
TOWARDS SEMI-AUTOMATIC EMBEDDED DATA TYPE
INFERENCE

A PREPRINT

Jonathan Lacanlale
Department of Computer Science
Cal State University, Northridge

Northridge, CA
jonathan.lacanlale.608@my.csun.edu

Vraj Shah
Department of Computer Science

University of California, San Diego
San Diego, CA

vps002@eng.ucsd.edu

Arun Kumar
Department of Computer Science

University of California, San Diego
San Diego, CA

arunkk@eng.ucsd.edu

November 27, 2019

ABSTRACT

Contextual data, defined as data that offers contextual background specific to the dataset, can be
tedious for data scientists and researchers to work with due to its required manual labelling. Such data
is often seen in the form of lists, dates, timestamps, and numerical values meaningful by the stated
metric. This labelling process typically utilizes a large amount of time and effort, which can be better
allocated onto other significant tasks. We propose the usage of machine learning models in order to
automate this process. Using publicly available datasets, we present a list of categories with rules
directly based off existing data points to be used for classification. Through the Python scikit-learn
library we are able to compare the accuracy of models, such as random forests and logistic regression.
We were able to achieve mid-to-high accuracy percentages in terms of their success in automating the
labelling process. The accuracy and speed of machine learning models shows promise in automating
the labelling process, especially with further parameter tuning.

1 INTRODUCTION

As cited in our earlier work[1], we are able to improve the AutoML pipeline by further automating data preparation. By
creating a dictionary based on a large database, we can create a means of data preparation automation. Included in
the dictionary is the specific label, ’Usable with Extraction.’ This data is contextual data that requires further feature
extraction beyond other labels. All scripts, Jupyter-notebooks, and documentation can be found on GitHub[2].

Problem: Contextual data requires further extraction We define contextual data as data that offers contextual
background specific to the dataset. This is often found in the form of dates, timestamps, and numerical values embedded
within strings. This data often varies in formats, further illustrated by Table 1. Correctly identifying these items along
with the labels we’ve selected requires further processing for ML models.

Challenge: Labelled Dataset Our dataset is built using data earlier labelled as ’Usable with Extraction’. This sub
dataset came from an original dataset of over 9000 examples, however our dataset size is composed of only 541 data
points with a large imbalance between label distribution. This imbalance is the cause of low training results and poor
classification of other labels.

A PREPRINT - NOVEMBER 27, 2019

Column Name Sample Value True Label
datetime_example_1 12/25/2019 Datetime
datetime_example_2 December 25, 2019 Datetime
datetime_example_3 9:00 AM December 25 Datetime
list_example_1 a, b, c, d List
list_example_2 1; 2; 3; 4 List
numbers_example_1 $10 Numbers
numbers_example_2 10 dollars Numbers

Table 1: Example data that have different formats but are under the same label.

Label Vocabulary and Labelled Dataset For our approach, we have created a 6 class vocabulary that best describes
our dataset, with a catch-all type for varying examples. As mentioned earlier, the current challenge regarding our
labelled dataset is data. Of the 9000+ dataset classified and used by SortingHat, only 550 were labelled as ’Usable with
Extraction.’ In addition to this low dataset size, our labels often had different formats. Figure 2 only illustrates a few of
many examples that have been encountered when manually labelling the dataset. Manually labelling the dataset took
15-20 hours. Further details about the dataset can be found in Section 4.

Featurization and ML Models For a data scientist to manually classify raw data, the most likely approach would
be through analyzing the column name as well as column samples. Additionally, the data scientist may make note of
significant items such as descriptive statistics, ask yes/no questions about the data (i.e. "Is this a date?"), or recognize
specific formats that the data may be in. For our models, we’ve featurized the dataset to best replicate a data scientists’
approach. For our models, we have chosen logistic regression, support vector machine with radial basis kernel, and
random forest.

Empirical Analysis We have created a rule-based approach as a means of comparison. Included in this approach
is the usage of the Python library Pandas[3] which helps identify Datetime objects. We compare our models to this
rule-based approach and have found that our results have an 11% increase in accuracy. Following is evaluation of
our models. As mentioned previously, we have tested logistic regression, RBF-SVM, and Random Forest. In order to
ensure that we are utilizing the best feature set, we perform an ablation study. Our results show that Random Forest is
the best performing model. This section of the paper is detailed in Section 6.

Outline Section 2 presents background of our approach and the assumptions made. Section 3 presents a summary of
our approach. Section 4 presents our manually labeled dataset which includes our methods and reasoning. Section 5
presents a rule-based approach we have created for comparison. This approach also utilizes Pandas. Section 6 presents
an in-depth experimental study, analysis of errors, and our comparison to Pandas advertised method for inferring raw
datatypes. Section 7 presents a closer analysis at our best performing model. We conclude by discussing our results and
future direction in Section 8. Additionally, we have included earlier results at the end of the paper in our appendix in
Section 9.

2 BACKGROUND

2.1 ML Terms and Concepts

We briefly explain the ML concepts and intuition behind the models within the following section.

Concepts Since this task is focused on the classification of data, the task is known as an instance of supervised
learning. To briefly explain, the task requires a correctly labelled, training dataset in which the models learn the
appropriate parameters. There are several models, however we have only chosen three for our project. Prediction
accuracy of the model is reported based on the test dataset. To ensure that our results are consistent, we utilize k-fold
cross-validation which partitions the labelled dataset into k equal subsets with k-1 subsets for training and validation
and the remaining for testing. The results are then averaged as a single estimate.

