][20][31] for more background.

Concepts. This work focuses solely on the classification task, which is an instance of supervised learning. It involves learning where a training dataset of correctly labeled examples is available. The ML classification models learn their parameters from the training dataset and then uses this learning to classify new unseen test examples. There exist different types of classification models: logistic regression, support vector machine (SVM), decision tree, Random Forest, and k-nearest neighbor (k-NN). The model’s prediction accuracy is reported on the test dataset. k-fold cross-validation is a popular testing methodology where the labeled dataset is partitioned into k equal subsets, with k-1 subsets used for training and validation, and the remaining subset used for testing. The k accuracy results are finally averaged to obtain a single estimate.

Classical ML Models. Logistic regression is a linear classifier that finds a hyperplane to separate two classes. To distinguish multiple classes, “one-vs-rest” logistic regression trains a separate model for each class, predicting whether an example belongs to that class or not. SVM with radial basis kernel applies implicit transformations to the features to map them to a higher-dimensional space and use this to identify examples that help in separating classes. A decision tree classifies examples by learning a disjunction of conjunctive predicates. Random Forest is an ensemble model that learns multiple decision trees and predicts the mode of the classes given by individual trees. k-NN picks the plurality vote of k nearest training examples to a given test example.

CNNs. Convolution Neural Network (CNN) is a type of deep network that exploits spatial locality in data. CNNs contains layers of different types, each performing different transformation. A Convolution layer applies filters to the input in order to extract features (also called feature maps), where the filter weights are learned during training. A ReLU layer introduces non-linearity in CNN by applying an element wise operation and replaces all negative values in the feature maps by zero. A Pooling layer such as MaxPool and AvgPool reduces the dimensionality of each feature map while retaining the most important information. A Fully Connected layer is a traditional Multi Layer Perceptron (MLP) that has every neuron in a layer connected to every neuron in the next layer. A deep CNN stacks such layers multiple times.

2.2 Prior Art.

Tensorflow Data Validation (TFDV) is a tool to analyze and transform ML data in Tensorflow Extended (TFX) pipeline [3]. TFDV uses conservative heuristics to infer initial ML feature types from the descriptive statistics about the column. The users then review the inferred feature types and update them manually to capture any domain knowledge about the data that the heuristics might have missed. While this tool certain reduces manual effort in identifying ML feature types, it still requires users to manually go through individual descriptive statistics of all the columns, rather than the source data files. Pandas is a Python library that provides tools for data analysis and data transformations. It only infers syntactic types such as integer, float, or something else [15]. TransmogrifAI is an automated ML library for structured data in Salesforces’ AutoML platform called Einstein [2]. TransmogrifAI supports rudimentary automatic feature type inference over primitive types such as Integer, Real and Text. It also has an extensive vocabulary for feature types such as email, phone numbers, zipcodes, etc. However, users have to manually specify these feature types for their data. Overall, all these prior art tools are limited in scope for feature type inference because they are primarily rule-based or syntactic.

2.3 Assumptions and Scope

We need a large labeled dataset for ML feature type inference as an applied ML classification task. To make this possible, we need the following four components.

Label Vocabulary. We find that usually just the dichotomy of numeric or categorical is not enough for categorizing the ML feature types. Hence, we add more classes to our label vocabulary to classify the attributes beyond just the numeric and categorical class. We explain this in depth in Section 4.1.

Labeled Dataset. We need a large labeled dataset for ML feature type inference. There exists no publicly available dataset for this task. Thus, we manually annotate a large labeled dataset containing more than 9000 examples. Section 4.2 to Section 4.4 covers this in depth.

Features. In order to identify signals that would be useful in the model building, we imitate the human intuition for ex-
tracting features from the raw CSV file. We transform each column in the raw CSV file into a feature vector containing the column name, descriptive statistics about the column such as mean, standard deviation etc., and 5 randomly sampled column values. We call this step Base Featurization. We explain this step in depth in Section 4.3. Some ML models cannot operate on the raw characters of attribute names or sample values. Hence, we extract hand-crafted feature sets such as n-grams from the attribute names and sample values. We explain this step in depth in Section 5.

ML models. We finally use our feature set on our labeled dataset to build ML models. We compare several ML approaches in depth in Section 5.3 to Section 5.5.

The above steps are carried out once offline. In the online phase, a trained ML model can be used to infer feature types for columns in an “unseen” CSV file. We desire that the ML models should also output confidence scores for each class. Hence, this allows users to quickly dispose of easy features and prioritize their effort towards features with low confidence scores that need more human attention. Furthermore, our trained ML models can also help automate feature extraction in AutoML platforms and can help raise their overall performance.

4. OUR DATASET

This section discusses our efforts in creating the labeled dataset for the task of ML feature type inference: the label vocabulary, the data sources, the type of raw signals we extract from the columns, and the labelling process.

4.1 Label Vocabulary

The target model accepts only two classes: numeric or categorical. Hence, each example (or attribute) has to be labelled as either of the two classes. But we find that there is often not enough information in just the data file to distinguish between the two classes correctly, even for humans. Thus, we need more classes. More importantly, there is a trade-off between having too many classes and not having enough labeled data versus too few classes to be useful in practice. We balance this trade-off by considering 5 intuitive classes: Numeric, Categorical, Needs-Extraction, Not-Generalizable, and Context-Specific. These classes represent the prediction vocabulary of our ML model. We now explain each class and give examples.

