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Abstract
Scalable systems for machine learning (ML) are largely siloed
into dataflow systems for structured data and deep learning
systems for unstructured data. This gap has left workloads
that jointly analyze both forms of data with poor systems sup-
port, leading to both low system efficiency and grunt work
for users. We bridge this gap for an important class of such
workloads: feature transfer from deep convolutional neural
networks (CNNs) for analyzing images along with struc-
tured data. Executing feature transfer on scalable dataflow
and deep learning systems today faces two key systems is-
sues: inefficiency due to redundant computations and crash-

proneness due to mismanaged memory. We present Vista,
a new data system that resolves these issues by elevating
this workload to a declarative level on top of dataflow and
deep learning systems. Vista automatically optimizes the
configuration and execution of this workload to reduce both
computational redundancy and the potential for crashes. Ex-
periments on real datasets show that apart from making
feature transfer easier, Vista avoids crashes and reduces
runtimes by 58% to 92% compared to baselines.

1 Introduction and Motivation
Deep CNNs achieve near-human accuracy for many image
analysis tasks [29, 42]. Thus, there is growing interest in
using CNNs to exploit images in analytics applications that
have so far relied mainly on structured data. But ML systems
today have a dichotomy: dataflow systems (e.g., Spark [56])
are popular for structured data [4, 45], while deep learning
systems (e.g., TensorFlow [19]) are needed for CNNs. This
dichotomy means the systems issues of workloads that com-
bine both forms of data are surprisingly ill understood. In
this paper, we present a new system that closes this gap for a
popular form of such workloads: feature transfer from CNNs.

Example (Based on [44]). Consider a data scientist, Alice,
at an online fashion retailer building a product recommender
system (see Figure 1). She uses structured features (e.g., price,
brand, user clicks, etc.) to build an interpretable ML model
(e.g., logistic regression or decision tree) to predict prod-
uct ratings. She then has a hunch that including product
images can raise ML accuracy. So, she uses a pre-trained
deep CNN (e.g., ResNet50 [31]) on the images to extract a
feature layer : a vector representation of an image produced
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Figure 1. (A) Simplified illustration of a typical deep CNN and its hierarchy
of learned feature layers(based on [57]). (B) Illustration of the CNN feature
transfer workflow for multimodal analytics.

by the CNN. Deep CNNs produce a series of feature lay-
ers; each layer automatically captures a different level of
abstraction from low-level patterns to high-level abstract
shapes [30, 42], as Figure 1(A) illustrates. Alice concatenates
her chosen feature layer with the structured features and
trains her “downstream” model. Figure 1(B) illustrates this
workflow. She then tries a few other feature layers instead
to check if the downstream model’s accuracy goes up.

Importance of FeatureTransfer. Feature transfer is a form
of “transfer learning” that mitigates two key pains of training
deep CNNs from scratch [3, 16, 47]: the number of labeled im-
ages needed is lower, often by an order of magnitude [16, 55],
and the time and resource costs of training are lower, even by
two orders of magnitude [3, 16]. These benefits arise because
the CNN’s features help the downstream model analyze the
image more easily. Overall, feature transfer is now popular in
many domains, including recommender systems [44], visual
search [36] (product images), healthcare (tissue images) [28],
nutrition science (food images) [8], and computational ad-
vertising (ad images).

Bottleneck: Trying Multiple Layers. Recent work in ML
showed that it is critical to try multiple layers for feature
transfer because different layers yield different accuracies
and it is impossible to tell upfront which layer will be best [16,
21, 27, 55]. But trying multiple layers becomes a bottleneck
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Figure 2. (A) Comparing the analytics-related capabilities of parallel dataflow (PD) systems and deep learning (DL) systems. (B) Current manual approach of
executing feature transfer at scale straddling PD and DL systems. The steps in the manual workflow are numbered. Step 3 (a-b-c) is repeated for every feature
layer of interest. (C) The “declarative” approach in Vista. (D) Tradeoffs of alternative execution plans on efficiency (runtimes) and reliability (crash-proneness).

for data scientists running large-scale ML on a cluster be-
cause it can slow down their analysis, e.g., from an hour to
several hours (Section 5), and/or raise resource costs.

1.1 Current Approach and Systems Issues
The common approach to feature transfer at scale is a tedious
manual process straddling deep learning (DL) systems and
parallel dataflow (PD) systems. These systems present a di-
chotomy, as Figure 2(A) shows. PD systems support queries
and manage distributed memory for structured data but do
not support DL natively. DL systems support complex CNNs
and hardware accelerators but need manual partitioning of
files and memory for distributed execution. Moreover, data
scientists often prefer interpretable ML models on structured
features [6]; thus, a DL system alone is too limiting.

Figure 2(B) illustrates the manual process. Suppose Alice
tries layers L5 to L7 (say) from a given CNN. She first runs
CNN inference in TensorFlow to write out (materialize) L5
for all images in her dataset. She loads this large data file with
image features into Spark, joins it with the structured data,
and runs MLlib [45] for downstream training. She repeats all
this for L6 and then for L7. Apart from being tedious grunt
work, this process faces two key systems issues:

(1) Inefficiency. Extracting a higher layer (say, L6) requires
a superset of the inference computations needed for a lower
layer (say, L5). So, the manual process may have high com-

putational redundancy, which wastes runtime.

(2) Crash-proneness. One might ask: why not write out all

layers in one go to save time? Alas, CNN feature layers can
be very large, e.g., one of ResNet50’s layers is 784kB but
the image is only 14kB [31]. So, 10GB of data blows up to
560GB for just one layer! Forcing ML users to handle such
large intermediate data files on PD systems can easily cause
system crashes due to memory mismanagement.

1.2 Our Proposed Approach
We resolve the above issues by elevating scalable feature trans-

fer to a “declarative” level and automatically optimizing its

execution. We want to retain the benefits of both PD and
DL systems without reinventing their current capabilities
(Figure 2(A)). Thus, we build a new data system middleware
we call Vista on top of PD and DL systems, as Figure 2(C)
illustrates. To make practical adoption easier, we believe it
is crucial to not modify the code of the underlying PD and
DL systems; this also lets us leverage future improvements
to those systems. Vista is based on three design decisions:
(1) Declarativity to simplify specification, (2) Execution Op-

timization to reduce runtimes, and (3) Automated Memory

and System Configuration to avoid memory-related crashes.

(1) Declarativity. Vista lets users specify just what CNNs
and layers to try, not how to run them. It invokes the DL
system to run CNN inference, loads and joins image features
with structured data, and runs downstream training on the
PD system. Since Vista, not the user, handles how layers are
materialized, it can optimize execution in non-trivial ways.

(2) Execution Optimization.We characterize the memory
use behavior of this workload in depth, including key crash
scenarios. This helps us bridge PD and DL systems, since
PD systems do not understand CNNs and DL systems do
not understand joins or caching. We compare alternative
execution plans with different efficiency–reliability tradeoffs,
as Figure 2(D) shows. The “Layer-at-a-Time” plan simply
automates the manual process. It is reliable due to its low
memory footprint, but it has high computational redundancy.
At the other end, “All-at-a-Time” materializes all layers of
interest in one go (Section 4). It avoids redundancy but is
prone to memory-related crashes. We then present a new
plan used inVista that offers the best of bothworlds: “Staged”
execution; it interleaves the DL and PD systems’ operations
by enabling partial CNN inference.
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(3) Automated Memory and System Configuration. Fi-
nally, we explain how key system tuning knobs affect this
workload: apportioning memory for caching data, CNNs,
and feature layers; data partitioning; and physical join oper-
ator. Using our insights, we build an end-to-end automated

optimizer in Vista to configure both the PD and DL systems
to run this workload efficiently and reliably.

