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Abstract

Data analytics using machine learning (ML) has become ubiquitous in science, business intelligence,
journalism and many other domains. While a lot of work focuses on reducing the training cost, inference
runtime and storage cost of ML models, little work studies how to reduce the cost of data acquisition,
which potentially leads to a loss of sellers’ revenue and buyers’ affordability and efficiency. In this
paper, we propose a model-based pricing (MBP) framework, which instead of pricing the data, directly
prices ML model instances. We first formally describe the desired properties of the MBP framework,
with a focus on avoiding arbitrage. Next, we show a concrete realization of the MBP framework via a
noise injection approach, which provably satisfies the desired formal properties. Based on the proposed
framework, we then provide algorithmic solutions on how the seller can assign prices to models under
different market scenarios (such as to maximize revenue). Finally, we conduct extensive experiments,
which validate that the MBP framework can provide high revenue to the seller, high affordability to the
buyer, and also operate on low runtime cost.

1 Introduction

Data analytics using machine learning (ML) is an integral part of science, business intelligence, journalism,
and many other domains. Research and industrial efforts have largely focused on performance, scalability
and integration of ML with data management systems [9, 21, 28]. However, limited research has studied the
cost of acquiring data for ML-based analytics.
Users often buy rich structured (relational) data to train their ML models, either directly through companies
(e.g., Bloomberg, Twitter), or through data markets (e.g., BDEX [1],Qlik [2]). Such datasets are often very
expensive due to the immense effort that goes into collecting, integrating, and cleaning them. Existing pricing
schemes either force users to buy the whole dataset or support simplistic pricing mechanisms, without any
awareness of ML tasks (e.g., the dataset is typically used to train predictive models). This means that valuable
datasets may not be affordable to potential buyers with limited budgets, and also that data sellers operate in
inefficient markets, where they do not maximize their potential revenue. Simplistic pricing schemes may also
create undesirable arbitrage opportunities. Thus, as [10] also points out, there is a need to transition from
markets that sell only data to markets that can also directly sell ML models.
Model-based Pricing. In this paper, we take a first step towards the long-term vision of creating a marketplace
for selling and buying ML models, by presenting a formal and practical fine-grained pricing framework
for machine learning over relational data. Our key observation is that, instead of selling raw data to the
buyers, it makes more sense to directly sell ML model instances with different accuracy options. The price
then should depend on the accuracy of the model purchased, and not the underlying dataset. Since the price
is based on the model instance, we call our framework model-based pricing (MBP).
The high level view of MBP is demonstrated in Figure 1. The data market involves three agents, namely, the
seller who provides the datasets, the buyer who is interested in buying ML model instances, and the broker
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Figure 1: Model-based pricing market setup. (A) The seller is the agent who wants to sell ML model instances
trained on their commercially valuable dataset D. (B) The broker is the agent that mediates the sale for a set
of supported ML models and gets a cut from the seller for each sale. (C) The buyer is the agent interested in
buying a ML model instance trained on D.

(market) who interacts between the seller and the buyer. First, the seller and/or the broker perform market
research to ascertain curves representing demand and value for the ML model instances among potential
buyers. These curves plot demand and value as a function of the error/accuracy of the ML model trained.
The broker uses the market research information to build price-error curves that are presented to the buyers.
The buyer specifies a desired price or error budget and pays the broker, who computes an appropriate ML
model instance (according to the buyer’s specifications), and returns it to the buyer. We should note here that
the broker provides different price-error curves, depending on the ML model that the buyer desires.
Desiderata and Challenges. Achieving the MBP framework is a technically challenging task, from both
theoretical and practical points of view. First, in order to guarantee affordability, the MBP framework must
allow buyers with different budgets to buy model instances with different accuracy guarantees. However,
the model instance generation should be performed efficiently with low runtime cost, since model training is
typically time-consuming. Second, the MBP framework must prevent arbitrage opportunities, where a buyer
can combine model instances of low accuracy and low price to obtain a high accuracy instance for a cheaper
price than the one provided by the market. For example, an instance with high accuracy should always be at
least as expensive as an instance with lower accuracy. Finally, the MBP framework must provide capabilities
for the broker/buyer to assign the prices such that the revenue is maximized.
Our Solution. Our key technical contribution is a simple and efficient noise-injection mechanism that realizes
an MBP framework with formal guarantees. Specifically, the broker first trains the optimal model instance,
which is a one-time cost. When a buyer requests a model instance, the broker adds random Gaussian noise to
the optimal model and returns it to the buyer. Our proposed mechanism avoids training a model instance from
scratch and is able to achieve real time interaction. We show that the error of the ML model instance (when
certain properties are satisfied by the error function) is a monotone function of the variance of the noise
injected in the model. Hence, the variance works as a parameter that controls the magnitude of the error.
The pricing mechanism charges a price according to the variance of the noise injected to the model instance.
Adding noise with low variance implies a model instance with expected low error and thus high price, while
noise with high variance results in an instance with expected larger error and low price. This enables the buyer
to either choose cheaper but less accurate instances or more accurate yet more expensive ones. Essentially,
our mechanism provides different versions of the desired ML model of varying quality, in analogy to the
notion of versioning in information selling [27].
Our proposed MBP mechanism comes with a concise characterization of when a pricing function is provably
arbitrage-free. In the main theoretical result of this paper, we show that a pricing function is arbitrage-free if
and only if the price of a (randomized) model instance is monotone increasing and subadditive with respect
to the inverse of the variance. For example, this means that when we double the variance, we should at most
cut the price in half, otherwise we would create an arbitrage opportunity.
For revenue maximization, we establish a formal optimization framework based on the buyer’s value and
demand curves. We show that revenue maximization is a computationally hard problem even under a
simple revenue model. To address this intractability, we present a novel method of relaxing the subadditive

2



constraints, which allows us to obtain polynomial time algorithms with provable approximation guarantees.
Central to the revenue maximization problem in our setting is the problem of interpolating a monotone and
subadditive function through given points, which could be of independent interest.
Finally, we prototype the MBP framework in standalone MATLAB, which is popular for ML-based analytics
(but note that our framework is generic and applicable in other settings as well). We present an extensive
empirical evaluation using both real and synthetic datasets. Our experiments validate that MBP always attains
the highest revenue and provides the highest buyer affordability compared to the existing naive solutions,
while simultaneously guaranteeing protection against arbitrage. We also show that our revenue maximization
solution for price setting is orders of magnitude faster than brute-force search, while empirically achieving a
revenue with negligible gap to the optimal revenue.
Summary of Contributions. In summary, this paper makes the following contributions.

• To the best of our knowledge, this is the first paper on a formal framework of ML-aware model-based
pricing. We identify and formally characterize important properties, such as arbitrage freeness, that
such a framework should satisfy.

• We propose a concrete MBP mechanism via an noise injection approach, and establish a concise
characterization of the desired properties of a pricing function.

• We develop a revenue optimization framework that finds the optimal prices with the desired properties
as constraints. Although it is a provably computationally hard problem, we provide an approximate
solution which gives a pricing function with provably high revenue.

• Finally, extensive experiments validate that our proposed solution provides high revenue for the seller,
large affordability ratio for the buyer, and fast runtime for the broker.

Outline. Section 2 presents the problem setup and background. Section 3 introduces the MBP framework and
relevant desiderata. Section 4 provides a concrete realization of the MBP framework via the noise injection
approach. Section 5 studies the revenue optimization problem and Section 6 presents the implementation and
experimental evaluation. We conclude in Section 7. All missing proof is left to the appendix .

2 Related Work

In this section, we discuss related work on data pricing and machine learning.
Pricing Relational Queries. The problem of pricing relational data has received a lot of attention recently.
The pricing schemes currently supported in data markets are typically simplistic: a prospective buyer can
either buy the whole dataset for some fixed price, or ask simple queries and be priced according to the number
of output tuples. A recent line of work [4,11–13,18,20,26] has formally studied pricing schemes for assigning
prices to relational queries issued over such data, a setting called query-based pricing. In query-based pricing,
we are given a dataset D and a query Q, and the goal is to assign a price p(Q,D) based on the information
disclosed by the query answer. Central to query-based pricing is the notion of arbitrage. Intuitively, whenever
query Q1 discloses more information than query Q2, we want to ensure that p(Q1) ≥ p(Q2); otherwise, the
data buyer has an arbitrage opportunity to purchase the desired information for a lesser price. To formalize
information disclosure, query-based pricing uses the mathematical tool of query determinacy [23, 24]. In the
proposed framework [11], the seller specifies a set of fixed prices for views over the data (price points), based
on which an arbitrage-free price is computed for any query. [20] provides several necessary conditions for
arbitrage-free pricing functions. [17] takes a first step towards pricing private datasets.
At first glance, MBP seems similar to query-based pricing. For relational queries, the price is for the
information released by the query output, while for ML analytics, the price is for the information released by
the model instance. However, there are fundamental differences: for relational queries, the buyer obtains a
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deterministic answer, while for ML analytics, the model is typically computed in an non-deterministic way.
Also, in MBP, we enable the buyer to specify an accuracy constraint to control the predictive power of the
model instance they buy. Our MBP mechanism is closer to that of [17], where Laplacian noise is added to the
result of aggregates to protect individuals from privacy loss.
Markets for ML. While quite a few ML systems [3,5,19,25] have been developed to reduce the computational
cost of training ML models, there has been little attention to the problem of constructing ML markets until
recently [10,15]. [15] develops a market system via block chain technology to allow exchange and purchasing
of ML models. [10] points out the importance of creating markets for ML applications. MBP can be viewed
as the first foray into how we should build such markets.
ML over Relational Data. We focus on standard supervised ML for relational/structured data, specifically,
classification and regression. We are given a dataset table D with n labeled examples and d features. The
target (label) is denoted Y , while the feature vector is denoted X . We assume that X and Y correspond to the
attributes of a single relation. In this setting, the labeled examples are typically assumed to independently
and identically distributed (IID) samples from some underlying (hidden) distribution that produces the data,
P [X, Y ]. An ML model is simply a mathematical model to approximate P in some intuitive manner. For
example, the least squares linear regression model assumes the data can be represented using d-dimensional
hyperplane. An ML model instance is a specific instance of that ML model that corresponds to some prediction
function f : DX → DY . For example, an instance of the least squares linear regression model a given vector
w ∈ Rd. Given D, a learning algorithm computes such a prediction function. The set of functions learnable
(representable) by an ML model is called its hypothesis space. The predictive power of a model instance is
often evaluated using standard scores such as holdout test error [7]. There are hundreds of ML models [22];
some of the most popular ones are Naive Bayes, other Bayesian Networks, and Generalized Linear Models
(GLMs). These models are popular mainly due to their interpretability, simplicity, speed, and extensive
systems support. Thus, we primarily focus on such models.

