arXiv:1612.07448v6 [cs.DB] 27 Jun 2017

Towards Linear Algebra over Normalized Data

Lingjiao Chen! Arun Kumar?
tUniversity of Wisconsin-Madison

Jeffrey Naughton?®

2University of California, San Diego

Jignesh M. Patel®
3Google

{Ichen, jigneshi@cs.wisc.edu, 2arunkk@eng.ucsd.edu, *naughton@google.com

ABSTRACT

Providing machine learning (ML) over relational data is a
mainstream requirement for data analytics systems. While
almost all ML tools require the input data to be presented
as a single table, many datasets are multi-table. This forces
data scientists to join those tables first, which often leads
to data redundancy and runtime waste. Recent works on
“factorized” ML mitigate this issue for a few specific ML
algorithms by pushing ML through joins. But their ap-
proaches require a manual rewrite of ML implementations.
Such piecemeal methods create a massive development over-
head when extending such ideas to other ML algorithms. In
this paper, we show that it is possible to mitigate this over-
head by leveraging a popular formal algebra to represent the
computations of many ML algorithms: linear algebra. We
introduce a new logical data type to represent normalized
data and devise a framework of algebraic rewrite rules to
convert a large set of linear algebra operations over denor-
malized data into operations over normalized data. We show
how this enables us to automatically “factorize” several pop-
ular ML algorithms, thus unifying and generalizing several
prior works. We prototype our framework in the popular
ML environment R and an industrial R-over-RDBMS tool.
Experiments with both synthetic and real normalized data
show that our framework also yields significant speed-ups,
up to 36x on real data.

1. INTRODUCTION

The data management industry and academia are working
intensively on tools to integrate machine learning (ML) al-
gorithms and frameworks such as R with data platforms [2,
9,10,19,21,24,38]. While almost all ML tools require the in-
put data to be presented as a single table, many datasets are
multi-table, typically connected by primary key-foreign key
(PK-FK) or more general “M:N” dependencies [33], which
forces data scientists to join those tables first. However, such
joins often introduce redundancy in the data [33], leading to
extra storage requirements and runtime inefficiencies due to
redundancy in the computations of the ML algorithms.

A few recent works [26, 32,34, 35] aim to avoid such re-
dundancy by decomposing the computations of some spe-
cific ML algorithms and pushing them through joins. How-
ever, a key limitation of such approaches is that they require
manually rewriting each ML algorithm’s implementation to
obtain a “factorized” version. This creates a daunting de-
velopment overhead in extending the benefits of factorized
ML to other ML algorithms. Moreover, the prior approaches

are too closely tied to a specific data platform, e.g., an in-
memory engine [35] or an RDBMS [26]. This state of the
art is illustrated in Figure 1(a) and it raises an important
question: s it possible to generalize the idea of factorized
ML and “automate” its application to a much wider variety
of ML algorithms and platforms in a unified manner?

In this paper, we present the first systematic approach
that takes a step towards generalizing and automating fac-
torized ML. Our idea is to use a common formal represen-
tation language for ML algorithms: linear algebra (LA).
Many popular ML algorithms such as linear regression, lo-
gistic regression, and K-Means clustering can be expressed
succinctly using LA operators such as matrix multiplica-
tion and inversion [9]. Moreover, data scientists often write
new ML algorithms in popular LA-based frameworks such
as R [3]. The data management community has embraced
LA and R as a key environment for ML workloads [2,4,9].
For example, Oracle R Enterprise (ORE) lets users write
LA scripts over an R “DataFrame” that is stored as an in-
RDBMS table [2], while Apache SystemML provides an R-
like language to scale to data on HDFS [9]. While such
systems provide scalability and sophisticated optimizations
(e.g., SystemML’s hybrid parallelism [8] and SPOOF [17]),
they do not optimize LA scripts over normalized data.

Our high-level approach is illustrated in Figure 1(c). Given
an ML algorithm in LA (logistic regression in the figure) and
the normalized schema, our middleware framework named
MORPHEUS automatically creates the factorized version of
the ML algorithm, i.e., one that operates on the base tables.
As illustrated in Figure 1(b), this approach lets us factorize
many ML algorithms with one framework, thus mitigating
the development overhead. Furthermore, by decoupling how
the ML algorithm is factorized from which platform it is run
on, MORPHEUS lets us leverage existing scalable LA systems.

Realizing a framework like MORPHEUS is technically chal-
lenging due to three crucial desiderata. First is generality,
i.e., it should be able to handle a wide variety of ML algo-
rithms expressible in LA, as well as both PK-FK and M:N
joins. Second is closure, i.e., it should ideally rewrite an LA
script only into a different LA script so that the internals of
the LA system used need not be modified, which could make
practical adoption easier. Third is efficiency, i.e., it should
offer mechanisms to ensure that the factorized version is only
used when it is faster than the single-table version.

As a step towards providing high generality, in this pa-
per, we focus on a set of LA operations over the data ma-
trix that are common for several popular ML algorithms.
These LA operations are listed in Table 1. We introduce

Factorized ML: Prior Work! Our Proposed Approach !

Paper [29] Paper [37]Other | G \yGD OLS/CP K-Means GNMF - |

|[Schema/Metadata Information]i}

Factorized Logistic Regression

Optimization Rule: Input: Normalized matrix (S; K; R), Y,

GLM/GD OLS/CP models
l l' l~ ! W ! Original Logistic Regression
|

Input: Regular matrix 7', Y, w, and a

. ii . i isti isil = T
foriin1: max_iter dyo 5? Heunsgcu:zecmon pP= (1 n esW[MS,]+K(Rwl(ds+1):a]))
R 0o nenese || — | w=w+aTT

E ;‘MORPHEUS: Factoriied LinearAIgebra‘l

' .. 1| Systems that support LA workloads ||
In-f)BMS In-memory |

E I E | end

PR)

LMM, RMM,
Crossprod,
RowsSums,

Transpose, etc.

w, and a
foriin1:max_iter do
Y

Trow) w =w + a[PS, (PK)R]"

Figure 1: (a) In contrast to prior approaches to factorized ML, which were ML algorithm- and platform-specific, (b) MORPHEUS
provides a unified and generic framework to automatically factorize many ML algorithms over any platform that supports LA
workloads. (c) Illustration of how MORPHEUS automatically rewrites the standard single-table version of logistic regression
into the factorized version using the normalized schema information. The LA operators whose rewrite rules are invoked are
highlighted. The heuristic decision rule uses input data statistics to predict if the factorized version will be faster.

a new “logical” data type, the normalized matriz, to rep-
resent multi-table data inputs in LA. In a sense, our work
brings the classical database notion of logical data indepen-
dence [33] to LA systems. To ensure tractability, we focus
only on some join schemas that are ubiquitous in practice:
“star schema” PK-FK joins and “chain schema” M:N joins.
More complex join schemas are left to future work.

To provide closure, we devise an extensive framework of
algebraic rewrite rules that transform an LA operation over
a denormalized data matrix into a set of LA operations over
the normalized matrix. In a sense, this is a first principles
extension of the classical idea of pushing relational opera-
tions through joins [12,37] to LA. Some LA operations such
as scalar-matrix multiplication and aggregations are trivial
to rewrite and are reminiscent of relational optimization.
But more complex LA operations such as matrix-matrix
multiplication, matrix cross-product, and matrix inversion
enable us to devise novel rewrites that exploit their LA-
specific semantics with no known counterparts in relational
optimization. We also handle matrix transpose. For ex-
position sake, we describe the rewrite rules for a PK-FK
join and then generalize to star schema multi-table PK-FK
joins and M:N joins. We apply our framework to four pop-
ular and representative ML algorithms to show how they
are automatically factorized: logistic regression for classifi-
cation, linear regression, K-Means clustering, and Gaussian
Non-negative Matrix Factorization (GNMF) for feature ex-
traction. Our automatic rewrites largely subsume the ideas
in [26,35] for logistic and linear regression and produce the
first known factorized versions of K-Means and GNMF.

Finally, we discuss the efficiency trade-offs involved in the
rewrites of complex LA operations and present ways to opti-
mize their performance. We also present simple but effective
heuristic decision rules to predict when a factorized LA oper-
ation might cause slow-downs; this happens in some extreme
cases depending on the dimensions of the base tables [26].

We prototype MORPHEUS on standalone R, which is popu-
lar for ML-based analytics [3], and the R-over-RDBMS tool
Oracle R Enterprise (ORE) [2] (but note that our framework
is generic and applicable to other LA systems as well). We
present an extensive empirical evaluation using both real
and synthetic datasets. Our experiments validate the ef-
fectiveness of our rewrite rules and show that MORPHEUS
yields speed-ups of up to 36.4x for popular ML algorithms
over real data. Compared to a prior ML algorithm-specific
factorized ML tool [26], MORPHEUS achieves comparable or
higher speed-ups, while offering higher generality. Finally,
we also evaluate the scalability of MORPHEUS on ORE.

In summary, this paper makes the following contributions:

e To the best of our knowledge, this is the first paper
on generalizing and automating the idea of factorized
ML, focusing on ML algorithms expressed in LA.

e We present a mechanism to represent normalized data
in LA and an extensive framework of rewrite rules for
LA operations. Our framework provides high general-
ity and closure with respect to LA, enabling us to au-
tomatically factorize several popular ML algorithms.

e We extend our framework to star schema multi-table
PK-FK joins as well as M:N joins.

e We provide prototypes of our framework in both R and
ORE and perform an extensive empirical analysis of
their performance using both real and synthetic data.

Outline. Section 2 presents the problem setup and back-
ground. Section 3 introduces the normalized matrix, ex-
plains the architecture of MORPHEUS, and dives deep into
the rewrite rules. Section 4 applies our framework to four
ML algorithms. Section 5 presents the experiments and Sec-
tion 6 presents the related work. We conclude in Section 7.

2. PRELIMINARIES AND BACKGROUND

Problem Setup and Notation. For simplicity of ex-
position, we start with a single PK-FK join. Multi-table
joins and M:N joins will be discussed later in Section 3.
Consider two tables: S(Y,Xg, K) and R(RID,XRr), where
Xs and Xpg are the feature vectors, and Y is called the
target (for supervised classification and regression). K is
the foreign key and RID is the primary key of R. Fol-
lowing [26], we call S the entity table and R the attribute
table. The output of the join-project query is denoted by
T(Y,X) < 7(S M<r=rp R), wherein X = [Xg,XRg] is the
concatenation of the feature vectors. We adopt a standard
convention on data representation: let R.Xg (resp. S.Xg,
S.Y, T.X) correspond to the feature matrix R (resp. S, Y,
T). Table 2 summarizes our notation.

Example (based on [26]). Consider an insurance analyst
classifying customers to predict who might churn, i.e., can-
cel their policy. She builds a logistic regression classifier us-
ing a table with customer details: Customers (CustomerID,
Churn, Age, Income, EmployerID). EmployerID is the ID of
the customer’s employer, a foreign key referring to a ta-
ble about organizations that potentially employ the cus-
tomers: Employers (EmployerID, Revenue, Country). Thus,
S is Customers, R is Employers, K is S.EmployerID, RID
is R.EmployerID, Xgs is {Age, Income}, Xpr is {Country,
Revenue}, and Y is Churn. She joins the tables to bring in

Table 1: Operators and functions of linear algebra handled in this paper over a normalized matrix 7.

Op Type H Name ‘ Expression Output Type Parameter X or x Factorizable
Arithmetic Op
(@ =+, — %/, etc) ToxorxzT A scalar
Element-wise Transpose 7 Normalized N/A
Scalar Op Scalar T 7 Matrix
calar Function
(e.g., log, exp, sin) f() Parameters for f
Row Summation rowSums(T") Column Vector
Aggregation Column Summation colSums(T) Row Vector N/A Yes
Summation sum(T) Scalar
Left Multiplication TX (ds + dr) X dx matrix
Right Multiplication XT nx X nsg matrix
Multiplication Cross-product crossprod(T) N/A
Inversion Pseudoinverse ginv(T) i{/legular /
atrix
Element-wise Arithmetic Op .
Matrix Op (@ = +,—, %, /", etc) XoTorTopX ns X (ds + dr) matrix No

Table 2: Notation used in this paper.

Symbol Meaning
R/R Attribute table/feature matrix
S/S Entity table/feature matrix
T/ T Join output table/feature matrix
K Indicator matrix for PK-FK join
Is / Ir Indicator matrices for M:N join
Y Target matrix (regression and classification)
ngr / ns Number of rows in R / S (and T)
dr / dr Number of columns in R / S
d Total number of features, ds + dr
nu M:N join attribute domain size

X g because she has a hunch that customers employed by
rich corporations in rich countries are unlikely to churn.

Linear Algebra (LA) Systems and R. LA is an elegant
formal language in which one can express many ML algo-
rithms [9,16]. Data are formally represented as matrices,
with scalars and vectors being special cases. LA operators
map matrices to matrices. Basic operators include unary
operators such as element-wise exponentiation, as well as
binary operators such as matrix-matrix multiplication. De-
rived operators include Gram matrix and aggregation op-
erators. An LA system is a system that supports matrices
as a first class data type, as well as elementary and derived
LA operators such as indexing, matrix multiplication, and
pseudo-inverse. Widely used examples include R, Matlab,
SAS, and Python’s NumPy. In particular, open source R
has gained immense popularity and has free ML libraries
for various domains [3]. R is primarily an in-memory tool
but recent systems built by the data management commu-
nity enables one to scale LA scripts written in R (or R-like
languages) to data resident in an RDBMS, Hive/Hadoop,
and Spark. Examples of such “R-based analytics systems”
include RIOT-DB [38], Oracle R Enterprise (ORE), Apache
SystemML [9], and SparkR [4]. In this paper, we imple-
ment our framework on standard R and also ORE. Note
that our ideas are generic enough to be applicable to other

LA systems such as Matlab, NumPy, other R-based analyt-
ics systems, or TensorFlow as well.