Numeric. These attributes represent numeric values that are quantitative in nature and which can directly be utilized as a numeric feature for the target ML model. For instance, Age is Numeric. ID attributes such as CustID or integers representing encodings of discrete levels does not belong to this class. Note that all numbers can always be represented as categories by discretizing them. Hence, it is indeed possible to give numbers as categorical feature. However, ML models benefit by operating on numbers directly because there is a loss of information going from numeric to a discrete category. Hence, a typical data scientist would give a numeric feature as a numeric feature and not discretize it to categories.

Categorical. These attributes contain qualitative values that can directly be utilized as categorical features for the target ML model. There are two major sub-classes of categorical features: nominal and ordinal. Ordinal attributes have a notion of ordering among its values, while nominal attributes do not have such a notion. For instance, ShoeSize is an ordinal attribute. While, Zipcode is a nominal attribute. Names and coded real-world entities from a known finite domain set are also categorical. For instance, Gender taking values from {M, F, O} is a categorical feature. Note that attributes such as ShoeSize and ZipCode are syntactically a number. Hence, we need to alter its syntax slightly for a target model, e.g., convert it to string in Python or explicitly cast it as a “factor” variable in R.

Needs-Extraction. This class represents attributes with “messy” syntax that preclude its direct use as numeric or categorical feature. This class is orthogonal to the Numeric vs Categorical dichotomy because these attribute values require some form of processing before being used as features. The following examples illustrates this class.

(a) A number present along with string, denoting a measurement unit. e.g., “30 Mhz”, “USD 45” and “500,000”. In all cases, a number is typically extracted and the units are standardized (if applicable). A data scientist would typically write a regular expressions or custom Python/R scripts...
to extract usable feature values from such column, e.g., converting “USD 45” to 45.

(b) A text field with semantic meaning, consisting of either sentences, URL, address, geo-location, or even a list of items separated by a delimiter. The data scientist may choose to extract custom features, either numeric or categorical, or both through standard featurization routines. For instance, they can extract features such as n-grams, or even Word2Vec embeddings from an English sentence for the target model. Note that, such feature engineering decisions are not focus of this work, since they are mostly application-specific. We leave such downstream featurization routines for custom processing to the user.

(c) Date or time stamp, e.g., “7/11/2018”, and “21hrs:15min:3sec.” The extracted features can be used as numeric or categorical, depending upon the feature extracted. For instance, month of the year can be categorical, while time can be numeric. Again, we leave such downstream feature engineering decisions to the user.

Not-Generalizable. An attribute in this class is a primary key in the table or has (almost) no informative values to be useful as a feature. Similarly, a column with only one unique value in the whole table offers no discriminative power and is thus useless. Such attributes are most unlikely to be used as features for the target model because they are not “generalizable.” For example, CustID belongs to this class, since every future customer will have a new CustID. It is quite unlikely that one can get any useful features from it. Note that an attribute categorized as Not-Generalizable does not mean that it can never be useful for the target model. One may obtain some feature from this attribute through more custom processing or domain knowledge. On the other hand, even though, attributes such as Income and Date has all unique values in its domain, they are generalizable. Thus, they belong to Needs-Extraction class, since it is highly likely that one can extract useful features from their domain.

Context-Specific. This class is for attributes wherein the data file does not have enough information even for a human to judge its feature type. Such columns typically have meaningless names. For example, XYZ attribute has integer values but it is hard to decide if its feature type is numeric or categorical without any additional information. Clearly, answering this question would require manually tracing down the provenance of how this column came to be using external “data dictionaries” maintained by the application or speaking to the data creator.

We believe that our 5-class label vocabulary, while limited, is reasonable and useful. The label vocabulary can also give other insights to a data scientist. For instance, they could look for tables to join when faced with a large-domain Categorical feature such as ZipCode. They could offload attributes marked as Needs-Extraction to a software engineer for writing Python/R scripts. In addition, they could inspect the columns that are marked Not-Generalizable for any missing values or errors in data entry.

4.2 Data Sources

We obtain over 360 real datasets as CSV files from several sources such as Kaggle [3], UCI ML repository [4] and our prior work [25, 17]. Each attribute (or column) of the CSV file is just one example for our ML task. We obtain over 9000 such examples (or columns) from all data files put together.

4.3 Base Featurization

We replicate the human-level intuition into ML models by extracting the following information from the raw CSV files that a human reader would look at:

(1) **Column name.** Suppose, that a human would like to classify ZipCode into one of our five classes. Just by inspecting an interpretable name such as ZipCode, a human would know that the attribute would likely be Categorical. Hence, we extract the attribute name from the raw CSV file.

(2) **Column values.** A human would typically inspect some values in the column to make sure they make sense. For instance, if the human finds that some values are negative in the ZipCode column, then the column has to be treated appropriately for any missing values or data errors. Considering this, we extract 5 randomly sampled attribute values from the column.

(3) **Descriptive statistics.** Finally, the human would look at some descriptive statistics about the column. For instance, if the human finds that roughly 99.99% of the values in the column are NaNs, then the human would classify the ZipCode column as Not-Generalizable. Based on this observation, we extract several descriptive statistics for a column: percentage of distinct values out of total values, percentage of NaNs out of total values, mean, standard deviation, minimum value, maximum value, castability as number (e.g., “123” is a number embedded in string), extractability of number (e.g., “12 years” has a number that can be extracted using regular expressions) and average number of tokens in the values.