3 Model-based Pricing Framework

In this section, we introduce the framework of model-based pricing (MBP), and then outline some basic
properties that our framework must satisfy. We summarize the notations used throughout this paper in Table
1.

3.1 Market Setup and Agents

Our framework involves three types of agents that interact in the setting of a data marketplace: the seller, the
broker and the buyer. We now introduce our market setup involving these agents and their interactions, as
well as the notation and assumptions we use. Figure 1 illustrates the market setup.
Seller. The seller provides the dataset D for sale, and it is given as a pair (Dtrain, Dtest), wherein Dtrain is
called the train set (for obtaining model instances) and Dtest is the test set. This train-test split is standard
in ML practice [7]. For simplicity of exposition, we express a row in D as a labeled example of the form
z = (x, y), where x = z[X] is the feature vector and y = z[Y ] is the target.
Broker. The broker specifies a menu of ML models M she can support (e.g., logistic regression for
classification and ordinary least squares for regression), along with the corresponding hypothesis spacesHm
for each m ∈M. For now, fix an ML model, i.e., the hypothesis spaceH. An error (loss) function λ(h,D)
measures the goodness of a hypothesis h ∈ H on Dtrain and returns a real number in [0,∞). Given D and
the error function λ, let h∗λ(D) = arg minh∈H λ(h,D) denote the optimal model instance, i.e., the model
instance that obtains the smallest error on the training dataset w.r.t. λ. We also define another error function ε
that can operate on either Dtest or Dtrain, based on the buyer’s preference. For simplicity of exposition, we use
D with both the error functions, with the implicit convention that λ operates on Dtrain and ε on Dtest or Dtrain.
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Table 1: Notations.

Symbol Meaning

D/Dtrain/Dtest dataset/train set/test set

n0/n1/n2 number of samples in D/Dtrain/Dtest

d number of features

x/y feature vector/target value (label)

M/m a set of ML models/a specific model

H/h hypothesis space/a specific hypothesis

λ(·, ·)/ε(·, ·) error function for training/accuracy report

h∗λ(D) optimal model instance w.r.t. λ on D

δ noise control parameter (NCP)

Wδ distribution generated by δ

w ∼Wδ random variable generated by Wδ

K(·, ·) randomized noise mechanism

ĥδλ(D) = K(h∗λ(D), w) model generated via K
pε,λ(δ,D) price of the model instance ĥδλ(D)

p̄(x) = pε,λ(1/x,D) price of the model instance ĥ1/x
λ (D)

In general, ε can be different from λ because that may be more meaningful from an ML accuracy standpoint.
In particular, in this paper, we focus on the following types of ML models and their associated error functions.
Formally, we focus on λ that is strictly convex. In particular, for classification, this covers the popular
logistic regression and linear SVM model (with L2 regularization). For regression with a real-valued target,
this covers the popular least squares linear regression model. We think it is reasonable to focus on these
well-understood ML models and leave more complex ML models and error functions to future work, since it
enables us to study the issues of model-based pricing in depth in this first paper. However, we emphasize that
our market setup, our analyses of the properties of the pricing functions, and the revenue optimization are all
generic and applicable to any ML model. For ε, we use both the same loss function as λ and the commonly
used misclassification rate error function for classification models. We tabulate the ML models and their
associated error functions in Table 2.

ML model Error Function(s)
For λ; (y,x) from train set Dtrain

Lin. reg.
∑

(y,x)(y −wTx)2 [+µ‖w‖2]

Log. reg.
∑

(y,x) log(1 + e−yw
Tx) [+µ‖w‖2]

L2 Lin. SVM
∑

(y,x)max(1,−ywTx) + µ‖w‖2

For ε; (y,x) from test set Dtest or train set Dtrain

Lin. reg. Same as λ
Log. reg. Same as λ;

∑
(y,x) 1y=(wTx>0)L2 Lin. SVM

Table 2: ML models inM and associated error functions. [·] indicates optional regularization. All errors are
typically averaged by the number of examples used.
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Figure 2: End-to-end model based pricing. The seller first provides the broker with the buyer value and
demand curve via market research. The broker then obtains the curve v.r.t the inverse NCP via some error
transformation, computes the pricing function via revenue optimization, and then returns a pricing curve to
the buyers based on different error functions λ, ε.

The broker releases a model instance through a randomized mechanism K that enables them to trade off
ML error for the price the model instance is sold for. This is a key novel technical capability in our market
setup that enables model-based pricing in contrast to flat pricing. This mechanism enables us to realize
versioning in the context of ML, in analogy to the versioning of digital information goods in micro-economics
literature [27].
Specifically, K uses a set of parametrized probability distributions {Wδ | δ ∈ R+}. Given a dataset D, an
error function λ and a noise control parameter (NCP) δ, the broker first computes the optimal model instance
h∗λ(D). Then, they sample w ∼ Wδ and output a noisy version of the optimal model, ĥδλ(D) = K(h∗λ(D), w).
The NCP δ will be used as a knob to control the amount of noise added, and in turn, the price of the model
instance sold. We will discuss more about the noise addition mechanism’s desiderata shortly, but first, we
explain the other agent in our setup.
Buyer. The buyer specifies an ML model m ∈ M they are interested in learning over D, along with their
preferences for the error functions λ and ε to use from among the ones the broker supports. After a set of
interactions with the broker, which will be explained shortly, the buyer obtains an instance of m that satisfies
their price and/or error constraints.

3.2 Agent Interaction Models

Having introduced the three agents in our framework, we now explain how the market operates. Figure 1
illustrates our market setup and the interactions between the seller and broker, as well as between the broker
and the buyer.
Broker-Seller Interaction Model. Apart from providing D, the seller works with the broker to determine the
pricing function p to use for a given ML model. The pricing function does not depend solely on the released
model instance ĥδλ(D). Instead, it depends on D, the NCP δ, and the two error functions λ, ε. Hence, we
express the pricing function as pε,λ(δ,D), which returns a non-negative real number in [0,∞). The desirable
properties of a pricing function, how to set them to maximize revenue for the seller but still satisfy potential
customers and run a feasible market, and how to compute them efficiently are all core technical challenges
that we address later in this paper.
In the context of the interaction model, the broker is able to set the pricing functions based on two curves
provided by the seller based on their market research about D. These curves, illustrated in Figure 2(a), tell
the broker how much value potential customers attach to model errors in terms of monetary worth (value
curve) and how much demand there is the market for different model errors (demand curve). Defining and
using these curves as inputs for optimizing pricing is standard practice in micro-economics for data markets
such as the sale of digital videos [8]. Our work adopts this practice for the novel scenario of selling ML
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model instances trained on D.
Given the demand and value curves as a function of some error function, the broker first transforms them
to demand and value curves as a function of the inverse NCP, as shown in Figure 2(b). Then, the broker
computes the revenue maximizing pricing function as a function of the inverse NCP (Figure 2(c)) – we defer
discussion of the revenue optimization problem till Section 5.
Broker-Buyer Interaction Model. The buyer-broker interaction has 4 four steps, as illustrated by Figure 1(C).
First, the buyer specifies the ML model they are interested in (H) and the two error functions λ, ε correspond-
ing to that model that the broker supports. For instance, these could be the log loss for logistic regression
training but the zero-one classification error for testing. Second, given these inputs, the broker computes a
curve that plots the price together with the expected error for every NCP δ, given by E∼Wδ

[
ε
(
ĥδλ(D), D

)]
.

This curve shows to the buyer the possible price points of the different versions of this model in D. As shown
in Figure 2 (d), different λ, ε corresponds to different pricing curves.
For the third step, the buyer has three options. First, she can specify a particular point on the curve (i.e. a
price-error combination); since we know that δ behaves monotonically w.r.t. the expected error, the broker
can find the unique δ∗ that corresponds to that point, and obtains ĥδ

∗
λ (D). The second option is that the buyer

specifies an error budget ε̂. The broker then solves the following optimization problem:

δ∗ = arg min
δ
pε,λ (δ,D)

s.t. E∼Wδ

[
ε
(
ĥδλ(D), D

)]
≤ ε̂

The third and final option for the buyer is to specify a price budget p̂ to the broker. The broker then solves the
following optimization problem:

δ∗ = arg min
δ

E∼Wδ

[
ε
(
ĥδλ(D), D

)]
s.t. pε(δ,D) ≤ p̂

The third step is for the buyer to pay the price of pε,λ (δ∗, D) to the broker. In the final step of this interaction,
the broker gives the obtained model instance ĥδ

∗
λ (D) to the buyer.

