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ABSTRACT
Closer integration of machine learning (ML) with data pro-
cessing is a booming area in both the data management
industry and academia. Almost all ML toolkits assume that
the input is a single table, but many datasets are not stored
as single tables due to normalization. Thus, analysts of-
ten perform key-foreign key joins to obtain features from all
base tables and apply a feature selection method, either ex-
plicitly or implicitly, with the aim of improving accuracy. In
this work, we show that the features brought in by such joins
can often be ignored without affecting ML accuracy signifi-
cantly, i.e., we can “avoid joins safely.” We identify the core
technical issue that could cause accuracy to decrease in some
cases and analyze this issue theoretically. Using simulations,
we validate our analysis and measure the effects of various
properties of normalized data on accuracy. We apply our
analysis to design easy-to-understand decision rules to pre-
dict when it is safe to avoid joins in order to help analysts
exploit this runtime-accuracy tradeoff. Experiments with
multiple real normalized datasets show that our rules are
able to accurately predict when joins can be avoided safely,
and in some cases, this led to significant reductions in the
runtime of some popular feature selection methods.

1. INTRODUCTION
The increasing use of machine learning (ML) in data-

driven applications [2, 4] has led to a growing interest in
more closely integrating ML and data processing [3, 16, 20,
24, 26, 47]. However, most ML toolkits assume that the in-
put to an ML model is a single table even though many
real-world datasets are stored as multiple tables connected
by primary key-foreign key (KFK) dependencies. Thus, an-
alysts typically perform KFK joins before ML to construct
a single table that collects features from all base tables, and
then apply a feature selection method (either explicitly or
implicitly [18]) over the entire set of features. Feature selec-
tion helps improve ML accuracy, and is widely considered
crucial for ML-based analytics [1, 17, 18, 24, 46]. While this
process certainly“works”, it can be both painful and wasteful
because the increase in the number of features might make
it harder for analysts to explore the data and also increases
the runtime of ML and feature selection methods. In some
cases, the joins might also be expensive and introduce data
redundancy, causing even more efficiency issues [29].

In this work, we help mitigate the above issues by study-
ing a rather radical question: Is a KFK join even needed
for ML? In other words, is it possible to ignore all “for-
eign” features (the features from the table referred to by the

foreign key) in the first place without significantly reducing
ML accuracy? We call this process “avoiding the join.” At
first, this seems preposterous – how can we be confident that
ignoring some features is unlikely to reduce accuracy signif-
icantly without even running the feature selection method
over the data (which requires the join)? The key turns out
to be a rather simple observation: the KFK dependencies
present in the schema enable us to avoid joins. Simply put,
in an information theoretic sense [18], a foreign key encodes
“all information” about all the foreign features brought in
by a KFK join, which allows us to use it as a “representa-
tive” for the foreign features. Thus, this observation seems
to make things stunningly simple: ignore all KFK joins and
use foreign keys as representatives of foreign features!

Alas, the real world is not as simple as described above.
Unfortunately, the information theoretic perspective is not
sufficiently perspicacious to fully answer our core question
of when it is safe to avoid a join. The finite nature of train-
ing datasets in the real world makes it necessary to analyze
our problem using the standard ML notions of bias and vari-
ance [40]. This requires detailed, yet subtle, theoretical anal-
ysis (which we perform) of the effects of KFK joins on ML.
It turns out that foreign features, which are safe to ignore
from an information theoretic perspective, could be indis-
pensable when both bias and variance are considered. This
brings us back to square one with our conundrum: given a
KFK join, how to tell if it is safe to avoid or not?

Answering the above core question could yield at least
four benefits. First, it can help improve the performance of
ML tasks without losing much accuracy. Second, in appli-
cations in which analysts explore features by being in-the-
loop [28, 46], having fewer tables and features might make
exploration easier. Third, it might help reduce the costs
of data acquisition in applications where new tables (e.g.,
weather data) are purchased and joined with existing data.
If we can show that such joins might not really help accuracy,
analysts can reconsider such purchases. Fourth, in some ap-
plications, analysts have dozens of tables in the input and
prefer to join only a few “most helpful” tables (colloquially
called “source selection”). Answering our question might
help analysts assess which tables matter less for accuracy.

In this paper, we show that it is possible to answer our core
question by designing practical heuristics that are motivated
by our theoretical understanding. Thus, apart from estab-
lishing new connections between joins and ML, our work
can help make feature selection over normalized data eas-
ier and faster. Indeed, the data management community is
increasingly recognizing the need for more of such formal
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Figure 1: Illustrating the relationship between the
decision rules to tell which joins are “safe to avoid”.

and systems support to make feature selection easier and
faster [7, 28, 36, 46]. Ideally, we desire a decision rule that
can help answer the question for analysts. Apart from being
effective and concurring with our formal analysis, we desire
that any such rule be simple (makes it easy for analysts to
understand and implement), generic (not too tied to a par-
ticular ML model), flexible (tunable based on what error is
tolerable), and fast. These additional desiderata are moti-
vated by practical, real-world systems-oriented concerns.

Figure 1 illustrates our situation in a rough but intuitive
manner. The whole box is the set of KFK joins that gather
features (Section 2.1 makes our assumptions precise). Box
A is the set of joins that are “safe to avoid”, i.e., avoiding
them is unlikely to blow up the test error (Section 4.2 makes
this precise), while box B are the rest. Our goal is to char-
acterize boxes A and B, and develop a decision rule to tell if
a given join belongs to box A. We first perform a simulation
study (using Naive Bayes as an example) to measure how
different properties of the base tables affect the test error.
We apply our theoretical and simulation results to devise an
intuitive definition of box A and design a decision rule for
it that exploits a powerful ML notion called the VC dimen-
sion [43]. Applying a standard theoretical result from ML,
we define a heuristic quantity called the Risk Of Represen-
tation (ROR) that intuitively captures the increased risk of
the test error being higher than the train error by avoiding
the join. Using an appropriate threshold on the ROR yields
a decision rule that can tell if a join is “safe to avoid” or not
– this is how boxes A and B in Figure 1 are defined. Sadly,
it is impossible in general to compute the ROR a priori, i.e.,
without performing the very feature selection computations
we are trying to avoid. To resolve this quandary, we derive
an upper bound on the ROR (we call it “worst-case” ROR)
that is computable a priori. It yields a more conservative
decision rule, i.e., it might wrongly predict that a join is not
safe to avoid even though it actually is. Figure 1 illustrates
their relationship: box C is contained in box A. The inter-
section of box A with the complement of box C is the set of
“missed opportunities” for the worst-case ROR rule.

The worst-case ROR rule still requires us to inspect the
foreign features (without having to do the join, of course).
This motivates us to design an even simpler rule that does
not even require us to look at the foreign features. We define
a quantity we call the tuple ratio (TR) that only depends on
the number of training examples and the size of the foreign
key’s domain. The TR is a conservative simplification of the
worst-case ROR. Thus, the TR rule might miss even more
opportunities for avoiding joins. Figure 1 illustrates their
relationship: box D is contained in box C.

In the rest of this paper, we develop the precise theoretical
machinery needed to explain our problem, characterize the
effects of KFK joins on ML, and explain how we design our
decision rules. Furthermore, since both of these rules are
conservative, it is important to know how they perform on
real data. Thus, we perform an empirical analysis with seven
real-world datasets from diverse application domains: retail,

hospitality, transportation, e-commerce, etc. We combine
a few popular feature selection methods and popular ML
classifiers. We found that there are indeed many cases on
real data where joins are safe to avoid, and both of our rules
work surprisingly well: out of 14 joins in total across all
7 datasets, both of our rules correctly classified 7 joins as
safe to avoid and 3 joins as not safe to avoid, but deemed
4 joins as not safe to avoid even though avoiding them did
not blow up the test errors (note that our decision rules
are conservative). Overall, our decision rules improved the
performance of the feature selection methods significantly in
many cases, including by over 10x in some cases.
In summary, our work makes the following contributions:

• To the best of our knowledge, this is the first paper to
study the problem of formally characterizing the effects
of (KFK) joins on ML classifiers and feature selection
to help predict when joins can be avoided safely.

• We perform a simulation study using Naive Bayes as
an example to measure how different properties of the
normalized data affect ML error.

• We apply our theoretical and simulation results to de-
sign simple decision rules that can predict a priori if it
is perhaps safe to avoid a given join.

• We perform an extensive empirical analysis using real-
world datasets to validate that there are cases where
avoiding joins does not increase ML error significantly,
and that our rules can accurately predict such cases.

Outline. Section 2 explains our problem setup and gives
some background. Section 3 presents an in-depth theoretical
analysis of the effects of joins on ML and feature selection.
Readers more interested in the practical implications can
skip to Section 4, which presents our simulation study, and
also explains how we design our decision rules. Section 5
presents our empirical validation with real data. Section 6
presents the related work. We conclude in Section 7.

2. PRELIMINARIES AND BACKGROUND

2.1 Setup, Example, and Assumptions
We focus on the same schema setting as [29] and adopt

their terminology. The main table with the entities to model
is called the entity table, denoted S. There are k other
tables called attribute tables, denoted Ri, for i = 1 to k
(if k = 1, we drop the subscript). The schema of Ri is
Ri(RIDi,XRi), where RIDi is its primary key and XRi

is a vector (sequence) of features. We abuse the notation
slightly to also treat X as a set since the order among fea-
tures in X is immaterial in our setting. The schema of S
is S(SID, Y,XS , FK1, . . . , FKk), where Y is the target for
learning, XS is a vector of features, and FKi is a foreign
key that refers to Ri. Let T denote the output of the equi-
join: T ← π(R ./RID=FK S). In general, its schema is
T(SID, Y,XS , FK1, . . . , FKk,XR1 , . . . ,XRk ).

Example (based on [29]). Consider an insurance analyst
predicting customer churn, i.e., will a customer leave the
company (cancel their policy)? She decides to build a clas-
sifier using the table Customers (CustomerID, Churn, Gen-
der, Age, EmployerID). The EmployerID feature is the ID
of the customer’s employer and is a foreign key referring to
another table with data about companies and other organi-
zations that potentially employ the customers: Employers



(EmployerID, Country, Revenue). Thus, S is Customers,
R is Employers, Y is Churn, FK is S.EmployerID, RID is
R.EmployerID, XS is {Age, Gender}, and XR is {Country,
Revenue}. She joins the tables to bring in XR because she
has a hunch that customers employed by rich corporations
in rich countries are unlikely to churn.