We summarize these extracted signals in a feature set that will be used to build ML models. Overall, as shown in Figure 3, we featurize the raw CSV files by extracting attribute name, descriptive statistics and 5 randomly sampled attribute values. Each column in the raw CSV files is an example (or row) in the new base featurized file. We have 9000 such examples.

4.4 Labelling Process

We followed the following process to reduce the cognitive load of labelling. Initially, we manually labelled 500 examples into a class. We then use Random Forest with 100 estimators to perform 5-fold nested CV. The model achieves a classification accuracy of around 74% on the test set (average across 5 folds). We use the trained model to predict a class label on all of the 9000 examples. This process allowed us to group together examples that were likely to belong to the same class label. Finally, we manually labelled all examples into one of the five classes. The labelling process took about 75 man-hours across 4 months. The complete labeled dataset is available on our project webpage [27].

We also tried to crowdsource labels on the FigureEight platform but abandoned this effort because the label quality was too low across two trial runs. In the first run, we got 5 workers each for 100 examples; in the second, 7 each for 415. The “golden” dataset were the 500 examples we labeled manually. We listed several rules and guidelines for the five classes and provided many examples for worker training. But in the end, we found the results too noisy to be useful: in the first run, 4% of examples had 4 unique labels, 27% had 3, and 60% had 2; in the second run, these were 5%, 21%, and 42%. Majority voting gave the wrong answer in over half of the examples we randomly checked. We suspect such
high noise arises because ML feature type inference is too technically nuanced for lay crowd workers relative to popular crowdsourcing tasks like image recognition. Devising better crowdsourcing schemes for our task with lower label noise is an interesting avenue for future work.

4.5 Data Statistics

Figure 4 shows the distribution of class labels in our labeled dataset. We observe that majority of labels (~60%) are either Numeric or Categorical. While, Needs-Extraction and Not-Generalizable are less frequent in our dataset. Figure 5 plots the cumulative distribution functions (CDF) of different descriptive statistics obtained by base featureization. Table 1 reports the median for the same descriptive statistics. Due to space constraints, we provide a complete breakdown of the cumulative distribution by class in our technical report [26]. We observe that Numeric attributes have longer names than others. Attribute values for Needs-Extraction, as expected, have more number of characters and words than other classes. In addition, we observe that all sample values in Numeric and 80% of the sample values in Categorical are single token strings. Furthermore, we find that almost 90% of the attributes in Categorical have less than 1% unique values in its columns. Interestingly, Not-Generalizable have either very few unique values or only NaN values in their domain.

5. APPROACHES COMPARED

In this section, we initially discuss the type of features we extract from the base featureized file since some ML approaches do not operate at the raw character or word level. We then develop an intuitive rule-based approach as a baseline. Finally, we discuss how we apply several classical ML models, k-NN with a distance function tuned for our task and a convolution-based neural model.

5.1 Feature Extraction

We observe that attributes with similar names often belong to the same class. For instance, both attributes `temperature_in_jan` and `temperature_in_feb` are Numeric. Hence, a set of \(n \) consecutive characters extracted from both the words would be highly similar. Based on this intuition, we extract an \(n \)-gram feature set (set of all combinations of adjacent characters) from the attribute names. Similarly, we extract \(n \)-gram feature set from the attribute values. This can be helpful because knowing that the sequence of the characters are numbers followed by a `/`, can give an indication of `date` attribute which belongs to Needs-Extraction class. We use an one-hot encoding-based representation to obtain a feature vector where each feature indicates the presence or absence of that \(n \)-gram.

Notation. We denote the descriptive statistics by \(\mathbf{X}_{stats} \), attribute name by \(\mathbf{X}_{name} \) and a set of \(5 \) randomly sampled attribute values by \(\mathbf{X}_{sample} \) (first random attribute value is referred as \(\mathbf{X}_{sample1} \) and similarly for other values). We leverage the commonly used bi-gram and tri-gram feature sets. We denote the 2-gram and 3-gram features on the attribute name by \(\mathbf{X}_2^{name} \) and \(\mathbf{X}_3^{name} \) respectively. Similarly, we denote the 2-gram and 3-gram features on the attribute value by \(\mathbf{X}_2^{sample} \) and \(\mathbf{X}_3^{sample} \). \(\mathbf{X}_{stats}, \mathbf{X}_{name}, \mathbf{X}_{sample}, \mathbf{X}_2^{name}, \mathbf{X}_3^{name}, \mathbf{X}_2^{sample} \) and \(\mathbf{X}_3^{sample} \) are used as feature sets for the compared ML models.

5.2 Rule based Baseline

We develop a rule based approach that mimics the human
thought process to arrive at the label. The rule based model uses a flowchart-like structure as shown in Figure 6. Each internal node is a “check” on an attribute, each branch is the outcome of the check, and each leaf node represents a class label. Note that Context-Specific is not included in the rule-based approach. We manually recognized this class when labelling, but automating this in rule is difficult. We describe all the checks on the attribute below.

11. We query the data type of 5 random sample values of an attribute using Python. We then take the mode of the returned data type. If the mode is integer or float, we mark it as a number; otherwise, we mark it as a string.

12. For an attribute with a value marked as a number, we find the percentage of NaN values in its column. If this is greater than 99%, we classify it as Not-Generalizable.

13. We find the standard deviation of the attribute values, denoted by \(sd \). Denote the total number of attribute values as \(n \) and the standard deviation of integers from 1, 2, ..., \(n \) with \(presd \). If \(sd \) is equal to \(presd \), then the attribute is a serial number and we classify it as Not-Generalizable. Otherwise, we classify it as Numeric.