Restrictions on the Randomized Mechanism. The mechanism K used by the broker needs to satisfy certain
properties to enable us to reason about the market’s behavior and ensure it is “well-behaved” (a property we
will define shortly). In particular, in this paper, we only consider randomized mechanisms that satisfy the
following two conditions.

• K is unbiased, which means that:

Ew∼Wδ
[K(h∗λ(D), w)] = h∗λ(D)

In simple terms, the model instance sold after adding noise is the same as the optimal model instance
in expectation. Only the NCP δ controls how much noise is added, and thus, how much degradation
there is in the model instance’s parameters.
• The parameter δ behaves monotonically w.r.t. the expected error,

δ1 ≤ δ2 ⇔ E
[
ε
(
ĥδ1λ (D), D

)]
≤ E

[
ε
(
ĥδ2λ (D), D

)]
That is, by increasing the NCP δ we strictly increase the expected error as well, and vice versa.
The feasibility of this assumption depends on the exact ε used. As we show later, this assumption is
reasonable for many common scenarios and lets us provide formal guarantees on the market’s behavior
.
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We now present two concrete examples of how our model-based pricing framework operates. The first
example is for computing a simple SQL-style aggregate, average, to make it easier to understand the concepts.
The second example is for a common statistical ML model, linear regression. We use these two as running
examples in the rest of the paper.

Example 1. Suppose the buyer is interested in “learning” the average value of a particular feature (column)
of D. The hypothesis spaceH is just R. The error functions can be simply defined as λ(h,D) = (h− x̄)2,
where x̄ is the true column average from Dtrain, and similarly for ε on Dtrain. One possible randomized
mechanism for adding noise is K1(h∗λ(D), w) = h∗λ(D) + w, where w ∼ U [−δ, δ], i.e., a uniform random
distribution. Yet another possible mechanism is K2(h∗λ(D), w) = h∗λ(D) · w, where w ∼ U [1 − δ, 1 + δ].
Both of these randomized mechanisms satisfy the two restrictions listed earlier.

Example 2. Suppose the buyer is interested in learning a least squares linear regression model on D. The
hypothesis spaceH is then the set of all hyperplanes h ∈ Rd. The error function λ is the least squares loss
defined on the training subset, i.e.,

λ(h,D) =
1

2|Dtrain|
∑

zi∈Dtrain

(
hTxi − yi

)2
.

The error function ε is the same as above, except on the test subset Dtest of D. Given the optimal model
instance h∗λ(D), one randomized mechanism for adding noise is as follows. Let Wδ = N (0, δ2) be the
standard d-dimensional normal (Gaussian) distribution with mean 0 and variance δ2. The noise addition
mechanism is as follows:

K(h∗ε (D), w) = h∗ε (D) + w

Thus, we simply add Gaussian noise (of different magnitudes) independently to each co-efficient of the optimal
model instance and return it to the buyer. Another possible mechanism is to sample noise from a zero-mean
Laplace distribution. Once again, of these randomized mechanisms satisfy the two restrictions listed earlier.

3.3 Pricing Function Desiderata

We now return to the concept of the pricing functions mentioned earlier when explaining the broker-seller
interaction model. For the market to be able to work, these pricing functions need to satisfy a set of desiderata
that provide some guarantees to both the seller and the buyer. In a sense, these guarantees act as the service-
level agreement (SLA) for model-based pricing. In particular, we want the pricing functions to satisfy the
following requirements.
Non-negativity. Clearly, the pricing function has to be non-negative, since the buyer should not be able to
make money from the broker by obtaining an ML model instance.

Definition 1. A pricing function pε,λ is non-negative in dataset D iff for every parameter δ (of K),

pε,λ(δ,D) ≥ 0.

Error Monotonicity. Next, we want to make sure that if for a parameter δ1, we obtain a smaller (or equal)
expected error than for a parameter δ2, then the price is larger (or equal) for the former model instance.
Otherwise, a buyer that wants to buy a model instance with the smaller error can purchase it for a smaller
price. This situation is illustrated in Figure 3. The formal definition is as follows.

Definition 2. A pricing function pε,λ is error-monotone in dataset D if for every parameters δ1, δ2,

E
[
ε(ĥδ1λ (D), D)

]
≤ E

[
ε(ĥδ2λ (D), D)

]
implies that

pε,λ(δ1, D) ≥ pε,λ(δ2, D).
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to pick B; indeed, the entire shaded region shown is useless for the seller, since they lose some potential
revenue.

Error monotonicity implies that whenever we have two parameters δ1, δ2 such that E
[
ε(ĥδ1λ (D), D)

]
=

E
[
ε(ĥδ2λ (D), D)

]
, then the prices must be equal as well, i.e. pε,λ(δ1, D) = pε,λ(δ2, D). Hence, the error

monotonicity property implies that the price does not depend on the actual parameter δ of the mechanism, but
on the error that this parameter induces.
Arbitrage-freeness. The final property we discuss is arbitrage-freeness, which is analogous to a similar
notion in query-based pricing [11]. We first explain the importance of this property intuitively. Suppose a
buyer wants to buy one model instance with a small error but large price. Suppose further she also buys
more of such model instances at different prices, the sum of all of which is lower than that of the desired
single model instance. At the same time, suppose she is able to “combine” the latter set of model instances to
construct a new model instance with an error smaller than the originally desired single model instance. In
this case, she would rather just buy the latter set of model instances instead of the original model instance to
get an error lower than what the market is set up for. Such a situation is called arbitrage. For the market
to work well, we need to ensure that it is arbitrage-free, i.e., situations such as these do not happen (or are
extremely unlikely). This intuition is captured formally by the following definitions.

Definition 3 (k-Arbitrage). We say that a pricing function pε,λ exhibits k-arbitrage in dataset D if there exist
parameters δ0, δ1, δ2, · · · , δk, and a function g : Hk → H such that

1.
∑k

i=1 pε,λ(δi, D) < pε,λ(δ0, D), and

2. E
[
ε(h̃, D)

]
≤ E

[
ε(ĥδ0λ (D), D)

]
, where h̃ is the model h̃ = g(ĥδ1λ (D), ĥδ2λ (D), . . . , ĥδkλ (D)) s.t.

E
[
h̃
]

= h∗λ(D).

Definition 4 (Arbitrage-free). A pricing function pε,λ is arbitrage-free in dataset D iff it does not exhibit
k-arbitrage for any k ∈ N+.

Not surprisingly, arbitrage-freeness implies that the pricing function is also error monotone, as the following
simple lemma shows. Indeed, Figure 3 can also be seen as a case of 1-arbitrage.

Lemma 1. If a pricing function pε,λ is arbitrage-free in dataset D, then it is also error-monotone in D.

Proof. Suppose that pε,λ is not error-monotone in D. This implies that there exist parameters δ1, δ2 such that

E
[
ε(ĥδ1λ (D), D)

]
≤ E

[
ε(ĥδ2λ (D), D)

]
and pε,λ(δ1, D) < pε,λ(δ2, D). It is easy to see that in this case pε,λ
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Figure 4: The Gaussian Mechanism for adding random noise to an optimal model instance.

exhibits 1-arbitrage, since we can simply pick the function g to be the identity function. In this case, pε,λ
cannot be arbitrage-free.

Definition 5. We say that a pricing function pε,λ is well-behaved in dataset D iff it is non-negative and
arbitrage-free.

4 Noisy Model Generation

So far we have presented a general framework for pricing ML models, and the interactions between the three
agents. In this section, we describe a concrete instance of this framework, and present specific mechanisms
for noise addition and price computation.

4.1 The Gaussian Mechanism

Let us fix a hypothesis space H, such that model instances in H are vectors in Rd.1 We will focus on a
specific randomized mechanism, denoted KG, which uses additive Gaussian noise. In particular, define
Wδ = N (0, (δ/d) · Id), for any δ ∈ R+. Here 0 is the d-dimensional vector with all 0 entries, and Id is the
identity matrix with dimensions d× d.
Given the two error functions ε, λ, a dataset D and a parameter δ, the Gaussian mechanism first computes the
optimal model h∗λ(D) for the given error function λ and dataset D, samples a vector w ∼ Wδ, and finally
outputs h∗λ(D) + w. This is illustrated in Figure 4. Formally:

KG(h∗λ(D), w) = h∗λ(D) + w, w ∼ N (0, (δ/d) · Id) (1)

It is straightforward to see that by construction KG is an unbiased mechanism.

Lemma 2. KG is an unbiased randomized mechanism.

Proof. Indeed, we have

E [KG(h∗λ(D), w)] = E [h∗λ(D) + w]

= h∗λ(D) + E [w] = h∗λ(D)

where the last equality comes from the fact that the Gaussian noise we add has mean 0 in every dimension.
1For simplicity, we assume that the dimension of the models equals to the number of features d, but note that our framework

works in general even if they are not equal.
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We next analyze the Gaussian mechanism KG in detail. We first focus on a particular instantiation of the error
function ε, the square loss. The square loss computes the error as the euclidean distance from the optimal
model:

εs(h,D) = ‖h− h∗λ(D)‖22 (2)

When the error function is the square loss, we can show that the parameter δ is exactly equal to the expected
error of the mechanism (and hence trivially the parameter δ behaves monotonically w.r.t. the expected error).

Lemma 3. Let λ,D, and ĥδλ(D) = KG(h∗λ(D), w). Then:

E
[
εs

(
ĥδλ(D), D

)]
= δ

Proof. We have:

E
[
εs

(
ĥδλ(D), D

)]
= E

∥∥∥ĥδλ(D)− h∗λ(D)
∥∥∥2

2

= E
[
‖w‖22

]
=

p∑
i=1

E
[
w2
i

]
= δ

This concludes the proof.

We can show that other types of error functions behave monotonically w.r.t. the expected error.