We focus on the case in which all features (including Y )
are nominal, i.e., each feature has a finite discrete domain.1

Thus, we focus on classification. We assume that the for-
eign keys are not keys of S (e.g., EmployerID is clearly not
a key of Customers). We also assume that the domains of
all features in XS , XR, and all FKi are “closed with re-
spect to the prediction task”, and the domain of FKi is
the same as the set of RIDi values in Ri (and there are no
missing/NULL values)2. We explain the “closed” domain as-
sumption. In ML, recommendation systems assume that the
foreign keys of the“Ratings” table, e.g., MovieID and UserID

have “closed” domains, say, to enable matrix factorization
models [25]. A movie might have several past ratings. So,
MovieID can help predict future ratings. Note that “closed”
domain does not mean new MovieID values can never occur!
It means that analysts build models using only the movies
seen so far, but revise their feature domains and update ML
models periodically (say, monthly) to absorb movies added
recently. In between these revisions, MovieID is considered
“closed” domain. EmployerID in our example plays exactly
the same role – many customers (past and future) might
have the same employer. Thus, it is reasonable to use Em-

ployerID as a feature. Handling new movies (or employers)
is a well-known problem called cold-start [39]. It is closely
related to the referential integrity constraint for foreign keys
in databases [35]. In practice, a common way to handle it is
to have a special “Others” record in Employers as a “place-
holder”for new employers seen between revisions. Cold-start
is orthogonal to our problem; we leave it to future work.

Overall, each feature in XS , XRi , and FKi is a discrete
random variable with a known finite domain. We also as-
sume that the foreign keys are not skewed (we relax this
in a discussion in the appendix). We discuss the effects of
KFK joins on ML classifiers and feature selection in general,
but later, we use Naive Bayes as an example.3 Naive Bayes
is a popular classifier with diverse applications ranging from
spam detection to medical diagnosis [31,33]. It is also easy to
understand and use; it does not require expensive iterative
optimization or “black magic” for tuning hyper-parameters.

We emphasize that our goal is not to design new ML mod-
els or new feature selection methods, nor is to study which
feature selection method or ML model yields the highest
accuracy. Rather, our goal is to understand the theoretical
and practical implications of ubiquitous database dependen-
cies, viz., KFKDs and functional dependencies (FDs) on ML.
In this paper, we use the phrase “the join is safe to avoid”
to mean that XR can be dropped before feature selection
without significantly affecting the test error of the subset
obtained after feature selection. We make this notion more
precise later (Section 4.2).

1Numeric features are assumed to have been discretized to
a finite set of categories, say, using binning [31].
2To handle RIDi values absent from FKi in a given instance
of S, we adopt the standard practice of smoothing [30].
3We present some empirical results and a discussion of some
other popular ML models in Section 5 and the appendix.

2.2 Background: Feature Selection
Feature selection methods are almost always used along

with an ML classifier to help improve accuracy [17]. While
our work is orthogonal to feature selection methods, we
briefly discuss a few popular ones for concreteness sake. At
a high-level, there are three types of feature selection meth-
ods: wrappers, filters, and embedded methods [18,22].

A wrapper uses the classifier as a “black-box” and heuris-
tically searches the space of feature subsets to obtain a more
accurate subset. Sequential greedy search is a popular wrap-
per; it has two variants – forward selection and backward
selection. Given a feature set X, forward (resp. backward)
selection computes the error of an ML model for different
subsets of X of increasing (resp. decreasing) size starting
with the empty set (resp. full set X) by adding (resp. elimi-
nating) one feature at a time. The error can be the holdout
validation error, or the k-fold cross-validation error. For our
purposes, the simpler holdout method described in [19] suf-
fices: the labeled data is split 50%:25%:25% with the first
part used for training, the second part used for the valida-
tion error during greedy search, and the last part used for
the holdout test error, which is the final indicator of the
chosen subset’s accuracy. Filters apply a specified scoring
function to each feature F ∈ X using the labeled data, but
independent of any classifier. The top-k features are then
chosen, with k picked either manually or tuned automati-
cally using the validation error for a given classifier (we use
the latter). Popular scoring functions include mutual in-
formation I(F ;Y ) and information gain ratio IGR(F ;Y ).
Intuitively, I(F ;Y ) tells us how much the knowledge of F
reduces the entropy of Y , while IGR(F ;Y ) normalizes it
by the feature’s entropy. Embedded methods are “wired”
in to the classifier. A common example is L1 or L2 norm
regularization for linear and logistic regression. These meth-
ods perform “implicit” feature selection by modifying the re-
gression coefficients directly instead of searching for subsets,
e.g., L1 norm makes some coefficients vanish, which is akin
to dropping the corresponding features [19].

3. EFFECTS OF KFK JOINS ON ML
We start with a brief information theoretic analysis, and

then dig deeper to establish the formal connections between
KFKDs and the bias-variance tradeoff in ML. For ease of
exposition, we assume only one attribute table R. Readers
more interested in the practical aspects can skip to the sum-
mary at the end of this section, or to Section 4.

3.1 The Information Theoretic Perspective
A standard theoretical approach to ascertain which fea-

tures are “useful” is to use the information theoretic notions
of feature redundancy and relevancy [18,23]. Thus, we now
perform such an analysis to help explain why it might be
safe to avoid the join with R, i.e., ignore XR.

3.1.1 Feature Redundancy
We start with some intuition. The foreign key FK is also

a feature used to predict Y . In our example, it is reason-
able to use EmployerID to help predict Churn. The equi-join
condition S.FK = R.RID that creates T causes FK to
functionally determine all of XR in T. It is as if the FD
RID → XR in R becomes the FD FK → XR in T.4 Thus,

4KFKDs differ from FDs [5], but we can treat the depen-



given FK, XR is fixed, i.e., XR does not provide any more
“information” over FK. The notion of “feature redundancy”
helps capture such behavior formally [23, 45]. Its rigorous
definition is given in the appendix. This yields our first,
albeit simple, result (let X ≡ XS ∪ {FK} ∪XR).

Proposition 3.1. In T, all F ∈ XR are redundant.

The proof is in the appendix. This result extends trivially
to multiple attribute tables. In fact, it extends to a more
general set of FDs, as we show in the appendix. In the ML
literature, the redundancy of a feature is often considered an
indication that the feature should be dropped. In fact, many
feature selection methods explicitly search for such redun-
dancy in order to remove the redundant features [18,23,45].
However, they try to detect the presence of feature redun-
dancy approximately based on the dataset instance. Our
scenario is stronger because Proposition 3.1 guarantees the
existence of redundant features. This motivates us to con-
sider the seemingly “radical” step of avoiding these redun-
dant features, i.e., avoiding the join with R.

3.1.2 Feature Relevancy
A redundant feature might sometimes be more “useful” in

predicting Y – captured using the formal notion of “feature
relevancy”. This leads to the classical redundancy-relevancy
tradeoff in ML [17]. We provide some intuition. Suppose
in our example, customers of rich corporations never churn
and they are the only ones who do not churn, then Rev-

enue is perhaps the most “relevant” feature, even though it
is redundant. Thus, we would like to know if it is possible
for some F ∈ XR to be more relevant than FK. Feature
relevancy is often formalized using scores such as the mu-
tual information I(F ;Y ) (a rigorous definition is given in
the appendix) or the information gain ratio IGR(F ;Y ). A
feature with a higher score is considered to be more rele-
vant [18, 45]. However, when we apply these two popular
notions of feature relevancy to our setting, we realize that
our information theoretic analysis “hits a wall”.

Theorem 3.1. ∀F ∈ XR, I(F ;Y ) ≤ I(FK;Y )

Proposition 3.2. It is possible for a feature F ∈ XR to
have higher IGR(F ;Y ) than IGR(FK;Y ).

The proofs are in the appendix. Basically, we get near-
opposite conclusions depending on the score! If we use mu-
tual information, features in XR are no more relevant than
FK. Coupled with the earlier fact that XR is redundant,
this suggests strongly that the join is not too useful, and
that we might as well stick with using FK as a “represen-
tative” of XR. However, if we use information gain ratio, a
feature in XR could be more relevant than FK. This sug-
gests that we should bring in XR by performing the join and
let the feature selection method ascertain which features to
use. We explain this strange behavior intuitively.

The domain of FK is likely to be much larger than any
feature in XR. For example, there are less than two hundred
countries in the world, but there are millions of employers.
Thus, EmployerID might have a much larger domain than
Country in Employers. Mutual information tends to pre-
fer features with larger domains, but information gain ra-
tio resolves this issue by “penalizing” features with larger

dencies in T as FDs since we had assumed that there are no
NULL values and that all feature domains are closed.

domains [18, 31]. This brings us back to square one with
our original conundrum! It seems the information theoretic
analysis is insufficient to help us precisely answer our core
question of when it is safe to avoid a join. Thus, we now
dive deeper into our problem by analyzing the effects of KFK
joins on ML and feature selection from the perspective of the
bias-variance tradeoff, which lies at the heart of ML.

3.2 The Join Strikes Back: KFK Joins and the
Bias-Variance Tradeoff

We now expose a “danger” in avoiding the join (using FK
as a representative for XR). Our intuition is simple: in-
formation theoretic arguments are generally applicable to
asymptotic cases, but in the real world, training datasets are
finite. Thus, we need to look to statistical learning theory
to understand precisely how ML error is affected. We start
with an intuitive explanation of some standard concepts.

The expected test error (i.e., error on an unseen labeled
example) can be decomposed into three components: bias
(a.k.a approximation error), variance (a.k.a. estimation er-
ror), and noise [19, 40]. The noise is an inevitable compo-
nent that is independent of the ML model. The bias captures
the lowest possible error by any model instance in the class
of ML models considered. For example, using Naive Bayes
introduces a bias compared to learning the expensive joint
distribution since it assumes conditional independence [33].
The variance captures the error introduced by the fact that
the training dataset is only a random finite sample from the
underlying data distribution, i.e., it formalizes the “instabil-
ity” of the model with respect to the training data. For ex-
ample, if we train Naive Bayes on two different training sam-
ples, their test errors are likely to differ. And if we provide
fewer training examples to the ML model, its test error is
likely to increase due to higher variance. In colloquial terms,
a scenario with high variance is called “overfitting” [19].

