
A Survey of the Existing Landscape of ML Systems

Arun Kumar† Robert McCann‡ Jeffrey Naughton† Jignesh M. Patel†
†University of Wisconsin-Madison

‡Microsoft
†{arun, naughton, jignesh}@cs.wisc.edu, ‡robert.mccann@microsoft.com

ABSTRACT
We survey the existing landscape of ML systems to iden-
tify gaps that motivate our vision of a unifying abstrac-
tion to support the iterative process of model selection
and lay a principled foundation for model selection man-
agement systems.

1. INTRODUCTION
We present a detailed survey of the existing land-

scape of ML systems. We categorize the existing
and proposed ML systems into six major categories:
(1) Packages of ML Implementations, (2) Systems
with a Linear Algebra-based Language, (3) Model
Management Systems, (4) Systems for Feature En-
gineering, (5) Systems for Algorithm Selection, and
(6) Systems for Parameter Tuning. For each cate-
gory (or sub-category, wherever applicable), we dis-
cuss a few prominent examples from both research
and practice. Note that it is possible for a sys-
tem to belong to more than one category, since it
could potentially have multiple simultaneous goals.
Our categorization is not intended to be exhaustive.
Rather, we aim to give a high-level picture of the
kinds of functionalities that have been considered,
and underscore the gaps that exist to motivate our
vision [26]. Table 1 summarizes the categories.

2. PACKAGES OF ML IMPLEMENTA-
TIONS

Over the last two decades, both the industry and
academic research projects have produced packages
and toolkits that implement many ML algorithms
as well as other statistical functionalities. We clas-
sify these systems loosely into three sub-categories.

2.1 Statistical Software Packages
These systems provide implementations of many

established as well as new statistical and ML tech-

niques. Commercial packages such as SAS and SPSS
are used widely in enterprise settings and are often
integral to their data analytics infrastructure [6].
Typically, these packages also provide rich visualiza-
tion capabilities as well as graphical user-interfaces
that help improve the usability of such systems, say,
for analysts easily visualize the effects of their ML
models [6]. R is a popular open-source environ-
ment and language that provides free implementa-
tions of almost all well-known ML techniques in the
form of libraries. R has a large community of users
that contribute the code of new techniques, includ-
ing many domain-specific ones. 1 And similar to
the commercial packages, R also provides a rich set
of visualization capabilities as well as extensibility
mechanisms to connect it to other languages and
systems. These packages were developed primarily
for in-memory and interactive usage, i.e., for sce-
narios in which the data fit in memory, and an ana-
lyst is in the loop with the system. However, some
of them also provide scalable implementations of a
subset of ML techniques.

2.2 Data Mining Toolkits
Unlike the statistical software packages, data min-

ing toolkits have a narrower focus and provide a
smaller set of ML implementations. The open-source
toolkit Weka is popular for academic usage, and is
primarily meant for in-memory and interactive us-
age. 2 Mahout is an open-source toolkit that pro-
vides implementations of some ML techniques on
Hadoop [1]. Thus, Mahout is primarily meant for
distributed and batch processing of large amounts of
data on a cluster. Mahout, and similar distributed
implementations (that are proprietary), are popular
among Web companies that deal with PBs of data.
Most database companies also sell their own data

1http://cran.r-project.org
2http://www.cs.waikato.ac.nz/ml/weka



Category Sub-category Description Examples 

Packages of ML 
Implementations 

Statistical Software Packages 
Software toolkits with a large set of implementations of ML 
algorithms, typically with visualization support 

SAS, R, Matlab, SPSS 

Data Mining Toolkits 
Software toolkits with a relatively limited set of ML algorithms, 
typically over a data platform, possibly with incremental maintenance 

Weka, AzureML, ODM, MADlib, 
Mahout, Hazy-Classify 

Developability-oriented 
Frameworks 

Software frameworks and systems that aim to improve developability, 
typically from academic research 

GraphLab, Bismarck, MLBase 

SRL Frameworks Implementations of statistical relational learning (SRL) DeepDive 

Deep Learning Systems Implementations of deep neural networks Google Brain, Microsoft Adam 

Bayesian Inference Systems Systems providing scalable inference for Bayesian ML models SimSQL, Elementary, Tuffy 

Linear Algebra-
based Systems 

Statistical Software Packages Systems offering an interactive statistical programming environment SAS, R, Matlab 

R-based Analytics Systems 
Systems that provide R or an R-like language for analytics, typically 
over a data platform, possibly with incremental maintenance 