Theorem 4. LetD,λ, and let ε be convex as a function of the model instance h. Let ĥδλ(D) = KG(h∗λ(D), w).
Then, for any two parameters δ1, δ2, we have

E
[
ε(ĥδ1λ (D), D)

]
≥ E

[
ε(ĥδ2λ (D), D)

]
if and only if δ1 ≥ δ2.
If ε is additionally strictly convex, the above holds with strict inequality (>).

4.2 Arbitrage for the Gaussian Mechanism

We now turn our attention to the pricing function that corresponds to the Gaussian mechanism. We show the
central theoretical result of this paper, which gives us a concise characterization of an arbitrage-free pricing
function when we use the Gaussian mechanism.

Theorem 5. Let D be a dataset, and λ be an error function. A pricing function pεs,λ is arbitrage free for the
Gaussian mechanism KG if and only if the following two conditions hold for every δ1, δ2, δ3:

1. If 1/δ1 = 1/δ2 + 1/δ3, then

pεs,λ(δ1, D) ≤ pεs,λ(δ2, D) + pεs,λ(δ3, D).

2. If δ1 ≤ δ2, then
pεs,λ(δ1, D) ≥ pεs,λ(δ2, D).

The above theorem tells us that arbitrage-freeness is equivalent to the function p̄(x) = pεs,λ(1/x,D) being
subadditive and monotone over its domain. Hence, we have a concise criterion to check for the arbitrage
freeness property in a given pricing function p.
Although the square loss gives us a compact theoretical characterization of arbitrage-freeness, it is not
typically used to measure the error of the model instance returned to the user. However, in the case where ε is
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Figure 5: Illustrating example of revenue optimization. Consider a revenue maximization problem with 4
points. a1 = 1, a2 = 2, a3 = 3, a4 = 4, b1 = b2 = b3 = b4 = 0.25, v1 = 100, v2 = 150, v3 = 280, v4 =
350. (a) sets all prices equal to the valuation, but it has arbitrage issue. (b) and (c) use constant and linear
pricing functions, respectively. They avoid arbitrage, but they lose revenue. (d) gives the revenue-optimal
pricing function, which is coNP-hard to compute. (e) is the proposed pricing function that approximates the
optimal revenue well while it can be efficiently computed.

a strictly convex function, we can still characterize arbitrage-freeness by applying Theorem 4. Indeed, as a
corollary of Theorem 4, if ε is strictly convex, there exists a bijection between the expected error and the
parameter δ. Thus, there exists a function φ, which we call the error-inverse of ε, such that:

δ = φ
(
E
[
ε(ĥδλ(D), D)

])
We can combine the above insight with Theorem 5 to show the following result.

Theorem 6. Let D be a dataset, and λ, ε be error functions. Suppose that ε is strictly convex, and let φ be
its error-inverse. A pricing function pε,λ is arbitrage free for the Gaussian mechanism KG if and only if the
function

p̄(x) = pε,λ(1/φ(x), D)

is monotone and subadditive.

In other words, arbitrage-freeness is still characterized through monotonicity and subadditivity once we view
the pricing function through the transformation of the inverse map φ. A natural question here is how one can
compute the error inverse φ of a given ε. In general, we can always compute φ empirically, but in several
cases it is possible to compute it analytically.

5 Revenue Optimization

So far we have introduced the gaussian mechanism to offer for sale noisy ML models to the buyer, and
showed a simple characterization of when a pricing function is arbitrage-free under this mechanism. In this
section, we will study the question of how we can assign arbitrage-free prices, with the goal of maximizing
the seller’s revenue.
Throughout this section, we fix a dataset D, the two error functions ε (which is strictly convex) and λ, and
consider only the gaussian mechanism KG. Instead of dealing directly with the pricing function pε,λ, it will
be more convenient to express the price as p̂(x) = pε,λ(1/φ(x), D), where φ is the error-inverse of ε.
Recall that the MBP framework sells models of different versions, where each version is parametrized by the
NCP x that controls the error. We next describe two specific scenarios of price setting, and then provide a
general formalism that captures both.
Price Interpolation. Suppose that the seller wants to set the pricing function such that it takes specific prices
for a set of parameters. In particular, the seller provides n price points of the form (aj , Pj), where aj is
a parameter value, and Pj its desired price. The goal is to find an arbitrage-free and non-negative pricing
function such that the values p̂(aj) are as close as possible to Pj .

12



We can capture the above setting by solving the problem of finding an arbitrage-free and non-negative pricing
function that maximizes the following objective:

TPI(x1, . . . , xn) = −
n∑
j=1

`(xj , Pj)

where xj = p̂(aj). Here, `(x, y) can be any loss function such that `(x, y) ≥ 0 and `(x, y) = 0 if and only if
x = y. For example, we can choose `(x, y) = |x− y|, or also `(x, y) = (x− y)2, in which case we obtain
the functions T∞PI and T 2

PI respectively.
Revenue Maximization from Buyer Valuations. Assume that the buyers who are interested in buying a
model with parameter x have a valuation vx for this model. This implies that they will buy the model only
if p̂(x) ≤ vx. Moreover, we can capture ”how many” buyers are interested in the particular model with
parameter aj through a parameter bj . In this setting, the profit of the seller setting the price at p̂(aj) = x is
bjx · 1x≤vj , where 1x≤vj is an indicator variable that takes value 1 if x ≤ vj , otherwise 0.
Suppose that the seller through market research has obtained the values vj , bj for n of these parameters
(which correspond to the demand and value curves in Figure 2(a)). We can capture this setting by solving
the problem of finding an arbitrage-free and non-negative pricing function that maximizes the following
objective:

TBV(x1, . . . , xn) =
n∑
j=1

bjxj · 1xj≤vj

where again xj = p̂(aj).
We can capture both scenarios by a general optimization problem. Specifically, we are given n parameter
points {a1, . . . , an}, and an objective function T . The goal is to find a function p̂ that maximizes the quantity
T (p̂(a1), . . . , p̂(an)) such that p̂ is a well-behaved pricing function, i.e., it is arbitrage-free and non-negative.
Formally, we want to solve the following optimization problem:

maxp̂ T (p̂(a1), . . . , p̂(an))

subject to p̂(x+ y) ≤ p̂(x) + p̂(y), x, y ≥ 0

p̂(y) ≥ p̂(x), y ≥ x ≥ 0

p̂(x) ≥ 0, x ≥ 0

(3)

The first two constraints in (3) capture the subadditivity and monotonicity constraints that result from the
arbitrage-freeness requirement. The third constraint corresponds to the non-negative requirement. Observe
that the above optimization problem is not over a set of variables, but over the space of all functions p̂.

5.1 Hardness Results

We now study the computational complexity of solving the optimization problem (3). We will show that the
problem is intractable for all objective functions TBV, T

∞
PI , T

2
PI that we defined in the previous section. To

show this hardness result, we first consider a decision problem that we call SUBADDITIVE INTERPOLATION.

Definition 6 (SUBADDITIVE INTERPOLATION). Given as input a set of points {(aj , Pj)}nj=1, where aj , Pj
are non-negative rational numbers, does there exists a function p̂ that (i) is positive, monotone and subadditive,
and (ii) satisfies p̂(aj) = Pj .

We show in the Appendix that SUBADDITIVE INTERPOLATION is a computationally hard problem.

Theorem 7. SUBADDITIVE INTERPOLATION is coNP-hard.
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Equipped with Theorem 7, we can show that the other optimization problems are also hard. Indeed, suppose
that the objective function T has a unique maximizer, (θ1, . . . , θn). Then, the optimization problem (3) will
return the maximum value of T if and only if for every j = 1, . . . , n we have p̂(aj) = θj . We can use this
observation to prove the following result:

Corollary 7.1. The optimization problem (3) with objective functions any of {TBV, T
∞
PI , T

2
PI} is coNP-hard.

Proof. Observe that the objective functions T∞PI , T
2
PI are maximized if and only if xj = Pj for j = 1, . . . , n.

Hence, we can reduce SUBADDITIVE INTERPOLATION to (3). Similarly, the objective functions TBV is
maximized at the unique point where xj = vj , i.e. the price at aj equals the valuation vj . Hence, we can
reduce SUBADDITIVE INTERPOLATION to the revenue maximization with buyer valuations problem by
setting vj = Pj and bj = 1 for every j = 1, . . . , n.

5.2 Approximating Subadditivity

In order to overcome the hardness of the original optimization problem (3), we seek to approximately
solve it by modifying the subadditivity constraint. In particular, we replace the subadditive constraints
p̂(x+ y) ≤ p̂(x) + p̂(y) by the constraints q̂(x)/x ≥ q̂(y)/y for every 0 < x ≤ y. In other words, we want
to find q̂ such that q̂(x)/x is a decreasing function of x. Geometrically, one can think of this condition as that
the slope of the line that connects the origin with the point (x, q(x)) is non-increasing. The reformulated
optimization problem is as follows:

maxq̂ T (q̂(a1), . . . , q̂(an))

subject to q̂(y)/y ≤ q̂(x)/x, y ≥ x > 0

q̂(y) ≥ q̂(x), y ≥ x ≥ 0

q̂(x) ≥ 0, x ≥ 0

(4)

It is easy to show that for any feasible solution q̂ of (4), the pricing function p̂(x) = q̂(x) is also a feasible
solution of (3) and hence q̂ is a well-behaved pricing function as well.

Lemma 8. Any pricing function q̂ that satisfies the constraints of (4) is arbitrage-free and non-negative.

