
MorpheusFlow: a case study of learning over joins with
TensorFlow

Side Li Arun Kumar
University of California, San Diego

La Jolla, California
{s7li,arunkk}@eng.ucsd.edu

ABSTRACT
In real world, many datasets are stored as multiple tables in a
normalized fashion in relational databases management system
(RDBMS). Most machine learning (ML) toolkits expect the training
dataset to be a single table with all the features. This forces data
scientists to often perform joins to materialize a single table before
ML that concatenates features from all base tables, creating lots
of redundancy on disks. In MorpheusFlow, we address this space
deficiency problem by studying lazy join, a means of dynamically
joining tables closer to ML modeling. We trade off lazy join versus
eager join. We adopt common practices that can improve lazy join’s
performance. We propose a Dataset library built with TensorFlow
that dynamically joins multiple tables into mini batches, which
can directly get fed into an SGD-based (Stochastic Gradient De-
scent) model. Our results show that lazy joins are only marginally
slower than eager joins in simple linear models and shallow neural
networks while saving much more spaces.

KEYWORDS
Machine Learning, Join, TensorFlow, Data Pipeline

1 INTRODUCTION
Big data has emerged into many fields presenting massive sources
including both structured (relational) and unstructured (images,
music, metadata, etc.) data. Along with advancements in compu-
tations, machine learning (ML) has also taken off recently. Many
companies are racing to exploit their massive data using ML tech-
niques. In many cases, their data are stored as multiple tables in
a normalized fashion in relational databases management system
(RDBMS). However, most ML toolkits only expect a simple table
with all necessary features as training input. For example, Tensor-
Flow [1] disregards normalization data because it only consumes
one single table either from memory or disk. TensorFlow is one of
the most widely used ML frameworks that uses dataflow graphs
in computation. The design of ignoring normalization forces data
scientists to perform joins to materialize a single table before ML
modeling, ruining benefits of data normalization. The dataset might
blow up in sizes due to the introduction of redundant entries from
joined tables. Such redundancy also brings the burden on both ML
pipeline and modeling cost. This necessitates the need of studying
when and how should we join multiple tables before modeling such
that less scalability, performance will be sacrificed.

In recent work, Kumar el al. [4] studied the effect of joins over
normalized data on linear models. Their work indicates whether to
join before or at ML modeling is a decision depending on available
resources. It is not necessarily slower to do lazy joins at runtime
versus eager joins. Eager joins means materializing a single table

before ML modeling while lazy joins means dynamically building
joined data in ML data pipeline. Nonetheless, their study applies
only to a setting of RDBMS. Nowadays, most ML scientist and
engineers work withML frameworks in a high-level client language.
Python is one of the most popular languages in the current trend of
ML development. As such, we extend the idea of learning over joins
to a new environment in Python and TensorFlow. In summary, we
explore trade-offs of lazy joins and eager joins. We also experiment
with techniques that would improve the performance of lazy joins.
We engineer a Dataset library for TensorFlow that could easily
adopt normalized data inputs into ML pipeline. Finally, we present
heuristics of deciding whether to use lazy join from modeling’s
perspective.
Outline. The rest of the paper is organized as follows: In Section
2, we review the background of this work. In Section 3, we discuss
design principles of Dataset library. In Section 4, we illustrate the
implementation of Dataset library. In Section 5, we validate our
implementation with synthetic and real data sets.

2 BACKGROUND
2.1 Data Systems
Big data systems such as Spark[6] and Hadoop[5] have been widely
integrated with ML frameworks. These systems serve as underlying
data lakes that host massive raw data. It is up to data engineers
or software engineers to query the systems to materialize parts of
training data into files. Data scientists will then make use of data
files to train the model. In a nutshell, querying the data lake is a
stage before putting data intoML pipeline. As such, integration with
these data systems is not the concern in this project. We assume
normalized data have already been loaded onto disks or memory.