Factorized ML. Factorized ML techniques were studied in
a recent line of work for a few specific ML algorithms [26,34,
35]. We briefly explain a key representative technique that
introduced this paradigm: “factorized learning” from [26].
Given a model vector w, a GLM with gradient descent com-
putes the inner products wTx, in each iteration, for each
feature vector x from T. Since T has redundancy across
tuples, this multiplication involves redundant computations
across tuples, which is what factorized learning avoids. The
crux of its idea is to decompose the inner products over
r into inner products over the feature vectors xs and zg
from the two base tables. Thus, the partial inner products
from R can be saved and then reused for each tuple in S
that refers to the same tuple in R. This is correct because
w'z = wizrs + whar, wherein wg (resp. wg) is the pro-
jection of w to the features from S (resp. R). Figure 1(c)
illustrates how logistic regression is factorized. Factorized
learning often has significantly faster runtimes.

Problem Statement and Scope. We ask: Is it possible to
transparently “factorize” a large set of LA operations over T
that are common in ML into operations over S and R with-
out losing efficiency? Our goal is to devise an integrated
framework of such algebraic rewrite rules for the key appli-
cation of automatically “factorizing” ML algorithms written
in LA, which could mean that developers need not manually
rewrite ML implementations from scratch. The challenge in
devising such a framework is in preserving generality (i.e.,
applicability to many ML algorithms and both PK-FK and
M:N joins), closure (i.e, rewrites only produce a different LA
script), and efficiency (i.e., faster or similar runtimes). Most
LA systems support a wide variety of operations on matri-
ces. For tractability sake, we restrict our focus to a large
subset of LA operations that still support a wide variety of
ML algorithms; Table 1 lists and explains these operations.

3. FACTORIZED LINEAR ALGEBRA

We introduce the normalized matrix, give an overview
of how MORPHEUS is implemented, and dive deep into our

framework of rewrite rules for a single PK-FK join. We then
extend our framework to multi-table joins and M:N joins.

3.1 The Normalized Matrix

We introduce a new multi-matrix logical data type called
the normalized matriz to represent normalized data. It is
called a logical data type because it only layers a logical
abstraction on top of existing data types. For simplicity of
exposition, this subsection focuses on a PK-FK join; Section
3.5 and 3.6 present the extensions of the normalized matrix
to star schema multi-table PK-FK joins and M:N joins, re-
spectively. Note that each R.RID in the attribute table R
can be mapped to its sequential row number in the matrix
R. Thus, S.K can be viewed as an attribute containing en-
tries that are the row numbers of R. An indicator matrix
K of size ns X nr can thus be constructed as follows:

o 1, ifi"rowof S K =3
Kli, j] = { 0, otherwise

The normalized matriz corresponding to T' is defined as
a matrix triple Tn = (S, K, R). One can verify that T =
[S, KR].! Tt is worth noting that K is a highly sparse matrix.
In fact, the PK-FK relationship implies that the number of
non-zero elements in each row of K is 1. Thus, nnz(K), the
number of non-zero elements in K, is exactly ng. Without
loss of generality, assume Vj,nnz(K|[, j]) > 0, i.e., each tuple
in R is referred to by at least one tuple in S. Otherwise, we
can remove from R all the tuples that are never referred to
in S. Note that any of R, S, and T' can be dense or sparse.
A natural question is how expressive our abstraction is

for ML, i.e., what kind of ML algorithms it can benefit
efficiency-wise. In short, ML algorithms whose data-intensive
computations can be vectorized as elementary or derived LA
operations over the feature matrix 7" in bulk can benefit from
our abstraction. This is expected because vectorized compu-
tation is a key efficiency assumption made by almost all LA
systems, including R, Matlab, and SystemML [9]. Since our
work builds on top of such LA systems, the same assump-
tion carries over to our work. In practice, the data-intensive
computations of many popular ML algorithms, including su-
pervised ML, unsupervised ML, and feature extraction al-
gorithms can be vectorized, as we illustrate in detail in Sec-
tion 4; [9] also provides more examples.?

3.2 Overview of Morpheus

MORPHEUS is an implementation of the normalized matrix
and our framework of rewrite rules as a class in standard R
and ORE. Our class has three matrices: S, K, and R. All
LA operators in Table 1 are overloaded to support our class.
The details of how the operators are executed over normal-
ized matrices are the subject of Section 3.3. Interestingly,
some operators output a normalized matrix, which enables
MORPHEUS to propagate the avoidance of data redundancy
in a given LA script with multiple operators. Another inter-
esting point is how to handle the transpose of a normalized

'For ease of exposition, we abuse the notation slightly and
use T itself for Tv when it is clear from the context that the
rewrites operate over the normalized matrix rather than the
regular matrix, e.g., in Table 1 and Section 3.3.

2But not all ML algorithms are amenable to vectorized
bulk computations over T, e.g., stochastic gradient descent
(SGD) will likely be a poor fit for LA systems, since it
updates the model after each example or mini-batch from
T [19]. We leave a deeper study of SGD to future work.

matrix. A straightforward way is to create a new class for
transposed normalized matrices and overload the operators
again. Instead, we adopt a different approach that makes
our implementation more succinct and exploits more rewrite
opportunities. We add a special binary “flag” to indicate if
a normalized matrix is transposed. If the flag is false, Sec-
tion 3.3 rules are used; otherwise, we use the rewrite rules
for transpose presented in the appendix. Compared to the
straightforward approach, our approach avoids computing
repeated transposes and allows developers to focus on only
one new class.?

Finally, we explain how to construct a normalized matrix
from the base tables S and R given as, say, CSV files. We
illustrate this process with a code snippet. For the sake of
brevity, we assume that RID and K are already sequential
row numbers. Note that “list” is used to allow different data
types (e.g., dense or sparse) and multi-table data.

read.csv("S.csv")
read.csv("R.csv")
sparseMatrix(i=1:nrow(S), j=S[,"K"], x=1)

TN = NormalizedMatrix(EntTable=1ist(S),
AttTables=1ist(R), KIndicators=list(K))

//foreign key name K

N & Wn
]

Overall, MORPHEUS is packaged as easy-to-use libraries
for both standard R and Oracle R Enterprise. Our code has
been open sourced on the project webpage: http://cseweb.
ucsd.edu/~arunkk/morpheus.

3.3 Factorized Linear Algebra Operators

We now dive deep into our framework of algebraic rewrite
rules for the groups of operators listed in Table 1.

3.3.1 Element-wise Scalar Operators

These are trivial to rewrite but they are ubiquitous in ML.
They include multiplication and addition of a matrix with a
scalar, element-wise exponentiation, and element-wise scalar
functions, e.g., log and exp. The output is a normalized
matrix with the same structure as the input. The rewrite
rules are given below; “@” represents a binary arithmetic
operator, x is a scalar, and f is a scalar function.

Toxz— (Soz,K,Roz); 20T = (x2S, K,z 2 R)
f(T) = (f(9), K, f(R))

In the above, T® x — (S © x, K, R © x) means that an
operation T'@ x can be replaced implicitly with operations
on the normalized matrix (S, K, R) to yield a new normal-
ized matrix (S @ z, K, R ® x). These rewrites avoid redun-
dant computations. For instance, computing 3 x T requires
ns(ds + dr) multiplications but computing (3 x S, K,3 x R)
requires only nsds + nrdgr. The ratio of these two quanti-
ties is the ratio of the size of T to the total size of S and R.
The speed-ups depend on this ratio and thus, the speed-ups
could be significant when this ratio is large.

3.3.2 Aggregation Operators

These include rowSums(7T'), which sums the matrix row-
wise, colSums(7"), which sums the matrix column-wise, and
sum(7'), which adds up all of the elements. These operators
also arise frequently in ML, especially when computing loss

30ur architecture fits easily into any interpreted environ-
ments for LA; we leave to future work an integration with a
compiler environment such as SystemML [9].

10 20 11 22 10 17.1 10 20 1.0 5.0 11 22 30 10 121 12.1
40 30 33 44 20 37.5 40 30 20 10.0 33 44 40 01 275 27.5
50 6.0 33 44 3.0 44.5 50 60 X[1:2] 170 R X[3:4,] 0 1 22 27.5
80 7.0 11 22 40 34.1 80 7.0 22.0 12.1 10 12.1
9.0 10 33 44 X 385 9.0 1.0 11.0 27.5 0 1 27.5
T TX S SX[1:2,] =21 RX[3:4]=Z2 [D] K KZ2=73

Figure 2: Illustration of factorized LMM. (A) Materialized LMM T'X. (B) The first step in factorized LMM is SX (1 : ds,] = Z1
(say). Note that ds = 2. (C) Next, RX[ds + 1 :d,] = Z> (say). Note that d = 4. (D) Then, KZ> = Z3 (say). Finally, the

factorized LMM is Z1 + Z3, the same as the result in (A).

or gradient values, which are aggregates over examples (or
features). The rewrite rules are as follows.

rowSums(7") — rowSums(S) + KrowSums(R)
colSums(7T") — [colSums(S), colSums(K)R]
sum(7) — sum(S) + colSums(K)rowSums(R)

The rule for rowSums pushes down the operator to before
the join and then multiplies the pre-aggregated R with K,
before adding both parts. The rule for colSums, however,
first pre-aggregates K before multiplying it with R and then
attaches it to the pre-aggregated S. Finally, the rewrite rule
for sum is more complicated and involves a sum push-down
along with a rowSums and a colSums. These rewrite rules
are essentially the LA counterparts of SQL aggregate push-
down optimizations in RDBMSs [12,37]. By extending such
operator rewrite ideas to LA operations, our work makes
them more widely applicable, especially, for LA-based ML
workloads that may not use an RDBMS.

3.3.3 Left Matrix Multiplication (LMM)

LMM is an important and time-consuming operator aris-
ing in many ML algorithms, typically for multiplying the
data matrix with a model/weight vector. In fact, it arises in
all of GLMs, K-Means, and GNMF'. Interestingly, a special
case of LMM is the key operation factorized in [26]. Our
rewrite rule expresses that idea in LA and generalizes it to
a weight matrix, not just a weight vector. The rewrite rule
is as follows; X is a regular d X dx (dx > 1) matrix.

TX — SX[1:ds,]+ K(RX|ds +1:d,])

Essentially, we first split up X, then pre-multiply with S
and R separately, and finally add them. A subtle but crucial
issue is the order of the multiplication in the second compo-
nent. There are two orders: (1) (KR)X[ds +1:ds + dg,],
and (2) K(RX[ds+1:d,]). The first is equivalent to mate-
rializing (a part of) the output of the join, which causes
computational redundancy! The second avoids the com-
putational redundancy and thus, we use the second order.
Most LA systems, including R, allow us to fix the multipli-
cation order using parentheses. A key difference with [26]
is that their approach stores the partial results over R in
an in-memory associative array. We avoid using associative
arrays, which are not a native part of most LA systems, and
instead, use regular matrix multiplications. While this could
lead to a small performance penalty, it enables us to satisfy
the closure property explained before. Figure 2 illustrates
how factorized LMM works.

3.3.4 Right Matrix Multiplication (RMM)

RMM also appears in many ML algorithms, including
GLMs, especially when the normalized matrix is transposed
(transposed operators are discussed in detail in our techni-
cal report [13]). Let X be a regular m x ng (m > 1) matrix.
The rewrite rule is as follows.

XT = [XS,(XK)R]

This rewrite does not need to split up X but pushes down
the RMM to the base tables and then attaches the resul-
tant matrices. Once again, the second component has two
possible orders, with the one that is not used being logically
equivalent to materializing the join output.

A related matrix multiplication operation involves multi-
plying two normalized matrices; we call this operation Dou-
ble Matrix Multiplication (DMM). In contrast to LMM and
RMM, to the best of our knowledge, DMM does not arise
in any popular ML algorithm. Nevertheless, we show in the
appendix that it is indeed possible to rewrite even a DMM
into operations over the base tables’ matrices although the
rewrite is more complicated.

3.3.5 Cross-product

The cross-product of a matrix T, denoted crossprod(T")
in R, is equivalent to T77.* Most LA systems offer cross-
product as a unary function.® It arises in ML algorithms
where feature-feature interactions are needed, e.g., linear re-
gression using normal equations, covariance, and PCA [16].
Interestingly, alternative rewrites are possible for crossprod.
We start with a straightforward “naive method” in Algo-
rithm 1. Since T7T is symmetric, we need only half of
the output matrix and its diagonal. Thus, this rewrite first
computes the lower-left (and upper-right) by multiplying RT
with the product of KT and S, which avoids materialization.
Second, it computes the cross-product of S for the upper-
left. Third, it computes the cross-product of K and thus,
the cross-product of K R without materializing the join. Fi-
nally, the results are stitched appropriately. The approach
in [35] to factorize a part of the so-called “co-factor” matrix
for linear regression is similar.

While already a bit optimized, Algorithm 1 still has two
inefficiency issues. First, it does not fully exploit the symme-
try of some matrices. Second, transposed multiplication of a
sparse matrix (KT K) is a non-trivial cost in many cases. We

4By convention, data examples are rows in R, which means
crossprod is actually the Gram matrix in LA textbooks [22].
5There is also a binary version: crossprod(71,7T>) = TlTTg.
If only 7% is normalized, it is RMM; if only 77 is normalized,
it is transposed RMM, which is discussed in Section 3.4. If
both are normalized, it is a transposed double multiplica-
tion, which is discussed in the appendix.

Algorithm 1: Cross-product (Naive method)
P=RT(KTS)

return ST o

U p o RT(KTK)R)

Algorithm 2: Cross-product (Efficient method)

P=RT(K'S)
return
crossprod(S) Pt
P crossprod ((diag (colSums (K)))% R)

present a novel rewrite—the “efficient method”—that resolves
both issues. The first one is resolved by using crossprod(.S)
directly instead of STS. This reduces about %nsdfq arith-
metic computations. The second one is more subtle; we
make three observations: (1) KTK, denoted K, is not only
symmetric but also diagonal. (2) K,[i,i] is the number of
ones in the i*" column of K. Thus, K, = diag(colSums(K)),
where diag is a standard LA operation that creates a diago-
nal matrix given a vector. Third, denoting the element-wise

square root of K, by Kp%, we have:
RY(KTK)R = crossprod(Kp%R)

Compared to the expression on the left, the one on the
right avoids transposing a sparse matrix and replaces several
matrix multiplications with a single cross-product. Hence,
about %n rd% arithmetic computations will be saved by the
expression on the right. Integrating these observations, the
efficient method is presented in Algorithm 2.