Approximation Guarantees. We can show that for any pricing function p̂ that is a feasible solution of (3),
we can find a feasible solution q̂ of (4) that is not too far away from p̂. We will use this fact later to show that
our approximation does not lose too much from the optimal objective value. More precisely:

Lemma 9. Let p̂ be a feasible solution of (3). Then, there exists a feasible solution q̂ of (4) such that for
every x > 0:

p̂(x)/2 ≤ q̂(x) ≤ p̂(x)

From Functions to Variables. The resulting optimization problem in (4) is still over the space of all possible
functions. However, it turns out that we can equivalently rewrite it so that it searches over variables instead
of functions. The key observation is that we only need to find the values of the function q̂ only for the n
parameter points a1, . . . , an. In particular, consider the following optimization problem.

maxz T (z1, . . . , zn)

subject to zj/aj ≤ zi/ai, aj ≥ ai
zj ≥ zi, aj ≥ ai
zj ≥ 0, 1 ≤ j ≤ n

(5)

The next proposition tells us that the two formulations are essentially equivalent. In particular, if z∗ is an
optimal solution for (5), then we can use it to construct an optimal solution q̂ for (4). The construction is
simple: we define q̂ as the piecewise linear function that goes through the points (ai, zi).
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Proposition 1. For every feasible solution of (4), there exists a feasible solution of (5) with the same value
of the objective function, and vice versa.

We conclude this section by providing an example of the construction of the approximate optimization
program.

Example 3. Consider the revenue maximization problem with parameters as given in Figure 5. In this
scenario, the optimization problem 5 can be written as follows:

max TBV(z1, z2, z3, z4)

subject to z1 ≥ z2/2 ≥ z3/3 ≥ z4/4

z4 ≥ z3 ≥ z2 ≥ z1 ≥ 0

5.3 Algorithms for Revenue Optimization

In this section, we show how to leverage the approximate optimization problem (5) in order to obtain efficient
algorithms with some approximation guarantees. The advantage of (5) is that it is an optimization problem
with linear constraints. Depending on the objective function T , this problem can be tractable. For example,
if T is concave, then (5) is a linear program with a concave objective function, which can be solved in
polynomial time.
We will focus on the two problems we introduced before: price interpolation, and revenue maximization from
buyer valuations.
Price Interpolation. It is easy to see that both objective functions T∞PI , T

2
PI are concave. This implies

immediately that (5) with the above two objective functions can be solved in polynomial time.
We next show that we can also obtain an (additive) approximation guarantee. For this, we need the following
general result:

Proposition 2. Let CMPB, CSA be the optimal values of (5) and (3) respectively under an objective function
T (z1, . . . , zn) =

∑n
i=1 Ti(zi), where each Ti is concave and non-positive. Then,

CSA +
∑
i

Ti(0)/2 ≤ CMBP ≤ CSA

We can apply the above proposition for the objective function T∞PI : this implies that the optimal value of the
approximate solution will be at most (

∑
j Pj)/2 away from the optimal solution. Similarly, we can obtain a

additive approximation guarantee of (
∑

j P
2
j )/2 for T 2

PI.
Revenue Maximization from Buyer Valuations. In contrast to price interpolation, TBV is not a concave
function. However, we will show that (5) can still be solved in polynomial time, and moreover, that the
optimal solution is within a constant approximation factor of the optimal solution of (3).
We first show that approximating the subadditive constraints loses at most a factor of 1/2 when the objective
function is TBV.

Proposition 3. Let CMPB, CSA be the optimal values of (5) and (3) respectively under the objective function
TBV. Then,

CSA/2 ≤ CMBP ≤ CSA

Next, we provide an algorithm based on dynamic programming that optimally solves (5) with objective
function TBV.
Suppose that we are given as input the parameters vj , bj that correspond to point aj for j = 1, . . . , n. We
assume that a1 ≤ a2 ≤ · · · ≤ an and v1 ≤ v2 ≤ · · · ≤ vn (i.e., the valuations of the buyers are monotone
w.r.t. the error).
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Let s(k,∆) denote the optimum solution for the subproblem with points j = k, . . . , n, with the restriction
that for every j ≥ k we have sj(k,∆)/aj ≤ ∆. We will denote by OPT (k,∆) the objective value of
this optimum solution. Observe that the optimum solution for the initial problem is simply s(1,+∞), with
optimum value OPT (1,+∞).
We will provide a recursive formula to compute OPT (k,∆) for any k,∆. Our first observation is that for
k = n, we can easily compute the optimum solution as follows:

sn(n,∆) = min{vn,∆an}
OPT (n,∆) = bn · sn(n,∆)

This follows from the fact that it is always more profitable to assign a higher price, as long as it is under the
valuation vn.
We also need the following lemma.

Lemma 10. For every k, sk(k,∆) ≥ min{vk,∆ak}.

Proof. Suppose not; we will then show that we can obtain a solution with a larger objective value. Let
` ≥ k be the largest index such that s`(k,∆) = sk(k,∆). Clearly we have that sk(k,∆) = sk+1(k,∆) =
. . . , s`(k,∆). Since sk(k,∆) < vk and vk ≤ vk+1 ≤ · · · ≤ v`, we must have that sj(k,∆) < vj for
every j = k, . . . , `. Similarly, since sk(k,∆) < ∆ak and ak ≤ ak+1 ≤ · · · ≤ a`, we must have that
sj(k,∆) < ∆aj for every j = k, . . . , `.
Let ε = min`j=k

min{vk,∆ak}
sj(k,∆) > 1. Define s′(k,∆) such that for j = k, . . . , ` we have s′j(k,∆) = ε · s(k,∆),

and for j > ` it remains the same. It is easy to see that the resulting solution is feasible, and also produces a
strictly greater revenue, a contradiction.

To compute the recursive formula for s(k,∆), we distinguish between two cases.

Lemma 11. Let k < n. If ak∆ ≤ vk, then:

sk(k,∆) = ∆ak, sj(k,∆) = sj(k + 1,∆), j > k

OPT (k,∆) = bk∆ak +OPT (k + 1,∆)

Proof. From Lemma 10, we have that sk(k,∆) ≥ ∆ak. But it must also be that sk(k,∆) ≤ ∆ak, thus the
only optimal solution is sk(k,∆) = ∆ak.
Moreover, since (∆ak)/ak = ∆ ≥ sj(k + 1,∆)/ak+1, the weakened subadditive constraint is satisfied.
Finally, we can write sk+1(k + 1,∆) ≥ min{∆ak+1, vk+1} ≥ min{∆ak, vk} = ∆ak, which means that
monotonicity is also satisfied.

Lemma 12. Let k < n. If ak∆ > vk, define

s′k(k,∆) = vk, s
′
j(k,∆) = sj(k + 1, vk/ak), j > k

s′′k(k,∆) = sk+1(k + 1,∆)
ak
ak+1

, s′′j (k,∆) = sj(k + 1,∆), j > k

with optimum values respectively

OPT ′(k,∆) = bkvk +OPT (k + 1, vk/ak)

OPT ′′(k,∆) = OPT (k + 1,∆)

Then, OPT (k,∆) is the maximum between the two options, and s(k,∆) is the solution that achieves the
maximum.
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Table 3: Dataset Statistics.

Task DataSet n1 n2 d

Regression

Simulated1 7500000 2500000 20

YearMSD 386509 128836 90

CASP 34298 11433 9

Classification

Simulated2 7500000 2500000 20

CovType 435759 145253 54

SUSY 3750000 1250000 18

Proof. From Lemma 10, we have that sk(k,∆) ≥ vk. The first option examines what will happen if we set
sk(k,∆) = vk, in which case we will obtain a profit of bkvk from this price point. If sk(k,∆) > vk, then we
obtain 0 revenue from this point. Also, the more we increase the price, the more revenue we can extract from
the remaining price points until we reach ∆ak.
It is straightforward to see that the weakened subadditive constraint is satisfied in both cases. We now show
the same for monotonicity as well.
For the first option, since vk ≤ vk+1 and vk = (vk/ak)ak ≤ (vk/ak)ak+1, we can write:

vk ≤ min{vk+1, (vk/ak)ak+1} ≤ sk+1(k + 1, vk/ak)

For the second option, monotonicity follows from the fact that ak ≤ ak+1

We can now use the recursive formulas from the two lemmas to obtain an efficient dynamic programming
algorithm. The key observation is that we only need to consider (n+1) values of ∆, since from the recurrence
relations, ∆ can only take values from the set {v1/a1, v2/a2, . . . , vn/an,+∞}. The dynamic programming
algorithm will first compute s(n,∆), for the (n+ 1) values of ∆, and then iteratively compute s(k,∆) for
k = n − 1, n − 2, . . . , 1. The final solution will be s(1,+∞). Since we have n iterations, where each
iteration computes (n+ 1) subproblems, the running time of the algorithm is O(n2).

Theorem 13. There exists a dynamic programming algorithm that computes the optimal values of (5) under
the objective function TBV in time O(n2).

6 Experiments

Our goal of this experimental section is three-fold: (1) validate that the ML model accuracy/error is monotone
with respect to the inverse of the noise control parameter 1/NCP (which is the variance of the gaussian noise),
(2) show that the MBP framework provides sellers with more revenue while more buyers have access to ML
models, and (3) justify that MBP runs much faster than a naive brute-force search for the revenue optimization
problem, while still providing near-optimal revenue.
Experimental Setup. All experiments were run on a machine with 4 Intel i5-6600 3.3 GHz cores, 16 GB
RAM, and 500 GB disk with Ubuntu 14.04 LTS as the OS. We have prototyped the model-based pricing
framework in Matlab 2017b.