RIOT, ORE, SystemML, LINVIEW 

Model Management Systems Systems that provide querying, versioning, and deployment support SAS, LongView, Velox 

Systems for Feature Engineering Systems that provide abstractions to make feature engineering easier Columbus , DeepDive 

Systems for Algorithm Selection Systems that provide abstractions to make algorithm selection easier MLBase, AzureML 

Systems for Parameter Tuning Systems that provide abstractions to make parameter tuning easier SAS, R, MLBase, AzureML 

Table 1: Major categories of ML systems surveyed, along with examples from both products and research.
It is possible for a system to belong to more than one category since it could have multiple key goals.

mining toolkits that implement a set of ML tech-
niques in an in-RDBMS fashion, i.e., they operate
directly over data resident in an RDBMS. These
toolkits are used primarily by enterprise companies
that use RDBMSs to manage their data. MADlib
is an open-source project similar to Mahout, ex-
cept that the ML techniques are implemented in an
RDBMS instead of Hadoop [21]. Both the RDMBS-
based and Hadoop-based implementations provide
scalability for the ML techniques. AzureML pro-
vides a cloud-based visual environment for construct-
ing ML workflows [2]. It provides scalable and par-
allel implementations of popular ML techniques as
well as data processing capabilities. Other projects
that provide scalable and/or usable implementa-
tions of ML techniques include Vowpal Wabbit3.
Some systems also provide incremental maintenance
of the learned ML models and/or inference results
as the underlying datasets evolve. For example, the
Hazy-Classify system includes several optimization
techniques to incrementally maintain the inference
results of linear classifiers in an RDBMS [23].

2.3 Developability-oriented Frameworks
Complementing the efforts of both industry and

the open-source community, a number of research
projects have also produced systems that provide
implementations of ML techniques. However, rather
than simply provide a “laundry list” of implementa-
tions, these projects aim to improve the productiv-

3http://hunch.net/~vw

ity of the software developers that implement the
ML techniques, i.e., the developability of ML sys-
tems. We provide a brief description a few major
research projects in this space.

Graphlab provides a graph-based data model, and
a vertex-oriented programming abstraction for im-
plementing graph analysis and graph-based ML al-
gorithms [27]. Examples of popular ML techniques
that fit well into its abstraction include matrix com-
pletion using Alternating Least Squares, lasso using
a form of coordinate descent, and Gaussian Mixture
Models. By abstracting out graph-based computa-
tions into the three stages of Gather, Apply, and
Scatter, GraphLab obviates the need for a developer
to handle low-level implementation details such as
scheduling, parallelization, and fault tolerance. In
most cases, Graphlab requires the graph to fit in
memory, but there are different versions for single-
node and distributed memory. It uses an MPI-based
communication framework in its implementation.

Bismarck provides a unified framework for in-
tegration of convex optimization-based ML tech-
niques into an RDBMS by using stochastic gradi-
ent descent (SGD) as the underlying optimization
algorithm [14]. Examples of popular ML techniques
that fit their framework include logistic regression,
linear regression and lasso, linear Support Vector
Machines, and Conditional Random Fields. By ex-
ploiting the abstraction of a user-defined aggregate
function that almost every major RDBMS provides,
Bismarck obviates the need for a developer to han-

http://hunch.net/~vw


dle low-level implementation details such as scala-
bility to larger-than-memory data, and paralleliza-
tion. Instead, it simply uses the underlying RDBMS
for data management and parallelization. On shared-
memory parallel systems, Bismarck uses the HOG-
WILD! approach of racing updates to parallelize
SGD [31]. But on shared-nothing systems, includ-
ing Hadoop-based systems such as Hive, it uses a
model averaging approach for SGD [37].

The MLBase system aims to improve both the
developability and usability of distributed machine
learning [25] To improve developability, MLBase pro-
vides an API named MLI that is built around two
data types – MLTable, which is basically a table,
and LocalMatrix, which is simply a node-local ma-
trix. MLI provides a library of interfaces as well as
some implementations for a suite of common oper-
ations on these two data types that help in imple-
menting common ML algorithms with a few lines
of code. Examples of popular ML techniques that
can be handled with their API include matrix com-
pletion using Alternating Least Squares as well as
many convex optimization-based techniques using
SGD (similar to Bismarck). Since MLBase uses
Spark4 as its underlying data processing engine, a
developer need not worry about issues such as dis-
tributed execution and fault tolerance.