Classical ML Models Logistic regression is a linear classifier that finds a hyperplane to separate two classes. For
multiclassification problems, logistic regression trains a separate model for each class and predicts whether an example
belongs to that class or not. SVM with radial basis kernel applies implicit transformations to the features to map them to
a higher-dimensional space and uses this to identify examples that help in separating classes. A decision tree classifies

2

A PREPRINT - NOVEMBER 27, 2019

Figure 1: ML embedded feature type inference.

examples by learning a disjunction of conjunctive predicates. Random Forest is an ensemble model that learns multiple
decision trees and predicts the mode of the classes given by individual trees.

2.2 Assumptions and Scope

Since our data is dependent on SortingHat’s classifications, we assume that any dataset given is a subdataset of those
results. This also assumes that all datasets taken from SortingHat’s classifications are exclusively those that have been
labelled as ’Usable with Extraction.’ Any datasets outside of this label will likely be classified incorrectly as there will
be no appropriate labels.

3 OVERVIEW

Figure 1 illustrates our end-to-end review of our problem. Solving this problem required the following manual tasks:

Label Vocabulary We have created a label vocabulary based on the data samples observed. This is further discussed
in section 4.5, however to briefly list the labels, we’ve chosen to include: Numbers, List, URL, Datetime, Sentence, and
Custom Object. Custom Object is our catch-all label that classifies data that significantly varies between other examples.

Labelled Dataset After retrieving ’Usable with Extraction’ data from our earlier work, we manually label the dataset
according to our label dictionary. This process is further discussed in Section 4.4.

Features For featurization, we attempt to replicate the steps a data scientist would take in manually labelling the
embedded type. This includes utilizing the column name, samples, and descriptive statistics. We extract our features
from the raw CSV file in which the data is located and create a feature vector based on the items listed above. For
text-based items such as samples and column names, we convert the data into a usable format using n-gram featurization.
This step is further explained in Sections 4.3 and 5.1.

ML Models Finally, we use the above steps in this section for training, testing, and validating our ML models. Further
detail is discussed in Sections 6 and 7.

3

A PREPRINT - NOVEMBER 27, 2019

4 DATASET

This section discusses our efforts in creating the labelled dataset for the task of embedded data type inferencing. The
following subsections include the label vocabulary, the data sources, the type of raw features we extract from the
columns, and the labelling process.

4.1 Label Vocabulary

In order to correctly classify data in a manner that encapsulates what is represented in our dataset, we’ve created a
6-class vocabulary that is inclusive to varying data types: Numbers, Datetime, List, URL, Sentence, and Custom Object.
These classes represent the predictions of our ML model. The following is explanations of each class, as well as an
example.

Numbers These values are typically numeric values embedded within short strings. They are commonly represented
as currency or measurement values. For currency, entries vary between string and symbol usage where a column Price
may contain $10 and 10 dollars.

Datetime Datetime is inclusive to the individual varying formats of dates and timestamps, as well as the combination
of the two. The following are examples of the different types and how we have taken note of them.

(a) Standard numerical formats with delimiters in-between values. This is typically seen in Date which contains row
values similar to MM/DD/YYYY in which delimiters vary between {’-’, ’/’, ’:’}. For timestamps, the common format
is HH:MM with minor variations in the inclusion of seconds and nanoseconds. This is also noted in similar example
columns such as Datetime which combines the two having MM/DD/YYYY HH:MM:SS, MM-DD-YYYY HH:MM:SS,
and MM:DD:YYYY HH:MM:SS.

(b) String representations of dates where some column Date will contain the value October 30, 2019 or December 1st.
The only applicable variation in time format has been seen in examples such as 12:30pm or 6:00 AM.

List Attributes within this class are consist of iterable strings of items while also containing up to two or more
delimiters separating those items. Primary examples follow a format similar to list objects in programming languages
such as [a, b, c]. Variation in delimiters has been seen using one of the following: {’,’, ’;’, ’>’, ’ ’}.

URL Attributes belonging to this class must follow standard format for URL’s. This requires that the attribute begin
with a protocol followed by a domain name and end with a domain. Any following information such as a file path
is be optional. Such formats include https://www.ucsd.edu/ and https://admissions.ucsd.edu/first-year/

Sentence This class contains attributes which vary in length. Primary variation is seen between attributes that consist
of entire text excerpts and shorter sentences such as article titles and quotes.

Custom Object This is a catch-all class that captures data that cannot be classified in the earlier listed vocabulary.
Large variation is seen within this class, with concrete examples such as coordinate points, email address, and physical
addresses. This class also includes attributes that are intended for further computer processing such as JSON formatted
data. In addition, attribute’s with a high NaN percentage and mixed data types have also been included. This is data that
requires that the data scientist to manually examine the row values for proper labelling and/or processing.

4.2 Data Sources

Our raw data comes from over 360 CSV’s collected from sources such as Kaggle[4] and UCI’s ML repository[5].
Since this project is primarily focused on embedded feature type inferencing, we use data specifically classified as

’Usable with extraction’ from our earlier work[1]. After manually labelling according to our vocabulary, we obtain 541
attributes. All code and work can be found on Github[2].

4.3 Base Featurization

In order to reduce data preparation time, we’ve reused collected data from our earlier work with slight modification.
Our base featurization files contain each of the following:

4

A PREPRINT - NOVEMBER 27, 2019

Datetime Sentence Custom Object Numbers List URL
of NaN’s 33618 2861 49638 8360 28525 420
% of NaN’s 0.111 0.094 0.412 0.114 0.136 0.019
Mean token val 1 109 4 2 7 1
Stdev token val 0 94 2 0 3 0

Table 2: Mean of different Descriptive Statistics by class in the base featurized data file.