Implementation and Evaluation.We prototype Vista on
top of two PD systems, Spark and Ignite [22], with Tensor-
Flow as the DL system. We chose these systems due to their
popularity but note that our ideas are general and applicable
to other DL systems (e.g., PyTorch [10]) and PD systems (e.g.,
Greenplum [9]) as well. Our API is in Python. We perform an
extensive empirical evaluation of Vista using 2 real-world
multimodal datasets and 3 deep CNNs. Vista avoids many
crash scenarios and reduces total runtimes by 58% to 92%
compared to existing baseline approaches.

Relationship toDatabase Optimization.Our approach is
inspired by query optimization in the database literature [49].
But our execution plans and optimizer have no counter-
parts in databases because they treat CNNs as black-box
user-defined functions that they do not rewrite. In contrast,
Vista treats CNNs as first-class operations, understands their
memory footprints, rewrites their inference, and optimizes
this workload in a principled and holistic manner.

Overall, this paper makes the following contributions:

• To the best of our knowledge, this is the first work on
the systems principles of integrating PD and DL sys-
tems to optimize scalable feature transfer from CNNs.
• We characterize the memory use behavior of this work-
load in depth, explain the efficiency–reliability trade-
offs of alternative execution plans, and present a new
CNN-aware optimized execution plan.
• We create an automated optimizer to configure the
system and optimize its execution to offer both high
efficiency and high reliability.
• We prototype our ideas to build Vista on top of a PD
and DL system. We compare Vista against baseline ap-
proaches using multiple real-world datasets and deep
CNNs. Unlike the baselines, Vista never crashes and
is also faster by 58% to 92%.

2 Background
We provide some background from the ML and data systems
literatures to help understand the rest of this paper. We defer
discussion of other related work to Section 6.

Deep CNNs. CNNs are a type of neural networks special-
ized for images [30, 42]. They learn a hierarchy of parametric
features using layers of various types (see Figure 1(A)): con-
volutions learn filters to extract features; pooling subsamples
features; non-linearity applies a non-linear function (e.g.,

ReLU) to all features; and fully connected is a set of percep-
trons. All parameters are trained using backpropagation [41].
CNNs typically surpass older hand-crafted image features
such as SIFT and HOG in accuracy [25, 43]. Training a CNN
from scratch incurs massive costs: they typically need many
GPUs for reasonable runtimes [3], huge labeled datasets, and
complex hyper-parameter tuning [30].

Transfer Learning with CNNs. Transfer learning miti-
gates the cost and labeled data requirements of training
deep CNNs from scratch [47]. When transferring CNN fea-
tures, no single layer is universally best for accuracy; the
“more similar” the target task is to the source task (e.g., Ima-
geNet classification), the better the higher layers will likely
be [16, 21, 27, 55]. Also, lower layer features are often much
larger; so, simple feature selection such as extra pooling
is typically used [21]. Such feature transfer underpins re-
cent breakthrough applications of CNNs in detecting can-
cer [28], diabetic retinopathy [52], facial analysis [54], and
multimodal recommendation systems [44].

Spark, Ignite, and TensorFlow. Spark and Ignite are pop-
ular distributed memory-oriented data systems [2, 22, 56].
At their core, both use a distributed collection of key-value
pairs as the data abstraction. They support many dataflow
operations, including relational operations and MapReduce.
Spark’s collection, called a Resilient Distributed Dataset or
RDD, is immutable, while Ignite’s is mutable. Spark holds
data in memory and supports disk spills; Ignite uses mem-
ory as a cache for data on disk. Both systems support user-
defined functions (UDFs) to let users run ML algorithms
directly on large datasets, e.g., with Spark MLlib [45].

TensorFlow (TF) is a system for training and running neu-
ral networks [18, 19]. Models in TF are specified as a “com-
putational graph,” with nodes representing operations over
“tensors” (multi-dimensional arrays) and edges represent-
ing dataflow. TensorFrames and SparkDL are libraries that
integrate Spark and TF [14, 15]. TensorFrames lets users pro-
cess Spark data tables using TF code, while SparkDL offers
pipelines to integrate neural networks into Spark queries
and distribute hyper-parameter tuning. SparkDL is the most
closely related work to ours, since it too supports transfer
learning. But unlike Vista, SparkDL does not support trying
multiple layers of a CNN nor does it optimize this workload’s
execution. Thus, both the functionality and techniques of
Vista are complementary to SparkDL.

3 Preliminaries and Overview
We now formally describe our problem setting, explain our
assumptions, and present an overview of Vista.

3.1 Definitions and Data Model
We start by defining some terms and notation to formalize
the data model of partial CNN inference. We will use these
terms in the rest of this paper.
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Definition 3.1. A tensor is a multidimensional array of num-

bers. The shape of a d-dimensional tensor t ∈ Rn1×n2×...nd is

the d-tuple (n1, . . .nd ).

A raw image is the (compressed) file representation of
an image, e.g., JPEG. An image tensor is the numerical ten-
sor representation of the image. Grayscale images have 2-
dimensional tensors; colored ones, 3-dimensional (with RGB
pixel values). We now define some abstract datatypes and
functions that will be used to explain our techniques.

Definition 3.2. A TensorList is an indexed list of tensors of

potentially different shapes.

Definition 3.3. A TensorOp is a function f that takes as

input a tensor t of a fixed shape and outputs a tensor t ′ = f (t )
of potentially different, but also fixed, shape. A tensor t is said
to be shape-compatible with f iff its shape conforms to what

f expects for its input.

Definition 3.4. A CNN is a TensorOp f that is represented

as a composition of nl indexed TensorOps, denoted f (·) ≡
fnl (. . . f2 ( f1 (·)) . . . ), wherein each TensorOp fi is called a

layer and nl is the number of layers.1 We use f̂i to denote

fi (. . . f2 ( f1 (·)) . . . ).

Definition 3.5. CNN inference. Given a CNN f and a shape-

compatible image tensor t , CNN inference is the process of
computing f (t ).

Definition 3.6. Partial CNN inference. Given a CNN f , layer
indices i and j > i , and a tensor t that is shape-compatible

with layer fi , partial CNN inference i → j is the process of

computing fj (. . . fi (t ) . . . ), denoted f̂i→j .

Allmajor CNN layers–convolutional, pooling, non-linearity,
and fully connected–are just TensorOps. The above defini-
tions capture a crucial aspect of partial CNN inference: data
flowing through the layers produces a sequence of tensors.

3.2 Problem Statement and Assumptions
We are given two tables Tstr (ID,X ) and Timg (ID, I ), where
ID is the primary key (identifier), X ∈ Rds is the structured
feature vector (with ds features, including label), and I are
raw images (say, as files on HDFS). We are also given a CNN
f with nl layers, a set of layer indices L ⊂ [nl ] specific to
f that are of interest for transfer learning, a downstream
ML algorithm M (e.g., logistic regression), a set of system
resources R (number of cores, system memory, and number
of nodes). The feature transfer workload is to train M for
each of the |L| feature vectors obtained by concatenating X
with the respective feature layers obtained by partial CNN
inference; we can state it more precisely as follows:

1We use sequential (chain) CNNs for simplicity of exposition; it is easy to
extend our definitions to DAG-structured CNNs such as DenseNet [35].
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Figure 3. System architecture of the Vista prototype on top of the Spark-
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∀ l ∈ L : (1)

T ′
img,l (ID, vec( f̂l (I ))) ← Apply (vec ◦ f̂l ) to Timg (2)

T ′l (ID,X
′
l ) ← Tstr ▷◁ T

′
img,l (3)

TrainM on T ′l with X ′l ≡ [X , vec( f̂l (I ))] (4)

Step (2) runs partial CNN inference to materialize layer
l and flattens it by vectorizing (vec). Step (3) concatenates
structured and image features using a key-key join. Step (4)
trains M on the concatenated feature vector. Pooling can
be inserted before vec to reduce dimensionality forM [21].
The current approach (Figure 2(B)) runs the above queries
as such, i.e., materialize layers manually and independently

as flat files and transfer them; we call this execution plan
Layer-at-a-Time. This plan is cumbersome, inefficient due to
redundant partial CNN inference, and/or is prone to crashes
due to inadvertently mismanaged memory.
We make a few simplifying assumptions for tractability

in this first paper on this problem. First, we assume that f
is from a roster of well-known CNNs. We currently support
AlexNet [39], VGG16 [50], and ResNet50 [31] due to their
popularity in real feature transfer applications [44, 54]. We
leave support for arbitrary CNNs to future work. Second, we
support only one image per example; we leave support for
multiple images per example to future work. Third, we use
linear classifiers in MLlib forM ; this choice is orthogonal to
this paper’s focus but it lets us study our workload’s tradeoffs
in depth. Finally, we assume enough secondary storage is
available for disk spills and optimize the use of distributed
memory; this is a standard assumption in PD systems.