2.2 Stochastic Gradient Descent
ML models usually have various parameters and a corresponding
objective function. The goal of ML modeling is to optimize the
objective function over parameters and training data. Stochastic
Gradient Descent (SGD) has recently been widely adopted as the
optimization method, because of its ability to optimize very large
datasets. Instead of updating coefficients per epoch, SGD updates
coefficients per training batch. In other words, SGD only takes a
mini batch at each epoch. We study whether joining at runtime
during mini batching will give us comparable runtime performance
as materializing joins before modeling.

Recently, lots of variations of SGD such as Adam[3] have been
studied to provide faster and stabler convergence. The study of
SGD optimizer is orthogonal to MorpheusFlow, as we focus on
optimization at data sourcing stage. Given different optimizers still



Figure 1: MorpheusFlow Overview

consume mini batches, we choose to experiment with SGD in this
project for the sake of simplicity.

2.3 Lazy Joins vs Eager Joins
The intention of comparing two types of joins comes down to defi-
ciency of available resources and ease of development. If datasets
can comfortably fit into memory, eager joins should usually be
the top choice. However, nowadays scientists deal with massive
materialized datasets that can hardly fit in memory, necessitating
strategies to swap data into memory when needed. Lazy joins suf-
fice this criterion by consuming only a small chunk of data from
a file and then dynamically performing a join on the batch. Then,
it boils down to a two-fold reason for using lazy joins: first of all,
less space is used. A single materialized table might take up too
much space on disks because of redundancy brought by denormal-
izing relational datasets. Second, practically speaking lazy joins
decentralize responsibility of joining tables from data systems to
ML training node. It avoids the situation of people under one or
multiple organizations waiting for data systems to produce the
joined table.

3 DESIGN PRINCIPLES
A dynamic join strategy like lazy joins will unavoidably cause ad-
ditional runtime overhead. Therefore, in this project, we mean to
reduce the overhead as much as possible while still preserving
the benefits of space efficiency. We seek for optimization strate-
gies in joins and apply them in MorpheusFlow. We create simple
abstractions that are easy to use with existing normalized data files.

3.1 Multiprocessors
Multicore design in CPUs becomes prominent as we are getting
closer to the limit of the single processor. For instance, lots of
commodity machines are equipped with many cores even up to
hundreds of cores. Usually, in ML library, only single core might
be designated to read data and so join tables, which is a waste of
hardware resources. As such, we explore triggering multiple cores
to process joins to boost up lazy joins.

Figure 2: Multicore usage in lazy join

3.2 Batch
The technical reason for lazy joins bringing overhead is that it
causes more system overhead per data entry. Each time the system
processes an entry, we need to look up attribute tables to find
corresponding rows to join. Meanwhile, lots of context switches
will have passed. As a result, the total throughput of data pipeline
is low. Usually, in the dataset, there might be all kinds of locality
that favor usage of caches. We, therefore, experiment with batch
joins to keep a high rate of system usage.

Figure 3: Batch usage in lazy join

2



3.3 Abstraction
As an abstraction that connects normalized data files to batched
input, MorpheusFlow should also ensure ease of usability and ex-
tensibility. Foremost, it should support bare NumPy array and SciPy
sparse matrices that data scientists have been using. Also, reading
from CSV file should also be supported since it is an almost standard
format used in sharing data in open source community. Besides,
the abstraction should also support easy integration to other file
types such that users only need to implement few lines of codes.

4 IMPLEMENTATION
We implement MorpheusFlow on top of Dataset, a recently pub-
lished library in Tensorfow. The overall design is presented in figure
1. The Dataset library serves as a logical entrance for ML pipeline to
consume a nested collection of data. Our abstraction as a high-level
wrapper of the native Dataset also gets easy access to native func-
tions like shuffling, repeating and parallel processing. In addition,
we implement a get_next() function to return a designated mini
batch at a time. The key contribution in our implementation is that
we dynamically perform lazy joins over a mini batch of entity table,
and a set of attribute tables. We keep all attribute tables in memory,
or in disks if memory is full while reading relatively large entity
table a mini batch per join. Our abstraction can easily consume
CSV, NumPy, TFRecord files, and any other popular matrix-like
data formats. In a nutshell, our Data API takes in relational datasets
(entity table and attribute table) and offers a series of mini batches
as output.