(1) Column name. We have collected the column name as it can be indicative of the class it belongs to. Common
examples are column names such as date, time, datetime, timestamp which a human can easily classify as Datetime.

(2) Column values. In the event that the column name is not descriptive enough, a human must then manually
examine the column’s values and infer what the appropriate label should be. For instance, a column called Dates implies
multiple date entries. Upon further examination of the column’s values, a human will realize that the appropriate label
is List, as the data is a list of dates. For this, we have collected a maximum 5 random samples from the raw CSV.

(3) Descriptive statistics. Finally, a human may choose to analyze the descriptive statistics of a column.
For this, we have collected a large amount including the mean token value, standard deviation of the token
value, NaN percentage, and a boolean for any rows having delimiters. In total, our descriptive statistics set
includes mean_stopword_total, mean_whitespace_count, mean_char_count, mean_delim_count,
stdev_stopword_total, stdev_whitespace_count, stdev_char_count, stdev_delim_count,
has_url, has_date. Such descriptive statistics prove useful for inferring what label the attribute belongs
to. High mean and high standard deviation of the token value may imply that the column is a Sentence, due to the
variance in length and high token count y, where the opposite would occur for Datetime and URL which would most
likely have significantly lower values.

4.4 Labelling Process

Labelling was performed using a command line tool written in Python which presents the base featurization values for
the user to view. In order to maintain consistency, we have created a rule-book for the data scientist to follow. This
rule-book has specific cases for each label and has taken into account all attributes seen when manually labelling. The
labelling process took roughly 15-20 hours, including creating the tool to interface with the data, readjusting existing
rules, and creating new ones based on new and different data seen.

4.5 Data Statistics

Figure 2 displays our current label distribution, as well as an adjacent chart for reason distribution. Worth noting is that
the Custom Object class dominates the data set at 46.2% while List, URL, and Numbers are at the lowest (4.4%, 3.9%,
3.7% respectively). Reason distribution depicts how are data was distributed according to the rulebook we’ve made for
labelling. The rulebook per label is as follows:

Numbers.

a. Number value proceeded and/or preceded by a unit string, as well as possibly in-between e.g. ’100 inches’,
’-0.12amps’, ’23feet’, ’US PER 100 LBS’, ’$5,000,000.00’

List.

b. Text corpus that contains a delimiter that differs from standard date formats and/or may represent a variable type
with the intention for computer processing e.g ‘a,b,c’, ‘word 1; word 2; word 3’, ‘men|clothing, women|clothing,
children|toys etc’, ‘’id’: 7, ’name’: ’Funny’, ’count’: 19645’

Datetime.

c. Follows standard numerical formatting seen in applications e.g. ‘12 .22.16’, ‘1998/01/01’, ‘30-8-2002’

d. Uses a combination of strings and numbers to convey a date e.g. ‘December 1’, ‘October 30, 2019’, ‘The first of
May’

5

A PREPRINT - NOVEMBER 27, 2019

Datetime
25.7%

Sentence

16.1%

Custom Object

46.2%

Numbers

3.7%

List

3.9%

URL

4.4%

Label Distribution

c 20.9%

g

15.9%

l

9.6%

m
22.0%

h

5.2%

a

3.5%

i

5.2%

b

3.7%

j

8.1%

e

4.3%

y

0.2%

d

0.7%

k

0.7%

Reason Distribution

Figure 2: Distribution of 6-class labels on our labeled data.

e. Follows standard numerical formatting seen in applications e.g. ‘12:30’, ‘1:30:20’, ‘15:00’

f. Uses a combination of strings and numbers to convey a time of day e.g. ‘Half past 12’, ‘12 PM’, ‘9 o’ clock in the
morning’

Sentence.

g. Text corpus that does not qualify as a date, timestamp, or URL and conveys significant contextual meaning based
on the dataset (title, description, individual information, text excerpt, etc.). e.g. ‘Do schools kill creativity?’, ‘SEE
TEXT’, ‘statistics’, ’Hello World’. This text should also not represent a variable type that may be intended for computer
processing.

URL.

h. Complete URL that contains a protocol prefix and/or top-level domain suffix with possible additional categori-
cal/product information e.g. ‘https://www.ucsd.edu/’, ‘https://www.researchgate.net/blog’

Custom Object.

i. Multiple numerical values whose context is unrelated to date or time and may require more contextual processing
than other numbers e.g. ’(-0.022, 2.2]’, ’(-5.0000, 33.0000)’

6

A PREPRINT - NOVEMBER 27, 2019

j. Phrases containing words that convey specific geographic information e.g. ‘address : 9415 Campus Point Dr’,
‘mailing address: 345 Airport Rd PO Box 1242 Malta’, ‘MT 59538’

k. Electronic identification data e.g. , ‘johndoe@website.com’, ’/homebrew/recipe/view/246372/freo-pale-ale’

l. Descriptive data that should have been classified by an earlier step.

m. Total of NaN values is too high and/or sample items do not convey contextual background of what the data is

Label distribution balancing is currently planned using synthetic data sets, generating our own similar data based
off of existing attributes. In addition to synthetic data sets is the acquisition of new, labelled data that we may use to
increase overall class size. Table 2 represents the cumulative average value for our a few of our descriptive statistics per
class. We observe significant differences between classes and certain statistics. For example, there significantly higher
averages for Sentence’s ’Mean token val’ and ’Stdev token val’. Custom Object has the highest ’% of NaN’s’ value and
both Datetime and URL have a ’Mean token val’ of 1 and ’Stdev token val’ of 0.