The crux of the argument is as follows: using FK as a
representative is likely to yield a model with higher variance
than a model obtained by including XR for consideration.
Thus, the chance of getting a higher test error might in-
crease if we avoid the join. Perhaps surprisingly, this holds
true irrespective of the number of features in XR! Before
explaining why, we observe that there is no “contradiction”
with Section 3.1 – the information theoretic analysis deals
only with bias, not variance. We explain more below.

Relationship between Hypothesis Spaces. To help for-
malize our argument, we first explain the relationship be-
tween the classes of models built using FK and XR. This
is important to understand because a model with a larger
hypothesis space might have higher variance.

As before, let X ≡ XS ∪ {FK} ∪ XR. For simplicity
of exposition, let DY = {0, 1}. Also, since our primary
goal is to understand the effects of the FD FK → XR, we
set XS = φ (empty) for ease of exposition. A learned ML
model instance is just a prediction function f : DX → {0, 1}.
The universe of all possible prediction functions based on X
is denoted HX = {f |f : DX → {0, 1}}. A given class of
ML models, e.g., Naive Bayes, can only learn a subset of
HX owing to its bias. This subset of functions that it can
learn is called the hypothesis space of the ML model. Let
HNBX denote the hypothesis space of Naive Bayes models on
X. Given Z ⊆ X, we define the restriction of HX to Z as
follows: HZ = {f |f ∈ HX ∧ ∀u,v ∈ DX,u|Z = v|Z =⇒
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Figure 2: Relationship between hypothesis spaces.

f(u) = f(v)}. Here, u|Z denotes the projection of u to only
the features in Z. We now establish the relationship between
the various hypothesis spaces. Figure 2 depicts it pictorially.

Proposition 3.3. HX = HFK ⊇ HXR

The proof is in the appendix. Note that the first part
(HX = HFK) is essentially the learning theory equivalent
of Proposition 3.1. The second part might seem counter-
intuitive because even if there are, say, a million features
in XR but only a hundred FK values, using FK instead
of XR is still more “powerful” than using XR and dropping
FK. But the intuition is simple – since R is fixed in our set-
ting, we can only ever observe at most |DFK | distinct values
of XR, even if ΠF∈XR |DF | � |DFK |. Hence, using XR in-
stead of FK might increase the bias. For example, suppose
that customers employed by Profit University and Charity
Inc. churn and they are the only ones who churn. Then,
it is impossible in general to learn this concept correctly if
EmployerID is excluded. Note that HNBXR

⊆ HXR . Finally,

∀Xr ∈ XR, HNBXR
⊇ HXr = HNBXr

(and HNBFK = HFK) since
Naive Bayes has no bias if there is only one feature.

The relationship between the size of the hypothesis space
and the variance is formalized in ML using the powerful
notion of the VC dimension [40, 43]. We use this notion to
complete the formalization of our argument.

VC Dimension. Due to space constraints, we only give an
intuitive explanation and an example here. Intuitively, the
VC dimension captures the ability of a classifier to assign
the true class labels to a set of labeled data points of a
given cardinality – a capability known as “shattering.” For
example, consider a linear classifier in 2-D. It is easy to see
that it can shatter any set of 3 points (distinct and non-
collinear). But it cannot shatter a set of 4 points due to
the “XOR problem” [12]. Thus, the VC dimension of a 2-
D linear classifier is 3. For finite hypothesis spaces (as in
our case), the VC dimension is a direct indicator of the size
of the hypothesis space [40]. A standard result from ML
bounds the difference between the test and train errors (this
difference is solely due to variance) as a function of the VC
dimension (v) and the number of training examples (n):

Theorem 3.2. (From [40], p. 51) For every δ ∈ (0, 1),
with probability at least 1− δ over the choice of the training
dataset, and for n > v, we have:

|Test error − Train error| ≤ 4+
√
vlog(2en/v)

δ
√
2n

Thus, a higher VC dimension means a looser bound on
the error (variance) and possibly, higher variance. The VC
dimension usually increases with the number of features.
For example, it is linear in the number of features for “lin-
ear” classifiers such as logistic regression and also Naive
Bayes [43]. But note that we had assumed that all features
are nominal in our setting. Thus, we recode the features to
numeric space using the standard “binary vector” represen-
tation, i.e., a feature F is converted to a 0/1 vector with
|DF | − 1 dimensions (the last category is represented as a

zero vector). With this recoding, the VC dimension of Naive
Bayes (or logistic regression) on a set X of nominal features
is 1 +

∑
F∈X(|DF | − 1). If we use FK alone, the maximum

VC dimension for any classifier is |DFK |, which is matched
by almost all popular classifiers such as Naive Bayes. How-
ever, as per the argument for Figure 2, the VC dimension of
any classifier on XR is at most the number of distinct values
of XR in the given table R, say, r. Since RID is the primary
key of R, we have |DFK | ≥ r. Thus, the VC dimension is
likely to be higher if FK is used as a representative for XR.

In the Context of Feature Selection. The above variance-
based argument gets stronger when we consider the fact that
we might not retain all of XR after feature selection. Con-
sider an extreme scenario – suppose the “true” concept can
be succintly described using a lone feature Xr ∈ XR. In our
churn example, this represents a case where all customers
with employers based in “The Shire” churn and they are the
only ones who churn (Xr is Country). Suppose an “oracle”
told us to only use Xr. Clearly, HXr is likely to be much
smaller thanHFK , as illustrated in Figure 2. Thus, the vari-
ance for a model based on FK is likely to be higher than a
model based on Xr, as per Theorem 3.2. For the opposite
extreme, i.e., the true concept needs all of XR, the gap with
HFK might decrease, but it might still be large.

Alas, in the real world, we do not have an oracle to tell us
which features are part of the true distribution – it could be
none, some, or all features in XR. What we do have instead
of an oracle is a feature selection method, although it does
the job approximately using a finite labeled sample. For ex-
ample, in the above extreme scenario, if we input {FK,Xr}
to a feature selection method, it is likely to output {Xr}
precisely because a model based on {Xr} is likely to have
lower variance than one based on {FK} or {FK,Xr}. By
avoiding the join, we shut the door on such possibilities and
“force” the model to work only with FK. Thus, overall, even
though FK can act as a representative for XR, it is proba-
bly “safer” to give the entire set X to the feature selection
method and let it figure out the subset to use. Finally, note
that we had assumed XS is empty for the above discussion
because it is orthogonal to our core issue. If XS is not empty,
all the hypothesis spaces shown in Figure 2 will blow up, but
their relative relationships, and hence the above arguments
about the variance, will remain unaffected.

Summary. Our analysis reveals a dichotomy in the accu-
racy effects of avoiding a KFK join for ML and feature se-
lection: avoiding the join and using FK as a representative
of XR does not increase the bias, but the variance (compared
after feature selection) might increase significantly.

4. PREDICTING A PRIORI IF IT IS SAFE
TO AVOID A KFK JOIN

Given our understanding of the dichotomy in the effects
of joins, we now focus on answering our core question: how
to predict a priori if a join with R is safe to avoid. We
start with a simulation study using “controlled” datasets to
validate our theoretical analysis and measure precisely how
the error varies as we vary different properties of the nor-
malized data. We then explain our decision rules and how
we use our simulation measurements to tune the rules. All
the plots in Section 4 are based on our synthetic datasets.
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Figure 3: Simulation results for the scenario in which only a single Xr ∈ XR is part of the true distribution,
which has P (Y = 0|Xr = 0) = P (Y = 1|Xr = 1) = p. For these results, we set p = 0.1 (varying this probability
did not change the overall trends). (A) Vary nS while fixing (dS , dR, |DFK |) = (2, 4, 40). (B) Vary |DFK | (= nR)
while fixing (nS , dS , dR) = (1000, 4, 4).

4.1 Simulation Study
We perform a Monte Carlo-style study. For the sake of

tractability and depth of understanding, we use Naive Bayes
as the classifier in this section. But note that our method-
ology is generic enough to be applicable to any classifier be-
cause we measure the accuracy only using standard notions
of error, bias, and variance for a generic ML classifier.

Data Synthesis. We sample the labeled examples in an in-
dependently and identically distributed manner from a con-
trolled true distribution P (Y,X). Different scenarios are
possible based on what features in X are used: it could be
any or all features in XS , FK, and/or XR. Our primary goal
is to understand the effects of the FD FK → XR and ex-
plain the “danger” in avoiding the join. Thus, we focus on a
key scenario that intuitively represents the “worst-case” sce-
nario for avoiding the join: the true distribution is succintly
captured using a lone feature Xr ∈ XR. This corresponds
to the example in Section 3.2 in which all customers with
employers based in “The Shire” churn and they are the only
ones who churn. In line with Proposition 3.3, we expect FK
to play an “indirect” role in predicting Y in both scenarios.
All other features are random noise. We also studied two
other representative scenarios: one in which all of XS and
XR are part of the true distribution, and one in which only
XS and FK are. Since these two did not yield any major
additional insights, we present them in the appendix.

Simulation Setup. There is one attribute table R (k = 1),
and all of XS , XR and Y are boolean (i.e., domain size 2).
The following parameters are varied one at a time: num-
ber of features in XS (dS), number of features in XR (dR),
|DFK | (= nR), and total number of training examples (nS).
We also sample nS

4
examples for the test set. We gener-

ate 100 different training datasets and measure the test er-
ror and the variance based on the different models obtained
from these 100 runs. In a Monte Carlo fashion, this whole
process was repeated 100 times with different seeds for the
pseudo-random number generator [38]. Thus, we have 10000
runs in total for one combination of the parameters studied.
While the test error and variance were defined intuitively in
Section 3.2, we now define them formally (based on [11]).

Definitions. We start with the formal definition of error
(based on Domingos and Pazzani [13]).

Definition 4.1. Zero-one loss. Let t be the true class
label of a given example with X = x, while cM (x) be the
class predicted by a classifier M on x. The zero-one loss (of
M on x), denoted L(t, cM (x)), is defined as L(t, cM (x)) =

1t=cM (x), where 1 is the indicator function.

Definition 4.2. The local error (in short, the error) of
M on x, denoted EM (x), is defined as the expected value of
the zero-one loss, where the expectation is over the values
of Y, given X = x, i.e., EM (x) =

∑
y∈DY

P (Y = y|X =

x)LM (y, cM (x)).