2.4 Statistical Relational Learning (SRL)
Frameworks

Over the last decade, statistical relational learn-
ing models have increased in popularity [16]. Es-
sentially, these sophisticated techniques enable one
to learn a joint model over an entire database of
relations with complex relationships among them.
One of the most prominent of such models is called
a Markov Logic Network (MLN).

An MLN is basically a set of first-order logic rules
over a database schema, but each rule is assigned
a numeric weight that captures the uncertainty of
the rule being true [30]. Learning an MLN involves
computing these weights given a training dataset.
Inference with an MLN involves determining miss-
ing facts in an incomplete query relation (a “pos-
sible world” in probabilistic database terminology),
possibly with their marginal probabilities. MLNs
are a powerful framework that unify logical and sta-
tistical approaches to machine learning. In fact,
many popular ML techniques can be expressed us-
ing MLNs, e.g., logistic regression, Conditional Ran-

4https://spark.apache.org

dom Fields, and correlation clustering.
Alchemy is the first-implementation of learning

and inference in MLNs, but it is primarily an in-
memory toolkit [4]. DeepDive is a more scalable
system for statistical relational learning that is pri-
marily designed for knowledge-base construction [33].
It generalizes an MLN in the sense that it enables an
analyst to specify more general relationships than
first-order logic rules by using user-defined func-
tions in Python. DeepDive takes care of scalable
learning of, and inference on, factor graphs, which
is the underlying graph-based formalism for MLNs.

2.5 Deep Learning Systems
Neural networks with several hidden layers, known

as “deep learning” networks, are increasing in pop-
ularity, especially for complex ML tasks such as
speech recognition and computer vision. This is
primarily due to the their ability to learn complex
non-linear functions in an unsupervised manner as
well as the decreasing cost of cluster computing.

Multiple Web companies have built their own deep
learning systems, with Google publishing some tech-
nical details of their system [12]. Google’s Brain
system is based on a distributed learning frame-
work to train a large, five-layer neural network on
a cluster with hundreds of machines. They devise a
new technique to parallelize SGD using a combina-
tion of model and data parallelism as well as asyn-
chronous model updates. A similar parallelization
technique is devised for L-BFGS. Their implemen-
tation of SGD achieves state-of-the-art quality and
performance on benchmark tasks in speech and im-
age recognition. Since neural networks obviate the
need for engineering features, deep learning systems
are increasingly used for such complex ML tasks,
even though the learned models are mostly uninter-
pretable to humans [12]. Several other Web-related
companies such as Baidu, Facebook, and Microsoft
have also built their own deep learning systems.

2.6 Scalable Bayesian Inference Systems
A number of systems have focused on scaling and/or

speeding up inference in complex Bayesian ML mod-
els and factor graphs using data management ideas.
Inference in such models typically involves combi-
natorial problems, and often requires iterative sam-
pling methods such as Gibbs sampling [28].

The Tuffy system aims to scale MLN inference
using an RDBMS [30]. Inference in an ML involves
two phases – grounding (loosely defined as assign-
ing possible values to free random variables), and

https://spark.apache.org


search (exploring different feasible combinations of
variable assignments to minimize a cost function).
Tuffy recognizes that grounding involves relational
joins, and exploits the RDBMS join optimizer by ex-
pressing the grounding phase in SQL (unlike Alchemy,
which uses a naive in-memory nested loops join [4]).
Additionally, Tuffy implements a hybrid architec-
ture that performs grounding using SQL, but search
using a specialized in-memory subsystem that is
faster. Hence, Tuffy achieves higher scalability than
the alternative in-memory tools for MLN inference
such as Alchemy. Additionally, Tuffy exploits spe-
cial structures in the factor graphs underlying the
MLNs to enable partitioned parallelism during the
inference, which improves performance further.

The Elementary system, built as part of Deep-
Dive, aims to provide high-throughput inference via
Gibbs sampling on large factor graphs [35]. Ele-
mentary maintains a factor graph using separate
relations for the random variables and the factors.
It optimizes the core operation of Gibbs sampling-
based inference by casting it as a relational join,
and applying several data management techniques.
However, since the variables are updated during the
sampling, the process could involve random reads
and writes to relations. Hence, Elementary consid-
ers alternative view materialization strategies that
reduces I/O costs. Additionally, Elementary also
considers alternative buffer replacement strategies
and page layouts for the relations as part of its
tradeoff space for optimization. Since Elementary
explores more choices for these classical issues, it is
faster than existing RDBMS-based as well as other
systems for Gibbs sampling. Furthermore, since El-
ementary is designed as a middleware layer, it can
be integrated into a file system, key-value stores, or
other systems as well.