14. For an attribute with a value marked as string, we check if we can cast the string into a number. We repeat this “castability” check (0 or 1) for 5 random sample values. We finally take mode of castability check result for the decision.

15. We check if we can extract number from the marked string using regular expressions. We classify such attributes as Needs-Extraction.

16. If the number of tokens in the sample value is large, then the sample value contains a text field that requires further processing to extract features. So, it is classified as Needs-Extraction.

17. We count the percentage of distinct values present in an column. If this percentage is greater than 99%, then the attribute would not be able to generalize when used as feature for ML. We classify such attributes as Not-Generalizable; otherwise, we classify it as Categorical.

The above steps are not exhaustive, and it is indeed possible to craft more rules. But, it is highly cumbersome and perhaps even infeasible to hand-craft a perfect rule-based classifier. Thus, we instead leverage existing ML algorithms for this classification task.

5.3 Classical ML models

We consider classical ML models: logistic regression, RBF-SVM, and Random Forest. The features are: \(X_{stats} \), \(X_{name} \), \(X_{sample} \), \(X_{sample1} \), \(X_{sample2} \) and \(X_{sample2} \). Note that they cannot operate on raw characters of attribute names or sample values; thus, \(X_{name} \), \(X_{sample} \) are not used. For scale-sensitive ML models such as RBF-SVM and logistic regression, we standardize \(X_{stats} \) features to have mean 0 and standard deviation 1. The confidence of a model’s prediction is defined as follows.

Logistic Regression. We use sigmoid function \(1/(1 + \exp(-\theta \cdot x)) \) to determine the confidence of prediction for a given example. The parameter vector \(\theta \) is learned during training.

RBF-SVM. We use Platt scaling \((1/(1 + \exp(A \cdot f(x) + B)))\) to calibrate the SVM to produce probabilities in addition to class predictions.

5.4 Nearest Neighbor

\(k \)-NN is one of the oldest, yet powerful classifiers\[10\]. Its accuracy is influenced by two main factors: distance function used to determine the nearest neighbors and the number of neighbors used to classify a new example. Most implementations of \(k \)-NN use a simple Euclidean distance. But, we can adapt the distance function for the task at hand to do better. Thus, we define the weighted distance function as:

\[
d = ED(X_{name}) + \gamma \cdot EC(X_{stats})
\]

In the above, \(ED \) (resp. \(EC \)) is the edit distance (resp. euclidean distance) between \(X_{name} \) (resp. \(X_{stats} \)) of a test example and a training example. \(\gamma \) is the parameter that needs to be tuned during training. The confidence score for a class at prediction time is given by the number of neighbors out of \(k \) neighbors that voted for that class.

5.5 Neural Model

For text understanding tasks such as sentiment analysis and text classification, character-level CNNs have achieved state-of-the-art results\[39, 38, 16\]. Inspired by this, we propose a neural model for our task as shown in Figure 7(A). The layers of CNN are shown in Figure 7(B). The network takes attribute name, descriptive statistics and sample values as input and gives the prediction from the label vocabulary as output.

The attribute name and sample values are first fed into an embedding layer. The embedding layer takes as input a 3D tensor of shape \((NumSamples, SequenceLength, Vocabsize)\). Each sample (attribute name or sample value) is represented as a sequence of one-hot encoded characters. \(SequenceLength \) represents the length of this character sequence and \(Vocabsize \) denotes the number of unique characters represented in the corpus. The embedding layer maps characters to dense vectors and outputs a 3D tensor of shape \((NumSamples, SequenceLength, EmbedDim)\), where \(EmbedDim \) represents the dimensionality of the embedding space. The weights are initialized randomly and during training the word vectors are tuned such that the embedding space exhibits a specialized structure for our task.

The resultant tensor from the embedding layers are fed into a CNN module. The CNN architecture consists of three cascading layers, 2 1-D Convolutions Neural Network, followed by a global max pooling layer. The size of the filter \((FilterSize)\) and number of filters \((NumFilters)\) are tuned during training. We concatenate all CNN modules with descriptive statistics and feed them to a multi-layer perceptron on top. In the output layer, we use softmax activation function that assigns a probability to each class of the label vocabulary. The whole network can be trained end-to-end using backpropagation.
6. EMPIRICAL STUDY AND ANALYSIS

We first discuss our methodology, setup and metrics for evaluating the ML models. We then compare the ML models trained on our data against existing tools. We then present the accuracy results of all models trained on our dataset and intuitively explain the behavior of Random Forest and the neural model. Finally, we present the prediction runtime of all models on a given example.

6.1 Methodology, Setup and Metrics

Methodology. We partition our labeled dataset into train and held-out test set with 80:20 ratio. We then perform 5-fold nested cross-validation of the train set, with a random fourth of the examples in a training fold being used for validation during hyper-parameter tuning. For all the classical ML models, we use the Scikit-learn library in Python. For the neural model, we use the popular Python library Keras on Tensorflow. We use a standard grid search for hyper-parameter tuning, with the grids described in detail below.

Table 3: 5-fold training, cross-validation, and held-out test accuracy of classical ML models with different feature sets. The bold fonts marks the cases where we noticed highest held-out test accuracy for that model.

Logistic Regression: There is only one regularization parameter to tune: C. Larger the value of C, lower is the regularization strength, hence increasing the complexity of the model. The grid for C is set as \{10^{-3}, 10^{-2}, 10^{-1}, 1, 10, 100, 10^3\}.