Since M depends on the training data, we compute the ex-
pectation of the error over different training datasets, say, by
averaging over a given finite collection of training datasets S
(typically, all of the same size). Note that |S| = 100 for our
Monte Carlo runs. The expected error of a classifier (across
true distributions and S) on x is decomposed as follows:

E[L(t, cM (x))] = B(x) + (1− 2B(x))V (x) + cN(x) (1)

Here, B(x) is the bias, V (x) is the variance, and N(x) is
the noise. The quantity (1 − 2B(x))V (x) is called the net
variance, which is needed to capture the opposing effects of
the variance on biased and unbiased predictions [11]. The
main prediction on x, given S, is defined as the mode among
the multi-set of predictions that result from learning M over
each training dataset in S. The main prediction is denoted
ym, while a single prediction based on some dataset in S is
denoted y. The bias is defined as the zero-one loss of the
main prediction, i.e., B(x) = L(t, ym). The variance is de-
fined as the average loss with respect to the main prediction,
i.e., V (x) = ED[L(ym, y)]. The average bias (resp. average
net variance and average test error) is the average of the
bias (resp. net variance and test error) over the entire set
of test examples. Our goal is to understand how the aver-
age test error, and the average net variance are affected by
avoiding a join. Due to space constraints, we only discuss
the key results here and present the others in the appendix.

Results. We compare three classes of models – UseAll, which
uses all of XS , FK, and XR, NoJoin, which omits XR, and
NoFK, which omits FK. Figure 3 plots the average test
error and average net variance against nS as well as |DFK |.

At a high level, Figure 3 validates our theoretical results
on the dichotomy in the effects of avoiding the join. Both
UseAll and NoFK use Xr, which enables them to achieve
the lowest errors. When nS is large, NoJoin matches their
errors even though it does not use Xr. This confirms our
arguments in Section 3.1 about FK acting as a representa-
tive of Xr. However, when nS drops, the error of NoJoin
increases, and as Figure 3(A2) shows, this is due to the in-
crease in the net variance. Figure 3(B) drills into why that
happens: for a fixed nS , a higher |DFK | yields a higher error
for NoJoin, again because of higher net variance. This con-
firms our arguments in Section 3.2 about the danger of using



FK as a representative due to the increase in the variance.
Due to space constraints, we discuss other parameters and
the other two simulation scenarios in the appendix.

4.2 Towards a Decision Rule
We now precisely define what we mean by “a join is safe

to avoid” and devise intuitive decision rules to predict such
cases. While our definition and decision rules are heuristic,
they are based on our theoretical and simulation-based in-
sights and they satisfy all the desiderata listed in Section
1. Our key guiding principle is conservatism – it is fine to
not avoid a join that could have been avoided in hindsight
(a “missed opportunity”), but we do not want to avoid a
join that should not be avoided (i.e., the error blows up if
it is avoided). This is reasonable since the feature selec-
tion method is there to figure out if features in XR are not
helpful, albeit with poorer performance. Designing a rule to
avoid joins safely is challenging mainly because it needs to
balance this subtle performance-accuracy tradeoff correctly.

The Risk Of Representation. We start be defining a heuris-
tic quantity based on the increase in the error bound given
by Theorem 3.2. Intuitively, it quantifies the “extra risk”
caused by avoiding the join. We compare the bounds for a
hypothetical “best” model that uses some subset of XR in-
stead of FK (join performed) against one that uses FK in-
stead (join avoided). A subset of XS might be used by both.
We call this quantity the Risk Of Representation (ROR):

ROR =

√
vY eslog( 2en

vY es
)−

√
vNolog( 2en

vNo
)

δ
√

2n
+ ∆bias

In the above, vY es is the VC dimension of a classifier that
uses FK as a representative and avoids the join, while vNo
is for one that does not avoid the join (the appendix conve-
niently lists all the extra notation used in Section 4.2). We
first define them and then explain the intuition behind their
definition. For simplicity sake, we restrict ourselves to mod-
els such as Naive Bayes and logistic regression that have VC
dimension linear in the number of features, but discuss some
other classifiers later.5 We are given X = XS ∪{FK}∪XR.
Suppose an “oracle” told us that US ⊆ XS and UR ⊆ XR

are the only features in the true distribution. We only
consider the case where UR is non-empty.6 Thus, ideally,
vY es =

∑
F∈US

(|DF |−1)+|DFK |. Denote
∑
F∈US

(|DF |−1)
by qS ; this is the sum of the number of unique values of all
features in US . Let qR denote the number of unique values
of UR (taken jointly; not as individual features) in R. In
general, vNo does not have a closed form expression since
it depends on R, but we have qS < vNo ≤ qS + qR. Thus,
vNo ≤ vY es. Once again, since we do not have oracles in the
real world, we will not know US and UR a priori. Thus, it
is impossible to compute the ROR exactly in general.7 Fur-
thermore, Theorem 3.2 only deals with the variance, not the
bias. Thus, we denote the difference in bias using ∆bias in

5The upper bound derivation is similar for classifiers with
more complex VC dimensions, e.g., the joint distribution.
We leave a deeper formal analysis to future work.
6If UR is empty, R is trivially useless.
7A feature selection method can ascertain US and UR ap-
proximately, but our goal is to avoid this computation.

the ROR. Given this definition of the ROR, we now precisely
state what we mean by the join with R is “safe” to avoid.

Definition 4.3. Given a failure probability δ and a bound
ε > 0, we say the join with R is (δ, ε)-safe to avoid iff the
ROR with the given δ is no larger than ε.

The ROR Rule. While the ROR intuitively captures the
risk of avoiding the join and provides us a threshold-based
decision rule, we immediately “hit a wall” – it is impossible
in general to compute ∆bias a priori without knowing US

and UR. Thus, prima facie, using the ROR directly for a de-
cision rule seems to be a hopeless idea to pursue! We resolve
this quandary using a simple observation: we do not really
need the exact ROR, but only a “good-enough” indicator of
the risk of using FK as a representative. Thus, drawing
upon our guiding principle of conservatism, we upper bound
the ROR and create a more conservative decision rule. We
explain the derivation step by step. Assume n > vY es. First,
Proposition 3.3 showed that dropping XR a priori does not
increase the bias, but dropping FK might, which means
∆bias ≤ 0. Hence, we ignore ∆bias entirely:

ROR ≤

√
vY eslog( 2en

vY es
)−

√
vNolog( 2en

vNo
)

δ
√

2n

Second, we substitute the values of some variables in the
above inequality. Denote qNo = vNo− qS (the “slack” in the
earlier inequality qS < vNo). The inequality now becomes:

ROR ≤ 1

δ
√

2n
[
√

(qS + |DFK |)log(2en/(qS + |DFK |))

−
√

(qS + qNo)log(2en/(qS + qNo))]

Third, we observe that since |DFK | ≥ qR ≥ qNo, the RHS
above is a non-increasing function of qS that is maximum
when qS = 0. This lets us eliminate US from the picture:

ROR ≤ 1

δ
√

2n
(
√
|DFK |log(2en/|DFK |)−

√
qNolog(2en/qNo)

Fourth, let q∗R denote the minimum possible number of unique
values of UR in R, i.e., q∗R = minF∈XR |DF |. Now, we ob-
serve that since qNo ≤ |DFK | ≤ n, the RHS above is a non-
increasing function of qNo that is maximum when qNo = q∗R.
Thus, finally, we get the following inequality:

ROR ≤ 1

δ
√

2n
(
√
|DFK |log(2en/|DFK |)−

√
q∗Rlog(2en/q∗R)

Intuitively, the above represents the “worst-case” scenario in
which US is empty and UR = {argminF∈XR |DF |}. Thus,
we call this bound the “worst-case” ROR, and its “gap” with
the exact ROR could be large (Figure 1). Henceforth, we
use the term “ROR” to refer to this worst-case upper bound.
The ROR rule uses a threshold: given a parameter ρ, avoid
the join if ROR ≤ ρ.8 This rule is conservative because given
a join that is (δ, ρ)-safe to avoid, there might be some ρ′ < ρ
such that the join is actually also (δ, ρ′)-safe to avoid.

The TR Rule. The ROR rule still requires us to look at
XR to ascertain the features’ domains and obtain q∗R. This
motivates us to consider an even simpler rule that depends

8We set the failure probability δ to be always 0.1, but obvi-
ously, it can also be folded into ρ since ROR ∝ 1

δ
.
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Figure 4: Scatter plots based on all the results of the simulation experiments referred to by Figure 3. (A)
Increase in test error caused by avoiding the join (denoted “∆Test error”) against ROR (B) ∆Test error
against tuple ratio, and (C) ROR against inverse square root of tuple ratio.

only on nS (number of training examples in S) and |DFK |
(= nR, by definition). We call nS

nR
the tuple ratio (TR).

The key advantages of the TR over the ROR are that this
is easier to understand and implement, and that this does
not even require us to look at XR, i.e., this enables us to
ignore the join without even looking at R. We now explain
the relationship between the TR and the ROR.

When |DFK | � q∗R, the ROR can be approximated as

follows: ROR ≈
√
|DFK |log(2en/|DFK |)

δ
√
2n

. Since n ≡ nS , we

also have: ROR ≈ (1/
√
nS/nR)(

√
log(2enS/nR)

δ
√
2

), which is

approximately linear in (1/
√
TR) for reasonably large TR.

Thus, the TR is a conservative simplification of the ROR.
The TR rule applies a threshold on the TR to predict if it is
safe to avoid join: given a parameter τ , the join is avoided if
TR ≥ τ . Note that since the TR rule is more conservative,
it might lead to more “missed opportunities” than the ROR
rule (Figure 1). We now explain why this “gap” arises. The
key reason is that the TR cannot distinguish between sce-
narios where |DFK | � q∗R and where |DFK | is comparable
to q∗R, as illustrated by Figure 5. When |DFK | � q∗R, the
ROR is high, which means the join may not be safe to avoid.
But when |DFK | ≈ q∗R, the ROR is low, which means the
join may be safe to avoid. The TR is oblivious to this finer
distinction enabled by the ROR. In practice though, we ex-
pect that this extra capability of the ROR might not be too
significant since it only matters if all features in XR have
domain sizes comparable to FK. Such an extreme situation
is perhaps unlikely in the real world. In fact, as we explain
later in Section 5.2.2, the ROR rule and the TR rule yielded
identical results for join avoidance on all our real datasets.