6.1 Expected Error to 1/NCP Transformation

The first natural question is whether it is true that the the expected model accuracy/error is always monotone
as a function of 1/NCP, i.e., the inverse of the noise control parameter? Theorem 4 in Section 4 provably
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gives a positive answer when the error function is strictly convex. This section provides an empirical study
on how the expected ML model error varies w.r.t. to the noise control parameter.
We use six datasets that are summarized in Table 3. The first three datasets, Simulated1, YearMSD, and
CASP are for the regression task (Linear Regression), while the next three datasets, Simulated2, CovType
and SUSY are for the classification task (Logistic Regression). The feature vectors of the dataset Simulated1
and Simulated2 are generated from a normal distribution. The target values of Simulated1 are simply the
inner product of the feature vectors and a hyperplane vector. The label value of a data point from Simulated2
is 1 with probability 0.95 if it is above a given hyperplane, and 0 with probability if it is below the hyperplane.
The other datasets are all from the UCI machine learning repository [6]. For each value of the NCP, we
generate 2000 random models, each of which is equal to the optimal model plus an independently randomly
generated vector with the same variance.
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Figure 6: Error Transformation Curve. All errors are measured on the testing datasets. The first row
corresponds to the square loss for Simulated1, YearMSD, and CASP, respectively. The second row represents
the logistic loss, while the third row shows the 0/1 classification erro for Simulated2, CovType, and SUSY.

As shown in Figure 6, the testing error decreases as the variance inverse increases. This verifies that there is a
monotone mapping and hence the error transformation is feasible. Interestingly, even when the error is not
strictly convex, such as the 0/1 classification error, the expected error still decreases as 1/NCP increases. This
might be because all model instances are trained and tested on a relatively large datasets and thus have good
generalization error. Thus, the strictly convex loss function can exactly indicate the 0/1 classification error. In
other words, they are monotone to each other and the 0/1 classification error is also monotone to 1/NCP. Note
that as 1/NCP increases, the error function first drops sharply and then decreases slowly. This is because
improving the error performance is becoming harder and harder as the model instance is closer to the optimal
model. For example, it is almost always much more difficult to increase the classification accuracy from 90%
to 95% compared to that from 60% to 65%.
In the following part of the experiments, we will focus on 1/NCP, which is monotone and thus represents the
expected error.
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Figure 7: Revenue and Affordability Gain. The buyer distribution is fixed and we vary the buyer value curve.

6.2 Revenue and Affordability Gain

Next we study the benefits of our proposed MBP approach on the seller’s revenue and buyer’s affordability
ratio (fraction of the buyers that can afford to buy a model instance) compared to other approaches of pricing
ML models. We consider the setting of revenue maximization from buyer valuations as this is described
in Section 5, i.e., a buyer would pay for a model instance if and only if the price is less than the buyer’s
valuations. We compare MBP with four pricing approaches, namely, Lin, MaxC, MedC, and OptC (all of
which obtain well-behaved pricing functions). Lin, the linear approach, uses a linear interpolation of the
smallest and largest value in the buyer’s value curve to set the price. MaxC, MedC, and OptC set a single
price for all ML model instances. MaxC uses the highest value in the buyer’s value curve. MedC uses a price
such that half of the buyer can afford to buy a model instance. OptC uses a constant price which maximizes
the seller’s profit.
Figure 7 and 8 show the results under different buyer value and demand curves, respectively. Overall, MBP
can achieve up to 81.2x revenue gains and up to 121.1x affordability gains compared to the four baseline
approaches.
We first fix the buyer distribution and vary the buyer valuation. As shown in Figure 7 (a), when the value
curve is convex, MBP obtains significantly more revenue and affordability compared to the linear approach.
This is because the linear approach misses the opportunities to sell model instances to buyers interested in
buying model instances with medium accuracy. When the buyer curve becomes concave as shown in Figure 7
(b), however, the linear approach can achieve more revenue and affordability as more buyers can be satisfied.
Nevertheless, the constant approaches now suffer from losing revenue as they cannot accordingly change the
price for different buyers. Meanwhile, MBP achieves the largest revenue gains and affordability, as a concave
function is also a subadditive function and thus MBP can match exactly the value curve.
Next, we fix the buyer value curve and vary the demand curve. As shown in Figure 8, when most of the buyers
are interested in buying model instances with medium accuracy, MBP tends to produce a price function that
ties close to the price for model instance with medium accuracy. When most buyers are interested in buying
extremely low and extremely high accurate model instances, MBP can accordingly change the price function
it generates to follow the different requirement. Meanwhile, as shown in Figure 8 (c) and (d), none of Lin,
MaxC, and MedC is able to capture this. While OPTC does change its price function, the effect it has is
limited, as it only produces a single price for all model instances. This is why MBP can always achieves the
largest revenue gain and affordability ratio.
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Figure 8: Revenue and Affordability Gain. We fix the buyer valuation and vary the buyer distribution.
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Figure 9: Runtime performance of MBP. We fix the buyer distribution and vary buyer valuation.

6.3 Runtime Performance

Finally, we present experimental results on the runtime performance of the revenue optimization algorithms
under MBP. Fixing the buyer curve, we vary the number of pricing points and compare the runtime and
revenue gains of our MBP proposed, versus the optimal yet expensive optimal algorithm MILP (a multiple-
integer-linear programming approach given in the appendix), as well as all the other four baseline methods.

Figures 9 and 10 present how the runtime, revenue, and affordability ratio vary as the buyer distribution
and value curve change. Overall, MBP is always more than several orders of magnitude faster than the
naive MILP. This is because MILP requires solving integer linear programming exponentially many times.
When the number of parameter points/price values increases, the runtime of MILP grows quickly. Since
MBP is an algorithm requiring only quadratic runtime, its runtime is much faster. While other naive pricing
methods are slightly faster than MBP due to their simplicity, they almost always suffer from either revenue
gains or affordability ratio, or both. Note that we have not optimized the implementation of the dynamic
revenue optimization algorithm. It is interesting future work to see how much speedup can be obtained by
implementing MBP in low level languages such as C/C++ with extensive leverage of CPU, GPU, and IO
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Figure 10: Runtime performance of MBP. We fix buyer value and vary buyer distribution.

optimization.
Furthermore, an interesting phenomenon is that even if MBP theoretically can have a revenue about half
of the revenue achieved by MILP, among all experiments we conducted, its revenue is very close to that
of MILP, verified by Figure 9 (e) (f) as well as 10 (e) (f). This is because for most of the common buyer
valuation curves, the optimal sub-additive curves would de facto be equal or close to, some curves that satisfy
the approximated subadditive constraints.
Finally, as shown by Figure 9 (g) (h) and 10 (g) (h), while MILP and MBP do not explicitly optimize the
affordability ratio, they almost always produce a pricing curve with highest affordability ratio. This is because,
informally speaking, optimizing revenue can be achieved by selling models to as many as possible buyers,
which implicitly optimizes the affordability ratio. Nevertheless, in some case, for example, when there are
only 3 price values as shown in Figure 10 (h), MedC can achieve an affordability ratio slightly larger than
that achieved by MBP and MILP. This is because MedC explicitly requires the affordability ratio larger than
50%. This indicates that there is still room to improve fairness. Due to space limit, we leave a formal study
of trade-off between revenue and fairness to future work.

7 Conclusion and Future Work

In this work, we initiate the formal study of data markets that sell directly ML models to buyers. We propose
a model-based pricing (MBP) framework, which instead of pricing the data, directly prices ML model
instances. We show that a concrete realization of the MBP framework via a random noise injection approach
provably satisfies several desired formal properties, including preventing arbitrage opportunities. Based on
the proposed framework, we then provide algorithmic solutions on how sellers can assign prices to models
under different market scenarios (such as to maximize revenue). Extensive experiments validate that the MBP
framework can provide high revenue to the sellers, high affordability to the buyers, and can also operate on
low runtime cost.
There are several other exciting directions for future work. First, more complex ML models such as Bayesian
networks, artificial neural networks, SVMs, and statistical relational models are also frequently used. Non-
relational data (images, text, etc.) might require complex feature extraction, possibly implicitly within an ML
model (as in deep learning [16]). Handling such complex models is a key avenue to extend our framework.
Second, we assumed that buyers know which ML model they want. This is a reasonable starting point
because most existing cloud ML platforms assume the buyer picks the ML model. But in practice, users often
perform model selection and explore different ML models [7, 22] and refine their choices iteratively [14].
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Incorporating such manual, iterative, or automated model selection and refinement along with pricing is
another key avenue to extend our framework. Third, in many cases the data offered for sale comes with
privacy constraints, since it has been extracted from private users. Integrating model-based pricing with data
privacy is also a core future challenge. Finally, more complicated buyer models as well as trade-offs between
revenue and fairness can be further explored in the revenue optimization.
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A Missing Proofs

of Theorem 4. We will use the following property of a strictly convex function ε. For every x, y ∈ Rp we
have

ε(x+ σ1y) + ε(x− σ1y) > ε(x+ σ2y) + ε(x− σ2y)

if and only if σ1 > σ2, where σ1, σ2 are scalars.
To prove the above property, we apply the definition of strict convexity twice with t = 1

2(1 + σ2
σ1

) when
σ1 > σ2

tε(x+ σ1y) + (1− t)ε(x− σ1y) > ε(x+ σ2y)

(1− t)ε(x+ σ1y) + tε(x− σ1y) > ε(x− σ2y)

and then sum up the two inequalities. The ”if” part is a result of symmetry.
Let h∗ = h∗λ(D), and w1, w2 the two gaussian noise vectors. We can now compute the expectations as
follows:

E
[
ε(ĥδ1λ (D), D)

]
− E

[
ε(ĥδ2λ (D), D)

]
= E [ε(h∗ + w1)]− E [ε(h∗ + w2)]

=

∫ +∞

−∞

1√
2π

(ε(h∗ + δ1y)− ε(h∗ + δ2y))e−
1
2
y2dy

=

∫ +∞

0

1√
2π

(ε(h∗ + δ1y) + ε(h∗ − δ1y)− ε(h∗ + δ2y)− ε(h∗ − δ2y))e−
1
2
y2dy

The last equality comes from splitting the interval [−∞,+∞] to two smaller intervals, [−∞, 0] and [0,+∞]
and then changing the sign of y in the first term. It is now easy to see that the above quantity is strictly
positive if and only if δ1 > δ2.

of Theorem 5. We next prove the two directions of the theorem.

