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ABSTRACT
Deep neural networks (deep nets) are revolutionizing many machine learning (ML) applications. But there is a
major bottleneck to wider adoption: the pain of model selection. This empirical process involves exploring the
deep net architecture and hyper-parameters, often requiring hundreds of trials. Alas, most ML systems focus
on training one model at a time, reducing throughput and raising costs; some also sacrifice reproducibility. We
present CEREBRO, a system to raise deep net model selection throughput at scale without raising resource costs
and without sacrificing reproducibility or accuracy. CEREBRO uses a novel parallel SGD execution strategy we
call model hopper parallelism. Experiments on Criteo and ImageNet datasets show CEREBRO offers up to 10X
speedups and improves resource efficiency significantly compared to existing systems like Parameter Server,
Horovod, and task parallel tools.

1 INTRODUCTION

Deep learning is revolutionizing many machine learning
(ML) applications. Their success at major Web companies
has created excitement among practitioners in other settings,
including domain sciences, enterprises, and small Web com-
panies, to try deep nets for their applications. But training
deep nets is a painful empirical process, since accuracy is
tied to the neural architecture and hyper-parameter settings.
Common practice to choose these settings is to empirically
compare as many training configurations as possible for the
application. This process is called model selection, and it
is unavoidable because it is how one controls underfitting
vs overfitting (Shalev-Shwartz & Ben-David, 2014). For
instance, Facebook often tries hundreds of configurations
for just one model (Facebook, Accessed August 31, 2019).

Model selection is a major bottleneck for adoption of deep
learning among enterprises and domain scientists due to
both the time spent and resource costs. Not all ML users
can afford to throw hundreds of GPUs at their task and burn
resources like the Googles and Facebooks of the world.

Example. Alice is a data scientist working for an e-
commerce company. She has been tasked to train a deep
convolutional neural network (CNN) to identify brands in
product images. During model selection, she tries 5 CNN
architectures and 5 values each for the initial learning rate
and regularizer. So, she already has 125 training configu-
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rations to try. Later, she also tries 3 new CNNs and uses
an “AutoML” procedure such as Hyperband (Li et al., 2016)
to automatically decide the hyper-parameter settings. Also,
her company mandates that all ML experiments have to be
reproducible across multiple runs. It is too tedious and cum-
bersome for Alice to manually train and evaluate all these
configurations. Thus she wishes to use a model selection
system to manage and execute this workload efficiently.

1.1 System Desiderata for Model Selection

We identify four main groups of desiderata:

Throughput. Regardless of manual grid/random searches
or AutoML searches, a key bottleneck for model selection is
throughput: how many training configurations are evaluated
per unit time. Higher throughput means users like Alice
can iterate through more configurations in bulk, potentially
reaching a better accuracy sooner.

Scalability. Deep learning often involves large training
datasets, larger than single-node memory and sometimes
even disk. Deep net model selection is also highly compute-
intensive. Thus, we desire out-of-the-box scalability to a
cluster with large partitioned datasets (data scalability) and
distributed execution (compute scalability).

Efficiency. Deep net training uses variants of mini-batch
stochastic gradient descent (SGD). To improve efficiency,
the model selection system has to avoid wasting resources
and maximize resource utilization for executing SGD on a
cluster. We identify 4 key forms of efficiency: (1) per-epoch
efficiency: time to complete an epoch of training; (2) conver-
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Figure 1. Qualitative comparisons of existing systems on key system desiderata for a model selection system.

Table 1. Notation used in Section 1
Symbol Description

S Set of training configurations

p Number of data partitions/workers

k Number of epochs for S to be trained

m Model size (uniform for exposition sake)

b Mini-batch size

D Training dataset (<D> : dataset size, |D| :
number of records)

gence efficiency: time to reach a given accuracy metric; (3)
memory/storage efficiency: amount of memory/storage used
by the system; and (4) communication efficiency: amount of
network bandwidth used by the system.

Reproducibility. Ad hoc model selection with distributed
training is a major reason for the “reproducibility crisis” in
deep learning (Warden, Accessed August 31, 2019). While
some Web giants may not care about unreproducibility for
some use cases, this is a showstopper issue for many enter-
prises due to auditing, regulations, and/or other legal reasons.
Most domain scientists also inherently value reproducibility.

1.2 Limitations of Existing Systems

Popular deep learning training systems like TensorFlow
focus on the latency of training one model at a time, not
on throughput. The simplest way to raise throughput is
parallelism. Thus, various parallel execution approaches
have been studied. But all these approaches have some
practical limitations as Figure 1 shows (Table 1 lists the
notation). We group these approaches into 4 categories:

Embarrassingly Task Parallel. Tools such as Python
Dask, Celery, and Ray (Moritz et al., 2018) can run dif-
ferent training configurations on different workers in a task
parallel manner. Each worker can use logically sequential
SGD which yields best convergence efficiency. This is also

reproducible. There is no communication across workers
during training, but the whole dataset must be copied to each
worker, which does not scale to large partitioned datasets.
Copying datasets to all workers is also highly wasteful of
resources, both memory and storage, raising costs. Alter-
natively, one could use remote storage (e.g., S3) to read
data on the fly. But this will incur massive communication
overheads and costs due to remote reads.

Bulk Synchronous Parallel (BSP). BSP systems such as
Spark and TensorFlow with model averaging (tfm, Accessed
August 31, 2019) parallelize one model at a time. They
partition the dataset across workers, yielding high memo-
ry/storage efficiency. They broadcast a model, train models
independently on each worker’s partition, collect all models
on the master, average the weights (or gradients), and repeat
this every epoch. Alas, this approach converges poorly for
highly non-convex models; so, it is almost never used for
deep net training (Su & Chen, 2015).

Centralized Fine-grained. These systems also parallelize
one model at a time on partitioned data but at the finer gran-
ularity of each mini-batch. The most prominent example is
Parameter Server (PS) (Li et al., 2014). PS has two variants:
synchronous and asynchronous. Asynchronous PS is highly
scalable but unreproducible; it often has poorer convergence
than synchronous PS due to stale updates but synchronous
PS has higher overhead for synchronization. All PS-style ap-
proaches have high communication costs compared to BSP
due to their centralized all-to-one communications, which
is proportional to the number of mini-batches.

Decentralized Fine-grained. The best example is
Horovod (Sergeev & Balso, 2018). It adopts HPC-style
techniques to enable synchronous all-reduce SGD. While
this approach is bandwidth optimal, communication latency
is still proportional to the number of workers, and the syn-
chronization barrier can become a bottleneck. The total
communication overhead of this method is also asymptoti-
cally similar to that of Centralized Fine-grained methods.
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1.3 Our Work

We present CEREBRO, a new system for deep net model
selection that raises throughput without raising resource
costs. Our target setting is small clusters (say, tens of nodes),
which covers a vast majority (over 90%) of parallel ML
workloads in practice (Pafka, Accessed August 31, 2019).
This paper makes the following contributions:

• We present a novel parallel SGD execution strategy
we call model hopper parallelism (MOP) that satisfies
all the desiderata in Section 1.1 by exploiting a formal
property of SGD: robustness to data visit ordering.