RBF-SVM: The two hyper-parameters to tune are C and γ. The C parameter represents the penalty for misclassifying a data point. Higher the C, larger is the penalty for misclassification. The γ > 0 parameter represents the bandwidth in the Gaussian kernel. The grid is set as follows: C ∈ \{10^{-1}, 1, 10, 100, 10^3\} and γ ∈ \{10^{-4}, 10^{-3}, 0.01, 0.1, 1, 10\}.

Random Forest: There are two hyper-parameters to tune: NumEstimator and MaxDepth. NumEstimator is the number of trees in the forest. MaxDepth is the maximum depth of the tree. The grid is set as follows: NumEstimator ∈ \{5, 25, 50, 75, 100\} and MaxDepth ∈ \{5, 10, 25, 50, 100\}.

k-Nearest Neighbor: The hyper-parameter to tune are the number of neighbors to consider (k) and the weight parameter in our distance function (γ). We use all integer values from 1 to 10 for k. The grid for γ is set as \{10^{-3}, 0.01, 0.1, 1, 10, 100, 10^3\}.

Neural Model: We tune EmbedDim, numfilters and filtersize of each Conv1D layer. The MLP has 2 hidden layers and we tune the number of neurons in each layer. The grid is set as follows: EmbedDim ∈ \{64, 128, 256, 512\}, numfilters ∈ \{32, 64, 128, 256, 512\}, filtersize ∈ \{2, 3\}, and neurons ∈ \{250, 500, 1000\}. In order to regularize, we use dropout with a probability from the grid: \{0.25, 0.5, 0.75\}. Rectified linear unit (ReLU) is used as the activation function. We use the Adam stochastic gradient optimization algorithm to update the network weights. We use its default parameters.

We also tried tuning the following knobs of the neural model, but it did not lead to any significant improvement in accuracy: MLP architecture with 3 hidden layers, L1 and L2 regularization from the set \{10^{-4}, 10^{-3}, 0.01, 0.1\} and number of neurons from the set \{5 \cdot 10^2, 10^3\}.
6.2 Comparison with Prior Tools

We compare ML models trained on our dataset against 3 open-source and industrial tools: TFDV, Pandas and TransmogrifAI. TFDV can infer only 2 types of features in our vocabulary: numeric or everything else. Pandas can only infer syntactic types: int, float, or object. TransmogrifAI can only infer primitive types such as Integer, Real or Text. Hence, we cannot use our entire 5-class vocabulary for this comparison. Instead, we report the results on a binarization of our vocabulary: numeric (Num) vs. all non-numeric (Not-Num). Table 2 presents the precision, recall and overall classification accuracy results on the test set.

Results. We notice a huge lift of ~30% in accuracy for our approach against existing tools. Interestingly, all the existing tools have high recall on numeric features but very low precision. This is because their rule-based heuristics are syntactic, which leads them to wrongly classify many categorical features such as ZipCode as numeric. Our models have slightly lower recall on numeric features. This is because when many features are thrown into an ML model, it gets slightly confused and could wrongly predict a numeric type as non-numeric. But, our ML models have much higher precision and high overall accuracy. Of all our ML models, the weighted k-NN achieves the best accuracy in identifying numeric type. Interestingly, k-NN also has the highest recall for numeric type among our ML models. On the other hand, Random Forest has the highest precision for predicting numeric type among all approaches.

6.3 End-to-End Accuracy Results

Rule-based Heuristic. The overall 4-class classification accuracy of rule-based baseline heuristic on the held-out test set is 0.7160. Table 5(A) shows its confusion matrix. Note that it excludes Context-Specific class. We observe that the rule-based approach achieves 97% accuracy in classifying examples belonging to Numeric class. This is because when presented with any number, it does not have enough rules to confuse it into labelling it as another class. On the other hand, on Categorical examples, it achieves only 37% accuracy. This is mainly because when it is presented with any number encoded as a category, it mistakenly classifies as Numeric. This approach achieves an high accuracy of 86% for Not-Generalizable as it is simpler to come up with rules that captures this class. Admittedly, our rules are not exhaustive and one can always come up with more rules to improve the performance of the approach. However, writing rules for every little corner case is ex cruciating and will likely never be comprehensive.

Classical ML Models. Table 4 presents the 5-class accuracy results of the classical ML models using different combinations of the feature sets. For logistic regression, we see that the descriptive statistics alone are not enough, as it achieves an accuracy of just 55% on the held-out test set. But, for RBF-SVM and Random Forest, we notice that the accuracy with descriptive statistics alone is already 74% and 81% respectively. Incorporating the 2-gram features of the attribute name into logistic regression leads to a whopping 26% lift in accuracy on the test set. Random Forest achieves a massive 89% accuracy using just 2-gram feature set along with descriptive statistics. This underscores the importance of 2-gram features on the attribute names.

Adding 2-gram features of a random sample value lifts the accuracy further by 2% for logistic regression. However, as the complexity of the model increases, the 2-gram features on a sample value do not provide boost in accuracy. Adding 2-gram features of more sample values does not give any rise in accuracy, except for logistic regression. More complex features such as 3-gram on logistic regression model leads to more significant gains in accuracy relative to the 2-gram features. However, for complex models such as RBF-SVM and Random Forest, we notice that the lift in accuracy with 3-gram features is only marginal relative to the 2-gram features. Overall, Random Forest achieves the best 5-class accuracy of 89% using the 3-gram features on the attribute name along with descriptive statistics.