5 EVALUATION
To measure the performance of MorpheusFlow, we conduct exper-
iments on synthetic datasets and real-world datasets. We aim to
study how much overhead lazy joins can impose on ML training
and how MorpheusFlow can alleviate the problem.

5.1 Experiment setup
All experiments were run on CloudLab [2]. All experiments were
conducted on a machine with 14 Intel Xeon E5-2683 2.0GHz cores,
224GB RAM and 3TB disk with Ubuntu 16.04 LTS as the OS. Our
code is implemented in Python 2.6, and we use NumPy 1.13, SciPy
1.1, TensorFlow 1.5.0 as dependency libraries.

5.1.1 Datasets. For synthetic datasets, we have ns=100000, ds=50,
nr=500 and dr=200. As for real-world datasets, we adopt some used
in the Morpheus project including Expedia, Movie, Yelp, and Flights.
Note that all real-world datasets are very sparse because all cate-
gorical data are one-hot encoded leaving lots of zeros.

5.1.2 Algorithms. We use basic logistic regression and naive
neural network (2 hidden layers) in the experiment. These simple
models are easy to track and therefore helps us study the interplay
of I/O cost and computational cost. Further, our results should also
be able to shed some lights on complex models given the patterns
studied.

5.2 Results on Synthetic Data
We first examine performance difference in lazy join and eager
join when we make more use of hardware resources - processors.

Regarding setups, we use logistic regression (LR) and the basic
SGD optimizer provided in Tensorflow. We study the average run-
time cost per epoch on, for we are interested in how lazy joins
would affect end-to-end ML training. The result is illustrated in
figure 4. Overall, we see that lazy joins are generally slower than
eager joins, most likely due to the overhead on dynamic joining.
Concerning multi-core performance, we notice that two processes
can substantially reduce the average runtime cost. However, when
more processes are allowed to intervene into lazy joins, the over-
head of context switch becomes substantial and makes it slower
than lazy joins with two processes. Other than multi-core perfor-
mance, we also experiment with batch processing, where batch size
is fixed to 50. Interestingly, batched lazy join is not significantly
slower than eager join, even in training a simple model like LR. We
notice that batched lazy join has only slightly worse result than
multiprocessing solutions.

Meanwhile, we are curious to know which parts of lazy join play
critical roles in the total runtime cost. We decompose a batch into
four stages: 1. fetch s - the entity batch, 2 fetch r - the corresponding
attribute table entries that will be joined, 3. join s and r, and 4.
algorithm computation. The breakdown is illustrated in figure 5.
On the synthetic data, we see IO cost dominates the total runtime,
as fetching s takes up about 50% of the total runtime and joining a
batch costs about 40%. Surprisingly, computation only accounts for
a small part of the total runtime.

Figure 4: Logistic Regression on Synthetic Data

5.3 Results on Real-world Data
We now present the end-to-end ML training results on the real data.
Similar to the experiment on synthetic data, we use logistic regres-
sion, naive neural network and the SGD optimizer in Tensorflow.
For LR, we present the result comparing batched lazy join and eager
join in figure 6. Overall, we notice that eager join is significantly
faster than lazy join during training times. On Expedia and Flights,
eager join is about 50% faster. On Movie and Yelp, eager join is also
about 30% faster.

To figure out why there is a huge gap, we pick Expedia and
decompose the runtime in one batch, illustrated in figure 7. This
time, each batch is broken down into six steps: 1. fetch s, 2. convert

3



Figure 5: Breakdown on Synthetic Data

s batch to coo format, 3. fetch entries in r that will be joined with
s batch, 4. join s and r, 5. convert joined sparse matrix into tensor,
6. computation. Step 2 and 5 are overheads on converting data
formats if we intend to consume another data format other than
native Tensorfow tensors. Step 1, 3 and 4 are I/O cost at performing
lazy joins. At last, only step 6 is the computational cost, which only
accounts for about 20% of the total runtime. Overall, we find that
the overhead of lazy joins still plays a critical role in adding up the
entire runtime.