3.3 System Architecture and API
We prototype Vista as a library on top of Spark-TF and
Ignite-TF environments. Due to space constraints, we ex-
plain the architecture of only the Spark-TF prototype; the
Ignite-TF one is similar. Vista has three components, as
Figure 3 illustrates: (1) a “declarative” API, (2) a roster of
popular named deep CNNs with numbered feature layers,
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Figure 4. Vista API and sample usage showing values for the input param-
eters and invocation.

and (3) the Vista optimizer. Our Python API (see Figure 4)
expects 4 major groups of inputs. First is the system envi-
ronment (memory, number of cores, and number of nodes).
Second, a deep CNN f and the number of feature layers
|L| (starting from the top most layer) to explore. Third, the
downstream ML routine M that handles the downstream
model’s evaluation and artifacts. Fourth, data tables Tstr and
Timg and statistics about the data. Our API returns the model
evaluation output for each layer.
Under the covers, Vista invokes its optimizer (Section

4.3) to pick a fast and reliable set of choices for the logical
execution plan (Section 4.2.1), system configuration param-
eters (Section 4.2.2), and physical execution decisions (Sec-
tion 4.2.3). After configuring Spark accordingly, Vista runs
within the Spark Driver process to control the execution.
Vista injects UDFs to run (partial) CNN inference, i.e., f , f̂l ,
vec, and f̂i→j for the CNNs in its roster (currently, AlexNet,
VGG16, and ResNet50). These UDFs specify the computa-
tional graphs for TF and invoke Spark’s DataFrames and
TensorFrames APIs with appropriate inputs based on our
optimizer’s decisions. Image and feature tensors are stored
with our custom TensorList datatype. Finally, Vista invokes
MLlib for downstream training on the concatenated feature
vector and obtains |L| trained downstream models. Overall,
Vista frees ML users from manually rewriting TF code, saving

features as files, performing joins, or tuning Spark for running

this workload at scale.

4 Tradeoffs and Optimizer
We now characterize the abstract memory usage behavior
of our workload in depth. We then map our memory model
to Spark and Ignite. Finally, we use these insights to explain
three dimensions of efficiency-reliability tradeoffs and apply
our analyses to design the Vista optimizer.

4.1 Memory Use Characterization of Workload
It is important to understand and optimize the memory use
behavior of the feature transfer workload, since misman-
aged memory can cause frustrating system crashes and/or
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excessive disk spills or cache misses that raise runtimes. Ap-
portioning and managing distributed memory carefully is
a central concern for modern distributed data processing
systems. Since our work is not tied to any specific dataflow
system, we create an abstract model of distributed memory

apportioning to help us explain the tradeoffs in a generic man-
ner. These tradeoffs involve apportioning memory between
intermediate data, CNN models, and working memory for
UDFs. Such tradeoffs affect both reliability (avoiding crashes)
and efficiency. We then highlight interesting new proper-
ties of our workload that can cause unexpected crashes or
inefficiency, if not handled carefully.

Abstract Memory Model. In distributed memory-based
dataflow systems, a worker’s System Memory is split into
two main regions: Reserved Memory for OS and other pro-
cesses and Workload Memory, which in turn is split into
Execution Memory and Storage Memory. Figure 5(A) illus-
trates the regions. Execution Memory is further split into
User Memory and Core Memory; for typical relational/SQL
workloads, the former is used for UDF execution, while the
latter is used for query processing. Best practice guidelines
recommend allotting most of System Memory to Storage
Memory, while having enough Execution Memory to reduce
disk spills or cache misses [5, 12, 13]. OS Reserved Memory is
typically a few GBs. For our workload, however, we need to
rethink these memory apportioning guidelines due to three
new issues caused by CNNs and partial CNN inference that
do not arise in traditional SQL workloads.
(1) The guideline of using most of System Memory for

Storage and Execution no longer holds. In both Spark and
Ignite, CNN inference in TF uses System Memory outside

Storage and Execution regions. The memory footprint of
5



deep CNNs is non-trivial, e.g., AlexNet needs 2GB. For par-
allel query execution in PD systems, each execution thread
will spawn its own CNN replica, multiplying the footprint.

(2) Many temporary objects are created when reading
serialized CNNs to initialize TF, for buffers to read inputs,
and to hold CNN features created by inference. All of these
go under User Memory. The sizes of these objects depend
on the number of examples in a data partition, the CNN,
and L. These sizes could vary dramatically and also be very
high, e.g., layer fc6 of AlexNet has 4096 features but conv5
of ResNet has over 400,000 features! Such complex memory
footprint calculations will be too tedious for ML users.
(3) The downstream ML routine also copies features pro-

duced by TF into its own representations. Thus, Storage
Memory should accommodate such intermediate data copies.
Finally, Core Memory must accommodate the temporary
objects created for processing the join.

Mapping to Spark’sMemoryModel. Spark allocates User,
Core, and Storage Memory regions of our abstract memory
model from the JVM Heap Space. With default configura-
tions, Spark allocates 40% of the Heap Memory to User Mem-
ory region. The rest of the 60% is shared between the Storage
and Core Memory regions. The Storage Memory–Core Mem-
ory boundary in Spark is not static. If needed, Core Memory
automatically borrows from the Storage Memory evicting
data partitions to the disk. Conversely, if Spark needs to load
more data to memory, it borrows from Execution Memory.
But there is a maximum threshold fraction of Storage Mem-
ory (default 50%) that is immune to eviction. Worker threads
in Spark run in isolation with no access to shared memory.

Mapping to Ignite’s Memory Model. Ignite treats both
User and Core Memory regions as a single unified memory
region and allocates the entire JVM Heap for it. This region
is used to store the in-memory objects generated by Ignite
during query processing and UDF execution. Storage Mem-
ory region of Ignite is allocated outside of JVM heap in the
JVM native memory space. Unlike Spark, Ignite’s in-memory
Storage Memory region has a static size and uses an LRU
cache for data stored on persistent storage. Unlike Spark,
worker threads in Ignite can have access to shared memory
(we exploit this in Vista, as explained later).

Memory-related Crash and Inefficiency Scenarios. The
three twists explained above give rise to various unexpected
system crash scenarios due to memory errors, as well as sys-
tem inefficiencies. Manually handling them could frustrate
data scientists and impede their ML exploration.

(1) CNN blowups. Serialized file formats of CNNs often under-
estimate their in-memory footprints. Along with the repli-
cation by multiple threads, CNN Inference Memory can be
easily exhausted. If such blowups are not accounted when
configuring the data processing system, and if they exceed
available memory, the OS will kill the application.

(2) Insufficient User Memory. All UDF execution threads share
User Memory for the CNNs and feature layer TensorList
objects. If this region is too small due to a small overall
WorkloadMemory size or due to a large degree of parallelism,
such objects might exceed available memory, leading to a
crash with out-of-memory error.