Nearest Neighbor. Table 4 presents the 5-class accuracy of k-NN. We observe that when we use only Euclidean distance on descriptive statistics, the accuracy is already 74%. With only edit distance on attribute name the accuracy is 80%. Finally, with our weighted edit distance function from Section 5.4, k-NN achieves a massive 89% accuracy, comparable to Random Forest. Table 5(C) shows confusion matrix of k-NN. We see it does well in predicting Numeric and Context-Specific classes, achieving a recall of 96% and 94%, respectively. On the other hand, recall for Not-Generalizable is only 74%, which is worse than the rule-based heuristic. This is because many examples belonging to Not-Generalizable are confused with Categorical. We also observe that Random Forest is skewed towards classifying many examples as Categorical.

As a result, it has more chances of confusing any class with Categorical. We analyze the behavior of Random Forest in depth in Section 6.4.

Neural Model. Table 4 presents the accuracy of neural model on different feature sets. We see that with just X_name, this model already achieves an accuracy of 81%. The descriptive statistics lift the accuracy further by 7%. We notice that sample values are not that useful here; they yield only minor lift in accuracy. Table 5(D) shows the confusion matrix. We see it does well in predicting Needs-Extraction and Not-Generalizable classes, achieving a recall of 84% and 83%, respectively. On the other hand, recall for Categorical is only 88%, which is worse than Random Forest. This is because neural model confuses many examples belonging to Categorical with Numeric class. We also see that neural model is not particularly skewed towards classifying examples towards any class; rather it distributes examples over different classes proportionately, relative to other models.

6.4 Analysis of Errors

We now explain the behavior of Random Forest and the neural model on our dataset by inspecting the raw datatype of the attribute values. We categorize the data type into
several categories such as integers, floats, negative numbers, dates, sentences with one token, and sentences with more than one token. Table 6 (resp. Table 7) shows the confusion matrix of the predicted class by Random Forest (resp. Neural model) vs actual datatype of the attribute value on the test set. Table 8 shows examples of the attributes and the corresponding prediction made by Random Forest and the neural model. We explain the errors by class below.

Numeric. We see that when the actual label is Numeric (Table 6(A)), Random Forest and the neural model is less likely to misclassify an attribute whose values are floats or negative numbers compared to integers. We observe that with integers, Random Forest gets confused with Context-Specific class. For instance, $\$area$ (Table 6(example(A)) is predicted as Context-Specific. Looking at substring “area” in the attribute, humans have this intuition that the column is probably numeric. Although, Random Forest makes a wrong prediction, the neural model captures this human-like intuition. For other attributes involving sub-strings such as count, value, etc., we observe the same trend: the neural model captures this human-like intuition.

Needs-Extraction. As shown in Table 6(B), Random Forest does well in predicting Needs-Extraction when the column values are strings with number of tokens greater than one. While, on one-token strings, Random Forest gets confused with Categorical. For instance, a one-token string such as “9years”, as shown in table 6(example(C)) is predicted as Categorical. Again, it seems that Random Forest, unlike the neural model, is missing the human-level intuition that an attribute can have values such as “years” or “months” embedded in a sample value.

Categorical. Table 6(C) showcases the same behaviour. We again observe that when the sample values are sentences with number of tokens greater than 1, there is more chance for Random Forest to misclassify Categorical as Needs-Extraction. On the other hand, for one-token strings, it does well for Categorical. Table 6(example(E) shows an attribute “SMOD_POPULATION” which has values such as “-9999” as part of the encoded category. Random Forest classifies it as Numeric. We observe that the neural model performs worse than Random Forest in predicting Categorical correctly. This is because when the number of unique values in a column relative to the domain size is extremely low (Table 6(example(G)), the neural model classifies such examples as Not-Generalizable. Moreover, the neural model misclassifies the categories encoded as integers to numeric type in some cases, as Table 6(example(H) shows.

Not-Generalizable and Context-Specific. From Table 6(D), we notice that both the models often confuse Not-Generalizable with Categorical. Table 6(example(F) shows an attribute with only 2 sample values: “NULL!” and “Others”. Hence, the actual ground-truth label is Not-Generalizable. But, Random Forest treats “NULL!” as a separate category. Furthermore, we see from Table 6(example(G)) that both the models often classify Context-Specific as Numeric when the values are integers. This is because they lack in their semantic understanding ability to accurately identify the attributes with meaningless names.

6.5 Prediction Runtimes

We evaluate the running time of the ML models in the online phase, i.e., for inference to make predictions on an attribute/column. As shown in Figure 9, we must first perform Base Featureization of the column and then model-specific feature extraction. The Base Featureization is a common step across all the models. Model-specific feature extraction is only needed for the classical ML models. Figure 9 shows the runtime of all 5 models, with breakdowns of Base Featureization, model-specific feature extraction time, and inference time. The measurements were made on the test
Table 6: Breakdown of Random Forest model’s prediction for different types of attribute values on the held-out test set. Confusion matrices (Predicted class on the row vs. Actual type of the column value on the column) when the ground-truth label is (A) Numeric, (B) Needs-Extraction, (C) Categorical, (D) Not-Generalizable, and (E) Context-Specific.