5 APPROACHES COMPARED

In the following, we present the features we’ve extracted from our base featurization file to use to build our ML models.
Following is a rule based approach which we’ve created as a means of baseline comparison. Finally, we discuss our
application of classical ML models and present their results.

5.1 Feature Extraction

We observe that attributes with similar names belong to the same class. A common example is in attributes date,
publish_time and timestamp belonging under the label Datetime. Similar cases have been seen such as attributes named
url belonging to the label URL as well as price and measurements belonging to Numbers. For this, we’ve extracted an
n-gram feature set of the attribute name. In addition to the attribute name, we’ve also included our descriptive statistics
and 2 of the 5 random samples. The random samples were also taken as an n-gram feature set.

5.2 Rule-Based Baseline

We have created a rule-approach using Python code. This method utilizes regular expressions (or regex), descriptive
statistics, and an external method for checking if the attribute can be casted as a timestamp value. This approach also
includes utilizing the Python library, Pandas. It’s use is further explained in item t5. This method was made to mimic
how a human may develop an approach using existing tools without the assistance of ML models, as shown in Figure 3.
Each branch leads to a series of "checks" that help determine the appropriate label for the given column (or attribute).
We describe all checks in the following descriptions below.

t1: For a column with a NaN % >= 90%, we classify as a Custom Object. Columns with a NaN % <90% have their
mean token value calculated. If the mean is < 2, it is potentially a Datetime, Number, or URL. Otherwise, it may be a
Sentence or List. If it is none of the above, it will be classified as a Custom Object.

t2: Columns whose mean token value is >=2 have their standard deviation token value calculated. If the standard
deviation is >= 10, the column is classified as a Sentence. Other wise, it is further checked.

t3: Columns that have a high standard deviation are likely to be Sentence attributes. If the standard deviation of the
token value is >=10, we classify it as a Sentence.

t4: Regex is used to check for delimiters, specifically if their is a word or digit followed by a delimiter (’,’, ’>’,
’|’, ’;’, ’:’, ’-’, ’.’, ’*’) and followed by another word or digit. This pattern must be repeated twice or more to
be matched by the regex pattern used. Anything that passes will be classified as a List and anything that does
not will default to Custom Object. For instance "1,2,3,4" will pass but "1,2" will not. Actual regex pattern used:
"((\d|\w|’)+(,|>|;|:|-|‘.|*)1 \s?(\d|\w|’)+)2,"

t5: The Python library, Pandas, offers a built-in object pd.Timestamp[7]. If the current column’s samples can be
casted to a Timestamp object, then it is classified as Datetime.

7

A PREPRINT - NOVEMBER 27, 2019

Figure 3: Flowchart of the rule based system. Diamond-shaped nodes are the decision nodes that represents a “check”
on the attribute. The final outcome is shown in orange rectangular boxes

t6: Regex is used to check if the samples are emails. Passing values are classified as Custom Objects. The regex used
checks that there are two string values with an ’@’ in-between followed by ’.’ for the ending of the domain name. For
instance, "jonedoe@fakedomain.com" will pass but "invalidemail@fakedomain.invalid" will not. Actual regex pattern
used: "\b[A-Za-z0-9._%+-]+@[A-Za-z0-9.-]+.[A-Za-z]2,6 \b"

t7: Regex is used to check if the sample contains a URL. Passing samples are classified as URL’s. Actual regex
pattern used: "(http|ftp|https)://([\w_-]+(?:(?:.[\w_-]+)+))([\w.,@?ˆ=%&:/˜+#-]*[
w@?ˆ=%&/˜+#-])?"

t8: Regex is used to check for number values in the string. This regex checks for numbers with a character adjacent to
or followed by the value. This regex does match sentences, but this misclassification is avoided since the mean token
value is checked earlier on. Actual regex pattern used: "([|\w]?(\d|\|. \d|\d, \d)+ \s?[|\w]?)"

5.3 Classical ML Models

We consider classical ML models: logistic regression, RBF-SVM, and Random Forest. The features are our descriptive
statistics and n-gram featurized sets of the column name and column samples. As a means of saving time, we’ve reused
code from earlier work[1], with slight modification for our features.

8

A PREPRINT - NOVEMBER 27, 2019

6 EMPIRICAL STUDY AND ANALYSIS

We first discuss our methodology, setup, and metrics for evaluating the ML models. We then compare the ML models
trained on our data against our rule-based approach. We then present the accuracy results of all models trained on our
dataset. Finally, we further analyze the errors of our models.

6.1 Methodology, Set up, and Metrics

Methodolody. We partition our labeled dataset into train and held-out test set with 80:20 ratio. We the perform 5-fold
nested cross-validation of the train set, with a random fourth of the examples in a training fold being used for validation
during hyper-parameter tuning. For all the classical ML models, we use the Scikit-learn library in Python. We use a
standard grid search for hyperparameter tuning, with the grids described in detail below.

Logistic Regression: There is only one regularization parameter to tune: C. Larger the value of C, the
lower the regularization strength, hence increasing the complexity of the model. The grid for C is set as
{10−3, 10−2, 10−1, 1, 10, 100, 103}.