• We build CEREBRO, a general and extensible deep net
model selection system using MOP. CEREBRO can
support multiple deep learning tools and model se-
lection APIs. We integrate it with TensorFlow and
PyTorch and currently support grid/random searches
and two AutoML procedures.

• We formalize the MOP-based model selection schedul-
ing problem in CEREBRO and compare three alterna-
tive schedulers (MILP-based, approximate, and ran-
domized) using simulations. We find that a simple
randomized scheduler works well in our setting.

• We extend CEREBRO and its scheduler to exploit par-
tial data replication and also support fault tolerance.

• We perform an extensive empirical comparison on real
model selection workloads and datasets. CEREBRO is
up to 10x faster and offers significantly higher overall
resource efficiency than existing popular ML systems.

2 MODEL HOPPER PARALLELISM

We first explain how MOP works and then describe its prop-
erties. We are given a set S of training configurations. For
simplicity of exposition, assume each runs for k epochs.
Shuffle the dataset once and split into p partitions, with each
partition located on one of p worker machines. Given these
inputs, MOP works as follows. Pick p configurations from
S and assign one per worker (Section 4 explains how we
pick the subset). On each worker, the assigned configura-
tion is trained on the local partition for a single sub-epoch,
which we also call a training unit. Completing a training
unit puts that worker back to the idle state. An idle worker
is then assigned a new configuration that has not already
been trained and also not being currently trained on another
worker. Overall, a model “hops” from one worker to another
after a sub-epoch. Repeat this process until all configura-
tions are trained on all partitions, completing one epoch
of SGD for each model. Repeat this every epoch until all
configurations in S are trained for k epochs. The invariants
of MOP can be summarized as follows:

• Completeness: In a single epoch, each training config-
uration is trained on all workers exactly once.

Task Parallel Systems

Bulk 
(Partitions)

Fine-grained 
(Mini-batches)

Asynchronous

Synchronous

Data Parallel Systems

Dask, Celery Async. Param. 
Server

Sync. Param. 
Server, 

Horovod

Spark, 
TF Model  
Averaging

MOP/Cerebro 
(This Work)

No Partitioning 
(Full replication)

Figure 2. Model hopper parallelism (MOP) as a hybrid approach
of task and data parallelism.

• Model training isolation: Two training units of the
same configuration are not run simultaneously.

• Worker/partition exclusive access: A worker executes
only one training unit at a time.

• Non-preemptive execution: An individual training unit
is run without preemption once started.

Insights Underpinning MOP. MOP exploits a formal prop-
erty of SGD: any random ordering of examples suffices for
convergence (Bertsekas, 1997; Bottou, 2009). Each of the p
configurations visits the data partitions in a different (pseu-
dorandom) order but each visit is sequential. Thus, MOP
offers high accuracy for all models, comparable to sequen-
tial SGD. While SGD’s robustness has been exploited before
in ML systems, e.g., in Parameter Server (Li et al., 2014),
MOP is the first to do so at the partition level instead of
mini-batches to reduce communication costs. This is possi-
ble because we connect this property with model selection
workloads instead of training one model at a time.

Positioning MOP. As Figure 2 shows, MOP is a novel
hybrid of task and data parallelism that can be seen as a form
of “bulk asynchronous” parallelism. Like task parallelism,
MOP trains many configurations in parallel but like BSP, it
runs on partitions. So, MOP is more fine-grained than task
parallelism but more coarse-grained than BSP. MOP has
no global synchronization barrier within an epoch. Later
in Section 4, we dive into how CEREBRO uses MOP to
schedule S efficiently and in a general way. Overall, while
the core idea of MOP is simple–perhaps even obvious in
hindsight–it has hitherto not been exploited in ML systems.

Communication Cost Analysis. MOP reaches the theoret-
ical minimum cost of kmp|S| for data-partitioned training
(Figure 1), assuming data is fixed and equivalence to se-
quential SGD is desired. Crucially, note that this cost does
not depend on batch size, which underpins MOP’s higher
efficiency. BSP also has the same asymptotic cost but un-
like MOP, BSP typically converges poorly for deep nets
and lacks sequential-equivalence. As Section 1.2 shows,
fine-grained approaches like PS and Horovod have commu-
nication costs proportional to the number of mini-batches,
which can be orders of magnitude higher. In our setting, p
is under low 10s, but the number of mini-batches can even
be 1000s to millions based on the batch size.
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workload_summary = launch(D, S, automl_mthd, input_fn, model_fn, train_fn)

/***********************************Input Parameters*****************************************/

D                    : Name of the dataset that has been already registered

S                    : Set of initial training configurations

automl_mthd : Name of the AutoML method to be used (e.g., Grid/Hyperband)

input_fn         : Pointer to a function which given an input file path returns

                        in-memory array objects of features and labels(for supervised

                        learning)

model_fn       : Pointer to a function which given a training configuration creates

                        the corresponding model architecture

train_fn          : Pointer to a function which given the model and data performs 

                        the training for one training unit

/**************************************************************************************************/

Figure 3. CEREBRO user facing API for launching a model selec-
tion workload.

Reproducibility. MOP does not restrict the visit ordering.
So, reproducibility is trivial in MOP: log the worker visit
order for each configuration per epoch and replay with this
order. Crucially, this logging incurs very negligible over-
head because a model hops only once per partition, not for
every mini-batch, at each epoch.

3 SYSTEM OVERVIEW

We present an overview of CEREBRO, an ML system that
uses MOP to execute deep net model selection workloads.

3.1 User Facing API

The CEREBRO API allows users to do 2 things: (1) register
workers and data; and (2) launch a model selection work-
load and get the results. Workers are registered by providing
their IP addresses. For registering a dataset, CEREBRO ex-
pects the list of data partitions and their availability on each
worker. We assume shuffling and data partitioning across
workers is already handled by other means. This common
data ETL step is orthogonal to our focus and is not a major
part of the total time for multi-epoch deep net training.

The API for launching a workload is shown in Figure 3.
It takes the reference to the dataset, set of initial training
configurations, the AutoML procedure, and 3 user-defined
functions: input fn, model fn, and train fn. CERE-
BRO invokes input fn to read and pre-process the data. It
then invokes model fn to instantiate the model architec-
ture and potentially restore the model state from a previous
checkpointed state. The train fn is invoked to perform one
sub-epoch of training. We assume validation data is also
partitioned and use the same infrastructure for evaluation.
During evaluation, CEREBRO marks model parameters as
non-trainable before invoking train fn. More API details,
including full signatures of all functions and a fleshed out
example of how to use CEREBRO are provided in the Ap-
pendix due to space constraints.

3.2 System Architecture

We adopt an extensible architecture, as Figure 4 shows. This
allows us to easily support multiple deep learning tools and
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Figure 4. High-level system architecture of CEREBRO system.