(3) Very large data partitions. If a data partition is too big,
the data processing system needs a lot of User and Core
Execution Memory for query execution operations (e.g., for
the join in our workload and MapPartition-style UDFs in
Spark). If Execution Memory consumption exceeds the al-
located maximum, it will cause the system to crash with
out-of-memory error.

(4) Insufficient memory for Driver Program. All distributed
data processing systems require a Driver program that or-
chestrates the job among workers. In our case, the Driver
reads and creates a serialized version of the CNN and broad-
casts it to the workers. To run the downstream ML task,
the Driver has to collect partial results from workers (e.g.,
for collect() and collectAsMap() in Spark). Without enough
memory for these operations, the Driver will crash.

Overall, several execution and configuration considera-
tions matter for reliability and efficiency. Next, we delineate
these systems tradeoffs precisely along three dimensions.

4.2 Three Dimensions of Tradeoffs
The dimensions we discuss are largely orthogonal to each
other but they affect reliability and efficiency collectively.

4.2.1 Logical Execution Plan Tradeoffs
Figure 6(A) illustrates the the Layer-at-a-Time plan (Section
3.2). As mentioned earlier, it has high computational redun-
dancy; to see why, consider a popular deep CNN AlexNet
with the last two layers fc7 and fc8 used for feature transfer
(L = {fc7, fc8}). This plan performs partial CNN inference
for fc7 (721 MFLOPS) independently of fc8 (725 MFLOPS),
incurring 99% redundant computations for fc8. An orthogo-
nal issue is join placement: should the join really come after

inference? Usually, the total size of all feature layers in L
will be larger than the size of raw images in a compressed
format such as JPEG. Thus, if the join is pulled below in-
ference, as shown in Figure 6(B), the shuffle costs of the
join will go down. We call this slightly modified plan Layer-

at-a-Time-Reordered. But this plan still has computational
redundancy. The only way to remove redundancy is to break
the independence of the |L| queries and fuse them.
Consider the All-at-a-Time plan shown in Figure 6(C). It

materializes all feature layers of L in one go, which avoids
redundancy because CNN inference is not repeated. Fea-
tures are stored as a TensorList in an intermediate table and
joined with Tstr . M is then trained on each feature layer
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Figure 6. Alternative logical execution plans (let k = |L |). (A) Layer-at-a-Time (LaT), the de facto current approach. (B) Reordering the join operator in LaT.
(C) All-at-a-Time (AaT) execution plan. (D) Reordering the join operator in AaT. (E) Our new Staged execution plan.

(concatenated with X ) projected from the TensorList. All-at-
a-Time-Reordered, shown in Figure 6(D), is a variant with
the join pulled down. Alas, both of these plans have high
memory footprints, since they materialize all of L at once.
Depending on the memory apportioning (Section 4.1), this
could cause system crashes or a lot of disk spills, which in
turn raises runtimes.

To resolve the above issues, we create a logically new exe-
cution plan we call Staged execution, shown in Figure 6(E).
It splits partial CNN inference across the layers in L and
invokesM on branches off of the inference path; so, it stages
out the materialization of the feature tensors. Staged offers
the best of both worlds: it avoids computational redundancy,
and it is reliable due to its lower memory footprints. Empiri-
cally, we find that All-at-a-Time and All-at-a-Time-Reordered

are seldom much faster than Staged due to a peculiarity of
deep CNNs. The former can be faster only if a CNN “quickly”
(i.e., within a few layers and low FLOPs) converts the im-
age to small feature tensors. But such a CNN architecture
is unlikely to yield high accuracy, since it loses too much
information too soon [30]. Indeed, no popular deep CNN has
such an architecture. Thus, Vista only uses our new Staged

execution plan (validated in Section 5).

4.2.2 System Configuration Tradeoffs
Logical execution plans are generic and independent of the
PD system used. But as explained in Section 4.1, three key sys-
tem configuration parameters matter for reliability and effi-
ciency: degree of parallelism in a worker, data partition sizes,
and memory apportioning. Once again, while the tuning
of such parameters is well understood for SQL and MapRe-
duce workloads [34, 53], we need to rethink them due to the
properties of CNNs and partial CNN inference.

Naively, one might choose the following settings that may
work well for SQL workloads: the degree of parallelism is
the number of cores on a node; allocate few GBs for User and
Core Execution Memory; use most of the rest of memory
for Storage Memory; use the default number of partitions in
the PD system. But for the feature transfer workload, these
settings can cause crashes or inefficiencies.

For example, a higher degree of parallelism increases the
worker’s throughput but also raises the CNN models’ foot-
print, which in turn requires reducing Execution and Stor-
age Memory. Reducing Storage Memory can cause more disk
spills, especially for feature layers, and raise runtimes. Worse
still, User Memory might also become too low, which can
cause crashes during CNN inference. Lowering the degree
of parallelism reduces the CNN models’ footprint and allows
Execution and Storage Memory to be higher, but too low a
degree of parallelism means workers will get underutilized.2
This in turn can raise runtimes, especially for the join and
the downstream training. Finally, too low a number of data
partitions can cause crashes, while too high a value leads to
high overheads. Overall, we see multiple non-trivial systems
tradeoffs that are tied to the CNN and its feature layer sizes.
It is unreasonable to expect ML users to handle such trade-
offs manually. Thus, Vista automates these decisions in a
feature transfer-aware manner.

4.2.3 Physical Execution Tradeoffs
Physical execution decisions are closer to the specifics of the
underlying PD system. We discuss the tradeoffs of two such
decisions that are common in PD systems and then explain
what Spark and Ignite specifically offer.

First is the physical join operator used. The two main
options for distributed joins are shuffle-hash and broadcast. In
shuffle-hash join, base tables are hashed on the join attribute
and partitioned into “shuffle blocks.” Each shuffle block is
then sent to an assigned worker over the network, with each
worker producing a partition of the output table using a local
sort-merge join or hash join. In broadcast join, each worker
gets a copy of the smaller table on which it builds a local
hash table before joining it with the outer table without any
shuffles. If the smaller table fits in memory, broadcast join is
typically faster due to lower network and disk I/O costs.

2We note, however, that in our current prototypes, every TF invocation
by a worker uses all cores on the node regardless of how many cores are
assigned to that worker. Nevertheless, one TF invocation per used core
helps increase overall throughput and reduce runtimes.
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Second is the persistence format for in-memory storage of
intermediate data. Since feature tensors can be much larger
than raw images, this decision helps avoid/reduce disk spills
or cache misses. The two main options are deserialized for-
mat or compressed serialized format. While the serialized
format can reduce memory footprint and thus, reduce disk
spills/cache misses, it incurs additional computational over-
head for translating between formats. To identify potential
disk spills/cache misses and determine which format to use,
we estimate the size of intermediate data tables |Ti | (for i ∈ L).
Vista can automatically estimate |Ti | because it knows the
sizes of the feature tensors in its CNN roster and understands
the internal record format of the PD system. For the inter-
ested reader, more details are available in Appendix A of our
addendum [17].
Spark supports both shuffle-hash join and broadcast join

implementations, aswell as both deserialized and compressed
serialized in-memory storage formats. In Ignite, data is shuf-
fled to the corresponding worker node based on the parti-
tioning attribute during data loading itself. Thus, a key-key
join can be performed using a local hash join without any
additional data shuffles, if we use the same data partitioning
function for both tables. Ignite always stores intermediate
in-memory data in a compressed binary format.

4.3 The Optimizer
We now explain how the Vista optimizer navigates all the
tradeoffs in a holistic and automated way to improve both
reliability and efficiency. Table 1 lists the notation used.