Tuning the Thresholds. We now explain how to tune the
thresholds of our decision rules (ρ for ROR and τ for TR).
For our purposes, we define a “significant increase” in test
error as an absolute increase of 0.001. This might be too
strict (or lenient) based on the application. Our goal here
is only to demonstrate the feasibility of tuning our rules.
Applications willing to tolerate a higher (or lower) error can
easily retune the rules based on our methodology.

Figure 4(A) shows a scatter plot of the (asymmetric) test
error difference between NoJoin and UseAll based on our di-
verse set of simulation results (varying nS , |DFK |, dR, etc.)
for the first scenario (a lone Xr ∈ XR is part of the true
distribution). We see that as the ROR increases, the test
error difference increases, which confirms that the ROR is
an indicator of the test error difference. In fact, for suf-
ficiently small values of the ROR, the test error is practi-
cally unchanged. The zoomed in portion of Figure 4(A)
suggests that a threshold of ρ = 2.5 is reasonable. Fig-
ure 4(B) shows the same errors against the TR. We see that
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High ROR Low ROR 
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Figure 5: When q∗R = |DX∗
r
| � |DFK |, the ROR is

high. When q∗R ≈ |DFK |, the ROR is low. The TR
rule cannot distinguish between these two scenarios.

as the TR increases, the test error difference decreases. For
sufficiently large values of the TR, the test error is practi-
cally unchanged. Thus, even the more conservative TR can
be a surprisingly good indicator of the test error difference.
The zoomed in portion of Figure 4(B) suggests a thresh-
old of τ = 20 is reasonable. Finally, Figure 4(C) confirms
the relationship between the ROR and the TR: the ROR is
approximately linear in 1/

√
TR (Pearson correlation coeffi-

cient ≈ 0.97).
These thresholds need to be tuned only once per ML model

(more precisely, once per VC dimension expression). Thus,
they are qualitatively different from (hyper-)parameters in
ML that need to be tuned once per dataset instance using
cross-validation. The above threshold values can be directly
used in practice for models such as Naive Bayes and logis-
tic regression. In fact, they worked unmodified for all the
real datasets in our experiments for both Naive Bayes and
logistic regression! If the error tolerance is changed, one can
use our simulation results to get new thresholds. For an ML
model with a completely different VC dimension expression,
our simulations have to be repeated with that ML model and
new thresholds obtained in a manner similar to the above.

Multiple Attribute Tables. It is trivial to extend the TR
rule to multiple Ri: avoid the join with Ri if nS

nRi
≥ τ . As

for the ROR rule, since US was eliminated when deriving
the worst-case ROR, we can ignore the other foreign keys
in S. Thus, we can avoid the join with Ri if the ROR com-
puted using FKi and minF∈XRi

|DF | is ≤ ρ. Making join
avoidance decisions for multiple Ri jointly, rather than in-
dependently as we do, might yield less conservative (albeit
more complex) decision rules. We leave this to future work.

Multi-Class Case. The VC dimension makes sense only
when Y has two classes, which might limit the applicability
of the ROR rule. In the ML literature, there are various gen-
eralizations of the VC dimension for multi-class classifiers,
e.g., the Natarajan dimension, or the graph dimension [40].
Intuitively, they generalize the notion of the power of the
classifier by also considering the number of classes. How-
ever, it is known that these more general dimensions are
bounded (for “linear” classifiers such as Naive Bayes or lo-
gistic regression) by a log-linear factor in the product of the



Dataset #𝑌 (𝑛𝑆, 𝑑𝑆) 𝑘 𝑘′ (𝑛𝑅𝑖
, 𝑑𝑅𝑖

), 𝑖 = 1 𝑡𝑜 𝑘 

Yelp 5 (215879, 0) 2 2 (11537, 32), (43873, 6) 

Walmart 7 (421570, 1) 2 2 (2340, 9), (45, 2) 
Expedia 2 (942142, 6) 2 1 (11939, 8), (37021, 14) 
Flights 2 (66548, 20) 3 3 (540, 5), (3182, 6), (3182, 6) 

BookCrossing 5 (253120, 0) 2 2 (49972, 4), (27876, 2) 

MovieLens1M 5 (1000209, 0) 2 2 (3706, 21), (6040, 4) 
LastFM 5 (343747, 0) 2 2 (4999, 7), (50000, 4) 

Figure 7: Dataset statistics. #Y is the number of
target classes. k is the number of attribute tables.
k′ is the number of foreign keys with closed domains.

total number of feature values (sum of the domain sizes for
nominal features) and the number of classes [10]. Hence,
intuitively, the ROR rule might be a stricter condition than
needed for the multi-class case, which is in line with our guid-
ing principle of conservatism for avoiding joins. We leave a
deeper analysis of the multi-class case to future work.

5. EXPERIMENTS ON REAL DATA
Our goal here is three-fold: (1) verify that there are cases

where avoiding joins does not increase error significantly, (2)
verify that our rules can accurately predict those cases, and
(3) analyze the robustness and sensitivity of our rules.

Datasets. Standard sources such as the UCI ML reposi-
tory did not have datasets with known KFKDs/FDs. Thus,
we obtained real datasets from other sources: Walmart, Ex-
pedia, and Yelp are from the contest portal Kaggle (www.
kaggle.com); MovieLens1M and BookCrossing are from Grou-
pLens (grouplens.org); Flights is from openflights.org;
LastFM is from mtg.upf.edu/node/1671 and last.fm. Fig-
ure 7 provides the dataset statistics. We describe each dataset
and the prediction task. We used a standard unsupervised
binning technique (equal-length histograms) for numeric fea-
tures. Links to the data and our scripts for data preparation
will be made available on our project website. To the best of
our knowledge, this is the first paper to gather and clean so
many normalized real datasets for ML. We hope our efforts
help further research on this topic.

Walmart . Predict department-wise sales levels by joining
data about past sales with data about stores and weath-
er/economic indicators: S is Sales (SalesLevel, IndicatorID,
StoreID, Dept), Y is SalesLevel, R1 is Indicators (IndicatorID,
TempAvg, TempStdev, FuelPriceAvg, FuelPriceStdev, CPI-
Avg, CPIStdev, UnempRateAvg, UnempRateStdev, IsHoli-
day), and R2 is Stores (StoreID, Type, Size). Both foreign
keys (StoreID and IndicatorID) have closed domains with
respect to the prediction task.

Expedia . Predict if a hotel will be ranked highly by joining
data about past search listings with data about hotels and
search events. S is Listings (Position, HotelID, SearchID,
Score1, Score2, LogHistoricalPrice, PriceUSD, PromoFlag,
OrigDestDistance), Y is Position, R1 is Hotels (HotelID,
Country, Stars, ReviewScore, BookingUSDAvg, BookingUS-
DStdev, BookingCount, BrandBool, ClickCount), and R2

is Searches (SearchID, Year, Month, WeekOfYear, Time-
OfDay, SiteID, VisitorCountry, SearchDest, LengthOfStay,
BookingWindow, AdultsCount, ChildrenCount, RoomCount,
SatNightBool, RandomBool). HotelID has a closed domain
with respect to the prediction task, while SearchID does not.

Flights. Predict if a route is codeshared by joining data

about the routes with data about airlines, source, and desti-
nation airports. S is Routes (CodeShare, AirlineID, SrcAir-
portID, DestAirportID, Equipment1, . . . , Equipment20), Y
is CodeShare, R1 is Airlines (AirlineID, AirCountry, Ac-
tive, NameWords, NameHasAir, NameHasAirlines), R2 is
SrcAirports (SrcAirportID, SrcCity, SrcCountry, SrcDST,
SrcTimeZone, SrcLongitude, SrcLatitude), and R3 is DestAir-
ports (DestAirportID, DestCity, DestCountry, DestDST, Dest-
TimeZone, DestLongitude, DestLatitude). All three foreign
keys have closed domains with respect to the prediction task.

Yelp. Predict business ratings by joining data about past
ratings with data about users and businesses. S is Ratings
(Stars, UserID, BusinessID), Y is Stars, R1 is Businesses
(BusinessID, BusinessStars, BusinessReviewCount, State, Lat-
itude, Longitude, City, IsOpen, WeekdayCheckins1, . . . , Week-
dayCheckins5, WeekendCheckins1, . . . , WeekendCheckins5,
Category1, . . . Category15), and R2 is Users (UserID, Gen-
der, UserStars, UserReviewCount, VotesUseful, VotesFunny,
VotesCool). Both foreign keys have closed domains with re-
spect to the prediction task.

MovieLens1M . Predict movie ratings by joining data about
past ratings with data about users and movies. S is Rat-
ings (Stars, UserID, MovieID), Y is Stars, R1 is Movies
(MovieID, NameWords, NameHasParentheses, Year, Genre1,
. . . , Genre18), and R2 is Users (UserID, Gender, Age, Zip-
code, Occupation). Both foreign keys have closed domains
with respect to the prediction task.

LastFM . Predict music play levels by joining data about
past play levels with data about users and artists. S is
Plays (PlayLevel, UserID, ArtistID), Y is PlayLevel, R1 is
Artists (ArtistID, Listens, Scrobbles, Genre1, . . . , Genre5),
and R2 is Users (UserID, Gender, Age, Country, JoinYear).
Both foreign keys have closed domains with respect to the
prediction task.

BookCrossing . Predict book ratings by joining data about
past ratings with data about readers and books. S is Ratings
(Stars, UserID, BookID), Y is Stars, R1 is Users (UserID,
Age, Country), and R2 is Books (BookID, Year, Publisher,
NumTitleWords, NumAuthorWords). Both foreign keys have
closed domains with respect to the prediction task.

Experimental Setup. All experiments were run on Cloud-
Lab, which offers free and exclusive access to physical com-
pute nodes for research [37]. We use their default ARM64
OpenStack Juno profile with Ubuntu 14.10. It provides an
HP Proliant server with 8 ARMv8 cores, 64 GB RAM, and
100 GB disk. Our code is written in R (version 3.1.1), and
all data fits in memory as R data frames.