AutoML procedures. There are 5 main components: (1)
API, (2) Scheduler, (3) Task Executor, (4) Catalog, and
(5) Resource Monitor. Scheduler is responsible for orches-
trating the entire workload. It relies on worker and data
availability information from the Catalog. Task Executor
launches training units on the cluster and also handles model
hops. Resource Monitor is responsible for detecting worker
failures and updating the Resource Catalog. Next, we de-
scribe how CEREBRO’s architecture enables high system
generality. Section 4 explains how the Scheduler works and
how we achieve fault tolerance and elasticity.

Supporting Multiple Deep Learning Tools. The func-
tions input fn, model fn, and train fn are written by
users in a standard deep learning tool’s APIs. To support
multiple such tools, we adopt a handler-based architecture
to delineate tool-specific aspects: model training, check-
pointing and restoring. Note that checkpointing and restor-
ing is how CEREBRO realizes model hops. Task Executor
automatically injects the tool-specific aspects from the cor-
responding tool’s handler and runs these functions on the
workers. Overall, CEREBRO’s architecture is highly general
and supports virtually all forms of data types, deep net ar-
chitectures, loss functions, and SGD-based optimizers. We
currently support TensorFlow and PyTorch; it is simple to
add support for more tools.

Supporting Multiple AutoML Procedures. Metaheuris-
tics called AutoML procedures are common for exploring
training configurations. We now make a key observation
about such procedures that underpins our Scheduler. Most
AutoML procedures fit a common template: create an initial
set of configurations (S) and evaluate them after each epoch
(or every few epochs). Based on the evaluations, terminate
some configurations (e.g., as in Hyperband (Li et al., 2016)
and PBT (Jaderberg et al., 2017)) or add new configurations
(e.g., as in PBT). Grid/random search is a one-shot instance



Resource-Efficient and Reproducible Model Selection on Deep Learning Systems

Table 2. Additional notation used in the MOP MILP formulation
Symbol Description

T ∈ IR|S|×p Ti,j is the runtime of unit si,j
(ith configuration on jth worker)

C Makespan of the workload

X ∈ IR|S|×p Xi,j is the start time of the ex-
ecution of ith configuration on
jth partition/worker

Y ∈ {0, 1}|S|×p×p Yi,j,j′ = 1⇐⇒ Xi,j < Xi,j′

Z ∈ {0, 1}|S|×|S|×p Zi,i′,j = 1⇐⇒ Xi,j < Xi′,j

V Very large value (Default: sum
of training unit runtimes)

of this template. Thus, we use this template in our Scheduler.
Given S, CEREBRO trains all models in S for one epoch and
passes control back to the corresponding AutoML procedure
for convergence/termination/addition evaluations. CERE-
BRO then gets a potentially modified set S′ for the next
epoch. This approach also lets CEREBRO support data re-
shuffling after each epoch. But the default (and common
practice) is to shuffle only once up front. Currently, CERE-
BRO supports grid search, random search, Hyperband, and
PBT. It is simple to extend our API to support more AutoML
procedures and arbitrary convergence criteria.

3.3 System Implementation Details

We prototype CEREBRO in Python using the XML-RPC
client-server package. CEREBRO itself runs on the client.
Each worker runs a single service. Scheduling follows a
pushed-based model; Scheduler assigns tasks and period-
ically checks the responses from the workers. We use a
network file server (NFS) as the central repository for check-
pointed models and as a common file system visible to all
workers. Model hopping is realized implicitly by workers
writing models to and reading models from this shared file
system. This doubles the communication cost of MOP to
2kmp|S|, still a negligible overhead. But using NFS greatly
reduces engineering complexity to implement MOP.

4 CEREBRO SCHEDULER

Scheduling training units on workers properly is critical
because pathological orderings can under-utilize resources
substantially, especially when the neural architectures and/or
workers are heterogeneous. Thus, we now formalize the
MOP-based scheduling problem and explain how we de-
sign our Scheduler. For starters, assume each of the p data
partitions is assigned to only one worker.

4.1 Formal Problem Statement as MILP

Suppose the runtimes of each training unit, aka unit times,
are given. These can be obtained with, say, a pilot run for a
few mini-batches and then extrapolating (this overhead will
be marginal). The objective and constraints of the MOP-
based scheduling problem is as follows. Table 2 lists the
additional notation used here.

Objective: min
C,X,Y,Z

C (1)
Constraints:

∀i, i′ ∈ [1, . . . , |S|] ∀j, j′ ∈ [1, . . . , p]

(a) Xi,j ≥ Xi,j′ + Ti,j′ − V · Yi,j,j′

(b) Xi,j′ ≥ Xi,j + Ti,j − V · (1− Yi,j,j′)

(c) Xi,j ≥ Xi′,j + Ti′,j − V · Zi,i′,j

(d) Xi′,j ≥ Xi,j + Ti,j − V · (1− Zi,i′,j)

(e) Xi,j ≥ 0

(f) C ≥ Xi,j + Ti,j

(2)

We need to minimize makespan C, subject to the constraints
on C, unit start times X , model training isolation matrix
Y , and worker/partition exclusive access matrix Z. The
constraints enforce some of the invariants of MOP listed
in Section 2. Equations 2.a and 2.b ensure model training
isolation. Equations 2.c and 2.d ensure worker exclusive
access. Equation 2.e ensures that training unit start times
are non-negative and Equation 2.f ensures that C captures
the time taken to complete all training units.

Given the above, a straightforward approach to scheduling
is to use an MILP solver like Gurobi (Gurobi, Accessed
August 31, 2019). The start times X then yield the actual
schedule. But our problem is essentially an instance of the
classical open-shop scheduling problem, which is known
to be NP-Hard (Gonzalez & Sahni, 1976). Since |S| can
even be 100s, MILP solvers may be too slow (more in
Section 4.4); thus, we explore alternative approaches.

4.2 Approximate Algorithm-based Scheduler

For many special cases, there are algorithms with good ap-
proximation guarantees that can even be optimal under some
conditions. One such algorithm is “vector rearrangement”
(Woeginger, 2018; Fiala, 1983). It produces an optimal
solution when |S| � p, which is possible in our setting.

The vector rearrangement based method depends on two
values: Lmax (see Equation 3), the maximum load on any
worker; and Tmax (see Equation 4), the maximum unit time
of any training configuration in S.

Lmax = max
j∈[1,...,M ]

N∑

i=i

Ti,j (3)

Tmax = max
i∈[1,...,N ],j∈[1,...,M ]

Ti,j (4)
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Algorithm 1 Randomized Scheduling
1: Input: S
2: Q = {si,j : ∀i ∈ [1, . . . , |S|],∀j ∈ [1, . . . , p]}
3: worker idle← [true, . . . ,true]
4: model idle← [true, . . . ,true]
5: while not empty(Q) do
6: for j ∈ [1, . . . , p] do
7: if worker idle[j] then
8: Q← shuffle(Q)
9: for si,j′ ∈ Q do

10: if model idle[i] and j′ = j then
11: Execute si,j′ on worker j
12: model idle[i]← false
13: worker idle[j]← false
14: remove(Q, si,j′)
15: break
16: wait WAIT TIME

If Lmax ≥ (p2+p− 1) ·Tmax, then this algorithm’s output
is optimal. When there are lot of training configurations,
the chance of the above constraint being satisfied is high,
yielding us an optimal schedule. But if the condition is
not met, the schedule produced yields a makespan C ≤
C∗ + (p − 1) · Tmax, where C∗ is the optimal makespan
value. This algorithm scales to large |S| and p because it
runs in polynomial time in contrast to the MILP solver. For
more details on this algorithm, we refer the interested reader
to (Woeginger, 2018; Fiala, 1983).