Figure 6: Runtime Cost Comparison (LR)

What about other computation intensive training? We conduct
the same experiment on comparing lazy joins and eager joins, ex-
cept on using a shallow neural network. We illustrate the result in
8. As training become more computation intensive, lazy joins and
eager joins tend to converge at the average runtime. On Expedia
and Movie, we see about 10% overhead on lazy joins. On Yelp and
Flights, the gap disappears as the computation dominates the total
runtime.

5.4 Lessons Learned
Regarding the experiment results, we have two major takeaways:

Figure 7: Breakdown on Expedia

Figure 8: Runtime Cost Comparison (NN)

First, the overhead of using multicore on a single join stream
might outperform the benefits of using it. Using too many cores will
merely put burdens on OS that needs to handle expensive context
switches and other hardware resources intervenes.

Second, lazy join definitely suffers from overhead and therefore
is slower than eager join. However, the overhead might be trivial
if the training process is computation intensive. As shown in our
experiment, when training a shallow neural network, lazy joins
and eager joins may have very similar runtime cost per epoch. In
the world of more complex model training, the total overhead of
lazy join should not be a significant concern.

6 CONCLUSIONS
Relational data is ubiquitous in the machine learning world. Scien-
tists are forced to eagerly multiple tables before training models.
We extend the simple idea of batched lazy join as a library called
MorpheusFlow. MorpheusFlow supports basic data formats widely
used in ML such as NumPy matrices and CSV files. With the help
of MorpheusFlow, we have shown that lazy joins at training time
can be almost as fast as eager joins. We verified that it is safe to

4



use lazy joins in training computation-bounded models. Our work
has also prepared us for further exploration on join pattern in deep
learning.

All of our codes and the datasets are publicly released on the
project webpage: https://adalabucsd.github.io/morpheus.html.

REFERENCES
[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey

Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Man-
junath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray,
Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan
Yu, and Xiaoqiang Zheng. 2016. TensorFlow: A system for large-scale machine
learning. In 12th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 16). 265–283. https://www.usenix.org/system/files/conference/osdi16/
osdi16-abadi.pdf

[2] R. Ricci. E. Eide and C. Team. 2014. Introducing CloudLab: Scientific Infrastructure
for Advancing Cloud Architectures and Applications. ;login:the magazine of
USENIX 39, 6 (2014), 36–38. https://www.usenix.org/publications/login/dec14/ricci

[3] Diederik Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimiza-
tion. (12 2014).

[4] Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel. 2015. Learning Generalized
Linear Models Over Normalized Data. In Proceedings of the 2015 ACM SIGMOD
International Conference on Management of Data (SIGMOD ’15). ACM, New York,
NY, USA, 1969–1984. https://doi.org/10.1145/2723372.2723713

[5] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. 2010.
The Hadoop Distributed File System. In Proceedings of the 2010 IEEE 26th Sympo-
sium on Mass Storage Systems and Technologies (MSST) (MSST ’10). IEEE Computer
Society, Washington, DC, USA, 1–10. https://doi.org/10.1109/MSST.2010.5496972

[6] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. 2010. Spark: Cluster Computing with Working Sets. In Proceedings of the
2Nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud’10). USENIX
Association, Berkeley, CA, USA, 10–10. http://dl.acm.org/citation.cfm?id=1863103.
1863113

5

https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/system/files/conference/osdi16/osdi16-abadi.pdf
https://www.usenix.org/publications/login/dec14/ricci
https://doi.org/10.1145/2723372.2723713
https://doi.org/10.1109/MSST.2010.5496972
http://dl.acm.org/citation.cfm?id=1863103.1863113
http://dl.acm.org/citation.cfm?id=1863103.1863113

	Abstract
	1 Introduction
	2 Background
	2.1 Data Systems
	2.2 Stochastic Gradient Descent
	2.3 Lazy Joins vs Eager Joins

	3 Design Principles
	3.1 Multiprocessors
	3.2 Batch
	3.3 Abstraction

	4 Implementation
	5 Evaluation
	5.1 Experiment setup
	5.2 Results on Synthetic Data
	5.3 Results on Real-world Data
	5.4 Lessons Learned

	6 Conclusions
	References