The SimSQL system aims to enable SQL-based
specification, simulation, and querying of database-
valued Markov Chains that is useful for Bayesian
ML [10]. SimSQL handles random variables as database
tables, and uses user-defined functions in SQL to
sample from various statistical distributions. The
generative process for a Bayesian ML model can be
specified in an extension of SQL that includes recur-
sive table definitions and iteration. Thus, SimSQL
enables inference techniques such as Gibbs sam-
pling, which is useful for Bayesian ML techniques
such as Bayesian linear regression and lasso, Latent
Dirichlet Allocation (LDA), and Gaussian Mixture
Models (GMMs). SimSQL converts the model spec-
ifications into a logical query plan and optimizes

them dynamically using partitioning and batching
heuristics. The system translates all operations into
MapReduce jobs executed with Hadoop. SimSQL
also improves developability because Bayesian ML
models can be expressed succintly in tens of lines
of SQL code instead of hundreds of lines in a pro-
cedural language such as Java or C++.

3. SYSTEMS WITH A LINEAR ALGEBRA-
BASED LANGUAGE

Many ML techniques can be elegantly expressed
as algebraic computations over matrices. Examples
of popular ML techniques that can be implemented
using a linear algebra-based language include lin-
ear regression with conjugate gradient, logistic re-
gression with trust region methods, and Gaussian
non-negative matrix factorization with multiplica-
tive updates.

3.1 Statistical Software Packages
Apart from libraries of ML implementations, sta-

tistical software packages such as R and SAS also in-
clude a linear algebra-based language [5,6]. The lan-
guage is usually interpreted, and the packages pro-
vide an interactive console-like environment for ana-
lysts to write statistical scripts. Essentially, datasets
can be loaded into the language environment and
manipulated using the operations of the language as
well as user-written functions. Furthermore, these
toolkits include general programming language func-
tionalities such as iterations and conditionals as well.
Thus, unlike most of the other systems in our dis-
cussion, the languages provided by these toolkits
are Turing-complete. Analysts can output desired
results to text files, or other formats.

3.2 R-based Analytics Systems
Over the last decade, R has become one of the

most popular environments for ad-hoc statistical
computing [5]. However, one of the main drawbacks
of R is that the data have to fit in memory. The
RIOT project aimed to address this issue by ab-
stracting out the data flow in R to enable transpar-
ent execution of R scripts on larger-than-memory
data [36]. Essentially, RIOT provides a middle-
ware that translates the operations in R into pro-
cedural SQL-based queries over an RDBMS. RIOT
also identifies many opportunities for optimizing the
performance of the system during the translation.
Many database companies such as EMC, HP, Or-
acle, and SAP have created products with similar
goals as RIOT. For example, Oracle R Enterprise



provides R as a front-end for an analyst and trans-
lates the computations over R data frames trans-
parently to queries over an RDMBS (or Hive) back-
end [3]. In contrast, IBM’s SystemML project de-
parts from R’s interpreted environment and takes a
compilation-based approach [17]. SystemML pro-
vides its own R-like language (but not entire R
per se) called DML. Statistical programs written
in DML are compiled down to MapReduce jobs on
Hadoop. Akin to a classical RDBMS optimizing a
SQL query, SystemML performs a number of op-
timizations while translating in order to improve
overall performance.

LINVIEW is a middleware for R-based analytics
systems that incorporates incremental maintenance
techniques [29]. By maintaining “delta” matrices
that capture small changes to input matrices ef-
ficiently, and by propagating them through linear
algebra programs cleverly, LINVIEW improves the
overall performance for small (low-rank) changes in
the input matrices. The system includes a com-
piler that automatically identifies the opportunities
for incremental updates on a given linear algebra-
based program that is based on common matrix op-
erations including matrix multiplication and matrix
inversion. LINVIEW achieves quadratic time com-
plexity for incrementally updating matrix multipli-
cation – an operation that would otherwise have
near-cubic complexity. But the tradeoff is that LIN-
VIEW has a significantly higher memory footprint
than re-evaluation, since it needs to maintain multi-
ple intermediate matrices in memory. Overall, LIN-
VIEW provides incremental maintenance for popu-
lar ML techniques based on linear algebra such as
ordinary least squares linear regression, and some
batch gradient descent-based methods.