RBF-SVM: The two hyper-parameters to tune are C and γ. The C parameter represents the penalty for misclassifying a
data point. The higher the C, the larger the penalty is for misclassification. The γ > 0 parameter represents the bandwidth
in the Gaussian kernel. The grid is set as follows C ∈ {10−1, 1, 10, 100, 103} and γ ∈ {10−4, 10−3, 0.01, 0.1, 1, 10}.

Random Forest: There are two hyper-parameters to tune: NumEstimator and MaxDepth. NumEstimator is the
number of trees in the forest. MaxDepth is the maximum depth of the tree. The grid is set as follows: NumEstimator ∈
{5, 25, 50, 75, 100} and MaxDepth ∈ {5, 10, 25, 50, 100}.

Experimental Setup. Due to low dataset size, all models were run locally on a mid-2012 Macbook. Current plans are
inplace to move experiments to run on CloudLab[?] using a custom OpenStack profile running Ubuntu 16.10 with 10
Intel Xeon cores and 64GB of RAM.

Metrics. Our key metric is prediction accuracy, defined as the diagonal of the 6 x 6 confusion matrix. We also report
the per-class accuracy and their confusion matrices.

6.2 End-to-end Accuracy Results

Rule-based heuristic For our rule-based approach, we achieve a 75% overall accuracy. Due to time constraints,
testing using the rule-based approach was on the entire data set unlike the ML models, which were tested using a
separate held-out test set. Table 5(A) displays the confusion matrix for our rule-based approach. We observe that the
rule-based heuristic is strongest at predicting items such as Datetime (89% accuracy) and URL’s (95.8% accuracy).
This is likely a result of clear rules that prevent confusion and effective regular expressions. Referring back to Table 2,
Datetime and URL both had a cumulative mean token value of 1, having them more likely to be grouped together in the
same branch, as seen in Figure 3. For Datetime, a method of casting the data ensures that any appropriate attributes will
be correctly predicted. As for URL’s, any attributes that meet the appropriate format should avoid any earlier regular
expressions that it does not meet (specifically t6 and t7). For weaknesses, List attributes seem to be the most difficult
(5.8%), as there is high variability between attributes, with their only significant distinction being has_delimiters.
Features such as length and delimiter count vary between attributes. Custom Object, Numbers, and Sentence attributes
are also within the lower accuracy percentages (64.1%, 65%, 41.5%, respectively). It is evident that the rules we have
made do not encapsulate every existing case, however it would be excruciating and inefficient to exhaustively write a
near-"perfect" rule-based approach.

Classical ML Models Table 3 displays our 5-fold accuracy scores utilizing different combinations of features. For all
models, descriptive statistics alone is not a sufficient feature, as held-out test scores are at the lowest (Random Forest:
77.4%, Logistic Regression: 74.5%, RBF-SVM: 79.1%). We see similar trends with minor increases for utilizing the
column name and a single random sample.

As we increase total features used, we begin to see an increase in accuracy, notably with RBF-SVM at 84%and
Logistic Regression at 83%, using Stats, Name, Sample 1, Sample 2 and Stats respectively. Random Forest
achieves the highest overall accuracy when using Stats, Name, Sample 1 at 85.7%.

9

A PREPRINT - NOVEMBER 27, 2019

Model Stats, Name, Sample 1, Sample 2 Stats Name Stats, Name Sample 1 Name, Sample 1 Stats, Sample 1 Stats, Name, Sample 1

Logistic Regression
Train 0.937510 0.847791 0.920136 0.934600 0.877899 0.938073 0.918985 0.933461

Validate 0.805507 0.817295 0.793905 0.803234 0.743144 0.810265 0.782491 0.798637
Test 0.814679 0.833028 0.790826 0.829358 0.812844 0.831193 0.744954 0.818349

Random Forest
Train 0.961799 0.962384 0.919563 0.969322 0.837411 0.920724 0.942126 0.967005

Validate 0.847260 0.838145 0.793825 0.858888 0.729083 0.789361 0.824218 0.851938
Test 0.844037 0.842202 0.774312 0.849541 0.781651 0.801835 0.818349 0.856881

SVM
Train 0.946764 0.901024 0.913178 0.914915 0.857066 0.934605 0.901635 0.936922

Validate 0.794012 0.807859 0.789281 0.796177 0.731489 0.805560 0.761481 0.803181
Test 0.840367 0.803670 0.790826 0.831193 0.807339 0.833028 0.811009 0.840367

Table 3: 5-fold training, cross-validation, and held-out test accuracy of classical ML models with different feature
sets.The bold fonts marks the cases where we noticed highest held-out test accuracy for that model.

Rulebased (A) Datetime Sentence Custom Object URL Numbers List Logistic Regression (B) Datetime Sentence Custom Object URL Numbers List
Datetime 135 0 4 0 0 0 Datetime 25 0 2 0 1 0
Sentence 0 39 23 0 0 25 Sentence 0 20 2 0 0 0
Custom Object 9 7 191 0 3 40 Custom Object 4 0 45 0 0 3
URL 0 0 1 23 0 0 URL 0 0 0 2 0 0
Numbers 3 0 4 0 13 0 Numbers 1 0 0 0 0 0
List 0 0 16 0 0 5 List 0 0 3 1 0 1

SVM (C) Datetime Sentence Custom Object URL Numbers List Random Forest (D) Datetime Sentence Custom Object URL Numbers List
Datetime 24 0 3 0 0 0 Datetime 24 0 3 0 0 0
Sentence 0 15 7 0 0 0 Sentence 0 19 3 0 0 0
Custom Object 0 4 48 0 0 0 Custom Object 2 2 47 0 0 0
URL 0 0 0 2 0 0 URL 0 0 0 2 0 0
Numbers 0 0 1 0 0 0 Numbers 1 0 0 0 0 0
List 0 2 3 0 0 0 List 0 2 3 0 0 0

Table 4: Confusion matrices (A) Rule-based approach, (B) Logistic Regression, (C) RBF-SVM, and (D)
RandomForests. Rows represent actual class and columns represent predicted class. Note that the rule-based results are

on theentire data set, while the ML models were on the held-out test set.