4.3 Randomized Algorithm-based Scheduler

The approximate algorithm is complex to implement in
some cases, and its optimality condition may be violated
often. Thus, we now consider a much simpler scheduler
based on randomization. This approach is simple to imple-
ment and offer much more flexibility (explained more later).
Algorithm 1 presents our randomized scheduler.

Given S, create Q = {si,j : ∀i ∈ [1, ..., |S|], j ∈ [1, .., p]},
the set of all training units. Note that si,j is the training
unit of configuration i on worker j. Initialize the state of
all models and workers to idle state. Then find an idle
worker and schedule a random training unit from Q on it.
This training unit must be such that its configuration is not
scheduled on another worker and it corresponds to the data
partition placed on that worker (Line 10). Then remove the
chosen training unit from Q. Continue this process until
no worker is idle and eventually, until Q is empty. After
a worker completes training unit si,j mark its model i and
worker j as idle again as per Algorithm 2.

4.4 Comparing Different Scheduling Methods

We perform simulation experiments to compare the effi-
ciency and makespan yielded by the three alternative sched-

Algorithm 2 Upon Completion of Training Unit si,j on
Worker j

1: model idle[i]← true
2: worker idle[j]← true
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Figure 5. Makespan and scheduling time of the generated schedule
by different scheduling methods for different settings. (A) Homo-
geneous cluster and training configurations and (B) heterogeneous
cluster training configurations.

ulers. The MILP and approximate algorithm are imple-
mented using Gurobi. We set a maximum optimization
time of 5 minutes for tractability of experimentation. We
vary the number of training configurations, size of clus-
ter, and homogeneity/heterogeneity of training configura-
tions and/or workers. We define homogeneous configura-
tions (resp. workers) as those with the same compute cost
(resp. capacity).

Training configuration compute costs are randomly sampled
from 36 popular deep CNNs from (Albanie, Accessed Au-
gust 31, 2019). The costs vary from 360 MFLOPS to 21000
MFLOPS with a mean of 5939 MFLOPS and standard de-
viation of 5671 MFLOPS. We randomly sample compute
capacities from 4 popular Nvidia GPUs: Titan Xp (12.1
TFLOPS/s), K80 (5.6 TFLOPS/s), GTX 1080 (11.3 TFLOP-
S/s), and P100 (18.7 TFLOPS/s). We report the average of 5
runs with different random seeds and also the min and max
of all 5 runs. All makespans reported are normalized by the
randomized scheduler’s makespan. Figure 5 presents the
results for homogeneous cluster and configurations, as well
as heterogeneous cluster and configurations. More results,
including on homogeneous cluster-heterogeneous configura-
tions, and other cluster sizes are presented in the Appendix
due to space constraints.

The MILP scheduler sometimes performs poorer than the
other two as it has not converged to the optimal solution
in the given time budget. Approximate algorithm-based
scheduler performs poorly when both the configurations and
workers are heterogeneous. It also takes more time than the
randomized scheduler.

Overall, the randomized approach works surprisingly well
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on all aspects: near-optimal makespans with minimal vari-
ance across runs and very fast scheduling. We believe this
interesting superiority of the randomized algorithm against
the approximation algorithm is due to some fundamental
characteristics of deep net model selection workloads, e.g.,
large number of configurations and relatively low differ-
ences in compute capacities. We leave a thorough theoret-
ical analysis of the randomized algorithm to future work.
Based on these results, we use the randomized approach as
the default Scheduler in CEREBRO.

4.5 Replica-Aware Scheduling

So far we have assumed that each partition is available only
on one worker. But some file systems (e.g., HDFS) often
replicate data files, say, for reliability sake. We now exploit
such replicas for more scheduling flexibility and faster plans.

The replica-aware scheduler requires an additional input:
availability information of partitions on workers (an avail-
ability map). In replica-aware MOP, a training configuration
need not visit all workers. This extension goes beyond open
shop scheduling, but it is still NP-Hard because the open
shop problem is a special case of this problem with a repli-
cation factor of one. We extended the MILP scheduler but
it only got slower. So, we do not use it and skip its details.
Modifying the approximate algorithm is also non-trivial be-
cause it is tightly coupled to the open shop problem; so,
we skip that too. In contrast, the randomized scheduler can
be easily extended for replica-aware scheduling. The only
change needed to Algorithm 1 is in Line 10: instead of
checking j′ = j, consult the availability map to check if the
relevant partition is available on that worker.

4.6 Fault Tolerance and Elasticity

We now explain how we make our randomized scheduler
fault tolerant. Instead of just Q, we maintain two data
structures Q and Q′. Q′ is initialized to be empty. The
process in Algorithm 1 continues until both Q and Q′ are
empty. When a training unit is scheduled, it will be removed
from Q as before but now also added to Q′. It will be
removed from Q′ when it successfully completes its training
on the assigned worker. But if the worker fails before the
training unit finishes, it will be moved back from Q′ to Q.
If the data partitions present on the failed worker are also
available elsewhere, the scheduler will successfully execute
the corresponding training units on those workers at a future
iteration of the loop in Algorithm 1.

CEREBRO detects failures via the periodic heart-beat check
between the scheduler and workers. Because the trained
model states are always checkpointed between training units,
they can be recovered and the failed training units can be
restarted. Only the very last checkpointed model is needed
for the failure recovery and others can be safely deleted for

reclaiming storage. The same mechanism can be used to
detect availability of new compute resources and support
seamless scale-out elasticity in CEREBRO.

5 EXPERIMENTAL EVALUATION

We empirically validate if CEREBRO can improve through-
put and efficiency of deep net model selection workloads.
We then perform drill-down experiments to evaluate various
aspects of CEREBRO separately.

Datasets. We use two large benchmark datasets:
Criteo (CriteoLabs, Accessed August 31, 2019) and Im-
ageNet (Deng et al., 2009). Table 3. summarizes the dataset
statistics. Criteo is an ad click classification dataset with
numeric and categorical features. It is shipped under sparse
representation. We one-hot encode the categorical features
and densify the data. Only a 2.5% random sample of the
dataset is used; we made the decision so that the evalua-
tions can complete in reasonable amount of time (several
weeks in this case). ImageNet is a popular image classifica-
tion benchmark dataset. We choose the 2012 version and
reshape the images to 112× 112 pixels.1

Table 3. Dataset details. ?All numbers are after preprocessing and
sampling of the datasets.

Dataset On-disk size Count Format Class

Criteo 400 GB 100M TFRecords 1000
ImageNet 250 GB 1.2M HDF5 Binary

Workloads. For end-to-end tests, we use grid search to
generate a set of 16 training configurations for each dataset.
Table 4 provides the details. We use Adam (Kingma & Ba,
2014) as our SGD-based optimizer. To demonstrate CERE-
BRO’s generality, we also perform an experiment where
the training configurations are generated and updated by
the PBT method. Due to space constraints, we present the
PBT results, including the Gantt chart showing the resource
utilization of MOP, in the Appendix (the trends are similar).