Optimizer Formalization and Simplification. Table 1(A)
lists the inputs given by the user. From these inputs, Vista in-
fers the sizes of the structured data table (|Tstr |), the images
table (|Timg), and all intermediate data tables (|Ti | for i ∈ L)
shown in Figure 6(E). Vista also looks up the CNN’s se-
rialized size | f |ser , runtime memory footprint | f |mem, and
runtime GPU memory footprint | f |mem_gpu from its roster,
in which we store these statistics. Then, Vista calculates the
runtime memory footprint of the downstream model |M |
based on the specifiedM and the largest total number of fea-
tures (based on L). For instance, for logistic regression, |M |
is proportional to ( |X | +max

l ∈L
|дl ( f̂l (I )) |). Table 1(B) lists the

variables whose values are set by the optimizer. We define
two quantities that capture peak intermediate data sizes to
help our optimizer set memory variables reliably:

ssingle = max
1≤i≤ |L |

|Ti | (5)

sdouble = max
1≤i≤ |L |−1

( |Ti | + |Ti+1 |) − |Tstr | (6)

The ideal objective is to minimize the overall runtime sub-
ject to memory constraints. As explained in Section 4.2.2,
there are two competing factors: cpu and memstorage . Rais-
ing cpu increases parallelism, which could reduce runtimes.

Table 1. Notation for Section 4 and Algorithm 1.

Symbol Description

(A) Inputs given by user to Vista

Tstr Structured features table

Timg Images table

f CNN model in our roster

L Set of feature layer indices of f to transfer

M Downstream ML routine

nnodes Number of worker nodes in cluster

memsys Total system memory available in a worker node

memGPU GPU memory if GPUs are available

cpu
sys

Number of cores available in a worker node

(B) System variables/decisions set by Vista Optimizer

memstorage Size of Storage Memory

memuser Size of User Memory

cpu Number of cores assigned to a worker

np Number of data partitions

join Physical join implementation (shuffle or broadcast)

pers Persistence format (serialized or deserailized)

(C) Other fixed (but adjustable) system parameters

memos_rsv Operating System Reserved Memory (default: 3 GB)

memcore Core Memory as per system specific best practice guide-
lines (e.g. Spark default: 2.4 GB)

pmax Maximum size of data partition (default: 100 MB)

bmax Maximum broadcast size (default: 100 MB)

cpu
max

Cap recommended for cpu (default: 8)

α Fudge factor for size blowup of binary feature vectors as
JVM objects (default: 2)

But it also raises the CNN inference memory needed for TF,
which forces memstorage to be reduced, thus increasing po-
tential disk spills/cache misses for Ti ’s and raising runtimes.
This tension is captured by the following objective function:

min
cpu,np,memstorage

τ +max(0, sdoublennodes

−memstorage )

cpu

(7)

The other four variables can be set as derived variables.
In the numerator, τ captures the relative total compute and
communication costs, which are effectively “constant” for
this optimization. The second term captures disk spill costs
for Ti ’s. The denominator captures the degree of parallelism.
While this objective is ideal, it is largely impractical and
needlessly complicated for our purposes due to three rea-
sons. (1) Estimating τ is tedious, since it involves join costs,
data loading costs, downstream model costs, etc. (2) More
importantly, we hit a point of diminishing returns with cpu

quickly, since CNN inference typically dominates total run-
time and TF anyway uses all cores regardless of cpu. That is,
this workload’s speedup against cpu will be quite sub-linear
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(confirmed by Figure 10(C) in Section 5). Empirically, we find
that about 7 cores typically suffice; interestingly, a similar
observation is made in Spark guidelines for purely relational
workloads [12, 14]. Thus, we cap cpu at cpu

max
= 8. (3) Given

the cap on cpu, we can just drop the term minimizing disk
spill/cache miss costs, since sdouble will typically be smaller
than the total memory (even after accounting for the CNNs)
due to the above cap.

Overall, our insights above yield a simpler objective that
is still a reasonable surrogate for minimizing runtimes:

max
cpu,np,memstorage

cpu (8)

The constraints for the optimization are as follows:

1 ≤ cpu ≤ min{cpu
sys
, cpu

max
} − 1 (9)

memuser =




(a) no shared memory:
cpu ×max{| f |ser + α × ⌈ssingle/np⌉, |M |},

(b) shared memory:
max{| f |ser + cpu × α × ⌈ssingle/np⌉,
cpu × |M |}

(10)

memos_rsv + cpu × | f |mem +memuser +memcore

+memstorage < memsys

(11)

np = z × cpu × nnodes, for some z ∈ Z+ (12)

⌈ssingle/np⌉ < pmax (13)

If GPUs are available:

cpu × | f |mem_gpu < memGPU (14)

Equation 9 caps cpu and leaves a core for the OS. Equa-
tion 10 captures User Memory for reading CNN models and
invoking TF, copying materialized feature layers from TF,
and holdingM . If worker threads have access to shared mem-
ory, the serialized CNNmodel need not be replicated, as Equa-
tion 10(b) shows. cpu× | f |mem is the CNN Inference Memory
needed for TF. Equation 11 constrains the total memory as
per Figure 5. If there are GPUs, total GPU memory footprint
cpu × | f |mem_gpu should be bounded by available GPU mem-
ory memGPU as per Equation 14. Equation 12 requires np to
be a multiple of the number of worker processes to avoid
skews, while Equation 13 bounds the size of an intermediate
data partition as per system specific guidelines [1].

Optimizer Algorithm. Given our above observations, the
algorithm is simple: linear search on cpu to satisfy all con-
straints.3 Algorithm 1 presents it formally. If the for loop
completes without returning, there is no feasible solution,
3We explain our algorithm for the CPU-only scenario with no shared mem-
ory among workers. It is straightforward to extend to the other settings.

Algorithm 1 The Vista Optimizer Algorithm.
1: procedure OptimizeFeatureTransfer:
2: inputs: see Table 1(A)
3: outputs: see Table 1(B)
4: for x = min{cpu

sys
, cpu

max
} − 1 to 1 do ▷ Linear search

5: np ← NumPartitions(s
single
,x ,nnodes )

6: memworker ←memsys −memos_r sv − x × | f |mem
7: memuser ← x ×max{| f |ser + α × ⌈ssingle/n′p ⌉, |M |}
8: if memworker −memuser > memcore then
9: cpu ← x
10: memstoraдe ←memworker −memuser −memcore
11: join← shuffle

12: if |Tstr | < bmax then
13: join← broadcast

14: pers ← deserialized

15: if memstoraдe < s
double

then
16: pers ← serialized

17: return (memstorage,memuser , cpu,np , join, pers)

18: throw Exception(No feasible solution)
19:
20: procedure NumPartitions(s

single
,x ,n

nodes
):

21: totalcores ← x × nnodes
22: return ⌈ ssingle

pmax×totalcores
⌉ × totalcores

i.e., System Memory is too small to satisfy some constraints,
say, Equation 11. In this case, Vista notifies the user, and
the user can provision machines with more memory. Oth-
erwise, we have the optimal solution. The other variables
are set based on the constraints. We set join to broadcast if
the predefined maximum broadcast data size constraint is
satisfied; otherwise, we set it to shuffle. Finally, as per Sec-
tion 4.2.3, pers is set to serialized, if disk spills/cache misses
are likely (based on the newly set memstorage). This is a bit
conservative, since not all pairs of intermediate tables might
spill, but empirically, we find that this conservatism does not
affect runtimes significantly (more in Section 5). We leave
more complex optimization criteria to future work.

5 Experimental Evaluation
We empirically validate if Vista is able to improve efficiency
and reliability of feature transfer workloads. We then drill
into how it navigates the tradeoff space.

Datasets.We use two real-world public datasets: Foods [8]
and Amazon [32]. Foods has about 20, 000 examples with 130
structured numeric features such as nutrition facts along
with their feature interactions and an image of each food
item. The target represents if the food is plant-based or not.
Amazon is larger, with about 200, 000 examples with struc-
tured features such as price, title, and categories, as well
as a product image. The target is the sales rank, which we
binarize as a popular product or not. We pre-processed title
strings to get 100 numeric features (an “embedding”) using
Doc2Vec [40]. We convert the indicator vector of categories
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to 100 numeric features using PCA. All images are resized to
227 × 227 resolution, as needed by popular CNNs. Overall,
Foods is about 300 MB in size; Amazon is 3 GB. While these
can fit on a single node, multi-node parallelism helps reduce
completion times for long running ML workloads; also note
that intermediate data sizes during feature transfer can be
even 50x larger. We will release all of our data pre-processing
scripts and system code on our project webpage.