4. MODEL MANAGEMENT SYSTEMS
Apart from standard learning and inference tasks,

a few systems aim to address auxiliary “model man-
agement” tasks that involve managing metadata at
different stages of the analytics lifecycle. Examples
of such tasks include integrated and ad-hoc query-
ing of ML models along with the data, versioning
and tracking the evolution of ML models, and de-
ployment of ML models to production. Many com-
mercial data mining toolkits integrated into RDBM-
Ses (say, from Oracle, Microsoft, or IBM) as well as
statistical software packages such as SAS also pro-
vide some model management capabilities. In order
to avoid repeating the discussion of those systems,
we restrict this discussion to systems that addressed

or raised interesting research questions.

4.1 LongView
The LongView project envisions a system that

enables integrated management and querying of re-
lational data and ML models in an RDBMS [7].
The authors draw high-level parallels between the
use of declarative query languages and cost-based
optimization in RDBMSs and the process of build-
ing and using ML models. They extend SQL with a
simple API that captures the basic tasks in an ap-
plied ML workflow such as learning an ML model
and using it for prediction. The system is expected
to automatically train a specified ML model by han-
dling parameter tuning, feature selection, and sam-
pling. The authors mention the possibilities of new
optimization techniques such as sharing work across
models. Model metadata such as parameters used,
training time, accuracy, etc. are stored and man-
aged as tables. However, it is not clear if a user can
understand or steer exactly how the system builds
the ML models, especially how it handles parameter
tuning, and feature selection.

4.2 Velox
The Velox project aims to make it easier to de-

ploy learned ML models into production for online
applications [11]. It includes a distributed memory-
based engine that caches both the models and pre-
dictions over data for low-latency delivery of pre-
dictions to user-facing applications such as recom-
mendation systems. Velox also handles new data
examples, e.g., new ratings by users, by retrain-
ing the learned ML models incrementally using a
new heuristic for matrix completion. In order avoid
the ML models from becoming stale, Velox includes
techniques to automatically monitor the quality of
the predictions and trigger offline retraining of ML
models using Spark and MLBase [25]. Velox also in-
cludes techniques for diversifying the predictions in
order to avoid feedback loops in collecting ratings
for the recommendation system. Apart from ma-
trix factorization-based models for recommendation
systems, Velox provides simple APIs for usage and
building of ML models that enable it to incorporate
other models such as SVMs and neural networks.

5. SYSTEMS FOR FEATURE ENGINEER-
ING

Designing and choosing the right features for ML
techniques is widely regarded as the most time-
consuming and labor-intensive, yet crucial, phase



of an applied machine learning project. [8, 13, 22,
24]. While we are not aware of a formal definition,
the term “feature engineering” is an umbrella term
that generally encompasses all activities that trans-
form raw data into a clean feature vector form that
is needed for the implementation of an ML tech-
nique [8,13,18,19]. As can be expected, feature en-
gineering is extremely diverse, with the following ac-
tivities giving a snapshot of what analysts do to en-
gineer features: converting a text-based e-mail into
a bag-of-words representation by counting word fe-
quencies for spam detection, extracting signals from
an image for face recognition, selecting a subset of
features about insurance customers for churn pre-
vention, ranking features about gene expression to
detect diseases, slicing and dicing data about prod-
ucts and users for a recommendation system, and
clustering data about account logins learn shapes in
the data that can be used as features to detect mali-
cious accounts. Typically, feature engineering is not
a one-shot linear process, but rather a complex, ex-
ploratory, and cyclical process of designing, testing,
and refining features [8]. Often, this involves train-
ing, inference, and testing of different ML models
in the “inner loop”.

Different subsets of the activities involved in fea-
ture engineering have received attention from the
ML and other communities. For example, selecting
a subset of features from a structured dataset to op-
timize some criterion is a problem known as “sub-
set selection”, which along with feature ranking is
considered to be part of the larger and well-studied
problem of “feature selection” [18, 19, 24]. Extract-
ing features from unstructured text has received
a lot of attention from the natural language pro-
cessing community [8, 33]. However, by and large,
extracting features from real-world data is consid-
ered a challenging “black art” by the ML commu-
nity [8,28]. This is primarily because the decision of
what constitutes “useful”, or even “usable” features
for an applied ML task is influenced by a complex
combination of factors that span from technical to
logistical, e.g., the characteristics of the data and
the application, desired ML quality, ML model in-
terpretability, constraints on time or computational
resources, policies of the organization, and legal re-
strictions [13,22,24]. Thus, it is perhaps not surpris-
ing that analysts often end up spending a bulk of
their time on feature engineering. But what might
be surprising is that not much research attention
has been paid to building tools that could help an-
alysts meet the challenge of feature engineering.