Experimental Setup. We use two clusters: one CPU only
and one equipped with GPUs, both on CloudLab (Ricci
et al., 2014). Each cluster has 8 worker nodes and 1 master
node. Each node in both clusters has two Intel Xeon 10-
core 2.20 GHz CPUs, 192GB memory, 1TB HDD and 10
Gbps network. Each GPU cluster worker node has an extra
Nvidia P100 GPU. All nodes run Ubuntu 16.04, and we use
TensorFlow version 1.12.0 as CEREBRO’s underlying deep
learning library. For GPU nodes, we use CUDA version
9.0 and cuDNN version 7.4.2. Both datasets are randomly
shuffled and partitioned into 8 equal sized partitions.

1We downsampled the images slightly to complete all experi-
ments, which are highly compute-intensive, in a reasonable time.
This decision does not alter the takeaways from our experiments.
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Table 4. Workloads.?architectures similar to VGG16 and ResNet50, respectively.

Dataset Model arch. Batch size Learning rate Regularization Epochs

Criteo 3-layer NN, 1000+500 hidden units {32, 64, 256, 512} {10−3, 10−4} {10−4, 10−5} 5
ImageNet {VGG16?, ResNet50?} {32, 256} {10−4, 10−6} {10−4, 10−6} 10

System
Criteo ImageNet Memory/

Storage 
Footprint

Runtime 
(hrs)

CPU Utili. Runtime 
(hrs)

GPU Utili.

TF PS - Async 144.0 6.9% 190.0 8.6% 1X

Horovod 70.3 16.0% 54.2 *92.1% 1X

TF Model 
Averaging 19.2 52.2% 19.70 72.1% 1X

Celery 27.4 41.3% 19.5 73.2% 8X

Cerebro 17.0 51.9% 17.7 79.8% 1X

* Horovod uses GPU kernels for communication. Thus, it has high GPU utilization.

(a) Makespans and CPU/GPU utilization.
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Figure 6. End-to-end results on Criteo and ImageNet.

5.1 End-to-End Results

We compare CEREBRO with 5 systems: 4 data-parallel–
synchronous and asynchronous TensorFlow Parameter
Server (PS), Horovod, BSP-style TensorFlow model
averaging–and 1 task-parallel (Celery). For Celery, we repli-
cate the entire datasets on each worker and stream them
from disk, as they do not fit in memory. For all other sys-
tems, including CEREBRO, each worker node has a single
data partition which is in-memory.

Figure 6 presents the results. We see CEREBRO signifi-
cantly improves the efficiency and throughput of the model
selection workload. On Criteo, CEREBRO is 14x faster
than synchronous PS, and it is over 8x faster than asyn-
chronous PS. Both versions of PS suffer from less than 7%
CPU utilization. CEREBRO is also 4x faster than Horovod.
CEREBRO’s runtime is comparable to model averaging with
close to 50% CPU utilization. Celery takes slightly more
time than CEREBRO due to a skew in task assignment, where
one worker runs two of the most time-consuming tasks. All
methods have almost indistinguishable convergence behav-
ior, as the dataset itself is highly skewed, and each technique
can obtain over 99% accuracy quickly.

On ImageNet, CEREBRO is over 10x faster than asyn-
chronous PS, which has a GPU utilization is as low as
8%! Synchronous PS was even slower. CEREBRO is 3x
faster than Horovod. Horovod has high GPU utilization
because these values also include the communication time
(for Horovod, while the communication is happening, the
GPU is marked busy). CEREBRO’s runtime is comparable
to model averaging and Celery. But model averaging does
not converge at all. Celery and CEREBRO have the best
learning curves, which are also almost identical, but note
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Figure 7. (A) Speedup (strong scaling). (B) Fault-tolerance.

that Celery has 8x the memory/storage footprint. Horovod
converges slower due to its larger effective mini-batch size.
Overall, CEREBRO is among the most resource-efficient
and still offers accuracy similar to sequential SGD.

5.2 Drill-down Experiments

For these experiments, unless specified otherwise, we use
the GPU cluster, ImageNet, and a model selection workload
of 8 configurations (4 learning rates, 2 regularization values,
and ResNet architectures) and train for 5 epochs. Each data
partition is only available on a single worker.

Scalability. We study the speedups (strong scaling) of
CEREBRO and Horovod as we vary the cluster sizes. Fig-
ure 7(A) shows the speedups, defined as the workload com-
pletion time on multiple workers vs a single worker. CERE-
BRO exhibits linear speedups (even slightly super-linear).
This is because of MOP’s marginal communication cost and
because the data fits entirely in cluster memory compared
to the small overhead of reading from disk on the single
worker. In contrast, Horovod exhibits sub-linear speedups
due to its higher communication costs with more workers.

Fault Tolerance. We repeat our drill-down workload with
a replication factor of 3, i.e., each data partition is available
on 3 workers. We first inject two node failures and bring the
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workers back online later. Figure 7(B) shows the time taken
for each epoch and the points where the workers failed and
returned online. Overall, we see CEREBRO’s replica-aware
randomized scheduler can seamlessly execute the workload
despite worker failures.
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Figure 8. Effect of batch size on communication overheads and
convergence efficiency. (A) Runtime against batch size. (B) The
lowest validation error after 10 epochs against batch size.

Effect of Batch Size. We now evaluate the effect of training
mini-batch size for CEREBRO and Horovod. We try 5 dif-
ferent batch sizes and report makespans and the validation
error of the best model for each batch size after 10 epochs.
Figure 8 presents the results. With batch size 32 Horovod
is 2x slower than CEREBRO. However, as the batch size
increases, the difference narrows since the relative commu-
nication overhead per epoch decreases. CEREBRO also runs
faster with larger batch size due to better hardware utiliza-
tion. The models converge slower as batch size increases.
The best validation error is achieved by CEREBRO with a
batch size of 32. With the same setting, Horovod’s best
validation error is higher than CEREBRO; this is because its
effective batch size is 256 (32 × 8). Horovod’s best vali-
dation error is closer to CEREBRO’s at a batch size of 256.
Overall, CEREBRO’s efficiency is more stable to the batch
size, since models hop per sub-epoch, not per mini-batch.