5.1 End-to-end Error and Runtime
We compare two approaches: JoinAll, which joins all base

tables, and JoinOpt, which joins only those base tables pre-
dicted by the TR rule to be not safe to avoid (the ROR rule
gave identical results). For each approach, we pair Naive
Bayes with one of four popular feature selection methods
– two wrappers (forward selection, and backward selection)
and two filters (mutual information-based and information
gain ratio-based). We compare only the runtimes of feature
selection and exclude the time taken to join the tables. This
can work against JoinOpt, but as such, the joins took < 1%
of the total runtime in almost all our results. As mentioned
before, we use the standard holdout validation method with
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www.kaggle.com
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Figure 6: End-to-end results on real data. (A) Error after feature selection. (B) Runtime of feature selection.

the entity table (S) split randomly into 50%:25%:25% for
training, validation, and final holdout testing. For the filter
methods, the number of features filtered after ranking was
actually tuned using holdout validation as a “wrapper.”

In order to make the comparison more meaningful, the
error metric used to report the error of the learned model
depends on the type of the target and the number of classes.
Specifically, the zero-one error is used for Expedia and Flights,
which have binary targets, while the root mean squared
error (RMSE) is used for the other datasets, which have
multi-class ordinal targets. Note that our goal is to check
if JoinOpt avoided any joins, and if so, whether its error is
much higher than JoinAll. Figure 6 presents the results.

Errors and Output Features. The results in Figure 6(A)
validate our key claim: JoinOpt did avoid some joins, and
in all the cases where it did, the holdout test error did not
increase significantly. For example, JoinOpt avoided both
joins in both Walmart and MovieLens1M (“#Tables in in-
put”) without any increase in error. On Expedia, Flights,
and LastFM, only one join each was avoided by JoinOpt,
and the error did not increase much here either. Finally,
on Yelp and BookCrossing, none of the joins were predicted
to be safe to avoid. Furthermore, the trends are the same
irrespective of the feature selection method used. In gen-
eral, sequential greedy search had lower errors than the filter
methods, which is consistent with the literature [18]. Sur-
prisingly, in 12 of the 20 results (4 methods × 5 datasets;
Yelp and BookCrossing excluded), JoinOpt and JoinAll had
identical errors! This is because the output feature sets were
identical even though the input for JoinOpt was smaller.
For examples, both JoinAll and JoinOpt had selected the

same 3 features on Walmart for both forward selection and
MI-based filter: {IndicatorID, StoreID, Dept}. Thus, none
of the foreign features seem to matter for accuracy here.
Similarly, on Expedia, the outputs were identical for for-
ward selection: {HotelID, Score2, RandomBool, Booking-
Window, Year, ChildrenCount, SatNightBool}, and back-
ward selection, but with 12 features. Thus, the HotelID suf-
ficed and the hotel’s features were not needed. On LastFM,
for all methods except backward selection, both JoinAll and
JoinOpt returned only {UserID}. It seems even ArtistID
does not help (not just the artist’s features), but our rules
are not meant to detect this. Due to space constraints, we
provide all other output features in the appendix.

In 3 of the 20 results, JoinOpt had almost the same error
as JoinAll, but with a different output feature set. For exam-
ple, on MovieLens1M, for forward selection, JoinOpt gave
{UserID, MovieID}, while JoinAll also included a movie
genre feature. More surprisingly, the error was actually sig-
nificantly lower for JoinOpt in 5 of the 20 results (e.g., back-
ward selection on Walmart and LastFM). This lower error
is a serendipity caused by the variability introduced by the
heuristic nature of the feature selection method. Since these
feature selection methods are not globally optimal, JoinAll,
which uses all the redundant features, seems to face a higher
risk of being stuck at a poor local optimal. For example,
for backward selection on Walmart, JoinAll dropped Indi-
catorID, but retained many store and weather features even
though it was less helpful for accuracy.

Runtime. The runtime speedups depend on the ratio of
the number of features used by JoinAll against JoinOpt :
the more features avoided, the higher the speedups. Hence,
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Figure 8: (A) Robustness. Holdout test errors after Forward Selection (FS) and Backward Selection (BS).
The “plan” chosen by JoinOpt is highlighted, e.g., NoJoins on Walmart. (B) Sensitivity. We set ρ = 2.5 and
τ = 20. An attribute table is deemed “okay to avoid” if the increase in error was within 0.001 with either FS
or BS. (C) Holdout test errors of JoinOpt and JoinAllNoFK, which drops all foreign keys a priori.

it depends on the relative dimensions of the base tables, as
Figure 6(B) shows. Since JoinOpt avoided both joins on
MovieLens1M and Walmart, the speedups were high: 186x
and 82x resp. for backward selection; 26x and 15x resp. for
the filters. On Expedia, however, the ratio of the number
of features used is lower (≈ 1.4), which led to more modest
speedups of between 1.5x to 2.8x. Similarly, the speedup
ratios are lower for Flights and LastFM. It is noteworthy
that these datasets cover the entire spectrum in terms of
how many joins can be avoided: Walmart and MovieLens1M
on one end; Yelp and BookCrossing on the other.

Summary. In all the 28 results, JoinOpt had either iden-
tical or almost the same error as JoinAll, but was often
significantly faster, thus validating our core claim.

5.2 Drill-down on Real Data
5.2.1 Robustness of Join Avoidance Decisions

JoinOpt avoids only the joins predicted by the TR rule
as being safe to avoid. We would like to understand the
robustness of its decisions, i.e., what if we had avoided a
different subset of the joins? Due to space constraints, we
focus only on sequential greedy search. Figure 8(A) presents
the results. Expedia is absent because it has only one foreign
key with closed domain; so Figure 6 suffices for it.

In Walmart and MovieLens1M, it was safe to avoid both
joins. Our rule predicted this correctly. At the opposite end,
avoiding either join in Yelp and BookCrossing blows up the
error. Our rule predicted this too correctly. This shows
the need for decision rules such as ours: the state-of-the-art
JoinAll misses the speedup opportunities on Walmart and
MovieLens1M, while its naive opposite NoJoins causes the
error to blow up on Yelp and BookCrossing. On Flights
though, our rule predicted that Airlines is safe to avoid, but
not the other two attribute tables. Yet, it turned out that
even the other two could have been avoided. This is an
instance of the “missed opportunities” we had anticipated
– recall that our rules are conservative (Figure 1). LastFM
and BookCrossing also have an attribute table each that was
deemed not safe to avoid, but it turned out that they could
have been avoided. However, the results for JoinAll suggest
that the features from those tables were not useful anyway;
such opportunities are beyond the scope of this work.

5.2.2 Sensitivity to Thresholds

The TR rule uses τ = 20 based on our simulation results.
Similarly, we had picked ρ = 2.5 for the ROR rule. We now
validate the sensitivity of the rules to the threshold settings
by comparing them with the actual TR and ROR values on
the real data. Figure 8(B) shows the results.

We see that the ROR is almost linear in the inverse square
root of the TR even on the real data. Many attribute tables
of Walmart, MovieLens1M, Flights, and Expedia lie below
the thresholds chosen for either rule. They were all correctly
predicted to be safe to avoid. Both the attribute tables of
Yelp and one of BookCrossing were correctly predicted to
be not safe to avoid. The others fall in between and include
some “missed opportunities”. But note that there is no case
in which avoiding an attribute table that was deemed safe
to avoid by the TR rule caused the error to blow up.

Finally, we also tried a higher error tolerance of 0.01 in-
stead of 0.001. This yielded new thresholds τ = 10 and
ρ = 4.2 based on Figure 4. This setting correctly predicted
that two more joins could be avoided (both on Flights).

5.2.3 What if Foreign Keys are Dropped?
Analysts sometimes judge foreign keys as being too “unin-

terpretable” and simply drop them. To assess the impact of
this choice, we compare JoinOpt (whose accuracy is similar
to JoinAll) with JoinAllNoFK, which is similar to JoinAll,
but drops all foreign keys a priori. Figure 8(C) shows the
results. In 6 of the 7 datasets, dropping foreign keys proved
to be catastrophic for accuracy for both forward and back-
ward selection. As we explained in our theoretical analysis
in Section 3.2 (Figure 2), this is primarily because dropping
foreign keys (JoinAllNoFK) might cause the bias to blow up
drastically, while JoinOpt does not increase the bias.

5.3 Other ML Classifiers
It is natural to wonder if the trends observed on Naive

Bayes would translate to other ML models. Note that the
theoretical results and arguments in Section 3 apply to ML
classifiers in general. Nevertheless, we now discuss another
popular classifier – logistic regression. We also consider the
popular Tree-Augmented Naive Bayes model (TAN), but
due to space constraints, we discuss TAN in the appendix.

Unlike Naive Bayes, the most popular feature selection
method for logistic regression is the “embedded method” of
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Figure 9: Holdout test errors for logistic regression
with regularization for the same setup as Figure 6.

regularization that constrains the L1 or L2 norm of the co-
efficient vector [18, 19]. We consider both and use the well-
tuned implementation of logistic regression from the popular
glmnet library in R [14]. Figure 9 presents the results. We
see that the errors of JoinOpt are comparable to that of
JoinAll with L1. Thus, the trends are the same as Naive
Bayes, which agrees with our theoretical results. Interest-
ingly, L2 errors are significantly higher than L1 errors. This
is an artefact of the data existing in a sparse feature space
for which L1 is known to be usually better than L2 [19].

5.4 Discussion: Implications for Analysts
Our work presents at least three major practical implica-

tions. These are based on our conversations with analysts at
multiple settings – a telecom company, a Web company, and
an analytics vendor – about our results. First, analysts often
join all tables almost by instinct. Our work shows that this
might lead to much poorer performance without much accu-
racy gains. Avoiding joins that are safe to avoid can speed
up the exploratory process of comparing feature sets and
ML models. Our rules, especially the easy-to-understand
TR rule, help with this task. Second, we found many cases
where avoiding some joins led to a counter-intuitive increase
in accuracy. Thus, at the least, it might help to try both
JoinOpt and JoinAll. Third, analysts often drop all foreign
key features (even if they have closed domains, e.g., StoreID
in Walmart) since they subjectively deem such features as
too “uninterpretable.” Our work shows that this ad hoc step
could seriously hurt accuracy. This helps analysts be more
informed of the precise consequences of such a step.

Finally, most of the burden of feature engineering (de-
signing and choosing features) for ML falls mostly on ana-
lysts [12, 21]. But, the database community is increasingly
recognizing the need to provide more systems support for
feature engineering, e.g., Columbus [24, 46] provides declar-
ative feature selection operations along with a performance
“optimizer.” We think it is possible for such systems to in-
tegrate our decision rules for avoiding joins either as new
optimizations or as “suggestions” for analysts.

6. RELATED WORK
We now explain how our problem and ideas relate to prior

work in both the database and ML literature.