5.1 Columbus
The Columbus system aims to support an analyst

with the challenge of feature engineering [24, 34].
While statistical software packages and data min-
ing toolkits offer libraries of many feature selection
algorithms, Columbus recognizes that feature selec-
tion is typically not just a single algorithm, but
rather an analyst-in-the-loop process that involves
feature selection algorithms, descriptive statistics,
and data manipulations. Thus, Columbus provides
a declarative framework of operations for feature
selection as a domain-specific language that can be
used as a library in R itself. Feature selection pro-
grams are then translated to R, and possibly to an
underlying R-based analytics systems. However, a
key observation in Columbus is that there is often
a lot of scope for exploiting opportunities to share
computations and materialize intermediate results
across the operations in a feature selection program.
Thus, Columbus includes an optimizer that improves
overall performance by applying a suite of optimiza-
tion techniques from the classical database litera-
ture as well numerical analysis and statistical tech-
niques. By raising the process of feature selection to
a declarative level rather than procedural R scripts,
and by increasing the velocity of the exploratory
process, Columbus aims to make feature selection
both faster and easier for analysts. Furthermore,
since the “higher-level logic” of the process is avail-
able to the system, it can help manage provenance
to aid in debugging.

5.2 DeepDive
The DeepDive project aims to build an end-to-

end system for knowledge base construction by em-
ploying scalable learning and inference over factor
graphs [33]. A key goal of the system is to make it
easier for an analyst to design features that help im-
prove the knowledge base’s accuracy. Since DeepDive-
based applications deal a lot with textual and other
forms of unstructured data (in addition to struc-
tured data sources), DeepDive includes heavy ma-
chinery for feature engineering, especially over text.
Loosely speaking, a feature for a factor graph model
is a form of structured dependency between groups
of random variables (also termed a “correlation” in
their paper). Thus, DeepDive uses an MLN-based
language that enables analysts to specify features
using first-order logic statements or SQL queries.
Additionally, DeepDive also handles arbitrary user-
defined functions (written in a scripting language
like Python) that contain code to synthesize fea-



tures. These UDFs are integrated into DeepDive’s
feature engineering workflows, which enables ana-
lysts to explore different features in an end-to-end
fashion. DeepDive’s ideas for handling feature en-
gineering workflows were originally described in the
Brainwash system vision [8]. DeepDive also pro-
vides infrastructure for inspecting and debugging
the effects of different features on overall quality.

6. SYSTEMS FOR ALGORITHM SELEC-
TION

Algorithm selection is the task of determining
which specific ML technique (algorithm) is to be
used for a particular application of ML. As an ex-
ample, consider an analyst at an insurance com-
pany that wants to determine if a customer is going
to leave the company or not – a standard problem
known as customer churn [34]. She wants to build a
binary classification model, but has to choose from
literally dozens of ML techniques designed for this
problem. Typically, analysts pick a time-tested and
popular ML technique such as logistic regression,
Naive Bayes, or a decision tree. Furthermore, an
ML technique might have various implementations,
e.g., a logistic regression model can be trained us-
ing either SGD, or a batch gradient method such as
L-BFGS, or conjugate gradient [32]. Selecting an
algorithm is challenging partly because the decision
is usually affected by a complex combination of fac-
tors – both technical and logistical – such as time
constraints, available computational resources, de-
sired ML quality, ML model interpretability, data
characteristics, how much effort the analyst is will-
ing to invest, what toolkits the analyst can use,
application-specific best practices, etc. This pe-
culiar complexity of algorithm selection is perhaps
why there is not much research on building systems
that help an analyst with this challenge.

6.1 MLBase
The MLBase system aims to support an analyst

with the challenge of algorithm selection [25]. Es-
sentially, MLBase provides a declarative dataflow-
based language for an analyst to specify high-level
tasks, e.g., classification. MLBase then executes a
bunch of internally-defined algorithms for that high-
level task, and performs cross-validation to pick the
best algorithm. In their paper, the authors mention
that MLBase might execute different SVM models
as well as an AdaBoost model for classification [25].
The system returns a summary of the execution to
help an analyst understand what exactly was com-

puted by MLBase. However, it is not clear why they
restrict themselves to SVM models and AdaBoost.
Moreover, an analyst has no way of specifying, or
restricting the search space – it is hardwired arbi-
trarily by the system. Thus, while MLBase is one
attempt to help tackle the challenge of algorithm
selection, it is clear that there are many open ques-
tions and possibilities in this space.