(=⇒) Suppose that the pricing function pεs,λ is arbitrage free. Then, by Lemma 1 the pricing function is also
error-monotone in D, so condition (2) holds.
To show that condition (1) holds as well, consider parameters δ1, δ2, δ3 such that 1/δ1 = 1/δ2 + 1/δ3 and

pεs,λ(δ1, D) > pεs,λ(δ2, D) + pεs,λ(δ3, D).

We will show in this case that the pricing function violates k-arbitrage for k = 2. We define the following
function g that combines two models:

g(ĥδ2λ (D), ĥδ3λ (D)) =
δ1

δ2
· ĥδ2λ (D) +

δ1

δ3
· ĥδ3λ (D)

Now, observe that:

h̃ = g(ĥδ2λ (D), ĥδ3λ (D)) =
δ1

δ2
· (h∗λ(D) + w2) +

δ1

δ3
· (h∗λ(D) + w3) = h∗λ(D) +

δ1

δ2
· w2 +

δ1

δ3
· w3

Hence, we can compute the expectation

E
[
εs(h̃, D)

]
=
δ2

1

δ2
2

· E
[
w2

2

]
+
δ2

1

δ2
3

· E
[
w2

3

]
= δ2

1

(
1

δ2
+

1

δ3

)
= δ1 = E

[
εs(ĥ

δ1
λ (D), D)

]
where the last equality comes from Lemma 3. Hence, the pricing function indeed violates 2-arbitrage, a
contradiction.
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(⇐=) We now show the opposite direction of the theorem, i.e., that conditions (1) and (2) imply arbitrage
freeness.
To show this, we will use the Cramér-Rao inequality, which provides a lower bound on the variance of
an unbiased estimator of a deterministic parameter. To apply the inequality in this context, notice that the
function g in the definition of k-arbitrage is essentially an estimator of the optimal model h∗λ(D). Hence, for
any function g and h̃ = g(ĥδ1λ (D), ĥδ2λ (D), . . . , ĥδkλ (D)), we have:

E
[
εs(h̃, D)

]
≥ 1∑k

j=1
1
δj

(6)

Suppose that the pricing function pεs,λ exhibits 1-arbitrage. Then, there must exist parameters δ1, δ2 with
pεs,λ(δ1, D) < pεs,λ(δ2, D), and a function g that returns a model h̃ = g(ĥδ1λ (D)) with

E
[
εs(h̃, D)

]
≤ E

[
εs(ĥ

δ2
λ (D), D)

]
= δ2.

However, Eq. (6) implies that E
[
εs(h̃, D)

]
≥ δ1. Thus, we obtain δ1 ≤ δ2, which makes condition (2) false.

Next, suppose that the pricing function exhibits k-arbitrage for k ≥ 2. Using the same argument as above, we
can show that there exist parameters δ0, δ1, . . . , δk such that:

1.
∑k

j=1 pεs,λ(δj , D) < pεs,λ(δ0, D); and

2. 1/δ0 =
∑k

j=1 1/δj .

We will show that the above 2 properties imply that condition (1) is false. Indeed, for the sake of contradiction
suppose that condition (1) is true, and also that 1/δ0 =

∑k
j=1 1/δj . For j = 1, . . . , k − 1, let us define ∆j

such that 1/∆j =
∑k

c=j+1 1/δc. Observe that 1/δ0 = 1/δ1 + 1/∆1, and also 1/∆j = 1/δj+1 + 1/∆j+1.
Then, we can write:

pεs,λ(δ0, D) ≤ pεs,λ(δ1, D) + pεs,λ(∆1, D)

≤ pεs,λ(δ1, D) + pεs,λ(δ2, D) + pεs,λ(∆2, D)

≤ . . .

≤
k∑
j=1

pεs,λ(δj , D)

This contradicts the first property, and hence condition (1) must indeed be false.

of Theorem 7. We will prove the theorem by showing a reduction from the UNBOUNDED SUBSET-SUM
problem. In this problem, we are given as input a set of positive integers {w1, w2, . . . , wn}, and a positive
number K. We then want to decide whether there exist non-negative integers ki such that

∑n
i=1 kiwi = K.

In other words, we are asking whether we can achieve sum K using each wi zero or more times. It is known
that UNBOUNDED SUBSET-SUM is NP-hard.

Consider an instance of the UNBOUNDED SUBSET-SUM problem, with positive integers {w1, w2, . . . , wn},
and a positive number K. Without any loss of generality, suppose that w1 < w2 < · · · < wn < K. We
now construct an instance for PRICE INTERPOLATION as follows: let Pj = aj = wj for j = 1, . . . , n, and
an+1 = K, Pn+1 = K + 1/2. We will prove that there exists a subadditive and monotone function that
interpolates the points (aj , Pj) if and only if there exists no (unbounded) subset sum with value K.
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⇒ For the first direction, suppose that there exists an unbounded subset sum with value K. In other words,
there exist positive integers kj such that

∑n
j=1 kjwj = K. For the sake of contradiction, suppose that we can

interpolate a subadditive and monotone function p̂. Then we have:

K + 1/2 = Pn+1 = p̂(K) = p̂

 n∑
j=1

kjwj

 ≤ n∑
j=1

kj p̂(wj) =

n∑
j=1

kjwj = K

which is a contradiction.

⇒ For the reverse direction, suppose that there exists no unbounded subset sum K; we will show that we can
construct a subadditive and monotone function f that interpolates the (n+ 1) points. For every x ≥ 0, define
µ(x) to be the smallest possible unbounded subset sum that is at least x. Notice that µ(x) ≥ x for every
x ≥ 0. Then, we define f(x) = min{µ(x),K + 1/2}. It is straightforward to see that f(x) is monotone by
construction.
We next show that f interpolates the points. Indeed, for j = 1, . . . , n, we have that µ(aj) = aj < K + 1/2
(since aj by itself gives a sum of aj), and hence f(aj) = aj . For j = n + 1, observe that by our starting
assumption there is no sum of K, and hence µ(an+1) ≥ K + 1, which implies that f(an+1) = K + 1/2.
Finally, we show that f is a subadditive function. Let x, y ≥ 0. If µ(x) ≥ K+1 then, f(x)+f(y) ≥ f(x) =
K + 1/2 ≥ f(x+ y). A symmetric argument holds if µ(y) ≥ K + 1. Now, suppose that µ(x), µ(y) ≤ K.
Then, there exists kj , k′j such that f(x) =

∑n
j=1 kjwj and f(y) =

∑n
j=1 k

′
jwj . Now we have:

x+ y ≤ f(x) + f(y) =
n∑
j=1

kjwj +
n∑
j=1

k′jwj =
n∑
j=1

(kj + k′j)wj

Hence, if we pick k′′j = kj + k′j , we obtain a subset sum that is at least x+ y. We can then write:

f(x+ y) ≤ µ(x+ y) ≤
n∑
j=1

(kj + k′j)wj = f(x) + f(y).

This concludes our proof.

of Lemma 8. Let q̂ be a feasible solution to (4). We will show that q̂ satisfies the subadditivity condition as
well. Let x, y > 0. Since q̂ satisfies the constraints in (4), we have q̂(x)

x ≥
q̂(x+y)
x+y and q̂(y)

y ≥
q̂(x+y)
x+y . Thus:

q̂(x) + q̂(y) ≥ x

x+ y
q̂(x+ y) +

y

x+ y
q̂(x+ y) = q̂(x+ y).

This concludes the proof.

of Proposition 1. Consider a feasible solution p̂ of (4) of objective value M . It is straightforward that
xi = p̂(ai) is also a feasible solution for (5) with the same objective value.
For the opposite direction, suppose that x is a feasible solution to problem (5) with value M . Without any
loss of generality, assume that a1 ≤ a2 ≤ · · · ≤ an. Let us define p̂ to be a piecewise linear function such
that:

p̂(x) =


xj+1

aj+1
x, x ∈ [0, a1]

xj +
xj+1−xj
aj+1−aj (x− aj), x ∈ [aj , aj+1]

xn, x ∈ [an,∞)
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It is easy to see that p̂ is non-negative, and that for every i = 1, . . . , n we have p̂(ai) = xi. Additionally, p̂ is
monotone, since it is a piecewise linear function where x1 ≤ x2 ≤ · · · ≤ xn. Finally, we show that for any
y ≥ x > 0 we have p̂(y)/y ≤ p̂(x)/x.
First, assume that x, y are in the same interval [a, b] of the piecewise linear function (which takes values
xa, xb). Since in this interval we have p̂(x) = xa + xb−xa

b−a (x− a), we want to equivalently show that:

xa
x

+
xb − xa
b− a

(
1− a

x

)
≥ xa

y
+
xb − xa
b− a

(
1− a

y

)
⇔ bxa − axb

x
≥ bxa − axb

y
⇔ (y − x)(bxa − axb) ≥ 0

The last inequality holds because y ≥ x, and also xa/a ≥ xb/b (which follows from the constraints).
Now, if x, y are not in the same interval, assume that x falls in the i-th interval [ai, ai+1], and y in the j-th
interval [aj , aj+1], where j ≥ i. Then we have:

p̂(x)/x ≥ p̂(ai+1)/ai+1 ≥ p̂(ai+2)/ai+2 ≥ · · · ≥ p̂(aj)/aj ≥ p̂(y)/y

The first inequality comes from the fact that x, ai+1 are in the same interval, the last from the fact that y, aj
are in the same interval, and all the intermediate inequalities from the constraints in (5).