Database Dependencies. Given a set of FDs, a rela-
tion can be decomposed into BCNF (in most cases) [5, 8].
Our work deals with the opposite scenario of joins result-
ing in a relation with FDs. This scenario was also studied
in [29], but their goal was to avoid the materialization of
the joins to improve ML performance. Our work focuses
on the more fundamental question of whether such joins are
even needed for ML in the first place from an accuracy per-

spective. There are database dependencies that are more
general than FDs [5]. We think it is interesting future work
to explore the implications of these more general database
dependencies for ML and feature selection.

Graphical ML Models. The connection between embed-
ded MVDs and probabilistic graphical models in ML was
first shown by [34] and studied further by [44]. FDs are
much stronger constraints than MVDs and cause feature re-
dundancy, not just conditional independence. We perform
a theoretical and empirical analysis of the effects of such
redundancy in terms of its implications for avoiding joins.

Feature Selection. There is a large body of work in the
ML and data mining literature whose focus is to design new
feature selection methods to improve ML accuracy [17–19].
Our focus is not on designing new feature selection methods,
but on understanding the effects of joins on feature selection.
Our work is orthogonal to the feature selection method used.
The redundancy-relevancy tradeoff is also well-studied in the
ML literature [18, 23, 45]. There is also some prior work on
inferring approximate FDs from the data and using them
as part of feature selection [42]. However, all these meth-
ods generally focus on approximately estimating redundancy
and relevancy using the dataset instance [18]. In contrast,
our results are based on the schema, which enables us to
safely avoid features without even looking at instances, but
rather just the catalogs. To the best of our knowledge, no
feature selection method has this radical capability. A tech-
nique to “bias” the input and reduce the number of features
was proposed by FOCUS [6]. At a high level, our rules are
akin to a “bias” in the input. But FOCUS still requires ex-
pensive computations on the instance, unlike our rules.

Analytics Systems. There is growing interest in both in-
dustry and academia to more closely integrate ML with data
processing [3, 9, 16, 20, 26, 27, 47]. In this context, there is a
growing recognition that feature engineering is one of the
most critical bottlenecks for ML [7,28,29,36,46]. Our work
helps make it easier for analysts to apply feature selection
over normalized data. We hope our work contributes to
more research in this important direction.

7. CONCLUSION AND FUTURE WORK
In this era of“big data”, it is becoming almost“big dogma”

that more data and features are somehow always better for
ML. Our work makes a contrarian case that in some situ-
ations, “less is more.” Specifically, using theoretical, simu-
lation, and empirical analyses, we show that in some cases,
which can be predicted, features obtained using key-foreign
key joins might not improve accuracy much, but degrade
performance. Our work opens up new connections between
data management, ML, and feature selection, and raises new
fundamental research questions at their intersection.

First, it is an open question as to how ML accuracy is
affected by other database dependencies, and how we can
better exploit schema information to simplify feature engi-
neering. Extending our results to numeric feature spaces and
classifiers with infinite VC dimension is another interesting
avenue. Finally, from conversations with analysts about our
results, we learned that they were interested in our TR rule
because it helps them quickly decide which tables to even
start with (often, from among over a dozen tables) for deeper
analytics. This suggests the whole process of source selection
and feature engineering might have more open questions.
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B. EXTENDED BACKGROUND

Definition B.1. Mutual information. Given two ran-
dom variables A and B with domains DA and DB, their
mutual information is I(A;B) = H(B) − H(B|A), where
H(B) is the entropy of B. Thus, we have:

I(A;B) =
∑
a∈DA

∑
b∈DB

P (a, b)log P (a,b)
P (a)P (b)

Definition B.2. Weak relevance. A feature F ∈ X is
weakly relevant iff P (Y |X) = P (Y |X − {F}) and ∃Z ⊆
X− {F} s.t. P (Y |Z, F ) 6= P (Y |Z).

Definition B.3. Markov blanket. Given a feature F ∈
X, let MF ⊆ X − {F}; MF is a Markov Blanket for F iff
P (Y,X− {F} −MF |MF , F ) = P (Y,X− {F} −MF |MF ).

Definition B.4. Redundant feature. A feature F ∈ X
is redundant iff it is weakly relevant and it has a Markov
blanket in X.

C. PROOFS

Proposition C.1. In T, all F ∈ XR are redundant.

Proof. Consider an arbitrary feature F ∈ XR. We start
by showing that F is weakly relevant. To show this, we
need to prove that P (Y |X) = P (Y |X − {F}) and ∃Z ⊆
X − {F} s.t. P (Y |Z, F ) 6= P (Y |Z). For the first part, we
observe that due to the FD FK → XR, fixing FK auto-
matically fixes XR (and hence F ). Thus, fixing X auto-
matically fixes X − {F} and vice versa, which implies that
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P (Y |X) = P (Y |X− {F}). As for the second part, we only
need to produce one instance. Choose Z = φ, which means
we need to show that it is possible to have P (Y |F ) 6= P (Y ).
It is clearly trivial to produce an instance satisfying this
inequality. Thus, F is weakly relevant. Next, we show
that F has a Markov Blanket MF ⊆ X − {F}. In fact,
we have MF = {FK}. This is because the FD FK →
XR causes F to be fixed when FK is fixed, which implies
MF ∪{F} is fixed when MF is fixed and vice versa. Hence,
P (Y,X− {F} −MF |MF , F ) = P (Y,X− {F} −MF |MF ).
Thus, overall, F is a redundant feature. Since F was arbi-
trary, all features in XR are redundant.

Next, we extend the previous result to a more general set
of FDs. We start with a definition.

Definition C.1. A set of FDs Q over X is acyclic iff the
digraph on X created as follows is acyclic: include an edge
from feature Xi to Xj if there is an FD in Q in which Xi is
in the determinant set and Xj is in the dependent set.

Corollary C.1. Given a table T(ID, Y,X) with a canon-
ical acyclic set of FDs Q on the features X, a feature that
appears on the right-hand side of an FD in Q is redundant.

Proof. The proof is a direct extension of the proof for
Theorem C.1, and we only present the line of reasoning here.
We convert T into a relational schema in Boyce-Codd Nor-
mal Form (BCNF) using standard techniques that take Q
as an input [41]. Since ID is the primary key of T, both ID
and Y will be present in the same table after the normal-
ization (call it the “main table”). Now, features that occur
on the right-hand side of an FD will occur in a separate ta-
ble whose key will be the features on the left-hand side of
that FD. And there will be a KFKD between a feature (or
features) in the main table and the keys of the other tables
in a manner similar to how FK refers to RID. Thus all
features that occur on the right-hand side of an FD provide
no more information than the features in the main table in
the same way that XR provides no more information than
FK in Theorem C.1. Hence, any feature that occurs on the
right-hand side of an FD in Q is redundant.

Theorem C.2. ∀F ∈ XR, I(F ;Y ) ≤ I(FK;Y )

Proof. Let the FD FK → XR be represented by a
collection of functions of the form fF : DFK → DF for
each F ∈ XR. Our goal is to show that I(FK;Y ) ≥
I(F ;Y ), ∀F ∈ XR.

Consider any F ∈ XR. We have the following:

I(F ;Y ) =
∑
x,y

P (F = x, Y = y) log
P (F = x, Y = y)

P (F = x)P (Y = y)

I(FK;Y ) =
∑
z,y

P (FK = z, Y = y) log
P (FK = z, Y = y)

P (FK = z)P (Y = y)

Due to the FD FK → XR, the following equalities hold:

P (F = x) =
∑

z:fF (z)=x

P (FK = z)

P (F = x, Y = y) =
∑

z:fF (z)=x

P (FK = z, Y = y)

Since, all the quantities involved are non-negative, we can
apply the log-sum inequality, which is stated as follows.

Definition C.2. Given non-negative numbers a1, . . . , an
and b1, . . . , bn, with a =

∑
ai and b =

∑
bi, the following

inequality holds, and is known as the log-sum inequality:

n∑
i=1

ailog(
ai
bi

) ≥ alog(
a

b
)

In our setting, fixing (x, y), we have a = P (F = x, Y = y)
and ais are P (FK = z, Y = y), for each z : fF (z) = x.
Similarly, b = P (F = x)P (Y = y) and bis are P (FK =
z)P (Y = y), for each z : fF (z) = x. Thus, we have the
following inequality:

∑
z:fF (z)=x

P (FK = z, Y = y)log(
P (FK = z, Y = y)

P (FK = z)P (Y = y)
) ≥

P (F = x, Y = y)log(
P (F = x, Y = y)

P (F = x)P (Y = y)
)

Since this is true for all values of (x, y), summing all the
inequalities gives us I(FK;Y ) ≥ I(F ;Y ).

Proposition C.2. It is possible for a feature F ∈ XR to
have higher IGR(F ;Y ) than IGR(FK;Y ).

Proof. It is trivial to construct such an instance. Thus,
we omit the proof here.

Proposition C.3. HX = HFK ⊇ HXR

Proof. Recall that we had assumed XS = φ. Thus,
X ≡ {FK} ∪XR. We first prove the first part. By defini-
tion, given Z ⊆ X, we have: HZ = {f |f ∈ HX ∧ ∀u,v ∈
DX,u|Z = v|Z =⇒ f(u) = f(v). It is easy to see that
the FD FK → XR automatically ensures that this condi-
tion is true for Z = {FK}. This is because ∀u,v ∈ DX s.t.
u|FK = v|FK , the FD implies u|XR

= v|XR
, which in turn

implies u = v, and hence, f(u) = f(v). Thus, HX = HFK .
As for the second part, we show that for any arbitrary

f ∈ HXR , ∃gf ∈ HFK s.t. f = gf . Note that an f ∈
HXR satisfies the condition ∀u,v ∈ DX,u|XR

= v|XR
=⇒

f(u) = f(v). Similarly, a g ∈ HFK satisfies the condition
∀u,v ∈ DX,u|FK = v|FK =⇒ g(u) = g(v). We now
pick some gf ∈ HFK that also satisfies the following con-
dition: ∀u ∈ DX, gf (u) = f(u). Such a gf necessarily
exists because of three reasons: HXR is defined based only
on those values of XR that are actually present in R, the FD
FK → XR ensures that there is at least one value of FK
that maps to a given value of XR, and the same FD also
ensures (by definition) that ∀u,v ∈ DX,u|FK = v|FK =⇒
u|XR

= v|XR
. Thus, overall, HXR ⊆ HFK . Note that the

equality arises when there is exactly one value of FK that
maps to one value of XR in R, i.e., all tuples in R have
distinct values of XR.