3.3.6 Matrix Inversion Operators

Note that T is seldom a square matrix in practice; hence,
it will typically not be directly invertible. Interestingly, we
show in the appendix that, even if T is actually a square
matrix, it is highly likely to be singular. This is because
non-singularity imposes a strict constraint on the relative
dimensions of the base tables [13]. Thus, we consider ginv,
the Moore-Penrose pseudo-inverse and provide the rewrites
rules for it below. The rewrite rules for solve, which is often
used to avoid a full inversion, are similar.

ginv(T) — ginv(crossprod(T))TT, if d<n
ginv(T) — T7 ginv(crossprod(TT)), o/w

3.3.7 Non-Factorizable Operators

Element-wise matrix arithmetic operators such as matrix
addition do not necessarily have redundancy introduced into
their computations by joins. Thus, we call such operators
“non-factorizable.” To see why such operators may not have
redundancy, consider the matrix addition 7"+ X, where T
is the normalized matrix and X is a regular matrix of the
same size, i.e., ng X (ds + dr). In general, it is possible
that X has no redundancy, i.e., all its entries are unique,
say, X[i,7] = ((i — D)ns + j)ns(ds + dr). Now, suppose
that all entries in S and R are just 1, which means all en-
tries of T" are also just 1. Thus, 7" has a large amount of
redundancy. But 7"+ X simply adds 1 to each element of

X. Since the elements of X are all unique, there is no re-
dundancy in this computation, which is why we say 7'+ X
is non-factorizable. In general, there could be “instance-
specific” redundancy in X, e.g., some elements just happen
to be repeated by chance. Exploiting such instance-specific
redundancy is beyond the scope of this work. Fortunately,
element-wise matrix arithmetic operations are rare in ML;
to the best of our knowledge, there is no popular ML algo-
rithm where these operations are the runtime bottleneck.®
Thus, we ignore these operations henceforth.

3.4 Runtime Complexity Analysis

We now present the runtime complexity of the factorized
LA operators yielded by our rewrite rules. Instead of just
the “big O” notation, we provide the proportional depen-
dency of the number of arithmetic computations (multipli-
cations and additions) in terms of the dimensions of the
base table’s matrices. Table 3 presents the expressions for
the standard (materialized) and factorized versions. Due to
space constraints, we discuss these expressions in more de-
tail (and also provide the more tedious expressions for ginv)
in the appendix. To understand the asymptotic speed-ups
of the factorized versions over the corresponding standard
versions, let TR = Z—Z and FR = Z—’; denote the tuple ra-
tio and feature ratio, respectively. For most of the LA op-
erators, the speed-ups converge to 1 + FR (resp. TR) as
TR (resp. FR) goes to infinity. The speedup for crossprod,
however, converges to (1 + F R)2 as TR increases, since its
runtime complexity is quadratic in d.

Table 3: Arithmetic computations of the standard algo-
rithms and factorized ones. Lower order terms are ignored.

Operator H Standard ‘ Factorized ‘
Scalar Op
A - ns(ds + dr) nsds +nrdr

ggregation

LMM dxns(ds +dr) | dx(nsds + nrdr)

RMM nxns(ds +dr) | nx(nsds + nrdgr)

T2 T2
d 1 d d 2 Edsns + §dRTLR

CroSSpro 5(ds + dr)*ns 2 dednn

3.5 Extension to Multi-table Joins

We now extend our framework to multi-table PK-FK joins,
specifically, star schema joins, which are ubiquitous in prac-
tice. For example, in recommendation systems such as Net-
flix and Amazon, the table with ratings has two foreign
keys referring to tables about users and products. Thus,
there is one entity table and two attribute tables. Formally,
the schema is as follows: one entity table/matrix S, ¢ at-
tribute tables, Ri,..., Ry, and g associated PK-FK matri-
ces Ki,..., K;. The materialized join output T is [S, K1 R1,
..., KqRq]. The extended normalized matrix is the tuple
(S,... Ki,Ko,...,Kq,R1,Ro,...,Ry). We now present the
extended rewrite rules.

5Such operations may arise in non-ML applications of LA,
e.g., scientific simulations and financial engineering, but it
is not clear if these application have normalized data.

Element-wise Scalar Operators. The extension is straight-
forward and as follows.

Tox— (S0xz,Ki,...,Kq,RiQz,...,Rq ©)
T — (x@S,Kl,...,Kq,x®R1,...,x®Rq),
f(T) — (f(S)7Kla'"7KQ7f(R1)a-~-7f(RQ))'
Aggregation Operators. These require pre-aggregation
of each R; using K; and then combining the partial results,
shown as follows.
colSums(7T") — [colSums(S), colSums(K1)R1,
-, colSums(Ky) Ry]

q
rowSums(7") — rowSums(S) + Z K;rowSums(R;)

=1

q
sum(7T") — sum(S) + Z colSums(K;)rowSums(R;)
i=1
LMM. We need some notation. Let the dimensions of R;
be ng; x dr;. Thus d = ds + >.%, dr; Define d} = ds +
> =1 dri, for i = 1 to g, and dy = ds. Given X of size
d x m (m > 1), the rewrite is as follows.

q
TX — SX[l:ds,] + Y Ki(RiX[di_y +1:d},])
i=1
RMM. Note that the dimensions of K; is ng X ng;. Given
X of size m x ng (m > 1), the rewrite is as follows.

XT — [XS,(XK1)Ry,...,(XK,)R,)

Cross-product. For the sake of readability, let Kr, and
cp(X) denote K;R; and crossprod(X), respectively. Using
the block matrix multiplication, c¢cp(T) = T7T = [S, K1 R,

< KqRG]T[S, K1 R4, ..., KqR4] can be rewritten as follows.

cp(S) STKr, STKrg, STKR,
KL S op(Kn) Ki Kn, K, Kr,
KL, S K& Kr, cp(Kgr,) Kf, Kr,
Ky S Kj Kr, Kj Kr, cp(KRr,)

Since c¢p(T') is symmetric. we only need to compute the
upper right parts of it, i.e., all diagonal block matrices,
STKr,, and K}éi KRJ. . For each diagonal block matrix cp(KRr,),

we use the rewrite rule crossprod ((diag (colSums (Kl)))% Ri).
For STKRi and K}él KRj 5 (STKZ)RZ and RZ(K,LTK])RJ are
used, respectively.

3.6 Extension to M:N Joins

We now briefly explain how our framework can be ex-
tended to handle a general non-PK-FK equi-join (“M:N”
join) between S (or a projection of it that excludes Y)
and R. We discuss the case of multi-table M:N joins in
the appendix. Let the join attribute in S (resp. R) be
denoted Jg (resp. Jg). Attach attributes Ng and Ng to
the corresponding tables to encode row numbers, i.e., Ng
(resp. Ng) takes values from 1 to ng (resp. nr). We need
to capture which tuples (rows) of S and R get mapped to
which rows of T = S pdy—75, R. To do so, first compute
T = 7ng,u5(S) Xyg=7g TR, 7z (R) with non-deduplicating
projections (potentially, a relational cross-product of the

projected join columns). Then, create two indicator ma-
trices Is and Ir of dimensions |T’| x ns and |T'| X ng re-
spectively:

o[1, if it" row of T'.[Ng|Ng]) = j
s |1r)([i, 3]) = { 0, otherwise (s Ve])

Is and Iy are also very sparse: nnz(Is) = nnz(Ig) = |T'|.
Without loss of generality, assume each column of Ig and
Ir has at least one non-zero, i.e., each tuple of S and R
contributes to at least one tuple of T; otherwise, we can
remove those tuples a priori. The extended normalized ma-
trix is now (S, Is, Ir, R) and it is clear that T' = [IsS, Ir R].
The extensions to our implementation (Section 3.2) are now
straightforward. For brevity, we skip the modified rewrite
rules here and present them in the appendix.

3.7 Will Rewrites Always Be Faster?

Our rewrites avoid computational redundancy caused by
joins.” But if the joins are (too) selective and/or introduce
no redundancy, the rewrites could worsen performance be-
cause T' could become smaller than S and R put together.
This dichotomy is an instance of the classical problem of
cardinality estimation; it is orthogonal to our work and we
leave it to future work to integrate sophisticated cardinality
estimation ideas into LA systems. In this work, We drop
tuples of S and R that do not contribute to T, as explained
in Section 3.1 and 3.6. Since many ML algorithms are iter-
ative, this pre-processing time is relatively minor.?

But interestingly, in some extreme cases, even after such
pre-processing and even if the joins introduce some redun-
dancy, rewrites could worsen performance because the over-
heads caused by the extra LA operations could dominate the
computational redundancy saved. Empirically (Section 5.1),
we found such slow-downs to be almost always < 2x, but it
is still helpful to predict and avoid these. Using runtime
“cost models” for LA operators, say, based on BLAS [30] is
one option. However, this ties us too much to a specific LA
system back-end and violates genericity, while also imposing
the burden of system- and machine-specific cost calibrations
on the user (CPU clock frequency, cache sizes, etc.). Thus,
we consider a simpler system-agnostic approach that does
not need cost models for the operators; instead, we use a
simple heuristic decision rule that thresholds on the tuple
ratio and feature ratio (explained in Section 3.4) to predict
if the redundancy saved by the factorized version will be
substantial enough. The thresholds are set conservatively.
We explain more about why our approach is feasible and
what our decision rule looks like in Section 5.1.

4. APPLICATION TO ML ALGORITHMS

We now show how MORPHEUS automatically “factorizes”
a few popular ML algorithms. We pick a diverse and repre-
sentative set of ML algorithms: logistic regression for classi-
fication, least squares for regression, K-Means for clustering,
and Gaussian non-negative matrix factorization (GNMF) for
feature extraction. For each algorithm, we present the stan-
dard single-table version of their LA scripts, followed by the

"Our rewrites do not alter the outputs of the operators, as-
suming exact arithmetic, which is standard for rewrite op-
timizations in the LA systems literature [9,38]. We leave
a numerical analysis for finite-precision arithmetic to future
work. Empirically, we saw that ML accuracy was unaffected.
8We verified this empirically (see appendix).

“factorized” versions for a PK-FK join. Note that these can
be easily extended to multi-table joins and M:N joins using
rewrite rules from Sections 3.5 and 3.6, respectively. These
rewrites are shown for illustration only; MORPHEUS uses the
rewrite rules on-the-fly without code regeneration.

Logistic Regression for Classification. Algorithm 3
presents the standard algorithm using gradient descent (GD);
the automatically factorized version is in Algorithm 4. The
following rewrite rules are used: LMM for Tw and trans-
posed LMM (explained in the appendix) for 77 PT.

Algorithm 3: Logistic Regression (Standard)

Input: Regular matrix 7', Y, w, «
for i in 1: mazx_iter do

| w=w+ax (TT(Y/(1+exp(Tw)))
end

Algorithm 4: Logistic Regression (Factorized)

Input: Normalized matrix (S, K, R), Y, w, «
for ¢ in 1 : mazx_iter do
P=(Y/(1+exp(Sw[l:ds,]+
K(Rwlds +1:ds +dg,]))))T
w=w+ ax[PS,(PK)R]"
end

Least Squares Linear Regression. Algorithm 5 presents
the standard algorithm using the normal equations; Algo-
rithm 6 presents the factorized version. The following rewrite
rules are used: cross-product for crossprod(7’) and trans-
posed LMM for TTY. 1If d is too large, or if the cross-
product is singular, GD is used instead; this is similar to
Algorithm 3 and Algorithm 4 and for brevity sake, we skip
it here and present it in the appendix. A hybrid algorithm
that constructs the so-called “co-factor” matrix (using the
cross-product) and then uses GD was presented and fac-
torized in [35]. Their algorithm can also be automatically
factorized by MORPHEUS; we discuss this in more detail in
the appendix.

Algorithm 5: Linear Regression (Standard)

Input: Regular matrix 7', Y, w
w = ginv(crossprod(T))(T7Y)

Algorithm 6: Linear Regression (Factorized)

Input: Normalized matrix (S, K, R), Y, w

P = ginv(crossprod((S, K, R))) //Use Algo. 2
w= P([YTS,(YTK)R])"

K-Means Clustering. The factorized version is in Al-
gorithm 7; the standard version is presented in the ap-
pendix due to space constraints. The following rewrite rules
are used: element-wise exponentiation and aggregation for
rowSums(72)), LMM for TC, and transposed LMM for
TTA. Note that K-Means requires matrix-matrix multipli-
cations, not just matrix-vector multiplications. This demon-
strates a key benefit of the generality of our approach.

GNMF for Feature Extraction. Algorithm 8 presents
the factorized version; the standard version is presented in

the appendix due to space constraints. The following rewrite
rules are used: RMM and LMM for WTT and T'H respec-

tively. Similar to K-Means, GNMF also requires full matrix-
matrix multiplications.

Algorithm 7: K-Means Clustering (Factorized)

Input: Normalized matrix (S, K, R), # centroids k
//Initialize centroids matrix C' € R4**

//1axs represents an all 1 matrix in R**?; used for
replicating a vector row-wise or column-wise

//1. Pre-compute [*-norm of points for distances

Dr = (rowSums(S"2) + KrowSums(R"2))11xk
S»=2xS: Rs=2xR

for i in 1 : maz_iter do

//2. Compute pairwise squared distances; D"** has
points on rows and centroids/clusters on columns.
D = Dr + 1,x1colSums(C2) — (S2C + K(R2C))
//3. Assign each point to nearest centroid; A™** is
a boolean (0/1) assignment matrix

A = (D == (rowMin(D)11xx))

//4. Compute new centroids; denominator counts
number of points in the new clusters, while
numerator adds up assigned points per cluster
C=[ATS,(ATK)R|"/(1ax1colSums(A))

end

Algorithm 8: Gaussian NMF (Factorized)

Input: Normalized matrix (S, K, R), rank r
//Initialize W and H
for ¢ in 1 : max_iter do
P=[WT'S,(WTK)R]"
H = H * P/(Hcrossprod(W))
P = SH + K(RH)
W =W x P/(Wcrossprod(H))

end

Overall, note that the data-intensive computations on 7'
in these algorithms are all expressed as vectorized LA oper-
ations, as underscored in Section 3.1. Thus, our normalized
matrix abstraction and rewrite rules enable MORPHEUS to
automatically factorize all these algorithms in a unified way.