Tables 3(B,C,D) show the common trend of our ML models failing to correctly predict Numbers and List attributes.
Again, we believe that this is likely a result of imbalanced class distribution. This is further shown by the held-out test
set containing only 5 List items and a single Numbers attribute. We observe that amongst all models, URL attributes
achieve a 100% correct prediction rate, although this may change based on increased distribution. Reasoning may
be behind the unique and uniform structure of URL attributes, however further examination is required. As for the
remaining classes, we observe minimal variation between correct and incorrect predictions. The inclusion of additional
features and increased data set size, may alter these results, however as seen in accuracy, classical ML models perform
relatively similar to one another.

6.3 Comparing to Pandas

We compared our models to the popular Python library, Pandas ver. 0.23.3. The library currently has it’s own method
for inferring a datatype, infer_dtype()[6]. To compare our models, we’ve taken all Datetime items and mapped
the other labels as Not-Datetime. We then recorded our results for classification and compared it to Panda’s built-in
method. We anticipated the library to infer it’s own Datetime type[7], however that was not the result. Shown in Table
6, there are no positive classification results for Datetime. The issue encountered is that Pandas fails to correctly infer a
datatype from raw data. To receive the correct label, the data must be casted to it’s appropriate datatype first. We’ve also
replicated this approach for Numbers but also received similar results. In our context, Number items were recognized as
Pandas’ mixed-integer and Datetime as string.

Although Pandas’ intended method infer_dtype() is unsuccessful at correctly predicting Datetime objects, the
library does offer a built-in class pandas.Timestamp. This class was also used earlier in our rule-based approach
because of it’s reliability in correctly predicting Datetime data. For most entries, the built-in class is capable of correctly
identifying between Datetime and Not-Datetime data, but fails at text representations of dates (i.e "May 4, 2019"). Since
Pandas is only capable of reliably classifying one of our labels, it is likely not suitable for automating embedded data
type inferencing.

Pandas Rulebased Logistic Regression Random Forest RBF-SVM
Datetime Not-Datetime Datetime Not-Datetime Datetime Not-Datetime Datetime Not-Datetime Datetime Not-Datetime

Precision 0 1 1 1 1 0.976 0.96 0.96 1 0.803
Recall 0 0.752 1 1 0.926 1 0.88 0.987 0.259 1

Accuracy 0.752 1 0.982 0.963 0.816

Table 5: Comparison of methods for Datetime vs Not-Datetime classification. Pandas is utilizing the library method
infer_dtype(). Each method was used on the held out test set.

10

A PREPRINT - NOVEMBER 27, 2019

Features Train Validation Test
nan %, mean token count, stdev token count, has delims,

mean stopword total, mean whitespace count, mean char count,
mean delim count, stdev stopword total,stdev whitespace count,
stdev char count, stdev delim count, has url, has date, has email,

attr name, sample

0.9641182876769708 0.8380379577653034 0.8385321100917432

mean token count, stdev token count, has delims,
mean stopword total, mean whitespace count, mean char count,
mean delim count, stdev stopword total, stdev whitespace count,
stdev char count, stdev delim count, has url, has date, has email,

attr name, sample

0.9513914718941108 0.8403635391606521 0.8275229357798166

stdev token count, has delims, mean stopword total,
mean whitespace count, mean char count, mean delim count,

stdev stopword total, stdev whitespace count, stdev char count,
stdev delim count, has url, has date, has email, attr name, sample

0.9617927452458742 0.8449879711307137 0.8275229357798164

has delims, mean stopword total, mean whitespace count, mean char count,
mean delim count, stdev stopword total, stdev whitespace count,

stdev char count, stdev delim count, has url, has date,
has email, attr name, sample

0.9623774817793416 0.8404437316225607 0.8256880733944953

mean stopword total, mean whitespace count, mean char count, mean delim count,
stdev stopword total, stdev whitespace count, stdev char count,

stdev delim count, has url, has date, has email, attr name, sample
0.9641149367512776 0.840336808340016 0.8330275229357798

mean whitespace count, mean char count, mean delim count, stdev stopword total,
stdev whitespace count, stdev char count, stdev delim count,

has url, has date, has email, attr name, sample
0.9612180614894864 0.8449612403100776 0.8366972477064221

mean char count, mean delim count, stdev stopword total, stdev whitespace count,
stdev char count, stdev delim count, has url, has date, has email, attr name, sample 0.95717684510346 0.8379577653033948 0.8550458715596329

mean delim count, stdev stopword total, stdev whitespace count, stdev char count,
stdev delim count, has url, has date, has email, attr name, sample 0.939824076401106 0.8008553862603582 0.8183486238532109

stdev stopword total, stdev whitespace count, stdev char count, stdev delim count,
has url, has date, has email, attr name, sample 0.9513747172656448 0.8079657845495858 0.8073394495412846