<table>
<thead>
<tr>
<th>(A) Numeric</th>
<th>(B) Needs-Extraction</th>
<th>(C) Categorical</th>
<th>(D) Not-Generalizable</th>
<th>(E) Context-Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integers</td>
<td>Floats</td>
<td>Negative Numbers</td>
<td>Sentence (length > 1)</td>
<td>Sentence (length = 1)</td>
</tr>
<tr>
<td>Numeric</td>
<td>386</td>
<td>284</td>
<td>194</td>
<td>0</td>
</tr>
<tr>
<td>Needs-Extraction</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>70</td>
</tr>
<tr>
<td>Categorical</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Not-Generalizable</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Context-Specific</td>
<td>17</td>
<td>7</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 7: Breakdown of neural model’s prediction for different types of sample values on the held-out test set. Confusion matrices (Predicted class on the row vs. Actual type of the column value on the column) when the ground-truth label is (A) Numeric, (B) Needs-Extraction, (C) Categorical, (D) Not-Generalizable, and (E) Context-Specific.

<table>
<thead>
<tr>
<th>(A) Numeric</th>
<th>(B) Needs-Extraction</th>
<th>(C) Categorical</th>
<th>(D) Not-Generalizable</th>
<th>(E) Context-Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integers</td>
<td>Floats</td>
<td>Negative Numbers</td>
<td>Sentence (length > 1)</td>
<td>Sentence (length = 1)</td>
</tr>
<tr>
<td>Numeric</td>
<td>381</td>
<td>280</td>
<td>194</td>
<td>4</td>
</tr>
<tr>
<td>Needs-Extraction</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>65</td>
</tr>
<tr>
<td>Categorical</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Not-Generalizable</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Context-Specific</td>
<td>18</td>
<td>12</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 8: Examples for illustrating errors made by Random Forest and neural model. **NU** refers to Numeric, **NX** refers to Needs-Extraction, **CA** to Categorical, **NG** to Not-Generalizable, and **CS** refers to Context-Specific.

7. DISCUSSION AND TAKEAWAYS

Tool Release: We make all of our models and featurization routines available for use by wrapping them under functions in a Python library. The Python package is available on our project webpage [27]. The data scientist can use the library directly by giving their raw CSV data files in form of a dataframe as input. The dataframe will be processed and featurized by our library functions, and for each attribute, a ranking of the classes from the label vocabulary based on confidence score will be given as output.

For Practitioners. Our trained ML models can be integrated for feature type inference into existing data prep environments. Programmatic tools such as TFDV and Pandas can leverage our models through APIs. Even, AutoML system developers can productionize our models to enhance their AutoML systems for data prep. For visual tools such as Excel and Trifacta [56], designing new user-in-the-loop interfaces that account for both model’s prediction and human’s judgement remains an open research question. We leave this integration to future work.

For Researchers. We see three main avenues of improvement for researchers wanting to improve accuracy: better
features, better models, and/or getting more labeled data. First, designing other features that can perfectly capture human-level reasoning is an open research question. We found that descriptive statistics and attribute names are very useful for prediction. But, attribute values are only marginally useful. Perhaps, one can consider designing better featureization routines for sample values. For instance, inspecting an attribute “q1?HrChaOther” (example(F) from Table 8) with value “NULL”, a human can tell that the value denotes a missing or corrupt entry and is not supposed to be taken as a category. Hence, designing a featureization scheme that can capture the semantic meaning of attribute values is an open research question.

Second, capturing more semantic knowledge of attributes in a neural architecture is an open research question. Although our current neural model captures several human-level intuitions, it sometimes fails in recognizing categories encoded as integers. For instance, looking at the attribute with name “month” and sample values from 1 to 12, humans know that the attribute is categorical feature.

Finally, based on our analysis in Section 5.4, one potential way to increase the accuracy is to create more labeled data in the categories of examples where our model gets confused. For instance, we see that when strings such as “-999” are used as categories, almost all ML models treat them as numbers and predict Numeric. Getting more labelled examples can potentially teach the model to learn better. In addition, we observe that attribute names are most useful for prediction. Hence, one can try getting more labeled attribute names without sample values. Finally, one can also design richer label vocabularies. For instance, we showed in Tables 6 and 7 a breakdown of Random Forest and neural model predictions on different types of sample values. One can consider training models end-to-end using such a fine-grained label vocabulary as well.

8. RELATED WORK
ML Data Prep and Cleaning. ML feature type inference has been explored in some prior tools [2, 1, 18]. TensorFlow Data Validation is a rule-based tool that infers ML feature types from summary statistics about the column [5]. Pandas is a Python library that provides syntactic type inference [18]. TransmogrifAI is a library used for data prep, feature engineering, and ML model building in Salesforce’s Einstein AutoML platform [2]. It provides ML feature type inference over primitive types such as integer, real number or text. AutoML Tables is another AutoML platform for structured data from Google [1]. It also suggests a feature type for each attribute of the imported CSV file. Since, it is available as a commercial tool, we do not have the availability to compare it with our work. Compared to existing open-source tools, our ML-based approach raises accuracy of ML feature type inference substantially by more than 30%.

DataLinter is a rule-based tool that inspects a data file and raises potential data quality issues as warnings to the user [15]. However, ML feature type inference must be done manually. Deequ is a tool for validating data quality where the integrity constraints specified by the user are interactively verified [23]. However, it does not handle ML feature type inference. Hence, they are orthogonal to our focus.