Network and Storage Efficiency. We study the tradeoff
between redundant remote reads (wastes network) vs redun-
dant data copies across workers (wastes memory/storage).
Task parallelism forces users to either duplicate the dataset
to all workers or store it in a common repository/distributed
filesystem and read remotely at each epoch. CEREBRO can
avoid both forms of resource wastage. We assume the whole
dataset cannot fit on single-node memory. We compare
CEREBRO and Celery in the following 2 settings:

Reading from remote storage (e.g., S3). In this setting,
Celery reads data from a remote storage repeatedly each
epoch. For CEREBRO we assign each worker with a data
partition, which is read remotely once and cached into the
memory. We change the data scale to evaluate effects on the
makespan and the amount of remote reads per worker. Fig-
ure 9 shows the results. Celery takes slightly more time than
CEREBRO due to the overhead of remote reads. The most
significant advantage of CEREBRO is its network bandwidth
cost, which is over 10x lower than Celery’s. After the initial
read, CEREBRO only communicates trained models during

Data Scale Data Scale

Da
ta

 re
ad

 b
y 

a 
si

ng
le

 w
or

ke
r (

G
B)

Ru
nt

im
e 

(h
ou

rs
)

(A) Runtime (B) Network Cost

Figure 9. Reading data from remote storage.
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Figure 10. Reading data from distributed storage.

the model hopping process. In situations where remote data
reads and network communications are not free (e.g., cloud
providers) Celery will incur higher monetary costs com-
pared to CEREBRO. These results show it is perhaps better
to partition the dataset on S3, cache partitions on workers on
first read, and then run CEREBRO instead of using Celery
and reading the full dataset from S3 at each epoch to avoid
copying the whole dataset across workers.

Reading from distributed storage (e.g., HDFS). In this set-
ting, the dataset is partitioned, replicated, and stored on 8
workers. We then load all local data partitions into each
worker’s memory. Celery performs remote reads for non-
local partitions. We vary the replication factor and study
its effect on the makespan and the amount of remote reads
per worker. Figure 9 presents the results. For replication
factors 1 (no replication), 2, and 4, CEREBRO incurs 100x
less network usage and is slightly faster than Celery. But at
a replication factor of 8 (i.e., entire dataset copied locally),
CEREBRO is slightly slower due to the overhead of model
hops. For the same reason, CEREBRO incurs marginal net-
work usage, while Celery has almost no network usage other
than control actions. Note that the higher the replication
factor needed for Celery, the more local memory/storage is
wasted due to redundant data. Overall, CEREBRO offers the
best overall resource efficiency–compute, memory/storage,
and network put together–for deep net model selection.

6 LIMITATIONS AND DISCUSSION

We recap the key assumptions and limitations of our work.

Number of Training Configurations. So far we assumed
|S| ≥ p. While this is reasonable for model selection on
small clusters, CEREBRO will under-utilize workers if this
condition does not hold. But interestingly, CEREBRO can
still often outperform Horovod in some cases when |S| < p.
Figure 11 shows some results on Criteo. Horovod’s runtime
grows linearly with more configurations, but CEREBRO is
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Figure 11. Runtime comparison on on Criteo on an 8-node clus-
ter when Cerebro is under-utilizing resources. Configs: same
model as in Table 4, learning rates drawn from {10−3, 10−4, 5×
10−5, 10−5}, weight decays drawn from {10−4, 10−5}.

constant. For instance, at batch size 128 with |S| = 2 only,
CEREBRO matches Horovod’s performance. This is be-
cause CEREBRO’s communication costs are negligible. We
also explored a hybrid of MOP and Horovod, discussed
further in the Appendix due to space constraints. It was bot-
tlenecked by Horovod’s network overheads, and mitigating
this issue will require careful data re-partitioning strategies,
which we leave to future work. Another hybrid we plan to
pursue in future work is MOP with model averaging, say,
for the latter stages of Hyperband when |S| can go below p.

Model Parallelism and Batching. CEREBRO currently
does not support model parallelism (for models larger than
single-node memory) and batching (i.e., running multiple
models on a worker at a time). But nothing in CERE-
BRO makes it impossible to remove these limitations. For
instance, model parallelism can be supported with the no-
tion of virtual nodes composed of multiple physical nodes
that together hold an ultra-large model. Model batching can
be supported by having multiple virtual nodes mapped to a
physical node. We leave such extensions to future work.

Integration into Data-Parallel Systems. MOP’s general-
ity makes it amenable to emulation on top of BSP data-
parallel systems such as parallel RDBMSs and dataflow sys-
tems. We are collaborating with Pivotal to integrate MOP
into Greenplum by extending the MADlib library (MADlib,
Accessed August 31, 2019) for running TensorFlow on
Greenplum-resident data. Pivotal’s customers are interested
in this integration for enterprise ML use cases including lan-
guage processing, image recognition, and fraud detection.
We also plan to integrate MOP into Spark in a similar way.

7 RELATED WORK

Cluster Scheduling for Deep Learning. Gandiva (Xiao
et al., 2018) is a cluster scheduling system for deep learning
that also targets model selection. But its focus is on lower-
level primitives such as GPU time slicing and intra-server
locality awareness. CEREBRO is complementary as it oper-
ates at a higher abstraction level. Tiresias (Gu et al., 2019)
is another GPU cluster manager for deep learning. It targets
Parameter Servers and reduces the makespan via a general-
ized least-attained service scheduling algorithm and better

task allocation. It is also orthogonal to CEREBRO, which
operates at a higher abstraction level and targets different
system environments. How compute hardware is allocated
is outside our scope; we believe CEREBRO can work with
both of these cluster resource managers. There is a long
line of work on general job scheduling algorithms in the
operations research and systems literatures (Herroelen et al.,
1998; Brucker, 2001; Gautam et al., 2015). Our goal is not
to create new scheduling algorithms but to apply known
algorithms to a new ML systems setting based on MOP.

AutoML procedures. Procedures such as Hyperband (Li
et al., 2016) and PBT (Jaderberg et al., 2017) automate
hyper-parameter tuning efficiently. They are complemen-
tary to our work and exist at a higher abstraction level;
CEREBRO acts as a distributed execution engine for them.

System optimizations. Another recent stream of research
focuses on the optimization of deep learning tools. Such
optimization is achieved by increasing the overlap of com-
munication (PipeDream (Narayanan et al., 2019), P3 (Ja-
yarajan et al., 2019)), smart graph rewriting (SOAP (Jia
et al., 2019)) and model batching (HiveMind (Narayanan
et al., 2018)). These are also orthogonal to CEREBRO as
they target different settings. We believe MOP is general
enough to hybridize with these new systems.

8 CONCLUSIONS AND FUTURE WORK

Simplicity that still achieves maximal functionality and ef-
ficiency is a paragon virtue for real world systems. We
present a stunningly simple but novel form of parallel SGD
execution, MOP, that raises the resource efficiency of deep
net model selection without sacrificing accuracy or repro-
ducibility. MOP is highly general and also simple to im-
plement, which we demonstrate by building CEREBRO, a
fault-tolerant model selection system that supports multiple
popular deep learning tools and model selection procedures.
Experiments with large benchmark datasets confirm the ben-
efits of MOP. As for future work, we plan to hybridize MOP
with model parallelism and batching and also support more
complex model selection scenarios such as transfer learning.
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9 CEREBRO API USAGE EXAMPLE

In this Section, we present a detailed example on how the
CEREBRO API can be used to perform the ImageNet model
selection workload explained in Section 4.1.

Before invoking the model selection workload users have to
first register workers and data. This can be done as per the
API methods shown in Listing 1 and Listing 2.