S. EXPERIMENTS

We compare the runtime performance of our rewrite rules
for key LA operators and the four automatically factor-
ized ML algorithms. Our goal is to evaluate the speed-ups
provided by MORPHEUS and understand how they vary for
different data dimensions. Both synthetic and real-world
datasets are used.

Datasets. We generate synthetic datasets for PK-FK and
M:N joins with a wide range of data dimensions as listed
in Table 4 and Table 5, respectively. For the PK-FK joins,
the quantities varied are the tuple ratio (ns/ngr) and feature
ratio (dr/ds), which as explained in [26], help quantify the
amount of redundancy introduced by a PK-FK join. The
other parameters are fixed as per Table 4. For M:N joins,
the number of tuples, number of features, and join attribute
domain size are varied and the other parameters fixed as per
Table 5. Seven real-world normalized datasets are adapted
from [28] for the ML algorithms. These datasets are repre-
sented as sparse feature matrices to handle nominal features.
Recall that MORPHEUS supports both dense and sparse ma-
trices. The dimensions and sparsity are listed in Table 6.
All real datasets have numeric target features in S, which

Table 4: Data dimension parameters for PK-FK joins.

Table 6: Dataset statistics for the real-world datasets.

‘ PK-FK Join H ns ‘ ds ‘ ngr ‘ dr ‘ ‘ Dataset H (ns,ds,nnz) ‘ q ‘ (nr,,dr,,nnz)
Tuple Ratio Varied | 20 | 10° | 40 or 80 11939,12013,107451
: 7 7 § - .

Feature Ratio || 2 x 10° or 10 20 | 10 Varied Expedia || 942142,27,5652852 | 2 37021,40242,555315
Table 5: Data dimension parameters for M:N joins. ny is 6040,9509,30200
the domain size (number of unique values) of Js/Jr. Movies 1000209,0,0 2 3706.3839.81532
[M:N Join || ns=nr| ds=dgr | nu |

Tuples Varied | 200 or 100 | 1000 Vel 215879.0.0) 11535,11706,380655
Features || 2 x 10° or 10° Varied | 1000 e o 43873,43900,307111
Domain Size 2 X 105 or 105 200 Varied 2340.2387.23400
Walmart || 421570,1,421570 | 2 15.53.135
we binarize for logistic regression and treat as regular fea- 4099,5019,39992
tures for K-Means and GNMF. The schemas and features LastFM 343747,0,0 2 50000.50233.250000
are listed in the appendix. ! ’
. . 27876,28022,83628
Experimental Setup. All experiments were run on a ma- Books 953120.0.0 9
chine with 20 Intel Xeon E5-2660 2.6 GHz cores, 160 GB ” 49972,53641,249860
RAM, and 3 TB disk with Ubuntu 14.04 LTS as the OS. 540,718,3240
Our code is implemented in R v3.2.3 and uses the inbuilt)
default BLAS package libblas3 v1.2.20110419-7 . Since all Flights 665438,20,55301 3 3167,6464,22169
real datasets fit in memory as R matrices, we use MORPHEUS 3170,6467,22190

on standard R for all experiments, except for the scalability
study with MORPHEUS on ORE.

5.1 Operator-level Results

We first study the effects of the rewrites on individual

LA operator runtimes using synthetic data. This will help
us understand the runtime results for the ML algorithms
later. The data preparation time is excluded for both the
materialized version (in short, M), viz., joining the tables,
and for the factorized version (in short, F'), viz., constructing
K (or Is and Ir) matrices. As mentioned before, this pre-
processing time was a minor fraction of the total runtimes in
almost all cases on the real data. Furthermore, the time to
construct the normalized matrix was almost always smaller
than the time to materialize the single table. We present
the pre-processing runtimes in the appendix.
PK-FK Join. Figure 3 shows the speed-ups of F over M
for four key LA operators. Other operators exhibit simi-
lar trends and for brevity sake, we present their results in
the appendix. Note that F is significantly faster than M
for a wide range of data dimensions for all operators. The
speed-ups increase with both the tuple ratio and feature
ratio, but grow faster with the latter because the amount
of redundancy in 7', and thus, in the ML computations,
increases faster with the feature ratio. Figure 3(b) shows
that the speed-ups are slightly lower for LMM compared
to scalar multiplication. This is because the rewrite rule
for LMM has slightly higher overhead. Interestingly, Fig-
ures 3(c,d) show that the speed-ups for cross-product and
pseudo-inverse grow much faster with the feature ratio. This
is because their runtimes are at least quadratic in d, while
the previous two operators have O(d) runtimes.

Heuristic Decision Rule. Figure 3 also shows that F
is indeed sometimes slower than M, as suggested earlier in
Section 3.7. In these cases, the tuple ratios and/or feature
ratios are very low. Since these regions exhibit an “L” shape,
it motivates us to consider a heuristic decision rule that is a
disjunctive predicate with two thresholds: if the tuple ratio
is < 7 or if the feature ratio is < p, we do not use F. We tune
T and p conservatively using the speed-up results from all of

our experiments on synthetic data; we set 7 =5 and p = 1.
This is conservative because it is unlikely to wrongly predict
that a slow-down will not occur when it does, but it might
wrongly predict that a slow-down will occur even though it
does not; but even in the latter cases, the speed-ups of F
over M were minor (< 50%). We leave more sophisticated
approaches to future work.

M:N Join. We now evaluate the rewritten operators for
an M:N join. We set (ns,ds) = (nr,dr) and vary ny. De-
fine the “join attribute uniqueness degree” as ny/ns. Note
that as ny becomes smaller, more tuples are repeated af-
ter the join. ny = 1 leads to the full cartesian product.
Figure 4 presents the speed-ups for two key operators that
arise in ML: LMM and cross-product. Other operators and
other parameters are discussed in the appendix. We see that
F is again significantly faster than M for a wide range of
ny values for both operators. In fact, when ny = 0.01,
the speed-ups are nearly two orders of magnitude, which is
comparable to the average number of times each tuple is re-
peated after the join. This confirms that our framework can
efficiently handle M:N joins as well.

5.2 ML Algorithm-level Results

We compare the materialized versions (M) of the ML al-
gorithms with the MORPHEUS-factorized versions (F) from
Section 4. Due to space constraints, we focus primarily on
a PK-FK join; M:N join is discussed in the appendix (the
takeaways are similar). We study the effects of the data
dimensions using synthetic data and then present the re-
sults on the real data. We then compare MORPHEUS against
prior ML algorithm-specific factorized ML tools. Finally, we
study the scalability of MORPHEUS on ORE.

5.2.1 Results on Synthetic Datasets

Logistic Regression. Figure 5(a) shows the runtimes for
different tuple ratios and feature ratios, while the appendix
presents a plot varying the number of iterations. It is clear
that F is significantly faster than M in most cases across a

(O speedup<t * 1 o o][O speedup<t * 1 o o O speedup<t * 1 o o | [o %]
4 00008 4t o uuuuuuuu(}()u(}()o()gg 4t o UD§ 4 §

oxoooao 1<} ocoooooooOoOOOO0D0 1<} oo

60k ooooan 1<} ooOooDOoOO0O0O0OODOOOOO0 1<} oo

o,/ 0O%ooooo 0.l oooooOoOoOOOOODOOOOO 0.0 ooo ° o

230 ooooao 23l 0 ooooooDoOOOOOOOOO 230 ooo 23 %o

© o ooooo o © o oopoooOoOoO0OO0OO0DOOOOOO © o ooo < a

x |0 oooooodooda x |o oooooOoOOOoO0O0O0O0 x |o oooo o o

°© opopoooooooooooao PR ooooo0OoOOoO0DOOoOO o, 00 oogoooogao © o

29 ocoooooDoOOOOOOO0O0 2ol o o oo 2ol oo oooooooooo o s

2o 0ooOoODODODOODDOODOOOO ERR ERER oooooooooooO0oo 3 oo

«© o o oooooOoOOoOOoOOOoOOOO0 © o © o0 ooooooooooao © ooo

° | o ocooooooooooooo o | o o | oo @ coooooo o

w1t o w1t o w1000 w9 oooooOoOoOoOOOO0O0O0OO0O000
o o 00000 0oooO0O0oO0O0O0O0OO0O0OO0DOOOOOO
o Q0 Q0000000000000 000Q000 ooo oooooooDooOOoOO
o 0O00000O0O0O0O0OOO0O0OOOOOOO 00000000 0O0O0O0O00O0O0O0OOO0OO N

[) [) 0 [V

o [a] 5 10 15 20 o [b]s 10 15 20 0 [c]s 10 15 20 o [d]s 10 15 20

Tuple Ratio Tuple Ratio Tuple Ratio Tuple Ratio

Figure 3: Speed-ups of factorized LA operators over the respective materialized versions on synthetic data for a PK-FK join.
(a) Scalar multiplication, (b) LMM, (c) Cross-product, and (d) Pseudo-inverse. Data dimensions are in Table 4. For the
cross-product, Algorithm 2 is used (a comparison with Algorithm 1 is presented in the appendix).

10° 10°
-o-F(nS=2e+05) -=-F(nS=2e+05)
M (nS=2+05) M (nS=2e+05)
OFPSE SO ~-F (nS=1e405)|| @ &b ~-F (nS=1e+05)
o VL Tl -9-M (nS=1e+05))i @ ' Y tea. --M (nS=1e+05)
£ e P ®
510° L 510" Tl
€ T—— € fiiiinimi e
— 5 T
10” b 10—
0? o’ 107 107"

Join I:llribute Uni(}ueness Degree Join Attribute Uniqueness Degree
Figure 4: Runtimes for an M:N join of materialized (M) and
factorized (F) versions of LA operators. (a) LMM and (b)
Cross-product. We fix ng (= ng) as shown on the plots, fix
ds = dr = 200, and vary ny/ng from 0.01 to 0.5.

Table 7: Runtimes (in seconds) on real data for the mate-
rialized approach (M) and speed-ups of MORPHEUS (Sp).
E, M, Y, W, L, B, and F correspond to the datasets Expe-
dia, Movies, Yelp, Walmart, LastFM, Books, and Flights,
respectively. Number of iterations is 20 for all ML algo-
rithms; number of centroids is 10 for K-Means, and number
of topics is 5 for GNMF.

Lin. Reg. Log. Reg. K-Means GNMF

M | Sp M | Sp M [Sp|| M [Sp

73.1 | 22.2 || 71.2 | 14.0 || 102.7 | 4.5 || 80.9 | 5.9

20.3 | 36.3 || 65.4 | 30.3 || 93.3 | 6.0 || 75.4 | 8.0

20.4 | 36.4 || 20.2 | 30.1 25.8 | 6.1 || 21.3 | 12

12.0 | 10.9 || 13.2 | 9.8 19.5 | 2.0 || 14.0 | 2.8

7.5 | 11.0 7T 8.7 13.8 | 23 || 94 | 34

3.2 5.2 3.1 3.9 7.8 1.3 4.1 | 14

| | o S| < 2l =

1.4 4.4 1.7 | 34 2.9 1.8 1.9 | 2.0

wide range of data dimensions. The runtime is dominated
by the LMM Tw and the transposed LMM TP (which be-
comes an RMM). Thus, the speed-up trends are similar to
that for those operators in Figure 3.

Linear Regression. The results are in Figure 5(b). Again,
F is significantly faster than M for a wide range of data
dimensions. The runtime is dominated by crossprod(T’) (see
Algorithms 5 and 6). Thus, the speed-up trends are similar
to that for crossprod in Figure 3. Gradient descent-based
linear regression is similar to logistic regression; thus, we
skip it for brevity and discuss it in the appendix.

K-Means and GNMF. The results are in Figure 5(c) and
Figure 5(d), respectively. The runtime trends for the num-
ber of iterations for both are similar to logistic regression.
Figure 5(c2) shows that K-Means runtime increases linearly
with the number of centroids (k). The speed-up of F over M
decreases slowly because unlike logistic regression, K-Means
has extra computations beyond factorized operators whose
contribution to the runtime increases as k increases. The
trends for GNMF are similar.

Table 8: Speed-ups of factorized logistic regression over
materialized for a PK-FK join. Fix (ns,ng,ds, Iters) =
(2 x 10°,10°, 20, 10); vary feature ratio (dr/ds).

[Feature Ratio [1 [2 [3 [4 |
ORION [20] 16]20]25] 28
MORPHEUS 20|37 |48 |57

5.2.2 Results on Real Datasets

Since all the real datasets have multi-table star schema
joins, this experiment also evaluates our multi-table join ex-
tension. Table 7 presents the results. We see that MOR-
PHEUS is significantly faster than the materialized approach
(M) in almost all cases for all datasets although the exact
speed-ups differ widely across datasets and ML algorithms.
The lowest speed-ups are mostly for GNMF and on Books,
e.g., 1.4x for GNMF on Books, and 1.3x for K-Means on
Books, primarily because the dataset has low feature ratios
(as shown in Table 6) and GNMF and K-Means have extra
computations after the factorized portions. On the other
extreme, Movies and Yelp see the highest speed-ups, e.g.,
over 30x on both datasets for both linear regression and
logistic regression. This is primarily because the runtimes
of these ML algorithms are dominated by matrix multipli-
cation operators, which are factorized by MORPHEUS, and
these datasets have high feature and/or tuple ratios. Over-
all, these results validate MORPHEUS not only generalizes
factorized ML, but also yields over an order of magnitude of
speed-ups on some real datasets for a few popular ML tasks.