D. MORE SIMULATION RESULTS
Figure 10 presents the remaining key plots for the sim-

ulation scenario in which the true distribution is succintly
captured using a lone feature Xr ∈ XR. We also studied
two other scenarios: one in which all of XR and XS are part
of the true distribution, and another in which only XS and
FK are. Figure 11 presents the plots for the former. Since
the latter scenario in which XR is useless did not reveal any
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Figure 10: Remaining simulation results for the same scenario as Figure 3. (A) Vary dR while fixing
(nS , dS , |DFK |, p) = (1000, 4, 100, 0.1). (B) Vary dS while fixing (nS , dR, |DFK |, p) = (1000, 4, 40, 0.1). (C) Vary p
while fixing (nS , dS , dR, |DFK |) = (1000, 4, 4, 200).
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Figure 11: Simulation results for the scenario in which all of XS and XR are part of the true distribution.
(A) Vary nS while fixing (dS , dR, |DFK |) = (4, 4, 40). (B) Vary |DFK | while fixing (nS , dS , dR) = (1000, 4, 4). (C)
Vary dR while fixing (nS , dS , |DFK |) = (1000, 4, 100). (D) Vary dS while fixing (nS , dR, |DFK |) = (1000, 4, 40).
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Figure 12: Scatter plots based on all the results of the simulation experiments referred to by Figure 11.
(A) Increase in test error caused by avoiding the join (denoted “∆Test error”) against ROR (B) ∆Test error
against tuple ratio, and (C) ROR against inverse square root of tuple ratio.
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Figure 13: Effects of foreign key skew for the scenario referred to by Figure 3. (A) Benign skew: P (FK) has
a Zipfian distribution. We fix (nS , nR, dS , dR) = (1000, 40, 4, 4), while for (A2), the Zipf skew parameter is set to
2. (B) Malign skew: P (FK) has a needle-and-thread distribution. We fix (nS , nR, dS , dR) = (1000, 40, 4, 4), while
for (A2), the needle probability parameter is set to 0.5.
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Figure 14: Extra notation used in Section 4.2

interesting new insights, we skip it for brevity. We also plot
the difference in test error between NoJoin and JoinAll for
the scenario in which all of XR and XS are part of the true
distribution in Figure 12. We see that the same trends are
similar to Figure 4, and that the same thresholds for ρ and
τ work here as well.

Foreign Key Skew. So far, we had assumed that FK values
are not skewed. Neither the ROR nor the TR account for
skew in P (FK). Foreign key skew is a classical problem in
the database literature due to its effects on parallel joins [41],
but its effects on ML have not been studied before. We now
shed some light on the effects of skew in P (FK) on ML.

We start by observing a key twist to the database-style
understanding of skew: skew in P (FK) per se is less impor-
tant than its implications for learning the target. Thus, we
classify skew in P (FK) into two types – benign, and ma-
lign. Loosely defined, benign skew in P (FK) is that which
does not make it much harder to learn the target, while ma-
lign skew is the opposite. We give some intuition using the
scenario of a lone feature Xr ∈ XR being part of the true
distribution. Suppose P (Xr) has no skew (the distribution
is based on T, not R). Since multiple FK values might map
to the same Xr value, there might still be high skew in
P (FK). But what really matters for accuracy is whether
P (Y ) is skewed too, and whether that skew “colludes” with
the skew in P (FK).

There are three possible cases when there is skew in P (FK):
(1) P (Y ) is not skewed, (2) P (Y ) is skewed (some class
label is dominant), and P (FK) is skewed such that low-
probability FK values co-occur mostly with high-probability
Y values, and (3) P (Y ) is skewed, and P (FK) is skewed
such that low-probability FK values co-occur mostly with
low-probability Y values. Cases (1) and (2) represent benign
skew – even though some FK values have low probability,
together, they might still be able to learn the target concept
reasonably well because there might be “enough” training
examples for each class label. But case (3) is an instance
of malign skew – essentially FK “diffuses” the already low
probability of some Y value(s) into a potentially large num-
ber of low-probability FK values. This issue might not arise
if Xr was used instead (i.e., the join was not avoided) since
typically |DXr | � |DFK |. Thus, malign skews in P (FK)
might make it less safe to avoid the join.

To verify the above, we performed two more simulation
experiments. First, we embed a benign skew in FK using
the standard Zipf distribution, which is often used in the
database literature [32]. Second, we embed a malign skew
in FK using what we call a“needle-and-thread”distribution:
one FK value has a probability mass p (“needle” probabil-
ity) and it is associated with one Xr value (and hence one
Y value). The remaining 1−p probability mass is uniformly
distributed over the remaining (nR − 1) FK values, all of

which are associated with the other Xr value (and hence,
the other Y value). Intuitively, this captures the extreme
case (3) in which the skew in FK colludes with the skew in
Y . Figure 13 presents the results for UseAll and NoJoin.
As expected, the benign skew does not cause the test error
of NoJoin to increase much, but the malign skew does. Fig-
ure 13(A) also suggests that benign skew might sometimes
work in favor of NoJoin (this is primarily because the bias
increased for UseAll). But as Figure 13(B1) shows, the test
error of NoJoin increases when the skew in Y colludes with
the skew in FK. However, as Figure 13(B2) shows, this gap
closes as the number of training examples increases.

Thus, we need to account for malign skews in FK when
using either the ROR or the TR for avoiding joins. While it
is possible to detect malign skews using H(FK|Y ), we take
a simpler, albeit more conservative, approach. We just check
H(Y ), and if it is too low (say, below 0.5, which corresponds
roughly to a 90%:10% split), we do not avoid the join. This
is in line with our guiding principle of avoiding false positives
but tolerating some false negatives. It also captured all the
cases of malign skews in our above simulations. We leave
more complex approaches for handling skew to future work.

E. OTHER ML MODELS: TAN
TAN strikes a balance between the efficiency of Naive

Bayes and the expressive power of general Bayesian net-
works [15]. TAN searches for strong conditional dependen-
cies among pairs of features in X given Y using mutual in-
formation to construct a tree of dependencies on X. Sur-
prisingly, TAN might actually be less accurate than Naive
Bayes on datasets with the KFKDs we study because TAN
might not even use XR. Intuitively, this is because the FD
FK → XR causes all features in XR to be dependent on
FK in the tree computed by TAN. This leads to XR par-
ticipating only via unhelpful Kronecker delta distributions,
viz., P (XR|FK). Depending on how structure learning is
done, general Bayesian networks could face this issue too.
We leave techniques to solve this issue to future work.

F. OUTPUT FEATURES ON REAL DATA
For each dataset and feature selection method combina-

tion, we provide the output feature sets of both JoinAll and
JoinOpt. We omit Yelp and BookingCrossing since none of
the joins were avoided by JoinOpt on those two datasets.

Walmart:

Forward Selection:

JoinAll = JoinOpt = {Dept, StoreID, IndicatorID}
Backward Selection:

JoinAll = {Dept, StoreID, Type, Size, FuelPriceSt-
dev, TempStdev, FuelPriceAvg, CPIStdev}
JoinOpt = {Dept, StoreID, IndicatorID}

MI-Based Filter:

JoinAll = JoinOpt = {Dept, StoreID, IndicatorID}
IGR-Based Filter:

JoinAll = {Dept, StoreID, Type, Size}
JoinOpt = {Dept, StoreID, IndicatorID}

Expedia:

Forward Selection:



JoinAll = JoinOpt = {HotelID, BookingWindow, Sat-
NightBool, Year, RandomBool, ChildrenCount, Score2}

Backward Selection:

JoinAll = JoinOpt = {HotelID, BookingWindow, Time,
SatNightBool, RandomBool, ChildrenCount, Score2,
AdultsCount, LengthOfStay, VisitorCountry, Room-
Count, SiteID}

MI-Based Filter:

JoinAll = JoinOpt = {HotelID, Score2}
IGR-Based Filter:

JoinAll = {HotelID, Score2, PromoFlag, Booking-
Count}
JoinOpt = {HotelID, Score2, PromoFlag}

Flights:

Forward Selection:

JoinAll = JoinOpt = {AirlineID, Eq5, Eq4, Eq10,
Eq20, Eq1, Eq17, Eq16, Eq6, Eq7, Eq13, Eq9, Eq11}

Backward Selection:

JoinAll = {AirlineID, Eq5, Eq4, Eq10, Eq20, Eq1,
Eq17, Eq16, Eq6, Eq7, Eq13, Eq9, Eq11, Eq2, Eq3,
Name1, Active, Eq12, Eq15, Eq19}
JoinOpt = {AirlineID, Eq5, Eq4, Eq10, Eq20, Eq1,
Eq17, Eq16, Eq6, Eq7, Eq9, Eq11, Eq2, Eq17, Eq14,
Eq15, Eq18, Eq19}

MI-Based Filter:

JoinAll = JoinOpt = {AirlineID, DestAirportID}
IGR-Based Filter:

JoinAll = {AirlineID, Active, Eq12, Eq12, Eq15, Eq7,
Eq8, Eq9, Eq6, Eq2, Eq1, Eq3, Eq11}

JoinOpt = {AirlineID, Eq12, Eq12, Eq15, Eq7, Eq8,
Eq9, Eq6, Eq2, Eq1, Eq3, Eq11, Eq19}

MovieLens1M:

Forward Selection:

JoinAll = {UserID, MovieID, Genre18}
JoinOpt = {UserID, MovieID}

Backward Selection:

JoinAll = {UserID, MovieID, Genre18, Gender, Genre3,
Genre4, Genre16}
JoinOpt = {UserID, MovieID}

MI-Based Filter:

JoinAll = JoinOpt = {UserID, MovieID}
IGR-Based Filter:

JoinAll = {UserID, MovieID, Genre10}
JoinOpt = {UserID, MovieID}

LastFM:

Forward Selection:

JoinAll = JoinOpt = {UserID}
Backward Selection:

JoinAll = {UserID, Gender, Genre2, Genre3, Genre4,
Genre5}
JoinOpt = {UserID}

MI-Based Filter:

JoinAll = JoinOpt = {UserID}
IGR-Based Filter:

JoinAll = JoinOpt = {UserID}
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