Listing 1. Registering Workers
#### API method t o r e g i s t e r worke r s ###
# w o r k e r i d : Id o f t h e worker
# i p : worker IP
#
# Example usage :
# r e g i s t e r w o r k e r ( 0 , 1 0 . 0 . 0 . 1 )
# r e g i s t e r w o r k e r ( 1 , 1 0 . 0 . 0 . 2 )
# . . . .
# r e g i s t e r w o r k e r ( 7 , 1 0 . 0 . 0 . 8 )
# ######################################
r e g i s t e r w o r k e r ( w o r k e r i d , i p )

Listing 2. Registering Data
## API method t o r e g i s t e r a d a t a s e t ###
# name : Name of t h e d a t a s e t
# n u m p a r t i t i o n s : # o f p a r t i t i o n s
#
# Example usage :
# r e g i s t e r d a t a s e t ( ImageNet , 8 )
# ######################################
r e g i s t e r d a t a s e t ( ImageNet , 8 )

## API method t o r e g i s t e r p a r t i t i o n ###
## a v a i l a b i l i t y ###
# d a t a s e t n a m e : Name of t h e d a t a s e t
# d a t a t y p e : t r a i n o r e v a l
# p a r t i t i o n i d : Id o f t h e p a r t i t i o n
# worker : Id o f t h e worker
# f i l e p a t h : f i l e p a t h on t h e
# worker
#
# r e g i s t e r p a r t i t i o n ( ImageNet , t r a i n ,
# 0 ,
# 0 , / d a t a / i m a g e n e t / t r a i n 0 )
# ######################################
r e g i s t e r p a r t i t i o n ( d a t a s e t n a m e ,

d a t a t y p e ,
p a r t i t i o n i d , worker ,
f i l e p a t h )

Next, users need to define the initial set of training configu-
rations as shown in Listing 3.

Listing 3. Initial Training Configurations
S = [ ]
f o r b a t c h s i z e i n [ 6 4 , 1 2 8 ] :

f o r l r i n [1 e−4, 1e−5]:
f o r r e g i n [1 e−4, 1e−5]:

f o r model i n [ ResNet , VGG] :
c o n f i g = {

b a t c h s i z e : b a t c h s i z e ,
l e a r n r a t e : l r ,
r e g : reg ,
model : model

}
S . append ( c o n f i g )

Users also need to define three functions: input fn,
model fn, and train fn. input fn as shown in List-
ing 4, takes in the file path of a partition, performs pre-
processing, and returns in-memory data objects. Inside the
input fn users are free to use their preferred libraries and
tools provided they are already installed on the worker ma-
chines. These in-memory data objects are then cached in
the worker’s memory for later usage.
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Listing 4. input fn
#### User d e f i n e d i n p u t f u n c t i o n ######
# f i l e p a t h : F i l e p a t h o f a l o c a l
# d a t a p a r t i t i o n
#
# Example usage :
# p r o c e s s e d d a t a = i n p u t f n ( f i l e p a t h )
# ######################################
d e f i n p u t f n ( f i l e p a t h ) :

d a t a = r e a d f i l e ( f i l e p a t h )
p r o c e s s e d d a t a = p r e p r o c e s s ( d a t a )
r e t u r n p r o c e s s e d d a t a

After the data is read into the worker’s memory, CERE-
BRO then launches the model selection workload. This is
done by launching training units on worker machines. For
this CEREBRO first invokes the user defined model fn. As
shown in Listing 5, it takes in the training configuration as
input and initializes the model architecture and training opti-
mizer based on the configuration parameters. Users are free
to use their preferred tool for defining the model architecture
and the optimizer. After invoking the model fn, CERE-
BRO injects a checkpoint restore operation to restore the
model and optimizer state from the previous checkpointed
state.

Listing 5. input fn
#### User d e f i n e d model f u n c t i o n ######
# c o n f i g : T r a i n i n g c o n f i g .
#
# Example usage :
# model , o p t = mode l fn ( c o n f i g )
# ######################################
d e f mode l fn ( c o n f i g ) :

i f c o n f i g [ model ] == VGG:
model = VGG( )

e l s e :
model = ResNet ( )

o p t = Adam( l r = c o n f i g [ l e a r n r a t e ] )
r e t u r n model , o p t

After restoring the state of the model and the optimizer,
CEREBRO then invokes the user provided train fn to per-
form one sub-epoch of training. As shown in Listing 5, it
takes in the data, model, optimizer, and training configura-
tion as input and returns convergence metrics. Training ab-
stractions used by different deep learning tools are different
and this function abstracts it out from the CEREBRO system.
After the train fn is complete the state of the model and
the optimizer is checkpointed again.

Listing 6. input fn

#### User d e f i n e d t r a i n f u n c t i o n ######
# d a t a : P r e p r o c e s s e d d a t a
# model : Deep l e a r n i n g model
# o p t i m i z e r : T r a i n i n g o p t i m i z e r
# c o n f i g : T r a i n c o n f i g .
#
# Example usage :
# l o s s = t r a i n f n ( da t a , model ,
# o p t i m i z e r , c o n f i g )
# ######################################
d e f t r a i n f n ( da t a , model , o p t i m i z e r ,

c o n f i g ) :

X, Y = c r e a t e b a t c h e s ( da t a ,
c o n f i g [ b a t c h s i z e ] )

l o s s e s = [ ]
f o r b a t c h x , b a t c h y i n (X,Y ) :

l o s s = t r a i n ( model , opt ,
[ b a t c h x , b a t c h y ] )

l o s s e s . append ( l o s s )

r e t u r n reduce sum ( l o s s e s )

For evaluating the models, we assume the evaluation dataset
is also partitioned and perform the same process. We mark
the model parameters as non-trainable before passing it to
the train fn. After a single epoch of training and evalua-
tion is done, CEREBRO aggregates the convergence metrics
from all training units from the same configuration to derive
the epoch-level convergence metrics. Convergence metrics
are stored in a configuration state object which keeps track
of the training process of each training configuration. At the
end of an epoch, configuration state objects are passed to
the automl mthd implementation for evaluation. It returns
a set of configurations that needs to be stopped and/or the
set of new configurations to start. For example in the case of
performing Grid Search for 10 epochs, the automl mthd
will simply check whether an initial configuration has been
trained for 10 epochs, and if so it will mark it for stopping.