6.2 AzureML
AzureML aims to make it easier for analysts to

construct ML workflows, and is accessible over the
cloud [2]. One of its functionalities is the ability
to specify the training of many ML models in bulk,
which is a simple way to deal with algorithm selec-
tion. The system then exploits massive parallelism
to train all these models. However, it is not clear if
it does anything more sophisticated other than just
train many ML models. Thus, compared to ML-
Base, this can be viewed as lying closer to the oppo-
site end of the specturm with respect to automating
algorithm selection, wherein the analyst decides a
priori what all ML models need to be trained.

7. SYSTEMS FOR PARAMETER TUN-
ING

Most ML techniques have a number of parame-
ters (also called hyperparameters in the literature [28])
that need to be specified prior to learning. For ex-
ample, the coefficient vector in a logistic regression
model is typically constrained using its L1-norm
or L2-norm [20]. The parameter that specifies the
tightness of the constraint is called the regulariza-
tion parameter. Furthermore, SGD, which can be
used to train a logistic regression model, has ad-
ditional parameters such as the stepsize, and de-
cay [14, 32]. Tuning such parameters is challeng-
ing in part because the optimization problems in-
volved in picking the values of such parameters are
usually not convex [9, 20, 32]. Thus, in practice,
analysts often perform ad-hoc tuning by manually
picking a set of parameter values to try, or by us-
ing “best-practice” heuristics such as a grid search
with pre-defined intervals for each parameter [20].
However, choosing the split points for the intervals
is still mostly heuristic, and the problem gets worse
as the number of parameters to tune increases.

7.1 Statistical software packages
Ease of parameter tuning is one of the appeals of

statistical software packages such as R and SAS. For
many ML techniques, analysts can specificy the pa-



rameter tuning strategy, or easily implement their
own ad-hoc strategy. Furthermore, the implementa-
tions of many ML techniques in such packages pro-
vide automatic parameter tuning, which obviates
the need for an analyst to provide them. The stock
off-the-shelf strategy for parameter tuning used by
the implementation is a grid search with an algorithm-
specific choice of intervals for parameters, followed
by a validation of model quality, typically using 10-
fold cross validation. Note that it is still straight-
forward for an analyst to implement such parame-
ter tuning strategies themselves as an “outer loop”
around the ML implementations. Coupling them
with ML training simply improves the usability of
the system.

7.2 MLBase
Along with algorithm selection, MLBase also aims

to tackle parameter tuning. Basically, MLBase im-
plements the same off-the-shelf parameter tuning
strategies for the pre-defined set of algorithms in
its search space, e.g., grid search with 10-fold cross-
validation [25]. To help a user understand what
exactly it computed, MLBase returns a summary.
Since MLBase decouples the logical specifications
from the physical execution, it can theoretically ex-
ploit opportunities to “optimize” the execution. How-
ever, it is not clear what these optimization oppor-
tunities are that are related to parameter tuning,
and what MLBase implements. Furthermore, ML-
Base does not provide a way for an analyst to cus-
tomize the search process, which statistical software
packages can do. Thus, as with algorithm selection,
it is clear that there are many open questions and
possibilities in this space.

7.3 AzureML
AzureML also provides options that help auto-

mate parameter tuning for many ML algorithms [2].
And here too, it exploits massive parallelism to speed
up the learning, in a manner similar to [15]. Ana-
lysts can specify various “parameter sweeps” which
specify some constraints on the search space of the
parameter values to explore. However, while it pro-
vides more customization for parameter tuning, it
is not clear if it exploits any optimization opportu-
nities to avoid redundant computations. Neverthe-
less, the concept of customizable parameter tuning
options offers a sweet-spot between flexibility and
automaticity, and we think it is worth adopting.

8. REFERENCES
[1] Apache Mahout. mahout.apache.org.
[2] Microsoft Azure ML. studio.azureml.net.
[3] Oracle R Enterprise. www.oracle.com.
[4] Pedro Domingos et al. alchemy.cs.washington.edu.
[5] Project R. r-project.org.
[6] SAS Report on Analytics. sas.com/reg/wp/corp/23876.
[7] M. Akdere et al. The Case for Predictive Database

Systems: Opportunities and Challenges. In CIDR, 2011.
[8] M. Anderson et al. Brainwash: A Data System for Feature

Engineering. In CIDR, 2013.
[9] D. P. Bertsekas. Incremental Gradient, Subgradient, and

Proximal Methods for Convex Optimization: A Survey.
Technical report, LIDS, MIT, 2010.