There are numerous tools that allows users to perform data transformations tasks for data prep. Trifacta [36] has visual data prep tools that allows users to perform tasks such as substring extraction, value standardization etc. with a human-in-the-loop. Programming-by-example (PBE) tools such as FlashFill [13, 14] and allows users to perform syntactic string transformation tasks without the need to write a program by learning from input/output examples. These tools can be utilized to perform extraction of values that are embedded into strings, the Needs-Extraction class. However, they can run into scalability issues as the set of programs that are consistent with the examples would be huge. In any case, their goals are orthogonal to our focus.

Database Schema Inference. Inference for DB schema has been explored in some prior work. Google’s BigQuery does syntactic schema detection when loading data from external data warehouses [6, 7] infers a schema from JSON datasets by performing 2 operations: map operation to infer a data type for each value, and reduce operation that fuses inferred types using pre-defined rules. Thus, DB schema inference task is syntactic and rule-based. For instance, the type of the attribute with integer values has to be identified as an integer. In contrast, ML feature type inference is semantic and attributes with type integer can be categorical.

AutoML Platforms. Several AutoML systems such as AutoWeka [30] and Auto-sklearn [12] have automated search process for model selection, allowing users to spend no effort for algorithm selection or hyper-parameter search. However, these AutoML systems do not automate any data prep tasks in the ML workflow. AutoML platforms such as Einstein AutoML [35] and AutoML Tables [1] do automate some data prep tasks. However, how good their existing automation schemes are is not well-understood. We believe there is a pressing need to formalize the data prep tasks and create benchmark labeled dataset for evaluating and comparing AutoML platforms on such tasks. Our comparison with TransmogrifAI and TF DV shows that they still fall short on accuracy. Our ML models can be integrated into these AutoML platforms to improve their accuracy in the future.

Data/Model Repositories. OpenML [37] is an open-source collaborative repository for ML practitioners and researchers to share their models, datasets, and workflows for reuse and discussion. Our models and labeled datasets can be made available to OpenML community to invite more contributions on automated data prep tasks [24]. Hence, our work is complementary to OpenML.

9. REFERENCES

APPENDIX

A. DATA STATISTICS

Figure 10 shows the CDF of the several descriptive statistics by class (A) Numeric, (B) Needs-Extraction, (C) Categorical, (D) Not-Generalizable, and (E) Context-Specific. Table 9 presents the mean, standard deviation and the maximum of the same descriptive statistics.
B. RANDOM FOREST: EXPLANATIONS

We quantitatively explain the relevance of different features using Gini importance for the random forest model [9]. Figure 9 shows the normalized importance of different features from X_{stats}. Higher the value, the more important is the feature and more is the feature used in internal feature selection and partitioning in the decision trees. We observe that features like % distinct values, standard deviation, % NaNs and length of sample value are used repeatedly for partitioning inside decision trees. On the other hand, custom features like castability and extractability are less relevant for making prediction.

Figure 9: Gini feature importance score of the Random Forest model. y-axis shows different features from X_{stats} and x-axis shows the normalized importance score.
Table 9: Average, standard deviation, and maximum value of different descriptive statistics.

<table>
<thead>
<tr>
<th>Statistics</th>
<th>Overall</th>
<th>Numeric</th>
<th>Needs-Extraction</th>
<th>Categorical</th>
<th>Not-Generalizable</th>
<th>Context-Specific</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of chars in Attribute Name</td>
<td>Avg</td>
<td>Std Dev</td>
<td>MaxVal</td>
<td>Avg</td>
<td>Std Dev</td>
<td>MaxVal</td>
</tr>
<tr>
<td></td>
<td>12.74</td>
<td>7.72</td>
<td>91</td>
<td>16.34</td>
<td>8.18</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>8.49</td>
<td>4.56</td>
<td>64</td>
<td>8.49</td>
<td>4.56</td>
<td>64</td>
</tr>
<tr>
<td>Number of chars in Sample Value</td>
<td>Avg</td>
<td>Std Dev</td>
<td>MaxVal</td>
<td>Avg</td>
<td>Std Dev</td>
<td>MaxVal</td>
</tr>
<tr>
<td></td>
<td>16.4</td>
<td>286.19</td>
<td>29.6K</td>
<td>5.98</td>
<td>5.39</td>
<td>398</td>
</tr>
<tr>
<td>Number of words in Sample Value</td>
<td>Avg</td>
<td>Std Dev</td>
<td>MaxVal</td>
<td>Avg</td>
<td>Std Dev</td>
<td>MaxVal</td>
</tr>
<tr>
<td></td>
<td>2.66</td>
<td>46.67</td>
<td>4900</td>
<td>1</td>
<td>0.08</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>1.13</td>
<td>0.75</td>
<td>21</td>
<td>1.13</td>
<td>0.75</td>
<td>21</td>
</tr>
<tr>
<td>Mean</td>
<td>1.65E+14</td>
<td>1.03E+16</td>
<td>8.8E+17</td>
<td>3.6E+10</td>
<td>1.03E+12</td>
<td>5.6E+13</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>3.34E+15</td>
<td>1.31E+17</td>
<td>5.4E+18</td>
<td>1.9E+12</td>
<td>9.9E+13</td>
<td>5.9E+15</td>
</tr>
<tr>
<td>% Distinct vals</td>
<td>19.3</td>
<td>31.58</td>
<td>100</td>
<td>28.8</td>
<td>31.1</td>
<td>100</td>
</tr>
<tr>
<td>% NaNs</td>
<td>22.4</td>
<td>34.7</td>
<td>100</td>
<td>12.6</td>
<td>27.8</td>
<td>99.97</td>
</tr>
</tbody>
</table>

Figure 10: Cumulative distribution of different descriptive statistics.