Workloads. We use three ImageNet-trained deep CNNs:
AlexNet [39], VGG16 [50], and ResNet50 [31], obtained from [7].
They complement each other in terms of model size [23]. We
select the following layers for feature transfer from each:
conv5 to fc8 from AlexNet (|L| = 4); fc6 to fc8 from VGG
(|L| = 3), and top 5 layers from ResNet (from its last two
layer blocks [31]). Following standard practices [16, 55], we
apply max pooling on convolutional feature layers to reduce
their dimensionality before using them forM4. As forM , we
run MLlib’s logistic regression for 10 iterations.

Experimental Setup. We use a cluster with 8 workers and
1 master in an OpenStack instance on CloudLab, a free and
flexible cloud for research [48]. Each node has 32 GB RAM,
Intel Xeon@ 2.00GHz CPU with 8 cores, and 300 GB Seagate
Constellation ST91000640NS HDDs. All nodes run Ubuntu
16.04. We use Spark v2.2.0 with TensorFrames v0.2.9, Tensor-
Flow v1.3.0, and Ignite v2.3.0. Spark runs in standalone mode.
Each worker runs one Executor. HDFS replication factor is
three; input data is ingested to HDFS and read from there.
Ignite is configured with native persistence enabled; each
node runs one worker. All runtimes reported are the average
of three runs with 90% confidence intervals.

5.1 End-to-End Reliability and Efficiency
We compare Vista with five baselines: three naive and two
strong. Layer-at-a-Time-1 (1 CPU per Executor), Layer-at-a-
Time-5 (5 CPUs), and Layer-at-a-Time-7 (7 CPUs) capture the
current dominant practice of Layer-at-a-Time execution (Sec-
tion 3.2). Spark is configured based on best practices [5, 12]
(29 GB JVM heap, shuffle join, deserialized, and defaults
for all other parameters, including np and memory appor-
tioning). Ignite is configured with a 4 GB JVM heap, 25 GB
off-heap Storage Memory, and np set to the default 1024.
Layer-at-a-Time-5 with Pre-mat and All-at-a-Time are strong
baselines based on our tradeoff analyses in Section 4.2.1. In
Layer-at-a-Time-5 with Pre-mat, the lowest layer specified
(e.g., conv5 for AlexNet) is materialized beforehand and used
instead of raw images for all subsequent CNN inference; Pre-
mat is time spent on pre-materializing the lowest layer speci-
fied. All-at-a-Time is an alternative plan explained in Section
4.2.1; we use 5 CPUs per Executor. For Layer-at-a-Time-5 with

4Filter width and stride for max pooling are set to reduce the feature tensor
to a 2 × 2 grid of the same depth.

Pre-mat and All-at-a-Time, we explicitly apportion CNN In-
ference memory. Note that Layer-at-a-Time-5 with Pre-mat

and All-at-a-Time actually need parts of our code from Vista.
Figure 7 presents the results. For brevity sake, we abbreviate
Layer-at-a-Time to LaT and All-at-a-Time to AaT.

Overall,Vista improves reliability and/or efficiency across
the board. On Spark-TF, LaT-5 and LaT-7 crash on both
datasets for VGG16; All-at-a-Time crashes on Amazon for
VGG16 and ResNet50. On Ignite-TF, LaT-7 crashes for all
CNNs on Amazon, while for ResNet50, LaT-7 on Foods and
AaT on Amazon also crash due to memory-related issues
(Section 4.1). When AaT does not crash, its efficiency is com-
parable to Vista, which validates our analysis in Section
4.2.1. LaT-5 with Pre-mat does not crash, but its runtimes are
comparable to LaT-5 and mostly higher than Vista. This is
because the layers of AlexNet and ResNet are much larger
than the images, which raises data I/O and join costs. One
might wonder if more careful tuning could avoid the crashes
with AaT and LaT. But that forces ML users to waste time
wrestling with low-level systems tradeoffs (Section 4)–time
they can now spend on further ML analysis instead.

Compared to LaT-7, Vista is 62%–72% faster; compared to
LaT-1, 58%–92%. These gains arise mainly because Vista re-
moves redundancy in partial CNN inference.Of course, the
exact gains depend on the CNN and L: if more of the higher
layers are tried, the more redundancy there is and the faster
Vista will be. We also ran this experiment on GPUs; the
trends were the same although all runtimes went down. Due
to space constraints, we provide the detailed runtime break-
downs and the GPU results in our addendum for interested
readers [17]. Overall, Vista never crashes and offers the best
(or near-best) efficiency.

Accuracy.All approaches in Figure 7 (including Vista) yield
identical downstream models (and thus, same accuracy) for a
given CNN layer. We saw test F1 score lifts of 3% to 5% for the
downstreammodel with feature transfer. As expected, the lift
varies across CNNs and layers. For instance, on Foods, struc-
tured features alone give 80.2% accuracy. Adding ResNet50’s
conv-5-3 layer raises it to 85.4%, a large lift in ML terms. But
using the last layer fc-6 gives only 83.5%. Amazon exhibited
similar trends. We provide more details in Appendix D of
our addendum for interested readers [17].

5.2 Drill-Down Analysis of Vista’s Tradeoffs
We now analyze how Vista navigates the tradeoffs explained
in Section 4. We use Vista on Spark-TF, since it is faster than
Ignite-TF. We use the less resource-intensive Foods dataset
but alter it semi-synthetically for some experiments to study
Vista runtimes in new operating regimes. In particular, when
specified, vary the data scale by replicating records (say, “4X”)
or varying the number of structured features (with random
values). For uniformity sake, unless specified otherwise, we
use all 8 workers, fix cpu to 4, and fix Core Memory to 60%
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Figure 7. End-to-end reliability and efficiency. LaT stands for Layer-at-a-Time; AaT stands for All-at-a-Time. “×” means the system crashed. Overall,
Vista offers the best or near-best runtimes and never crashes, while the alternatives are much slower or crash in some cases.

(A) (B)

Figure 8. (A) Runtimes of logical execution plan alternatives for varying data scale and number of feature layers explored. AaT stands for All-at-a-Time. (B)
Runtimes of physical plan choices for varying data scale and number of structured features.
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Figure 9. Varying system configuration parameters. Logical and physical
plan choices are fixed to Staged, After Join, Shuffle, and Deserialized.

of JVM heap. Other parameters are set by Algorithm 1. The
layers explored for each CNN are the same as before.

Logical Execution PlanDecisions.We compare four com-
binations: AaT or Staged combined with inference After Join
(AJ) or Before Join (BJ). We vary both |L| (dropping lower
layers) and data scale for AlexNet and ResNet. Figure 8(A)
shows the results. The runtime differences between all plans
are insignificant for low data scales or low |L| on both CNNs.
But as |L| or the data scale goes up, both AaT plans get much
slower, especially for ResNet (Figure 8(A.2,A.4)); this is due
to disk spills of large intermediate data. Across the board,
AJ plans are mostly comparable to their BJ counterparts but
marginally faster at larger scales. The takeaway is that these
results validate our choice of using only Staged/AJ in Vista,
viz., Plan (E) in Figure 6 in Section 4.2.1.