[10] Z. Cai et al. Simulation of Database-valued Markov
Chains Using SimSQL. In SIGMOD, 2013.

[11] D. Crankshaw et al. The Missing Piece in Complex
Analytics: Low Latency, Scalable Model Management and
Serving with Velox. In CIDR, 2015.

[12] J. Dean et al. Large Scale Distributed Deep Networks. In
NIPS, 2012.

[13] P. Domingos. A Few Useful Things to Know about
Machine Learning. CACM, 2012.

[14] X. Feng et al. Towards a Unified Architecture for
in-RDBMS Analytics. In SIGMOD, 2012.

[15] Y. Ganjisaffar et al. Distributed Tuning of Machine
Learning Algorithms Using MapReduce Clusters. In
LDMTA, 2011.

[16] L. Getoor and B. Taskar. Introduction to Statistical
Relational Learning). The MIT Press, 2007.

[17] A. Ghoting et al. SystemML: Declarative Machine
Learning on MapReduce. In ICDE, 2011.

[18] I. Guyon et al. Feature Extraction: Foundations and
Applications. New York: Springer-Verlag, 2001.

[19] I. Guyon et al. An introduction to variable and feature
selection. JMLR, 3:1157–1182, Mar. 2003.

[20] T. Hastie et al. Elements of Statistical Learning: Data
mining, inference, and prediction. Springer-Verlag, 2001.

[21] J. Hellerstein et al. The MADlib Analytics Library or
MAD Skills, the SQL. In VLDB, 2012.

[22] S. Kandel et al. Enterprise Data Analysis and
Visualization: An Interview Study. IEEE TVCG, 2012.

[23] M. L. Koc and C. Ré. Incrementally Maintaining
Classification Using an RDBMS. In VLDB, 2011.

[24] P. Konda et al. Feature Selection in Enterprise Analytics:
A Demonstration using an R-based Data Analytics
System. In VLDB, 2013.

[25] T. Kraska et al. MLbase: A Distributed Machine-learning
System. In CIDR, 2013.

[26] A. Kumar et al. Model Selection Management Systems:
The Next Frontier of Advanced Analytics. ACM SIGMOD
Record, December 2015.

[27] Y. Low et al. GraphLab: A New Framework For Parallel
Machine Learning. In UAI, 2010.

[28] T. M. Mitchell. Machine Learning. McGraw Hill, 1997.
[29] M. Nikolic et al. LINVIEW: Incremental View

Maintenance for Complex Analytical Queries. In
SIGMOD, 2014.

[30] F. Niu et al. Tuffy: Scaling up Statistical Inference in
Markov Logic Networks using an RDBMS. In VLDB, 2011.

[31] F. Niu, B. Recht, C. Ré, and S. Wright. Hogwild: A
lock-free approach to parallelizing stochastic gradient
descent. In NIPS, 2011.

[32] J. Nocedal et al. Numerical Optimization. Springer, 2006.
[33] C. Ré et al. Feature Engineering for Knowledge Base

Construction. IEEE Data Engineering Bulletin, 2014.
[34] C. Zhang et al. Materialization Optimizations for Feature

Selection Workloads. In SIGMOD, 2014.
[35] C. Zhang and C. Ré. Towards High-throughput Gibbs

Sampling at Scale: A Study Across Storage Managers. In
SIGMOD, 2013.

[36] Y. Zhang et al. I/O-Efficient Statistical Computing with
RIOT. In ICDE, 2010.

[37] M. Zinkevich et al. Parallelized Stochastic Gradient
Descent. In NIPS, 2010.

mahout.apache.org
studio.azureml.net
www.oracle.com
alchemy.cs.washington.edu
r-project.org
sas.com/reg/wp/corp/23876

	Introduction
	Packages of ML Implementations
	Statistical Software Packages
	Data Mining Toolkits
	Developability-oriented Frameworks
	Statistical Relational Learning (SRL) Frameworks
	Deep Learning Systems
	Scalable Bayesian Inference Systems

	Systems with a Linear Algebra-based Language
	Statistical Software Packages
	R-based Analytics Systems

	Model Management Systems
	LongView
	Velox

	Systems for Feature Engineering
	Columbus
	DeepDive

	Systems for Algorithm Selection
	MLBase
	AzureML

	Systems for Parameter Tuning
	Statistical software packages
	MLBase
	AzureML

	References