stdev whitespace count, stdev char count, stdev delim count,
has url, has date, has email, attr name, sample 0.949054201223088 0.814915797914996 0.798165137614679

stdev char count, stdev delim count, has url, has date, has email, attr name, sample 0.9496540169221748 0.7963646083934777 0.8055045871559633
stdev delim count, has url, has date, has email, attr name, sample 0.9496456396079416 0.7871157444533547 0.781651376146789

has url, has date, has email, attr name, sample 0.9160777414760828 0.7592889601710773 0.7963302752293578
has date, has email, attr name, sample 0.9218614392225852 0.7754343758353381 0.8110091743119267

has email, attr name, sample 0.8871760073720365 0.754557604918471 0.7871559633027523
attr name, sample 0.969322 0.858888 0.8489541

sample 0.837411 0.729083 0.781651

Table 6: Ablation results for Random Forest. In bold is each of the best accuracies for Train, Validation and Test.

Attribute
Name

Sample
Value mean_word_count mean_whitespace_count True

Label
RF

Prediction
1 site_info Sidewalk: Curb side: Cutout 4.79 3.79 List Custom Object
2 soloists [{u’soloistName’: u’Voigt, Deborah’, u’soloist... 5.66 4.66 Custom Object Sentence
3 duration 30.178 1 0 Numbers Datetime
4 WHOIS_UPDATED_DATE 16/11/2016 1 0.92 Datetime Custom Object
5 WHOIS_REGDATE 18/01/1994 1.92 0.92 Datetime Custom Object
6 Location -122.316794,37.9240876,0 1 0 Custom Object Datetime
7 item Total Value Added 4.75 3.75 Custom Object List

Table 7:Random Forest misclassification samples. Not all features shown. Results are from the held-out test set.

7 Further Analysis of Random Forest

7.1 Ablation Results

To ensure that our features are not creating issues, we have included an ablation study of our entire feature set. Results
show that the overall best test accuracy comes from mean_char_count, mean delim_count, stdev_stopword_total,
stdev_whitespace count, stdev_char_count, stdev_delim_count, has_url, has_date, has_email combined with the
attribute name and a single sample at 85.5%. This can be viewed on Table 6.

7.2 Error Analysis

Table 7 shows the misclassification samples from the Random Forest model. Not all features are shown and there is
currently still work being done to find any significant patterns among certain labels that have been misclassified. There
are current issues with finding any significant cause since the held-out test set is much smaller than the overall dataset.

11

A PREPRINT - NOVEMBER 27, 2019

8 DISCUSSION

8.1 Results

Our current classical ML models achieve near 85% accuracy. This is an 11% lift accuracy in comparison to our
rule-based heuristic which utilizes existing methods. As we improve our current work, the potential to utilize machine
learning for embedded type inferencing becomes increasingly tangible. In addition to this is presentation that existing
methods are not sufficient for such a task.

8.2 Future Direction

Data set As can be recalled from Figure 2, there is an imbalance within the current data set. Our first solution would
be generating a synthetic data set in order to improve label distribution and increase overall data set size. This should
prove to be relatively straight-forward for the lacking categories (URL, List, Numbers) as their attributes are fairly
distinct from other data with specific formats. A secondary approach would be retrieving additional data sets from
domains specific to our current needs. For instance, Numbers is specifically composed of numeric values embedded
within strings, used to convey some form of currency or metric system. This could lead to the immediate search for
data sets inclusive of pricing, measurements, and other appropriate metrics. The same would apply to URL and List
attributes, increasing label distribution, while adding to other categories as well. This instance can be seen data sets
containing URL and Numbers attributes, while also containing Datetime and Custom object columns.

Featurization Our current feature set includes the n-gram set of the column name and random samples, as well as our
descriptive statistics, however there may be room for additional features. Such additions may include delimiter count,
although this would require explicitly stating which delimiters should be accounted for. Further examination is required
for potential features, as well as an additional ablation study to gauge model improvement and the usefulness of the
feature.

Neural models, time measurements, and setup In our work, we present the results of a rule-based heuristic and
classical ML models. Due to time constraints, we have yet to test the effectiveness in neural models. We hypothesize
potential accuracy increases, however this work is still in progress. With the addition of neural models would be the
usage of computation time and alteration of setup. Mentioned in our methodology, our work was run locally on a
mid-2012 model MacBook pro. However, with the change in setup to a CloudLab’s systems, we can expect to see
better, more consistent training times, with additional timing of prediction results for our labels. Additionally, we can
conduct a larger scale ablation study, making note of the best combination of hyper-parameters per feature set.

9 RELATED WORK

Existing Embedded Data Type Inferencing As mentioned earlier, the popular library Pandas[3] is unable to correctly
infer unlabeled data types. This issue stems from being unable to identify raw datatypes despite having a large dictionary
containing items similar to ours including datetime, time, and mixed-integer. The library requires that the raw
data be casted to some existing object prior to using the library’s method of inference, a task that this project attempts to
semi-automate.

AutoML Platforms Salesforce’s TransmogrifAI[8] shows to be an efficient tool for automating the machine learning
process, however does not cover data preparation. As advertised, the user should use TransmogrifAI to "Rapidly train
good quality machine learnt models with minimal hand tuning"[9]. This emphasizes stages such as feature engineering
and model selection, not data preparation or data type inference.