10 REPLICA-AWARE MIP SCHEDULER

We extend the mixed integer linear program formulation
described in Section 3.1 to make it replica-aware. It requires
the availability information of partitions on workers (A) as
an additional input. The resulting formulation is a mixed
integer quadratic program. The objective and the constraints
can be formalized as follows. Additional notation used is
explained in Table 5.
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Table 5. Notation used for the replica-aware MIP formulation

Symbol Description

|S| Number of training config-
urations

p Number of data partitions

w Number of Workers

T ∈ IR|S|×p×w Ti,j,k is the runtime of the
ith configuration on the jth

partition at the kth worker

A ∈ {0, 1}p×w Aj,k = 1 ⇐⇒ jth parti-
tion is available on the kth

worker

C Makespan of the model se-
lection workload

Q ∈ {0, 1}|S|×p×w Qi,j,k = 1 ⇐⇒ execution
of the ith configuration for
jth partition is executed on
kth worker

X ∈ IR|S|×p Xi,j is the start time of the
execution of ith configura-
tion on jth partition

Y ∈ {0, 1}|S|×p×p Yi,j,j′ = 1 ⇐⇒ Xi,j <
Xi,j′

Z ∈ {0, 1}|S|×p×|S|×p×w Zi,j,i′,j′,k = 1 ⇐⇒
Qi,j,k = Qi′,j′,k = 1 and
Xi,j < Xi′,j′

V Very large value

Objective: min
C,X,Y,Z,Q

C

Constraints:

(1) Aj,k = 0→ Qi,j,k = 0

(2)

w∑

k=1

Qi,j,k = 1

(3) Qi,j,k ·Qi,j′,k′ = 1 and j 6= j′ →
(i) Xi,j ≥ Xi,j′ + Ti,j′,k′ − V · Yi,j,j′

(ii) Xi,j′ ≥ Xi,j + Ti,j,k − V · (1− Yi,j,j′)

(4) Qi,j,k ·Qi′,j′,k = 1 and i 6= i′ →
(i) Xi,j ≥ Xi′,j′ + Ti′,j′,k − V · Zi,j,i′,j′,k

(ii) Xi′,j′ ≥ Xi,j + Ti,j,k − V · (1− Zi,j,i′,j′,k)

(5) Xi,j ≥ 0

(6) C ≥ Xi,j + Ti,j,k

∀i, i′ ∈ [1, . . . , |S|],∀j, j′ ∈ [1, . . . , p], ∀k ∈ [1, . . . , w]

The objective is to minimize the makespan C, subject to
the constraints on the makespan C, training unit assignment
matrix Q, configuration unit start times X, model training
isolation matrix Y, and worker/partition exclusive access
matrix Z. As per constraint 1, a training unit can be run on a
worker only if the corresponding partition is available. Con-
straint 2 ensures that a training unit is assigned to only one
worker. Constraints 3 (i) and (ii) ensure model training iso-
lation and constraints 4 (i) and (ii) ensure worker exclusive
access. Constraint 5 ensures that training unit start times
are nonnegative and constraint 6 ensures that C captures the
time taken to complete all training units. The training unit
assignment Q and start times X yield the actual schedule.

11 POPULATION-BASED TUNING WITH
CEREBRO

To demonstrate CEREBRO’s ability to support arbitrary Au-
toML procedures, we run an experiment with population-
based tuning method (PBT). For this we choose PyTorch
as the back-end deep learning tool. We use the ImageNet
dataset and 12 initial training configurations: 3 model archi-
tectures, 1 batch size, 2 learning rates, and 2 weight decay
values (see Table 6). The experimental setup is the same
GPU cluster used in Section 4.

We set the iteration size of PBT to 5 epochs. After every
iteration, based on the validation loss PBT method halts
the lower performing half of configurations. It replaces
these configurations by new configurations which are de-
rived by sampling from the top half and incorporating a
mutation to the batch size, learning rate, and weight de-
cay. Mutations are sampled as follows: for batch size from
{16,−16} and for learning rate and weight decay from
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Table 6. Initial configurations used in the PBT experiment.

Dataset Model arch. Batch size Learning rate Weight decay Epochs

ImageNet {ResNet18, ResNet34, ResNet50} {64} {10−2, 10−4} {10−2, 10−4} 40

{5−4,−5−4, 5−5,−5−5, 5−6,−5−6}. We repeat this pro-
cess for 8 iterations. The Gantt chart for the schedule pro-
duced by CEREBRO for this workload is shown in Figure
12. We see CEREBRO yields very high system utilization
and seamlessly supports the PBT model selection workload.

12 HOROVOD HOPPER(HOHO)
A typical model selection workflow begins with a large num-
ber of model configs, and narrows down the scope gradually
over epochs, ending up with a handful of model configs
to train till convergence. It means that at the later stages,
we may encounter scenarios where the number of model
configs, |S|, can be smaller than the number of workers, p.
In these scenarios CEREBRO can lead to under-utilization
of the cluster.

We mitigate this issue by mixing MOP with data parallelism.
Towards this end, we implement a hybrid version of CERE-
BRO with Horovod we call Horovod Hopper (HOHO). Just
like CEREBRO, Horovod is also equivalent to sequential
SGD concerning convergence behavior. Therefore the hy-
brid of them will remain reproducible.

Figure 13 summarizes the architecture of HOHO, where
instead of workers, we have worker groups. Inside each
worker group, we run a data-parallel Horovod task. Then
after each worker group finishes their assigned task, we hop
the trained models just as the regular CEREBRO.

We assume there are more workers than model configs. We
create an equal number of groups for the number of configs.
Workers are placed into these groups evenly.

We test HOHO on criteo with varying number of model
configs with the same CPU cluster used before. The batch
sizes and makespans of these model configs are identical.
We then conduct the same test multiple times with different
batch sizes.

Figure 14 shows the results. The runtime of CEREBRO is
constant, while the runtimes of Horovod and HOHO are lin-
ear, except when |S| equals p, HOHO reduces to CEREBRO .
It is interesting even with underutilization, CEREBRO can
still outperform Horovod in some scenarios. There is a cross-
over point when the three methods meet, depending on |S|.
Typically, when |S| is much smaller than p, HOHO and
Horovod are faster, as CEREBRO is heavily under-utilized.
HOHO also does not provide much benefit over Horovod,
as HOHO mainly optimizes Horovod for its latency part of

the communication cost. However, it turns out this part of
the cost is marginal.

The cross-over point depends on the batch size. We then
heuristically choose p/2 as the dividing point: still run
CEREBRO if p/2 < |S|, otherwise just run Horovod.
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Figure 12. Gantt chart produced for the execution of PBT AutoML procedure using CEREBRO. We start with 12 initial training
configurations. After every 5 epochs the worst performing 6 training configurations are killed and are replaced by mutants of the top
performing 6. We mutate the learning rate, weight decay, and the training mini-batch size. Best viewed in color.

CEREBRO

HOROVOD HOROVOD HOROVOD

Chief worker
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Namespace of 
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Figure 13. The architecture of HOHO. Within different names-
paces, we run CEREBRO and Horovod, respectively. The chief
workers, acting as CEREBRO workers, are responsible for driving
Horovod tasks and handling the communication between the two
systems. In the figure, we show a 9-node cluster with 3 model
configs to train.
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Figure 14. Performance tests of HOHO with varying batch size and |S| on 8-node cluster. Configs: same model as in Section 4 Table 4,
learning rates drawn from {10−3, 10−4, 5× 10−5, 10−5}, weight decays drawn from {10−4, 10−5}. We test on 4 different batch sizes,
respectively.
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Figure 15. Makespan and scheduling time of the generated schedule by different scheduling methods for different settings. Makespan
values are normalized with respect to the makespan of the randomized scheduling approach. (A) Homogeneous cluster and homoge-
neous training configurations, (B) homogeneous cluster and heterogeneous training configurations, and (C) heterogeneous cluster and
heterogeneous training configurations.