Physical Plan Decisions. We compare four combinations:
Shuffle or Broadcast join and Serialized (Ser.) or Deserial-
ized (Deser.) persistence format. We vary both data scale
and number of structured features (|Xstr |) for both AlexNet
and ResNet. The logical plan used is Staged/AJ. Figure 8(B)
shows the results. On ResNet, all four plans are almost in-
distinguishable regardless of the data scale (Figure 8(B.2)),

except at the 8X scale, when the Ser. plans slightly out-
perform the Deser. plans. On AlexNet, the Broadcast plans
slightly outperform the Shuffle plans (Figure 8(B.1)). Fig-
ure 8(B.3) shows that this gap remains as |Xstr | increases but
the Broadcast plans crash eventually. On ResNet, however,
Figure 8(B.4) shows that both Ser. plans are slightly faster
than their Deser. counterparts but the Broadcast plans still
crash eventually. The takeaway is that no one combination
is always dominant, validating the utility of an automated
optimizer like ours to make these decisions.

System Configuration Decisions. We vary cpu and np ,
with our optimizer configuring the memory. We pick Staged/
AJ/Shuffle/Deser. as the logical-physical plan combination.
Figures 9(A,B) show the results for all CNNs. As explained
in Section 4.3, the runtime decreases with cpu for all CNNs,
but VGG eventually crashes (at 8 cores) due to the blowup
in CNN Inference Memory. The runtime decrease with cpu

is sub-linear though. To drill into this issue, we plot the
speedup against cpu on 1 node for data scale 0.25X (to avoid
disk spills). Figure 10(C) shows the results: the speedups
plateau at 4 cores. As mentioned in Section 4.3, this is as
expected, since CNN inference dominates total runtimes and
TF always uses all cores regardless of cpu.

Figure 9(B) shows non-monotonic behaviors with np . At
low np , Spark crashes due to insufficient Core Memory for
the join. As np goes up, runtimes go down, since Spark uses
more parallelism (up to 32 cores). Eventually, runtimes rise
again due to Spark overheads for running too many tasks. In
fact, whennp > 2000, Spark compresses task statusmessages,
leading to high overhead. The Vista optimizer (Algorithm 1)
sets np at 160, 160, and 224 for AlexNet, VGG, and ResNet
respectively, which yield close to the fastest runtimes. The

11



1 2 4 8

Scaleup Factor

0.6

0.8

1.0

1.2

1.4

(A) Scaleup

1 2 3 4 5 6 7 8

Number of Nodes

1

2

3

4

5

6

7

8
(B) Speedup

1 2 3 4 5 6 7 8

Number of CPUs

1

2

3

4

5

6

7

8
(C) Single node Speedup

AlexNet/1X/4L VGG16/1X/3L ResNet50/1X/5L

Figure 10. (A,B) Scaleup and speedup on cluster. (C) Speedup for varying
cpu on one node with 0.25x data. Logical and physical plan choices are fixed
to Staged, After Join, Shuffle, and Deserialized.

takeaway is that these settings involve non-trivial CNN-
specific efficiency tradeoffs and thus, an automated optimizer
like ours can free ML users from such tedious tuning.

Scalability. We evaluate the scaleup (weak scaling) and
speedup (strong scaling) of the logical-physical plan combi-
nation of Staged/After Join/Shuffle/Deserialized for varying
number of worker nodes (and also data scale for scaleup).
While CNN inference andM are embarassingly parallel, data
reads from HDFS and the join can bottleneck scalability. Fig-
ures 10 (A,B) show the results. We see near-linear scaleup for
all 3 CNNs. But Figure 10 (B) shows that the AlexNet sees a
markedly sub-linear speedup, while VGG and ResNet exhibit
near-linear speedups. To explain this gap, we drilled into
the Spark logs and obtained the time breakdown for data
reads and CNN inference coupled with the first iteration of
logistic regression for each layer. For all 3 CNNs, data reads
exhibit sub-linear speedups due to the notorious “small files”
problem of HDFS with the images [11]. But for AlexNet in
particular, even the second part is sub-linear, since its abso-
lute compute time is much lower than that of VGG or ResNet.
Thus, Spark overheads become non-trivial in AlexNet’s case
(more details in Appendix C of our addendum [17]).

Summary of Results. Vista reduces runtimes (even up to
10x) and avoids memory-related crashes by automatically
handling the tradeoffs of logical execution plan, system con-
figuration, and physical plan. Our new Staged execution plan
offers both high efficiency and reliability. CNN-aware system
configuration for memory apportioning, data partitioning,
and parallelism is critical. Broadcast join marginally out-
performs shuffle join but crashes at larger scales. Serialized
disk spills are marginally faster than deserialized. Overall,
Vista automatically optimizes such complex tradeoffs, free-
ing ML users to focus on their ML exploration.

5.3 Discussion of Limitations
A marriage between deep learning systems and parallel
dataflow systems will be beneficial for unified analytics over
structured and unstructured data. But as this paper shows,
much work is still needed to improve system reliability, ef-
ficiency, and user productivity. Vista is a first step in this
direction. We recap key assumptions and limitations of this
work. Vista currently supports one image per data example,
a roster of popular CNNs, and linear models for downstream

ML. Nothing inVistamakes it difficult to relax these assump-
tions. For instance, supporting more downstreamMLmodels
only requires their memory footprints, while supporting ar-
bitrary CNNs requires static analysis of TF computational
graphs. We leave such extensions to future work.

6 Other Related Work
Multimodal Analytics. Transfer learning is used for other
kinds of multimodal analytics too, e.g., image captioning [38].
Our focus is on integrating images with structured data. A
related but orthogonal line of work is “multimodal learning”
in which deep neural networks are trained from scratch
on images [46, 51]; this incurs high costs for resources and
labeled data, which feature transfer mitigates.

Multimedia Systems. The multimedia and database sys-
tems communities have studied “content-based” image re-
trieval, video retrieval, and similar queries over multimedia
data [20, 37]. But they typically used non-CNN features such
as SIFT andHOG [25, 43]. Such systems are orthogonal to our
work, since we focus on CNN feature transfer, not retrieval
queries on multimedia data. One could integrate Vista with
multimedia databases.

Query Optimization. Our work is inspired by a long line
of work on optimizing queries with UDFs, multi-query opti-
mization (MQO), and self-tuning DBMSs. For instance, [24,
33] studied the problem of predicate migration for optimiz-
ing complex relational queries with joins and UDF-based
predicates. Unlike such works on queries with UDFs in the
WHERE clause, our work can be viewed as optimizing UDFs ex-
pressed in the SELECT clause for materializing CNN feature
layers. New plans of Vista can be viewed as a form of MQO,
which has been studied extensively for SQL queries [49].
Vista is the first system to bring the general idea of MQO
to complex CNN feature transfer workloads. We do so by
formalizing partial CNN inference operations as first-class
citizens for query processing and optimization.

System Auto-tuning. There is much prior work on auto-
tuning the configuration of RDBMSs, Hadoop/MapReduce,
and Spark for relational workloads (e.g., [34, 53]). Our work
is inspired by these works but ours is the first to focus on
the CNN feature transfer workload. We explain the new
efficiency and reliability issues caused by CNNs and feature
layers and apply our insights for CNN-aware auto-tuning in
our setting that straddles PD and DL systems.