5.2.3 Comparison with ML Algorithm-specific Tools

We would like to know if the generality of MORPHEUS is
at the cost of possible performance gains compared to prior
ML algorithm-specific tools. Since the tool from [35] is not
open sourced, we contacted the authors; after discussions,
we realized that their tool does not support the equivalent of
M, which makes an apples-to-apples comparison impossible.
Thus, we only compare with the ORION tool from [26]. Note
that ORION only supports dense features and PK-FK joins,
unlike MORPHEUS. We vary the feature ratio and report
the speed-ups in Table 8. MORPHEUS achieves comparable
or higher speed-ups (in fact, the runtimes were also lower
than ORION). This is primarily due to hashing overheads
in ORION. Overall, we see that MORPHEUS provides high
generality without sacrificing on possible performance gains.

5.2.4 Scalability with ORE

ORE executes LA operators over an ore.frame (physi-
cally, an RDBMS table) by pushing down computations to
the RDBMS [2]. However, since ORE does not expose the
underlying RDBMS multi-table abstractions (or the opti-

600 60! 150 150
~=F(FR=4) ~=F(TR=20) ~=F(FR=4) ~=F(TR=20)
& M (FR=4) - M (TR=20) & M (FR=4) & M (TR=20)
3 400 <F (FR=2) " 400)~<-F (TR=10) o 100/<F (FR=2) "o 100)=F (TR=10)
g |¢M(FR=2) o E -6-M (TR=10) g |-*M(FR=2) g -6-M (TR=10))
E | e e £ . E ol e e
2000 et e 52000 ot 50 et s ¢ 35 50 L4
& RSy - Y i g% LT e g% e
0 JA— —b g 4] g
0 0o 4 v
[al] 5 10 15 20 [a2]1 2 3 4 [b1]5 10 15 20 [b2l1 2 3 4
Tuple Ratio Feature Ratio Tuple Ratio Feature Ratio
2000 6000 1000 1500
= F(FR=4) = F(FR=4) T [=F(FR=4) = F(FR=4)
—_ M (FR=4) — M (FR=4) — M (FR=4) — M (FR=4)
@500 (FR=2) £ 4000/<-F (FR=2)) ~F (FR=2) 2 1000|<F (FR=2)
£ 1000l M (FR=2) I -6-M (FR=2) g . ole-M (FR=2) - B -o-M (FR=2)|--® .t 4
.= 1000 Ptide = = 00— e e = | L.t
| T e I t | T e T ol o e
..... 2000 500}
& 5000 o . *) BT e T ¢ E | g & ! &
.... S &] o o
P - % g
[c1] 5 10 15 20 B2 10 15 20 [a1] 5 10 15 20 [2]2 4 6 8 10
Number of Iterations Number of Centroids Number of Iterations Number of Topics

Figure 5: ML algorithms on synthetic data for a PK-FK join. Row 1: (a) Logistic Regression and (b) Linear Regression (using
normal equations). Row 2: (¢) K-Means and (d) GNMF. For (a), fix number of iterations to 20 (we vary this in the appendix.
All data dimensions are listed in Table 4. For (cl) and (d1), we vary the number of iterations while fixing the number of
centroids (resp. topics) for K-Means (resp. GNMF) to 10 (resp. 5). For (c2) and (d2), we set (ns,nr,ds) = (2 x 107,10°,20),
while dg is 40 (FR=2) and 80 (FR=4), and number of iterations is 20 for both algorithms.

Table 9: Per-iteration runtime (in minutes) of logistic re-
gression on ORE for a PK-FK join. Fix (ng,ngr,ds) =
(10%,5 x 10°,60) and vary dr as per feature ratio (FR).

[Feature Ratio [05 [1 [2 [4 |
Materialized 98.27 | 130.09 | 169.36 | 277.52
MORPHEUS 56.30 | 62.51 68.54 73.33

Speed-up 1.8x 2.1x 2.5x 3.8x

Table 10: Per-iteration runtime (in minutes) of logistic re-
gression on ORE for a M:N join. Fix (ns,ngr,ds,dr) =
(10%,10°,200, 200) and vary ny (join attribute domain size).

| Domain Size [[5 x 10° [10° [5x 10" [10" |
Materialized 1.98 13.04 | 119.54 | 346.93
MORPHEUS 0.96 1.00 1.02 1.16
Speed-up 2.1x 12.9x | 117.3x | 298.2x

mizer) to LA, by default, it needs the materialized single
table. In contrast, MORPHEUS on ORE realizes the benefits
of factorized ML on top of ORE (e.g., the ore.rowapply op-
erator) without requiring changes to ORE. We compare the
runtimes of MORPHEUS with the materialized version for lo-
gistic regression on larger-than-memory synthetic data. The
results are presented in Table 9 (PK-FK join) and Table 10
(M:N join). We see that MORPHEUS yields speed-ups at
scale for both PK-FK and M:N joins, validating our claim
that MORPHEUS can leverage the scalability of existing LA
systems. Since SystemML, SciDB, TensorFlow, and most
other LA systems do not expose normalized data abstrac-
tions either, we expect our framework to benefit them too.

6. RELATED WORK

Factorized ML. As Figure 1(a) illustrates, prior works on
factorized ML are either ML algorithm-specific or platform-
specific or both [25,26,32,34,35]. For instance, [32,35] only
aim at optimizing linear regression, while [34] is restricted to
in-memory datasets. Our work unifies and generalizes such
ideas to a wider variety of ML algorithms, as well as data
platforms. By factorizing LA operators, our work lets us
decouple the ML algorithm from the platform, which enables
us to leverage existing industrial-strength LA systems for
scalability and other orthogonal benefits. It also lets data

scientists automatically factorize any future ML algorithms
expressible in LA systems.

LA Systems. Several tools support LA workloads over
data systems [2,4,5,9,38]. There are also from-scratch
systems for LA such as SciDB [14] and TensorFlow [5],
both of which support tensor algebra, not just matrices.
None of these systems optimize LA over normalized data.
While they offer physical data independence for LA, our
work brings logical data independence to LA. Since MOR-
PHEUS offers closure, it could be integrated into any of these
LA systems; our prototype on ORE is an encouraging first
step in this direction. Related to our goals are two recent
optimizations in SystemML: compressed LA (CLA) [18] and
SPOOF [17]. CLA re-implements LA operators from scratch
over compressed matrix formats to reduce memory foot-
prints. MORPHEUS can be viewed as a schema-based form of
compression. Unlike CLA, since MORPHEUS offers closure, it
does not require re-implementing LA operators from scratch.
Furthermore, CLA does not target runtime speed-ups [18]
and thus, is complementary to MORPHEUS. SPOOF enables
“sum-product” optimizations for LA expressions to avoid
creating large intermediate matrices. While this is concep-
tually similar to avoiding join materialization, our work dif-
fers on both technical and architectural aspects. SPOOF
does not exploit schema information, which means it can-
not subsume factorized ML without an abstraction like our
normalized matrix. Architecturally, SPOOF requires an LA
compiler [17], while MORPHEUS also works in interpreted
LA environments such as R and ORE. Overall, MORPHEUS
is complementary to both CLA and SPOOF; it is interest-
ing future work to integrate these ideas. To handle evolv-
ing data, LINVIEW proposed incremental maintenance for
LA operators and expressions, albeit over single-table ma-
trices [31]. To the best of our knowledge, most standard
LA systems do not yet support incremental maintenance.
Our work is orthogonal to this issue and it is interesting fu-
ture work to integrate MORPHEUS and LINVIEW. Finally,
BLAS is a popular library of fast low-level implementations
of LA operations; it is the basic building block of many LA
systems [30] and is used by several follow-on projects [15],
including the widely used Linear Algebra PACKage (LA-

PACK) [6]. Our focus is orthogonal to such lower-level LA
implementation issues; since our framework offers closure, it
can be integrated into any of these LA packages.

Query Optimization. Factorized computations generalize
prior work on optimizing SQL aggregates over joins [12,37].
In particular, FDB (“factorized database”) is an in-memory
tool that factorizes and optimizes relational algebra (RA)
operations over joins [7]. In contrast, our focus is on LA op-
erations with the aim of automatically factorizing many ML
algorithms. This raises a grander question of whether LA
can be “subsumed” by RA and RDBMSs, which is a long
standing debate that is perhaps yet to be settled [14]. Dif-
ferent systems take different paths: [9,14] build from-scratch
systems without an RDBMS, while [2,38] aim to layer LA
on top of an RDBMS even if they do not fully exploit the
RDBMS optimizer for LA. Our work is orthogonal to this
debate; MORPHEUS is applicable to both kinds of systems,
easily integrates with existing LA sytems, provides closure
with respect to LA, and crucially, does not force ML users
to learn RA or SQL. Furthermore, our work shows the ben-
efits of database-style optimization ideas for LA operations
regardless of the system environment, while also introducing
new LA-specific optimizations with no known counterparts
in RA. Nevertheless, it is interesting future work to more
deeply integrate RA and LA, say, by creating a new repre-
sentation language as suggested in [29]. There is also a need
for benchmarks of LA systems in the spirit of [11]. While
these questions are beyond the scope of this paper, such ef-
forts could expose interesting new interactions between LA
operations and optimizations such as multi-query optimiza-
tion [27,36] and matrix chain product optimization [23] (im-
plemented in Matlab [1] and SystemML [9]) coupled with
join order optimization for normalized matrices.

7. CONCLUSION AND FUTURE WORK

Factorized ML techniques help improve ML performance
over normalized data. But they have hitherto been ad-hoc
and ML algorithm-specific, which causes a daunting develop-
ment overhead when applying such ideas to other ML algo-
rithms. Our work takes a major step towards mitigating this
overhead by leveraging linear algebra (LA) to represent ML
algorithms and factorizing LA. Our framework, MORPHEUS,
generically and automatically factorizes several popular ML
algorithms, provides significant performance gains, and can
leverage existing LA systems for scalability. As ML-based
analytics grows in importance, our work lays a foundation
for more research on integrating LA systems with RA oper-
ations, as well as a grand unification of LA and RA opera-
tions and systems. As for future work, we are working on
distributed versions of MORPHEUS on SystemML and Ten-
sorFlow. Another avenue is to include more complex LA
operations such as Cholesky decomposition and SVD.

8. REFERENCES

[1] Matlab mmtimes function. mathworks.com/matlabcentral/

fileexchange/27950-mmtimes--matrix-chain-product.

[2] Oracle R Enterprise.

[3] R. r-project.org.

[4] SparkR. spark.apache.org/R.

[5] M. Abadi et al. TensorFlow: A System for Large-Scale Machine

Learning. In OSDI, 2016.

[6] E. Anderson et al. LAPACK Users’ Guide. STAM, 1999.

[7] N. Bakibayev et al. FDB: A Query Engine for Factorised
Relational Databases. In VLDB, 2012.

[8] M. Boehm et al. Hybrid Parallelization Strategies for
Large-Scale Machine Learning in SystemML. In VLDB, 2014.

[9] M. Boehm et al. SystemML: Declarative Machine Learning on
Spark. In VLDB, 2016.

[10] Z. Cai et al. Simulation of Database-valued Markov Chains
Using SimSQL. In SIGMOD, 2013.

[11] Z. Cai et al. A Comparison of Platforms for Implementing and
Running Very Large Scale Machine Learning Algorithms. In
SIGMOD, 2014.

[12] S. Chaudhuri and K. Shim. Including Group-By in Query
Optimization. In VLDB, 1994.

[13] L. Chen et al. Towards Linear Algebra over Normalized Data.
https://arxiv.org/abs/1612.07448.

[14] P. Cudré-Mauroux et al. A demonstration of SciDB: A
science-oriented DBMS. PVLDB, 2(2):1534-1537, 2009.

[15] J. Dongarra et al. An Extended Set of FORTRAN Basic Linear
Algebra Subprograms. ACM Trans. Math. Softw., 14(1):1-17,
1988.

[16] L. Eldén. Matriz Methods in Data Mining and Pattern
Recognition. STAM, 2007.

[17] T. Elgamal et al. SPOOF: Sum-Product Optimization and
Operator Fusion for Large-Scale ML. In CIDR, 2017.

[18] A. Elgohary et al. Compressed Linear Algebra for Large-scale
Machine Learning. In VLDB, 2016.

[19] X. Feng, A. Kumar, B. Recht, and C. Ré. Towards a Unified
Architecture for in-RDBMS Analytics. In SIGMOD, 2012.

[20] G. H. Golub et al. Matriz Computations. JHU Press, 2013.

[21] J. Hellerstein et al. The MADIib Analytics Library or MAD
Skills, the SQL. In VLDB, 2012.

[22] R. A. Horn and C. R. Johnson. Matriz Analysis. Cambridge
University Press, New York, NY, USA, 2nd edition, 2012.

[23] T. C. Hu and M. T. Shing. Computation of Matrix Chain
Products. Part I. STAM J. Comput., 11(2):362-373, 1982.

[24] T. Kraska et al. MLbase: A Distributed Machine-learning
System. In CIDR, 2013.

[25] A. Kumar et al. Demonstration of Santoku: Optimizing
Machine Learning over Normalized Data. In VLDB, 2015.

[26] A. Kumar et al. Learning Generalized Linear Models Over
Normalized Data. In SIGMOD, 2015.

[27] A. Kumar et al. Model Selection Management Systems: The
Next Frontier of Advanced Analytics. ACM SIGMOD Rec.,
Dec. 2015.

[28] A. Kumar et al. To Join or Not to Join? Thinking Twice about
Joins before Feature Selection. In SIGMOD, 2016.

[29] A. Kunft et al. Bridging the Gap: Towards Optimization
Across Linear and Relational Algebra. In SIGMOD BeyondMR
Workshop, 2016.

[30] C. L. Lawson et al. Basic Linear Algebra Subprograms for
Fortran Usage. ACM Trans. Math. Softw., 5(3):308-323, 1979.

[31] M. Nikolic et al. LINVIEW: incremental view maintenance for
complex analytical queries. In SIGMOD, 2014.

[32] D. Olteanu and M. Schleich. F: Regression Models over
Factorized Views. PVLDB, 9(13):1573-1576, 2016.