Data Preparation Platforms Trifacta[10] is an example of an existing service that helps enhance productivity during
data preparation. The platform provides an interface for preparing data according the the users’ desire as well as
additional insight about the data given. However, this requires user interaction including manually interacting with
the dataset and identifying key features for machine learning projects. This manual work is what our project aims to
automate, eliminating the manual work needed and further increasing productivity. Additionally, Trifacta is a paid
service with minimal features available at a free level[11], whereas our work is open source.

12

A PREPRINT - NOVEMBER 27, 2019

Model Stats, Name, Sample 1, Sample 2 Stats Name Stats, Name Sample 1 Name, Sample 1 Stats, Sample 1 Stats, Name, Sample 1

Random Forest
Train 0.9381 0.8490 0.9197 0.9479 0.8374 0.9207 0.9311 0.9479

Validation 0.8078 0.7386 0.7938 0.8217 0.7291 0.7894 0.7871 0.8103
Test 0.8073 0.7761 0.7743 0.8275 0.7817 0.8018 0.778 0.8073

Logistic Regression
Train 0.9439 0.6771 0.9201 0.9311 0.8779 0.9381 0.886 0.9415

Validation 0.8056 0.6713 0.7939 0.7892 0.7431 0.8103 0.7406 0.8033
Test 0.8128 0.6605 0.7908 0.8 0.8128 0.8312 0.7376 0.8220

SVM
Train 0.9473 0.7419 0.9132 0.9155 0.8571 0.9346 0.8843 0.9451

Validation 0.7894 0.6597 0.7893 0.794 0.7315 0.8056 0.7522 0.8023
Test 0.8385 0.7321 0.7908 0.8055 0.8073 0.833 0.8 0.8073

Table 8: 5-fold training, cross-validation, and held-out test accuracy of classical ML models with different feature sets.
The bold fonts marks the cases where we noticed highest held-out test accuracy for that model.

Rule-Based Heuristic (A) Datetime Sentence Custom Object URL Numbers List Logistic Regression (B) Datetime Sentence Custom Object URL Numbers List
Datetime 135 0 4 0 0 0 Datetime 24 0 3 0 0 0
Sentence 0 39 23 0 0 25 Sentence 0 13 9 0 0 0
Custom Object 9 7 191 0 3 40 Custom Object 1 1 49 0 0 0
URL 0 0 1 23 0 0 URL 0 0 0 2 0 0
Numbers 3 0 4 0 13 0 Numbers 0 0 1 0 0 0
List 0 0 16 0 0 5 List 0 1 3 1 0 0

RBF-SVM (C) Datetime Sentence Custom Object URL Numbers List Random Forest (D) Datetime Sentence Custom Object URL Numbers List
Datetime 24 0 3 0 0 0 Datetime 24 0 2 0 1 0
Sentence 0 15 7 0 0 0 Sentence 2 13 7 0 0 0
Custom Object 0 4 48 0 0 0 Custom Object 4 2 45 0 1 0
URL 0 0 0 2 0 0 URL 0 0 0 2 0 0
Numbers 0 0 1 0 0 0 Numbers 0 0 1 0 0 0
List 0 2 3 0 0 0 List 0 0 5 0 0 0

Table 9: Confusion matrices (A) Rule-based approach, (B) Logistic Regression, (C) RBF-SVM, and (D) Random
Forests. Rows represent actual class and columns represent predicted class. Note that the rule-based results are on the

entire data set, while the ML models were on the held-out test set.

References

[1] Vraj Shah, Premanand Kumar, Kevin Yang, Arun Kumar. Towards Semi-Automatic ML Feature Type Inference.
https://adalabucsd.github.io/papers/TR_2019_SortingHat.pdf.

[2] Github: Towards Semi-Automatic Embedded Data Type Inferencing Jonathan Lacanlale
https://github.com/lacanlale/TowardsAutoEmbeddedDataTypeInf

[3] pandas: powerful Python data analysis toolkit https://pandas.pydata.org/pandas-docs/stable/
[4] Kaggle Datasets. https://www.kaggle.com/datasets.
[5] University of California, Irvine: ML Repository https://archive.ics.uci.edu/ml/index.php.
[6] Efficiently infer the type of a passed val or list-like array of values.

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.api.types.infer_dtype.html
[7] Pandas Timestamp object. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Timestamp.html
[8] Automated machine learning for structured data. https://transmogrif.ai/
[9] Salesforce TransmogrifAI FAQ https://docs.transmogrif.ai/en/stable/faq/index.html#what-is-transmogrifai
[10] An Intelligent Platform that Interoperates with Your Data Investments https://www.trifacta.com/
[11] Trifacta Pricing https://www.trifacta.com/products/pricing/

10 APPENDIX

10.1 Older Descriptive Statistics Set and Results

Initially, our descriptive statistics set was composed of num_nans, %_nans, mean_word_count,
std_dev_word_count, has_delimiters. Our results and confusion matrices are presented below. (Table
8 and 9, respectively).

13

	INTRODUCTION
	BACKGROUND
	ML Terms and Concepts
	Assumptions and Scope

	OVERVIEW
	DATASET
	Label Vocabulary
	Data Sources
	Base Featurization
	Labelling Process
	Data Statistics

	APPROACHES COMPARED
	Feature Extraction
	Rule-Based Baseline
	Classical ML Models

	EMPIRICAL STUDY AND ANALYSIS
	Methodology, Set up, and Metrics
	End-to-end Accuracy Results
	Comparing to Pandas

	Further Analysis of Random Forest
	Ablation Results
	Error Analysis

	DISCUSSION
	Results
	Future Direction

	RELATED WORK
	APPENDIX
	Older Descriptive Statistics Set and Results