7 Conclusions and Future Work
The success of deep CNNs presents exciting new opportu-
nities for exploiting images and other unstructured data
sources in data-driven applications that have hitherto relied
mainly on structured data. But realizing the full potential of
this integration requires data analytics systems to evolve and
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elevate CNNs as first-class citizens for query processing, op-
timization, and system resource management. In this work,
we take a first step in this direction by integrating parallel
dataflow and deep learning systems to support and optimize
a key emerging workload in this context: feature transfer
from deep CNNs. By enabling more declarative specification
and by formalizing partial CNN inference, Vista automates
much of the data management and systems-oriented com-
plexity of this workload, thus improving system reliability
and efficiency. For future work, we plan to support more
general forms of CNNs and downstream ML tasks.
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A Estimating Intermediate Data Sizes
We explain the size estimations in the context of Spark. Ignite
also uses an internal format similar to the Spark. Spark’s
internal binary record format is called “Tungsten record
format,” shown in Figure 11. Fixed size fields (e.g., float) use
8 B. Variable size fields (e.g., arrays) have an 8 B header with
4 B for the offset and 4 B for the length of the data payload.
The data payload is stored at the end of the record. An extra
bit tracks null values.
Vista estimates the size of intermediate tables Tl ∀l ∈

L in Figure 6(E) based on its knowledge of the CNN. For
simplicity, assume ID is a long integer and all features are
single precision floats. Let |X | denote the number of features
in X . |Tstr | and |Timg | are straightforward to calculate, since
they are the base tables. For |Ti | with feature layer l = L[i],
we have:

|Ti | = α1 × (8 + 8 + 4 × |дl ( f̂l (I )) |) + |Tstr | (15)

Equation 15 assumes deserialized format; serialized (and
compressed) data will be smaller. But these estimates suffice
as safe upper bounds.

Figure 12 shows the estimated and actual sizes. We see that
the estimates are accurate for the deserialized in-memory
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Figure 12. Size of largest intermediate table.

data with a reasonable safety margin. Interestingly, Eager is
not that much larger than Staged for AlexNet. This is because
among its four layers explored the 4th layer from the top is
disproportionately large while for the other two layer sizes
are more comparable. Serialized is smaller than deserialized
as Spark compresses the data. Interestingly, AlexNet feature
layers seem more compressible; we verified that its features
had many zero values. On average, AlexNet features had
only 13.0% non-zero values while VGG16’s and ResNet50’s
had 36.1% and 35.7%, respectively.

B Pre Materializing a Base Layer
Often data scientists are interested in exploring few of the
top most layers. Hence a base layer can pre-materialized
before hand for later use of exploring other layers. This can
save computations and thereby reduce the runtime of the
CNN feature transfer workload.

However, the CNN feature layer sizes (especially for conv
layers) are generally larger than the compressed image for-
mats such as JPEG (see Table 2). This not only increases the
secondary storage requirements but also increases the IO
cost of the CNN feature transfer workload both when ini-
tially reading data from the disk and during join time when
shuffling data over the network.

Table 2. Sizes of pre-materialized feature layers for the Foods dataset (size
of raw images is 0.26 GB).

Materialized Layer Size (GB)
(layer index starts from the last layer)
1st 2nd 4th 5th

AlexNet 0.08 0.14 0.72

VGG16 0.08 0.20 1.19

ResNet50 0.08 2.65 3.45 11.51

We perform a set of experiments using the Spark-TF sys-
tem to explore the effect of pre-materializing a base layer (1,
2, 4, and 5th layers from top). For evaluating theMLmodel for
the base layer no CNN inference is required. But for the other
layers partial CNN inference is performed starting from the
base layer using the Staged/After Join/Deserialized/Shuffle

logical-physical plan combination. Experimental set up is
same as in Section 5.2.
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a base layer

For AlexNet and VGG16 when materializing 4th , 2nd , and
1st layers from the top, the materialization time increases
as evaluating higher layer requires more computations (see
Figure. 13 (A) and (B)). However, for ResNet50 there is a sud-
den drop from the materialization time of 5th layer features
to the materialization time of 4th layer features. This can be
attributed to the high disk IO overhead of writing out 5th
layer image features which are ∼3 times larger than that of
4th layer (see Figure. 13 (C)). Therefore, for ResNet50 starting
from a pre-materialized feature layer, instead of raw images,
may or may not decrease the overall CNN feature transfer
workload runtime.

C Runtime Breakdown
We drill-down into the time breakdowns of the workloads
on Spark-TF environment and explore where the bottlenecks
occur. In the downstream logistic regression (LR) model, the
time spent for training the model on features from a specific
layer is dominated by the runtime of the first iteration. In
the first iteration partial CNN inference has to be performed
starting either from raw images or from the image features
from the layer below and the later iterations will be operat-
ing on top of the already materialized features. Input read
time is dominated by reading images as there are lot of small
files compared to the one big structured data file [11]. Ta-
ble 3 summarizes the time breakdown for the CNN feature
transfer workload. It can be seen that most of the time is
spent on performing the CNN inference and LR 1st iteration
on the first layer (e.g 5th layer from top for ResNet50) where
the CNN inference has to be performed starting from raw
images.
We also separately analyze the speedup behavior for the

input image reading and the sum of CNN inference and LR
1st iteration times (see Figure 14). When we separate out
the sum of CNN inference and LR 1st iteration times, we
see slightly super linear speedups for ResNet50, near linear
speedups for VGG16, and slightly better sub-linear speedups
for AlexNet.

D Accuracy
For both Foods and a sample of Amazon (20,000 records)
datasets we evaluate the downstream logistic regression
model F1 score with (1) only using structured features, (2)
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Table 3. Runtime breakdown for the image data read time and 1st iteration of the logistic regression model (Layer indices starts from the top and runtimes
are in minutes).

ResNet50/5L AlexNet/4L VGG16/3L
Number of nodes Number of nodes Number of nodes

1 2 4 8 1 2 4 8 1 2 4 8

La
ye
r

5 19.0 9.5 4.5 2.3
4 3.8 1.8 0.9 0.4 3.7 2.1 1.2 0.7
3 2.7 1.3 0.7 0.4 2.4 1.3 0.7 0.5 43.0 22.0 11.0 5.4
2 2.6 1.3 0.6 0.3 1.1 0.6 0.3 0.2 1.0 0.5 0.3 0.2
1 1.8 0.9 0.4 0.2 0.3 0.2 0.1 0.1 0.3 0.2 0.1 0.1

total 29.9 14.8 7.1 3.6 7.5 4.2 2.3 1.5 44.3 22.7 11.4 5.7
Read images 3.7 2.0 1.1 0.7 3.9 2.1 1.2 0.8 4.6 2.5 1.4 0.9
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Figure 15. F1 score lifts obtained by incorporating HOG descriptors and
CNN features for logistic regression model with elastic net regularization
with α = 0.5 and a regularization value of 0.01.

Figure 16. End-to-end reliability and efficiency on GPU. “×” indicates a
system crash.

1 2 3 4 5 6 7 8

Number of Nodes

1

2

3

4

5

6

7

8

(C) ResNet50

1 2 3 4 5 6 7 8

Number of Nodes

1

2

3

4

5

6

7

8

S
p
e
e
d
u
p

(A) AlexNet

1 2 3 4 5 6 7 8

Number of Nodes

1

2

3

4

5

6

7

8

(B) VGG16

CNN inference + LR first iteration Reading images
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Table 4. F1 scores of test datasets obtained by incorporating HOG de-
scriptors and CNN features for logistic regression model with elastic net
regularization with α = 0.5 and a regularization value of 0.01.

Structured
Only

Structured
+ HOG

Structured
+ CNN

Foods 80.2 81.1 85.4
Amazon 61.5 62.2 64.3

structured features combined with “Histogram of Oriented
Gradients (HOG)” [26] based image features, and (3) struc-
tured features combined with CNN based image features
from different layers of AlexNet and ResNet models.
In all cases incorporating image features improves the

classification accuracy and the improvement achieved by
incorporating CNN features is higher than the improvement
achieved by incorporating traditional HOG features (see
Table 4 and Figure 15).

E End-to-End Reliability and Efficiency on
GPUs

GPU experiments are run on Spark-TensorFlow environ-
ment using the Foods dataset. The experimental setup is a
single node machine which has 32 GB RAM, Intel i7-6700 @
3.40GHz CPUwhich has 8 cores, 1 TB Seagate ST1000DM010-
2EP1 SSD, and Nvidia Titan X (Pascal) 12GB GPU. The re-
sults are shown in Figure 16. In this setup Lazy-5 and Lazy-7
crashes with VGG16, and Eager crashes with ResNet50.
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