[33] R. Ramakrishnan and J. Gehrke. Database Management
Systems. McGraw-Hill, Inc., 2003.

[34] S. Rendle. Scaling Factorization Machines to Relational Data.
In VLDB, 2013.

[35] M. Schleich et al. Learning Linear Regression Models over
Factorized Joins. In SIGMOD, 2016.

[36] T. K. Sellis. Multiple-Query Optimization. ACM TODS,
13(1):23-52, Mar. 1988.

[37] W. P. Yan and P.-A. Larson. Eager Aggregation and Lazy
Aggregation. In VLDB, 1995.

[38] Y. Zhang et al. I/O-Efficient Statistical Computing with RIOT.
In ICDE, 2010.

Acknowledgements

This work was supported in part by gifts from Google and
Microsoft, including a Google Faculty Research Award. We
thank Matthias Boehm, Johann-Christoph Freytag, and the
members of Wisconsin’s Database Group and UC San Diego’s
Database Lab for their feedback. We thank Dan Olteanu
and Maximilian Schleich for discussions on related work.

APPENDIX

A. OPERATOR REWRITES WITH TRANS-
POSE

When a normalized matrix is transposed, i.e., we com-
pute 77, the redundancy in T is preserved but its struc-
ture changes. Optimizing a composition of transpose and
other operators on a normalized matrix becomes a language
level optimization, which makes the integration more com-
plicated. For example, we might need to build a parser for
R. As mentioned in Section 3.2, this issue is circumvented
by adding a transpose flag to the normalized matrix data
structure. This flag is set when T is transposed and unset if
it is transposed again. We now present a new set of rewrite
rules that replace an operation on 77 with an operation on
T, which means the rewrite rules from Section 3.3 can be
reused.

Element-wise Scalar Operators. The output is a trans-
posed normalized matrix.

T"0z— (Tox)";z0T" = (z0T)7
F(IT) = (fF(D)T

Aggregation Operators. The output is a column vector,
row vector, or a scalar.

colSums(7T) —(rowSums(7"))"
rowSums(7T'T) — (colSums(T))" ; sum(7") — sum(7T)

LMM and RMM. The output is a regular matrix.

TTX — (XTT)T
XTT = (TXT)T

Cross-product. If the input is a transposed normalized
matrix, this is the Gram matrix, which is used in some ML
algorithms such as kernel-based SVMs. The output is a
regular matrix.

crossprod(T") — crossprod(ST) + Kcrossprod(R") KT

Matrix Inversion Operators. It suffices to use the rewrites
devised for crossprod, LMM, RMM, and transposes directly:

ginv(TT) — ginv(crossprod(TT))T
ginv(TT) — Tginv(crossprod(T))

B. DISCUSSION ABOUT MATRIX SOLVE

In practice, we have observed that the number of features
is typically much less than that of tuples. Thus, the ma-
terialized matrix T is often not square and therefore not
invertible. When T is indeed square, we have the following
theorem:

THEOREM B.1. Consider T, ¢x(dg+dp) = [Sngxdss Kngxn, X
Rnpxdg)- If T is invertable, then

1
TR< — +1 1
R< zp+1L (1)

where TR = :LTf and FR = ‘;—?.

PROOF. Invertibility of T implies that KR is full column
rank, which imples R is full column rank and thus dr < ng.
Noting that T is square, we have
1
FR

Moving ng to the left side, we obtain the result TR < F—IR +1
and thus complete the proof. []

1
ns:ds-l-dR:dR(FiR-‘rl)SnR(+1). (2)

The theorem above indicates that invertibility of 7" implies
low redundancy.

C. DOUBLE MATRIX MULTIPLICATION
(DMM)

This is our name for the operation of multiplying two nor-
malized matrices. While this scenario is rare in ML over a
two-table join, it arises over multi-table joins (more in Sec-
tion 3.5). Thus, we need to be able to rewrite this operation.
Let the left normalized matrix be denoted A = (Sa, Ka, Ra)
and the right, B = (SB,KB, RB). Let SBJ and 5372 denote
Spll:ds,,] and Sg[(ds, +1) :,] respectively. Similarly, let
Kp,1 and K2 denote Kp[l : ds,,] and Kp[(ds, +1) :,]
respectively. Note that da = np. The rewrite is as follows:

AB — [SaSB1 + Ka(RaSB,2),
(SaKB1)Re + KA((RaKB,2)RB)]

Transposed DMM. First, we consider both normalized
matrix inputs (A and B) being transposed. The output is a
regular matrix.

ATBT = (BA)T

Now, we consider a normalized matrix multiplied with a
transposed normalized matrix (and vice versa). These are
generalizations of the Gram Matrix and Gramian matrices.
We are given two normalized matrices A and B, similar
to the case of double matrix multiplication. We need to
rewrite ABT and AT B, both of which yield regular matrices
as outputs. For ABT, there are three cases: (1) ds, = dsjp,
(2) ds, < dsg, and (3) ds, > dsj. The rewrite for case (1)
is as follows:

ABT — SASE + KA(RARTB)K;

As for case (2),let Sp,1 = Sg[,1:ds,], SB,2 = SB[, ds,+
1: dsB}7 RA,l = RA[, 1: dsB —dsA]7 and RA’Q = RA[, dsB —
ds, +1:dr,]. Note that we have ds, +dr, = dsy +dry-
The rewrite for case (2) is as follows:

ABT — SAS{?,I —+ KA(RAJS}TBJ) =+ KA(RAQRTB)K;

Finally, case (3) can be recast as case (2) with a transpose:

ABT — (BAT)T

As for AT B, there is only one case but the rewrite is more
complex.

STSp
R} (K} Sp)

(SLK5)Rp

.
ATB = RVK\KpRp

An interesting thing to note in the above rewrite is that
it is not straightforward to determine what the order of
matrix multiplication should be for the fourth tile, viz.,
RV K KpRp. If we compute the product KpRp first, we

are effectively materializing B. Thus, we might need to com-
pute the product K} Kpg = P (say) first but this temporary
output matrix could become a dense nr, X nry matrix,
which could be quite large depending on these dimensions.
This requires a deeper understanding of the sparsity of P.
We provide the following results that bound nnz(P) from
both below and above.

THEOREM C.1. nnz(P) > max{nr,,nr;}

PROOF. Let A;., A.;, and A;; denote the i*" row, the
4t column, and the entry in the i*" row and j** column of
matrix A, respectively.

First, we prove by contradiction that nnz(P;.) > 1,Vi =
ltongr,, i.e., there is at least one non-zero element in the ith
row of P. Suppose on the contrary that 3i s.t nnz(P;.) = 0.
Note that nnz(K4.,;) > 0 implies that 3k s.t Ka,; = 1.
Thus, Vj =1 to nry, we have:

0=Fi;
T
=Ka ;KpB.;
= E Kaw,iKpy,j > Kag,:Kpi,;
wel

= KBy,

This implies that nnz(Kpy,.) = 0, which is a contradic-
tion. Thus, nnz(P;,.) > 1. Therefore, we have:

nR 4

nnz(P) = Z nnz(P;.) > ngr,
i=1

Similarly, it can be shown that nnz(P) > ngr,. Thus,
nnz(P) > max{nr,,nry}.

THEOREM C.2. nnz(P) < ng, (= nsy).

PROOF. Note that the sum of all elements in P is

sum(P) = 1£RA><1 -P. 1nanl
= 1,TLRAX1 -KZ-KB&TLRBM
= (KA : 1"RA><1)T : (KB : 1nRB xl)
= (g, x1)" + (Lng x1)
=ns,(=nsp).

Since the entries of P are all nonnegative integers, the
number of non-zeros in P is bounded by its sum, i.e., nnz(P) <
sum(P). Thus, nnz(P) < ng,(=nsy). O

Thus, even in the worst case, nnz(P) = ng,. Depending
on how large this is realtive to ng,nry, P will be sparse or
dense. It is an open question as to whether one can estimate
nnz(P) before computing the product. This is similar to
the classical problem of cardinality estimation. We leave it
to future work to apply ideas from that literature for this
problem. In our implementation, we use the simple strategy
of always computing P first. An alternative hybrid strategy
is to always materialize the fourth tile to avoid computing
P, but use the factorized multiplication for the second and
third tiles. It is worth noting that the degenerate case of
A = B makes this rewrite similar to the naive method for
the cross-product Algorithm 1.

Algorithm 9: Cross-product for M:N join (Naive)
P = R((Iz"Is)S)
Ts = (ST((Is7Is)S)
Tr = (RT((Ir"Ir)R)

Ts PT]

return |: P Ta

Algorithm 10: Cross-product for M:N join (Efficient)
P =R"((Ir"Is)S)
Ts = crossprod (diag (colSums (Is))% S)

Tr = crossprod (diag (colSums (IR))% R)

Ts PT
P Tgr

return [

D. EXTENSION TO M:N JOINS

This section shows the extension of our framework to the
rewrite rules for general M:N joins.

Element-wise Scalar Operators.

Tox— (Is,S@x,Ir, RO x)
z@T — (Is,x@S,Ir,x @ R) ; f(T)— (Is, f(S),Ir, f(R))
Aggregation Operators.
rowSums(T") —IsrowSums(S) + IrrowSums(R)
colSums(T") —[colSums(Is)S, colSums(Ir)R]
sum(7") —colSums(Is)rowSums(S) 4 colSums(Ig)rowSums(R)

LMM and RMM.

TX —)Is(SX[l : ds,]) + IR(RX[ds +1:ds+ dR,D
XT —[(XIs)S, (XIr)R]
Cross-product. The cross-product for M:N join using the
naive method and the efficient method is presented in Algo-

rithm 9 and Algorithm 10, respectively. On the other hand,
the rewrite rule for the cross-product of T'T is as follows:

crossprod (1) —Iscrossprod(ST)IsT + Ircrossprod(RT)IgT

Observe that if the join is PK-FK, we have I's = I (iden-
tity matrix of size ng X ng) and the above rules implicitly
become equivalent to their counterparts from Section 3.3.

E. EXTRA REWRITE RULES FOR MULTI-
TABLE M:N JOINS
This section shows the rewrite rules for multi-table M:N
joins. Consider the following joins:
T=RixRyx--- xRy, (3)
where the join conditions are
R;.JC; = R;;.0JC;,,5=1,2,--+ ,q. (4)

In other words, each table R; is joined with another table
RJJ- on R;’s column JC; and Rjj ’s column OJCJ]-. Attach
attributes NR; to table R; to encode row numbers, i.e., NR;
takes values from 1 to the number of rows in Rj, ng;. Let
Jrj = {R;.C|C = JCjor3k, OJC,, = C} be all the join

attributes involved in the multi-table join in table R;. Now
compute

T = 7NRy 75, (R1) DX TNRy, 15, (R2)

DJ -] TNRg,JR, (Rq)

()

where the join conditions are still

R.i'JCj :RJj'OJCJj7j:1727“') q- (6)
Then the indicator matrices Ir;,j = 1,2,--- , ¢ can be com-
puted by
o 1, if " row of T'.[NRj]) = k
[rs)([, K1) = { 0, otherwise
Note that Ig; is also very sparse since nnz(Ig;) == |T"|.

W.L.O.G, assume each column of Ir; has at least one non-
zero, i.e., each tuple of Ir; contributes to at least one tuple
of T. otherwise, we can remove those tuples a priori. Note

that the extended normalized matrix is (Ir1,IRr2, -+, IRrq,
Ri,R2,--- ,Ry), and T = [Ir1 R1, IraR2, -+, IrqRq].
Element-wise Scalar Operators.
Tozxz— (IR17---7IRq,R1 @x,...,Rq®z)
2T — (@ 8S,Ir1,..., IR,z @ R1,...,2 @ Ry),
f(T) — (f(S)ijly ey IR(p f(R1)7 ceey f(RfI))
Aggregation Operators.
q
rowSums(T") — Z Ir;rowSums(R;)
i=1
colSums(T") — [colSums(Ir1)R1, - -+, colSums(Iry)Rq]

a
sum(7T") — ZcolSums(IRi)rOWSums(Ri)

i=1

LMM and RMM. Let the dimensions of R; be nr; X dri
and d = 32 | dr;. Define dj = Y'_, dpi, for i = 1 to g,
and dy = 0. Given X of size d x m (m > 1), the rewrite
rules are as follows.

q
TX = Y Ini(RiX[di_y +1:d;,])
i=1

XT — [(XIRl)Rh. cay (XIRq)Rq]

Cross-product. For the sake of readability, let C; and
cp(X) denote Ir, R; and crossprod(X), respectively. Using
the block matrix multiplication, cp(T) = T7T = [Ig, Ru,
ooy I Rg|"[L Ry, ..., Ir, Rq] can be rewritten as follows.

Cp(cl) ClT Cz s CIT Cq
ecp(Ch) CfC - CO7C

CICG ep(Ca) - GIC,

ep(Cy)

Since c¢p(T') is symmetric. we only need to compute the
upper right parts of it, i.e., all diagonal block matrices cp(C;)
and C] ;. For each diagonal block matrix cp(C;), we use

CIC, CIC

1
the rewrite rule crossprod ((diag (colSums (Ir,)))? Ri). For
CICj, RT(C] Cj)R; is used.

Algorithm 11: Linear Regression/GD (Standard)

Input: Regular matrix T, Y, w, «
for ¢ in 1 : max_iter do

| w=w—ax(T"(Tw-Y))
end

Algorithm 12: Linear Regression/GD (Factorized)

Input: Normalized matrix (S, K, R), Y, w, a.

for i in 1 : maz_iter do
P = (Sw[l : ds,]+ K(Rw[ds +1:ds+ dR,]) -Y)T
w=w-—ax[PS,(PK)R]

end

On the other hand, the rewrite rule for the cross-product
of T is as follows:

q
crossprod(TT) — Z Ir;crossprod(R])IR].

i=1

F. ASYMPTOTIC PERFORMANCE

The asymptotic performance of all operators for a PK-FK
join is presented in Table 11.