of Lemma 9. Let p̂ be a feasible solution of (3). We construct q̂ such that for every x > 0:

q̂(x) = x · min
0<y≤x

{p̂(y)/y}

We first show that q̂ is a feasible solution of (4). It is easy to see that q̂ is always positive. Now consider
0 < x ≤ x′. Then we have:

q̂(x)/x = min
0<y≤x

{p̂(y)/y} ≥ min
0<y≤x′

{p̂(y)/y} = q̂(x′)/x′

To show that q̂(x) ≤ q̂(x′), define ym = argmin0<y≤x′{p̂(y)/y}. Now, if ym ≤ x, we have min0<y≤x{p̂(y)/y} =
min0<y≤x′{p̂(y)/y}, and the desired result comes from x ≤ x′. Otherwise, if ym > x, we have:

q̂(x) = x · min
0<y≤x

{p̂(y)/y} ≤ p̂(x) ≤ p̂(ym) = ym{p̂(ym)/ym} ≤ x′ min
0<y≤x′

{p̂(y)/y} = q̂(x′)

Finally, we show that p̂(x)/2 ≤ q̂(x) ≤ p̂(x) for every x > 0. We have already shown that q̂(x) ≤ p̂(x). For
the first inequality, let as before ym = argmin0<y≤x{p̂(y)/y} and define ∆ = x/ym ≥ 1. If ∆ = 1, then
q̂(x) = p̂(x), so the result holds trivially. So, assume that ∆ > 1. The key observation is that

p̂(x) = p̂(ym∆) ≤ p̂(ymd∆e) ≤ d∆ep̂(ym)

where the second inequality holds from the subadditivity constraint for p̂. Thus we have:

q̂(x) = x{p̂(ym)/ym} ≥
∆

d∆e
p̂(x) ≥ ∆

∆ + 1
p̂(x) > p̂(x)/2

where the last inequality follows from the fact that ∆ > 1. This concludes the proof.

of Proposition 2. Let p̂∗ denote the optimal solution of (3) with optimal value CSA, and x∗ the optimal
solution of (5) with optimal value CMBP . From Proposition 4, there exists a solution q̂∗ of (4) that achieves
the same value CMBP .
From Lemma 8, we obtain that q̂∗ is also a solution to (3), and hence it must be that CMBP ≤ CSA.
Additionally, Lemma 9 tells us that there exists q̃ that is a feasible solution of (4) such that for every x > 0,
p̂∗(x)/2 ≤ q̃(x) ≤ p̂∗(x). If C ′ is the objective value for q̃, we then have that C ′ ≤ CMBP . We next show
that C ′ ≥ CSA +

∑
j Tj(0)/2.
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We first claim that for every x, i, we have that Ti(q̃(x)) ≥ min{Ti(p̂∗(x), Ti(p̂
∗(x)/2)}. Indeed, suppose

that this is not true. Then, since p̂∗(x)/2 ≤ q̃(x) ≤ p̂∗(x), there exists λ ∈ [0, 1] such that q̃(x) =
λp̂∗(x)/2 + (1− λ)p̂∗(x). By the concavity of Ti, we now have

Ti(q̃(x)) = Ti(λp̂
∗(x)/2 + (1− λ)p̂∗(x)) ≥ λTi(p̂∗(x)/2) + (1− λ)Ti(p̂

∗(x))

> λTi(q̃(x)) + (1− λ)Ti(q̃(x)) = Ti(q̃(x))

which is a contradiction.
Next, we bound Ti(p̂∗(x)/2) as follows using concavity:

Ti(p̂
∗(x)/2) = Ti (p̂∗(x)/2 + 0/2) ≥ Ti(p̂∗(x))/2 + Ti(0)/2

So we can now write:

Ti(q̃(x)) ≥ min{Ti(p̂∗(x), Ti(p̂
∗(x))/2 + Ti(0)/2}

≥ min{Ti(p̂∗(x), Ti(p̂
∗(x)) + Ti(0)/2}

= Ti(p̂
∗(x)) + Ti(0)/2

where the last inequality follows from the fact that Ti is non-positive. Finally, we have:

C ′ =
n∑
j=1

Tj(q̃(aj)) ≥
n∑
j=1

Tj(p̂
∗(aj)) +

n∑
j=1

Tj(0)/2 = CSA +
n∑
j=1

Tj(0)/2

This concludes the proof.

of Proposition 3. Let p̂∗ denote the optimal solution of (3) with optimal value CSA, and x∗ the optimal
solution of (5) with optimal value CMBP . From Proposition 4, there exists a solution q̂∗ of (4) that achieves
the same value CMBP .
From Lemma 8, we obtain that q̂∗ is also a solution to (3), and hence it must be that CMBP ≤ CSA.
Additionally, Lemma 9 tells us that there exists q̃ that is a feasible solution of (4) such that for every x > 0,
p̂∗(x)/2 ≤ q̃(x) ≤ p̂∗(x). If C ′ is the objective value for q̃, we then have that C ′ ≤ CMBP . We next show
that C ′ ≥ CSA/2. First, notice that q̃(x) ≤ p̂∗(x) implies that for every j: 1q̃(aj)≤vj ≥ 1p̂∗(aj)≤vj . Now we
can write:

C ′ = gBV(q̃(a1), . . . , q̃(an)) =
n∑
j=1

bj q̃(aj) · 1q̃(aj)≤vj

≥
n∑
j=1

bj q̃(aj) · 1p̂∗(aj)≤vj ≥
1

2

n∑
j=1

bj p̂
∗(aj) · 1p̂∗(aj)≤vj = CSA/2

where the last inequality comes from the fact that p̂∗(x)/2 ≤ q̃(x). This concludes the proof.

B Dynamic Programming Algorithm for Revenue Optimization

In this section we give the algorithmic details of the dynamic programming for the revenue optimization
problem.

C Brute Force Algorithm for Revenue Maximization with Buyer Valuations

In this section, we provide a brute-force algorithm that solves (3) with objective function gBV.
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Algorithm 1: Dynamic Programming Algorithm for Revenue Optimization from Buyer Valuation.
Input :v1 ≤ v2 ≤ · · · ≤ vn, a1 < a2 < · · · < an, b1, b2, · · · , bn ≥ 0
Output :Optimal price value s(1,+∞) and profit OPT (1,+∞).
% Initialization
∀∆ ∈ ∆Set , { v1a1 ,

v2
a2
, · · · , vn

an
,+∞}, sn(n,∆) = min{vn,∆an}, OPT (n,∆) = bn · sn(n,∆)

% Main Loop
for k = n− 1 to 1 do

for ∆ ∈ ∆Set do
if ak∆ ≤ vk then

sk(k,∆) = ∆ak, sj(k,∆) = sj(k + 1,∆), j > k
OPT (k,∆) = bk∆ak +OPT (k + 1,∆)

else
OPT ′(k,∆) = bkvk +OPT (k + 1, vk/ak)
OPT ′′(k,∆) = OPT (k + 1,∆)
if OPT ′(k,∆) > OPT ′(k,∆) then

sk(k,∆) = vk, sj(k,∆) = sj(k + 1, vk/ak), j > k
OPT (k,∆) = OPT ′(k,∆)

else
sk(k,∆) = sk+1(k + 1,∆) ak

ak+1
, sj(k,∆) = sj(k + 1,∆), j > k

OPT (k,∆) = OPT ′′(k,∆)
end

end
end

end
% NB: In practical implementation, it is not necessary to compute or store sj(k,∆), j > k since it is always equal to
sj(k + 1, ∆̂) for some ∆̂. Thus, we can simply store ∆̂ at sk+1(k,∆) instead of copying and storing sj(k,∆)∀j > k. This
ensures the algorithm takes only O(n2) runtime as well as space.

D Additional Experiments

Now we provide additional experiments on performance of MBP. Figure 11 and Figure 12 present the revenue
and affordability gains of MBP compared to other baseline methods. Figure 13 and Figure 14 demonstrate
the runtime performance of MBP.
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Algorithm 2: The Brute Force Algorithm for Revenue Optimization from Buyer Valuation Using
Multiple Inter Linear Programming (MILP).

Input :p1 ≤ p2 ≤ · · · ≤ pK , δ1 < δ2 < · · · < δK , f ic(·)
Output :Optimal price value q1, · · · , qK and profit PRO to the sub-additive constraints.
OptPrice = 0K×1

PRO = 0
A = {a : ∃ck ∈ N, s.t.

∑K
k=1 ckδk = a}

Let a1 < a2 < · · · < aM be all the elements in A, and aM+1 = inf
for i = 1 to 2K do

Active = {k : the kth bit of i is 1 }
V alid = true
for j = M to 1 do

pA(aj) = min
∑

w∈Active

PriceUp(w)kw

s.t.
∑

w∈Active

δwkw ≥ aj

kw ∈ N

if aj > aj+1 then
V alid = false
break;

end
end
if Valid then

TempPrice(j) = pA(δj)

TempPRO =
∑K
k=1 f

k
c (TempPrice(k))

if TempPRO > PRO then
PRO = TempPRO
OptPrice = TempPrice;

end
end

end
qj = OptPrice(j)
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Figure 11: Revenue and Affordability Gain. The buyer distribution is fixed and we vary the buyer value
curve.
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Figure 12: Revenue and Affordability Gain. We fix the buyer valuation and vary the buyer distribution.
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Figure 13: Runtime performance of MBP. We fix the buyer distribution and vary buyer valuation.
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Figure 14: Runtime performance of MBP. We fix buyer value and vary buyer distribution.
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