G. LINEAR REGRESSION WITH GD

The standard single-table version is presented in Algo-
rithm 11, while the automatically factorized version is pre-
sented in Algorithm 12.

H. LINEAR REGRESSION IN SCHLEICH
ET AL. FROM SIGMOD’16

The standard single-table version of their hybrid algo-
rithm for linear regression is presented in Algorithm 13,
while the automatically factorized version is presented in
Algorithm 14.

I. STANDARD VERSIONS OF K-MEANS AND

GNMF

Algorithm 15 presents the standard single-table version
of K-Means clustering expressed in linear algebra. Algo-
rithm 16 presents the standard single-table version of GNMF.

J. SCHEMAS OF REAL DATASETS

The datasets are adapted from [28]. Essentially, we con-
vereted categorial features into large sparse matrices, which
means the feature matrices are sparse. Note that the foreign
key is a feature too and it is folded into the attribute table
feature matrix (R). The following is a description of the
datasets and their schemas from [28].

Walmart. Predict department-wise sales by joining data
about past sales with data about stores and weather/e-
conomic indicators. S is Sales (SalesLevel, IndicatorID,
StoreID, Dept), while Y is SalesLevel. R; is Indicators
(IndicatorID, TempAvg, TempStdev, CPIAvg, CPIStdev,
FuelPriceAvg, FuelPriceStdev, UnempRateAvg, UnempRat-
eStdev, IsHoliday). Rg is Stores (StorelD, Type, Size).
Both foreign keys (StoreID and IndicatorID) have closed
domains with respect to the prediction task.

Operator Standard

Factorized lim7r— 400 Sp | impr—s+00 Sp

Scalar Function

Agaregation ns(ds + dr) nsds + nrdr
14+ FR
LMM dxns(ds + dr) dx(nsds + nrdr) TR
RMM nxns(ds +dR) nx(nsds +anR)
Cross-Product %(ds +dr)*ns %dzsns + %d?{nR + dsdrnnr (1+ FR)?

27(ds + dR)S =+ %d%ns

2
Pseudo Inverse (n > d) | Tns(ds+dr)*>+20(ds+dr)* —%d?{m{ +dsdrng 14 g;gf;
+(d§ + C{R)Q(”Sds 1+ 721RdR)
27TnS + snsds + snrdr+ TR?
< 2 3 S 2ts 2R
Pseudo Inverse (n < d) ns(ds + dr) + 20nyg +(ns)(nsds + nadr) s

Table 11: Asympototic Performance of the rewrite rules. Sp is the standard computations divided by the factorized compu-
tations. TR = 25 and FR = fl—g. For ginv, the economic SVD is used internally using the standard R-SVD algorithm [20].

nR

Algorithm 13: Linear Regression; Schleich et al. [35]

Algorithm 15: K-Means Clustering (Standard)

Input: Regular matrix 7', Y, w.

Y T
[Crossprod(T):| //Co-factor
for 7 in 1 : max_iter do

w=w—ax(CT [;ﬂ) //AdaCrad

end

Algorithm 14: Linear Regression (Schleich et al. [35]);
Factorized

Input: Normalized matrix (S, K, R), Y, w.

Py =[YTS, (YTK)R]

P, = crossprod((S, K, R)) //Use Algo. 2
C= [ij //Co-factor
for i in 1: max_iter do

w=w—ax(CT {Zul}) //AdaGrad
end

Ezxpedia. Predict if a hotel’s rank by joining data about
past search listings with data about hotels and search events.
S is Listings (Position, HotelID, SearchID, Scorel, Score2,
LogHistoricalPrice, PriceUSD, PromoFlag, OrigDestDistance).
Y is Position. R; is Hotels (HotelID, Country, Stars, Re-
viewScore, BookingUSDAvg, BookingUSDStdev, Booking-
Count, BrandBool, ClickCount). Ra is Searches (SearchID,

Input: Regular matrix 7', # centroids k

//Initialize centroids matrix Cax i

//1axs represents an all 1 matrix in R**?; used for
replicating a vector row-wise or column-wise

//1. Pre-compute [*-norm of points for distances

Dy = rowSums(772)11xx

T, =2xT

for ¢ in 1 : max_iter do

//2. Compute pairwise squared distances; D™ * has
points on rows and centroids/clusters on columns.
D = Dy — T>C + 1, x1colSums(C"2)

//3. Assign each point to nearest centroid; A"** is
a boolean (0/1) assignment matrix

A = (D == (rowMin(D)11xx))

//4. Compute new centroids; denominator counts
number of points in the new clusters, while
numerator adds up assigned points per cluster

C = (TTA)/(LaxicolSums(A))

end

Algorithm 16: Gaussian NMF (Standard)

Input: Regular matrix 7', rank r
//Initialize W and H
for i in 1 : maz_iter do
H = H * (T™W)/(Hcrossprod(WW))
W =W « (TH)/(Wcrossprod(H))
end

Year, Month, WeekOfYear, TimeOfDay, VisitorCountry, SearchDest,

LengthOfStay, ChildrenCount, AdultsCount, RoomCount,

Yelp. Predict business ratings by joining data about past

SiteID, BookingWindow, SatNightBool, RandomBool). SearchID ratings with data about users and businesses. S is Rat-

does not have a closed domain and is not used as a feature.

Flights. Predict if a route is codeshared by joining data
about routes with data about airlines, source, and destina-
tion airports. S is Routes (CodeShare, AirlineID, SrcAir-
portID, DestAirportID, Equipmentl, ..., Equipment20). Y
is CodeShare. R; is Airlines (AirlineID, AirCountry, Ac-
tive, NameWords, NameHasAir, NameHasAirlines). Ra is
SrcAirports (SrcAirportID, SrcCity, SrcCountry, SrcDST,
SrcTimeZone, SrcLongitude, SrcLatitude). Rs is DestAir-
ports (DestAirportID, DestCity, DestCountry, DestTime-
Zone, DestDST, DestLongitude, DestLatitude).

ings (Stars, UserID, BusinessID). Y is Stars. R; is Busi-
nesses (BusinessID, BusinessStars, BusinessReviewCount,
Latitude, Longitude, City, State, WeekdayCheckinsl, ...,
WeekdayCheckins5, WeekendCheckinsl, ..., WeekendCheck-
insh, Categoryl, ... Categoryl5, IsOpen). Rao is Users
(UserID, Gender, UserStars, UserReviewCount, VotesUse-
ful, VotesFunny, VotesCool).

MowvieLens1M . Predict movie ratings by joining data about
past ratings with data about users and movies. S is Rat-
ings (Stars, UserID, MovieID). Y is Stars. R4 is Movies
(MovieID, NameWords, NameHasParentheses, Year, Genrel,

..., Genrel8). Ry is Users (UserID, Gender, Age, Zipcode,
Occupation).

LastFM . Predict music play counts by joining data about
past play levels with data about users and artists. S is Plays
(PlayLevel, UserID, ArtistID), Y is PlayLevel, Ry is Artists
(ArtistID, Listens, Scrobbles, Genrel, ..., Genreb), and Ro
is Users (UserID, Gender, Age, Country, JoinYear).

BookCrossing. Predict book ratings by joining data about
past ratings with data about readers and books. S is Ratings
(Stars, UserID, BookID). Y is Stars. R; is Users (UserlD,
Age, Country). Rz is Books (BookID, Year, Publisher,
NumTitleWords, NumAuthorWords).

K. DATA PREPARATION

The data preparation time for all real datasets is presented
in Table 12. Since many ML algorithms are iterative, the
one-time cost of constructing the normalized matrix is typ-
ically a small fraction of the overall runtime. The data in
Table 12 verified the statement above, as for most of the
case, the data preparation time accounted for at most 5%
of the total runtime of Logistic Regression.

Data. Prep.
M F M F M F
1.85 | 0.15 | 71.2 | 5.09 | 0.026 | 0.029
1.63 | 0.13 | 65.4 | 2.16 | 0.025 | 0.060
0.49 | 0.03 | 20.2 | 0.67 | 0.024 | 0.045
0.51 | 0.05 | 13.2 | 1.35 | 0.039 | 0.037
0.32 | 0.05 | 7.7 | 0.89 | 0.042 | 0.056
0.28 | 0.03 | 3.1 | 0.79 | 0.090 | 0.038

0.16 | 0.01 1.7 | 0.50 | 0.094 | 0.020

Table 12: Runtimes (in seconds) for data preparation. Data.
Prep. is the data preparation time. Log. Reg. is the runtime
of logsitic regresion with 20 iterations. Ratio is preparation
time divided by the logistic regression runtime.

Log. Reg. Ratio

M w| eS| <] 2l

L. MORE RUNTIME PLOTS

The runtime and speed-up plots on synthetic data for
scalar addition, RMM, column summation, and (full) sum-
mation are presented in Figure 6. The runtime plots on syn-
thetic data for scalar multiplication, LMM, cross-product,
and row summation are presented in Figure 7. The runtime
plot on synthetic data for logistic regression for varying num-
ber of iterations is presented in Figure 9. The runtime plots
on synthetic data for linear regression with gradient descent
are presented in Figure 8. The runtime plots on synthetic
data for varying tuple and feature ratios for K-Means and
GNMF are presented in Figure 10.

M. PLOTS FOR M:N JOIN

We vary the number of tuples, number of features, and
join attribute uniqueness fraction (ny/ng) for various key

LA operators. The results are presented in Figures 11 and 12.

N. ORACLE R ENTERPRISE IMPLEMEN-
TATION NOTE

Our system for Oracle R Enterprise (ORE) is built on
top of ore.rowapply, a function in ORE to deal with larger-
than-memory data. It partitions a large table(matrix) and
performs operations specified by users to each chunk of the
table, and then returns the output. This function is used to
build LA operators (such matrix multiplications) for larger-
than-memory data. Since our rewrite rules provide closure
with respect to LA operators, our rewrite rules can be di-
rectly applied as long as the LA operators are available.

3

3

3

3

2.

Tuple Ratio

000000000KKFEHFO
00000000 gHR0
0000000044440
0000000%FEEEFEEEO
0000000%ky3k0
000000000RKKEHFO
0000000%HERHHHH0
00000004EHHHHHO0
0000000 XFEHKHEHOO
00000004k g3 R0
00000004EHHHHHO0
O0CO000000REHHKHLHKO
0000000%xdky3k0
00000XORXFXHHRHKO
0000 0fRR s O
0000004 HHHHHHHHO
OO0 XEKRKKKEEXKKRKKKO
Fege xR HHEHHHFF O
FHHHAHHHHKHHHOHO
0000000000000000

20
3

15

10
Tuple Ratio

hat

(o)

0000 033G3G3GEEGEa

0 00 0 H$KHHHHHK
0 00 HHHHHHHHKHHHO
O3 HHHHHHHHKHHHO
HOKHHHKKHHHKKHHO

F3HHIEG K H 0 1@

PRI H K
HEKHHHKKHHHXH KOO
HHHHHKHHHHHHHO
HHKHHHKKHHHXH KOO
FHHKHHFHKHHH KL KOO
FHFHKHFHFHKHHHKK KOO
HHKHHHKKHHHXH KOO
FHIFHFHFHOH #0000
HHHHHXOO0000000000

0000000000000000- 10

0000000000000000

0000000000000000 |]

3

10
Tuple Ratio

0000000003333 0
0000000033040
00000000
0000000043 HHHH0
00000000XHHHHHHO
00000004 H3HH 30
00000004 HHHHHO0
0000000 HHHHHHHHO
00000D0HHHHHHHHO
000 00FKHHHHHHHHO
000 0§ HHHHHHHHO
0 OFKHHFHHHHKKHHKO
HHKHHHKHHHKKHHOO
FHEHHHFHHFHHH KOO
FHHHHHHHHHHKXHHOO
HHEHHHKHHH KKK OO0
HHFHHHHHHO000000
+#O0##00000#000000

< @™ o - o

oljey ainjead

6

Feature Ratio

Tuple Ratio

FOOOOOOO D 00 O KK ©000000000HFFA]
<OO00OOn 00D O 000000000
R S [T [-PRese ©00000000 0433k
|| OOOOOOCnmOOD Kk || ooooBBODB O
<0000 D OO O <£<00000004 44
FOO0000On 00O Ok kHH 2 ©0o00000004%xkk 2
©0O0OOOON 0 000 O 000000000
©00000000000¥ KN | 9 ©oon0000004 3K
Y| ooooocnnooookkkk | V|| ooonooooookiRRk
<SO00OOD DO OO @ <©o0000000 04
000000000000k {28 ©000000000433Gaa 8
SooooonnnOnOKKKK | <©000000000%EEHFK
<£<<0000000004x 344 [0000000004 dedede
<000 00000000 44 00000000043 drdedc
00000000003y 00000000y
r0000000000043 4 0000000444044
0000000033 HEEHEK 00000335 EHHFK
[=1=1-R8 08 9.0 8 0.8 8.0 00 KO
FHHFHEEAEEE 33RO
#O##0#KO00000000 ©000000000000000
< ™ o - [=) < o« N - [=)
oley ainjeagy oljey ainjeay
T T @ g 5
. v f
. 2 { M
s 0 s ' 0
e © ° A]
® ® ¥
\ v "
B © @ ¢ ¢ o
. - 1
® ® A
\ o s 0
s @ < H
® N Y A N
-4) <
[! MA
= > o
N3 o v
3 ® ¥
§ wn
i gt R 1 :
== - ~8858% v b -
ogo o L]
PR 4% : v
Ny Il [a -~
h [- [+ oy o = i
FEE =T ' n
[— = b ¢ ed o
g “ [rg =g O 1
r=Suw=) N n 0 12
v v 5
P Ee 2 bt AL @G
© ® © ¥ a° o
© 1 <) - -
(s) swpuny (s) swnuny
o @
& <
o * ° >
N \ v
° *) 8
. "
o ® L
8 ¢ o <
S e ek ik
® % ® A3
DRI 3 o LR ¢
R = o &
LIS 4 o ® % °
v 122 &-e 1=
LR 3 S o,
LER ¢ F °
0 % — 8
== s
TN o & T3 9 a§
S a5 o b e M
e d o o {10 ek
[T T Q% — =W
L o= 1 =] IsSus
C=uw = ® ' v s
; v .
Pids p bote ,
L L N © © © ¥ «
v < ® o - - -
(s) swnuny (s) swnuny

oney ainjeaq

0000000000000000 0000000000000000
0000000000000000 0000000000000000
¥ ® « = o° ¥ ® &« = o

oney ainjeaq

3.5

3

2.5

2
Feature Ratio

1.5

[b3]1

0.5

2.5,

20

15

10
Tuple Ratio

la3] 5

L4
0 |
3
e 4
[
e]
~S 50
[=]
HHHUHUHU
FMFM
bote I
| ! L L L
n < [} N - o
(s) swnuny
QT T
*
<
. I
° 4
® ¥
o @ 1
o <
L] 4
] L 3
o @
e 1
v oe
SN ¢
_ Q<
PN L]
igda b o
Ciet ek
FMFM L]
Fits :
n < [} -

s
[}
£
=
5
c 2r

< T T < Q@ T <
q > 19 _ >]
) R
b 1o RO o
) *W 0.2 A bt
A ® Bk * 3]
Y ' 2 '\
K ' 192 “ 1
® ww %)
% : Jnt- o : i
5506 . - 8528 4\ b
~S5 ~
SR R S9T T ° ™
drex - drrx
FEEE Y H AT b4
CEy= Tl § |F=Ees= b i
bode Pyl it _
~) -) =] 0 ~ n -) =]
- o N - o
(s) swnuny (s) awnuny
o
¥ < « g < T
]} LK 8 *
® < 6] <
L3 %9 o <
Q wo ® 2
Q B0 2 Q 2
®) %
o) ° R
g = IR
@ o Q v_V
22 v
e, > o
= ®
)
=T aq =T aq °
Tadd o (igdd .
Eloyw B Fopuw .
~ ~ < ~ ~
F,MFM F,MFM
bodd bodd g
8§ 1 - 3 8§ 1 = 1o
N - o o - o
(s) awnuny (s) awnuny

5

1

10
Tuple Ratio

3.5

3

2.5

2
Feature Ratio

1.5

15 20

10

Tuple Ratio
Figure 6: Runtimes for the same setting as Figure 3. The rows are: (1) Scalar addition, (2) RMM, (3) Row summation (4)

Column summation, and (5) Summation. The columns are: (a) Vary tuple ratio (TR) ns/nr, (b) Vary feature ratio (FR)

dr/ds, and (c) Speed-ups of F over M.

6 6— : .
-—F(FR=4) ——F(TR=20)
5/-=-M (FR=4) ! 1 5{-=-M (TR=20)
__ |#F(FR=2) . ||"~"F(TR=10)
@ 4|-¢-M (FR=2) £4)-5-M (TR=10)
(]]
Es ¢ E 3
= _o-® = 4
c &-° c -
g2 e g2 PRl
-6 o9
‘_.-0 3 _a-" S
1 e S i G i S B T D
- ¢ o
al]5 1 15 20 o5bi]1t 15 2 25 3 35 4
] Tuple Ratio Feature Ratio
8 : . . 8
——F(FR=4) ——F(TR=20)
M (FR=4) M (TR=20)
__6|+F (FR=2) i 1 _ 6] —=—F (TR=10)
© |-¢-M(FR=2) @ ||-¢-M (TR=10)
(] £]
E4 I 24 £ 4 o4
g P 5 e
T2 9—0‘9'&& b T §- s
L JUTES Shait 00—
: ; : 0
la2] 5 10 15 20 o5t 15 2 25 3 35 4
. Tuple Ratio . Feature Ratio
150 150
—F(FR=4) —-F(TR=20)
—— =2 —_ =10
©100/-6-M (FR=2) 1 @ 100-6-M (TR=10)
£ £
g £ o"!
50r p e
= -0-9-6'9"" € % PO i T
pTL 84 o
3|5 10 20 0531 15 2 25 3 35 4
Tuple Ratio Feature Ratio
1200 1200
—~~F(FR=4) —~F(TR=20)
1000|-=-M (FR=4) k 1000 - = -M (TR=20)|
= ——F (FR=2) _ ——F (TR=10)
@ 800)--M (FR=2) i @ 800-9-M (TR=10)
(] Q
E 600 E 600 1
E 5 e
[© 400 e
o
200 e
o-g-2-2 2 -?-t

T o5p41 15 2 25 3 35 4
Feature Ratio

Figure 7: Runtimes for the same setting as Figure 3. The rows are: (1) Scalar multiplication, (2) LMM, (3) Cross-product,
and (4) Pseudo-inverse. The columns are: (a) Vary tuple ratio (TR) ns/ng , and (b) Vary feature ratio (FR) dr/ds.

600 : T T 600 600 —————
-=-F(FR=4) -=-F(TR=20) --F(FR=4)

a M (FR=4) m M (TR=20) 5 M (FR=4)
= 400|%-F (FR=2) 2 400/ <-F (TR=10) < 400|~F (FR=2)
g -6-M (FR=2) . £ -6-M (TR=10) g -6-M (FR=2) .
S 200 et et s PRI 4 Epg e
N T S & 3 S - 2 o e Y S ¢ 3

-___r- P _.--v 4 o -

4 0 A
[a]5 10_ 15 20 (b1 2 3 4 5 10 15 20
Tuple Ratio Feature Ratio Number of Iterations

Figure 8: Linear Regression with gradient descent. (a) Vary TR. (b) Vary FR. (c) Vary the number of iterations. The data
dimensions for (a) and (c) are listed in Table 4 and the number of iterations is 20. For (c), we fix ng = 2 x 107, ng = 105,
ds = 20, and dr = 40 (FR=2) and 80 (FR=4).

600
-=-F(FR=4)
- M (FR=4)
3 400 --F (FR=2)
-0 =
E MER2) s
Sa200f T T
£ | e & 3
5 10 15 20
Number of Iterations

Figure 9: Logistic Regression for varying number of itera-

tions. We set (ng,nr,ds) = (2 x 107, 106,20) and dgr is 40
(FR=2) or 80 (FR=4).

2000) 2000
~<F(FR=4) --F(TR=20)
0O M (FR=4) a1 M (TR=20)
L1900 F (FR=2) L1500/, £ (tR=10)
E 1000l ¢ M(FR=2) .7 ... £ 10004 M (TR=10)
E | e E g e
&€ 5000 5. & € 5003 9=
N 5 10 15 20 SIE 2 3)
Tuple Ratio Feature Ratio

Figure 10: Runtimes on synthetic data. (1) K-Means and (2) GNMF. (a) Vary the tuple ratio and (b) Vary the feature ratio.
The number of iterations is 20, k = 10 (for K-Means), and the number of topics is 5 (for GNMF). The data dimensions are

listed in Table 4.

10
-=-F(dS=200)
—_ M (dS=200) | ; @-2oimaminmerns 2
& 10 F (ds=100) .
o ¥ 4-9-M (dS=100) 2
E ;o
T, .2 £
510 =
[E
-4
10 0.5 1 1.5 2
Number of Tuples X 105
10°
-=F(dS=200)
—_ M (dS=200)} ;2 @2 -eammmmmmmmmmens b
& 100 4 ~F (ds=100) Py
o 'V 4-6-M (dS=100) 2
£ N
g £
(= 2| =
510 =
* 2
-4
1
0 05 1 1.5 2
Number of Tuples . 105
10°
-=-F(dS=200)
— M (dS=200)
G ~-F (dS=100) |- 11 g1 caermrrmmmmee " Py -
@ 4 -6=M (dS=100)|" 2
E10 00" | 2
c ¢ £
=1
o =1
o
10 0.5 1 1.5 2
Number of Tuples . 105
10'
-=-F(dS=200) e
- M (dS=200) """ o . oanesmm=m" "
& 10° | F(ds=100) -
o -6-M (dS=100) Y
£ ¢ ,———3 ¢
‘510‘1<> =
i 2
10 05 1 1.5 2
Number of Tuples 105
10'
-=-F(dS=200) TR
—_ M (dS=200) "~ o ...-nv=2""""""
o0 | F ds=100) - .
o -9+M (dS=100) Y
£ -
g p £
S10” =]
=1
i &

10

0.5N

Figure 11: Operator-level results using synthetic data for M:N join. Row 1: Scalar Addition, Row 2: Scalar Multiplication,

umber of Tuple's

1 1.5

2
5

1000 1000
-F(FR=4) -F(TR=20)
- M (FR=4) = M (TR=20)
by ~-F (FR=2) o --F (TR=10)
E 500l "M (FR=2) .-® E 5ooll&M(TR=10)
s 00— o . = Y
S | T e < [addai
3 | T e b 3 — %~ =
Y R s p * 4l ¢ -
5 10 1 20 O 2 3 4
Tuple Ratio Feature Ratio

10°
-=-F(nS=2e+05)
M (nS=2e+05)
==F (nNS=1€405) |..cuu==~ O r'S
-©-M (nS=1e+05)
10°
: ﬁ_—:j:
>
¢
1 O'2<
50 100 150 200
. Number of Features
10°
-=F(nS=2e+05)
M (nS=2e+05) e
~=F (NS=1e+05) |- -===="" 9t
q4-9-M (nS=1e+05)
10°

) ?5::3
_A

50 100 150 200
. Number of Features
10°
-=-F(nS=2e+05)
M (nS=2e+05)
1 |=6~F (nS=1e+05)
10" |-0-M (nS=1e+05)| ..o« R e ¢
------ v
="
0
10 d o o 3,\
9~ 4
107
50 100 0 200
. Number of Features
-=-F(nS=2e+05)
M (nS=2e+05)/ """ ... ¢
~=F (nS=1e+05) | _...«"" -
=&-M (nS=1e+05)
10°¢-"
D
q // >
&
50 100 150 200
. Number of Features
-=F(nS=2e+05)
M (nS=2e+05)[" ... %
~~F (nS=1e+05) | ,.a==="" ¢
=&-M (nS=1e+05)
10°9""
/!
d %/>
50 100 150 200

Number of Features

Row 3: Row Summation, Row 4: Column Summation, and Row 5: Summation.

e
-=-F(nS=2e+05)
- M (nS=2e+05)
%104 ~~F (nS=1e+05)
o ! - ~6-M (nS=1e+05)
£ e
S10°
o .
107% - Bt
107 [el] 107
Join Attribute Uniqueness Degree
10°
===F(nS=2e+05)
- M (nS=2e+05)
OPRPY ~~F (nS=1e+05)
o 10 : ~6-M (nS=1e+05)
E Treile
5 10°
oc .
10°
107 [c2] 107
Join Attribute Uniqueness Degree
10°
===F(nS=2e+05)
- M (nS=2e+05)
%104 ~~F (nS=1e+05)
o ! . ~6-M (nS=1e+05)
£ Tl
T,0 Seel
él 10 QL B
~—— —e —
107" - >
107 [c3] 107
Join Attribute Uniqueness Degree
10'
4 ===F(nS=2e+05)
. AT M (nS=2e+05)
%0 e ~~F (nS=1e+05)
o | ... '|-6-M (nS=1e+05)
E 4) Gz >
Svo' T
o
-2
1
010'2_ e4] 107
Join Attribute Uniqueness Degree
10'
4 ~=-F(nS=2e+05)
- AT M (nS=2e+05)
%40 e 9 ~~F (nS=1e+05)
o | -6+ M (nS=1e+05)
£ B
B
o
-2

10
102 [c3]

10
Join Attribute Uniqueness Degree

~ F(dS=200) | = F(nS=20+05) ~F(nS=2e+05)
—_ M (dS=200)| _..g--=-"""""" ... M (nS=2e+05) —_ y M (nS=2e+05)
O ~~F (dS=100) |..-4=""""" B, 1 |=<~F (nS=1e+05) enmnetee ¢ L”,101<~-. ~~F (nS=1e+05)
© [-6-M(ds=100) 2 10 d-6-M (nS=1e+05)-=* o el ~9=M (nS=1e+05)
E10'§ E ¢ £ ..
= = c_ .0 T
& é 10° ° -5 & 10— i
10 B ? ’ a0l *
0.5 1 1. 2 1045 100 150 200 102 [c]] 107
Number of Tuples | ;45 (o] Number of Features Join Attribute Uniqueness Degree
2 5 2
10 10
—F(dS=200) L e —-F(nS=2e+05)
—_ M (dS=200) FORRRIEE L M (nS=2e+05) P QP M (nS=2e+05)
w ~~F (dS=100) |-*~ B . 1 |=F (nS=16405) | ..o0x= O Z.0 e ~~F (nS=1e+05)
Py -4-M (dS=100) by 10" 4-¢-m (nS=1e+05) P ey -9-M (nS=1e+05)
E 10°¢” E E AR
= z T 10° o
2 510° | 209 .
e o cr—-—":—___:——_‘ } > © b
107 " i) 107" f
0.5 1.5 2 104 100 150 200 102 [2] 107
Number of Tuples , ;45 [b2] Number of Features Join Attribute Uniqueness Degree
4 4 4
10 10
-=-F(dS=200) 10 -=-F(nS=2e+05) =-F(nS=2e+05)
—_ M (dS=200)---2""""" ... < M (nS=2e+05) —_ M (nS=2e+05)
ORp ~~F (dS=100) } -==6~=""" B |=F (nS=1e+05) P ONUPIRLLL 4 2.10% =-F (nS=1e+05) ||
g -&-M (dS=100)] ;; -6-M (nS=1e+05)p -==="""" qE,) =9=M (nS=1e+05)
= ﬁ; E 0% T I E T T .
€ E=IR T 2 “o..
€ .0 .
510 5 /e—/“’ 510
2107 2 . k‘/"‘/,/—o E: i
2 \ §— > =
10° 100 10 - < 9
a3) 05 1 1.5 2 10, 100 150 200 1072 [c3] 10
Number of Tuples | ;45 .Number of Features Join Attribute Uniqueness Degree

Figure 12: Operator-level results using synthetic data for M:N join. Row 1: LMM, Row 2: RMM, and Row 3: Cross-product.

