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Machine learning (ML) over tabular data has become ubiquitous with applications in

many domains. This success has led to the rise of ML platforms, including automated ML

(AutoML) platforms to manage the end-to-end ML workflow. The tedious grunt work involved in

data preparation (prep) reduces data scientist productivity and slows down the ML development

lifecycle, which makes the automation of data prep even more critical. While many works have

looked into feature engineering and model selection in the end-to-end ML workflows, little

attention has been paid towards understanding data prep and its utility for ML. Also, automating

data prep remains challenging due to several reasons such as semantic gaps and lack of ways

to objectively measure accuracy. In this dissertation, we take a step towards addressing such
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challenges using database schema management and ML techniques to simplify, better automate,

and understand the utility of ML data prep. We create new benchmark datasets, methodology for

benchmarking and automating ML data prep, and devise novel empirical analyses to characterize

the significance of critical data prep steps. Our work presents several critical artifacts that not

only provide a systematic approach to reduce grunt work and improve the productivity of ML

practitioners but also can help establish the science of building (Auto)ML platforms. Our work

opens up several new research directions at the intersection of ML, data management, and ML

system design.
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Chapter 1

Introduction

Tabular (or relational) data remains the most commonly reported type of data for business

critical use cases of machine learning (ML), as per the Kaggle State of Data Science survey [12].

ML over tabular data is ubiquitous in application sectors such as finance, healthcare, insurance,

ecommerce, and retail [50, 152]. Applying ML over tabular data involves a complex pipeline

where the ML algorithm is only a tiny component in the overall workflow [132]. This pipeline

can include several stages such as data preparation (prep), feature engineering, and model and

hyper-parameter search, as Figure 1.1 shows. This has led to a growing interest in both research

and industry to support, manage, and automate the entire ML development lifecycle over tabular

data [170, 45].

From conversations with our collaborators at TensorFlow Extended team at Google [45]

and Salesforce Einstein [153], we find that their ML platform is already being used to support

ML over tens of thousands of tabular datasets in production settings. Additionally, ML platforms

such as Airbnb’s Zipline [3], Uber’s Michelangelo [20], Facebook’s FBLearner Flow [6], and

commercial platforms such as H20.AI [11], Salesforce Einstein [153], and DataRobot [5] have

drawn a massive investment from the industry. This platformization of ML has also created an

opportunity to automate several components of the ML workflow. In particular, the paradigm
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Figure 1.1: A simplified ML Development Lifecycle.

of AutoML aims to automate the entire ML workflow with the opportunity to enable ML for

the masses. AutoML platforms such as Einstein AutoML [13], AutoML Tables [9], and Au-

toGluon [62] build ML models on millions of datasets from thousands of small-and-medium

enterprises automatically. The central goal of these platforms is to get an accurate model for

the prediction task while achieving the maximum possible automation of the end-to-end ML

workflow. Several components of the end-to-end ML workflow such as automated model selection

and hyper-parameter search are well-studied in the community [80, 67]. However, little attention

has been paid to understanding and automating an equally important component of (Auto)ML

platforms: data prep.

Data prep also remains particularly challenging for tabular data for data scientists who

perform human-in-the-loop ML analytics. Surveys of such users have repeatedly shown that

they spend from 45% up to 80% of their time on data prep [53, 163, 152]. Self-service data prep

tools such as Trifacta [18], Tableau Prep [154], and Informatica Enterprise Data Prep [151] aim

to reduce human effort and time involved with data prep grunt work. Thus, such human-in-the-

loop tools also desire better automation and simplification of data prep to improve the overall

productivity of their users.

Despite the importance of data prep for ML, there exists no consensus on what exactly

constitutes data prep [34]. Depending upon the application, data prep can involve many diverse

tasks such as integrating data from multiple sources, inferring feature types, performing feature

transformations based on their types, and organizing feature values. Thus, data prep, in general,

is ill-defined, unlike say TPC benchmarks in the database community where the query semantics
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are well-defined [16]. However, in the context of (Auto)ML, the end goal is crystal clear: build

an accurate model on the raw table(s). This makes defining data prep more tractable since the

specific tasks can be measured by their effect on the end ML accuracy.

Defining ML Data Prep. We first take a scientific approach towards understanding

ML data prep (or data prep for ML); we define this as a stage where raw data is transformed

to “ML-ready” data before the feature engineering stage of the model selection begins. At a

high-level, we characterize this in terms of three ML readiness properties of the data. We show the

corresponding ML data prep workflow that supports these ML-readiness properties in Figure 1.2.

There exist enormous variety of ML data prep task, but we specifically focus on these steps since

they are common in existing ML data prep workflows but have received much less attention in

the research community.

1. Discriminative Attributes. An ML application needs features that can represent different

kinds of signals. For instance, Figure 1.3 shows a normalized dataset where informative signals

are distributed across tables. Thus, one would perform “data acquisition,” a data prep step to

gather additional features. This is typically performed through joins of multiple tables.

2. Accurate ML Feature Types. Any ML models can not directly operate over raw attribute

types, but needs ML feature types with either continuous or discrete domain. For instance, in

Figure 1.3 example, Zip needs to be recognized as Categorical and Age as Numeric. Thus, data

prep step of “ML Feature Type Inference” is needed to determine the correct feature types for
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ID Zip Income Age State EmpID Churn

1 92092 12000 25 N York MSFT YES

2 92093 USD 10 56 NY GOOGL NO

3 -999 5000 $ 34 CA AAPL NO

… … … … … …

Zip …

92092 …

… …

EmpID Revenue …

AAPL 330 …

MSFT 150

… … …

Customers Employers

Area

Figure 1.3: Example scenario for ML churn prediction task with multi-tabled data
about customers. The schema for the dataset is Customers (ID, Zip, Income,
Age, State, EmpID, Churn), Employers (EmpID, Revenue, State), Area (Zip,
Density, CrimeRate).

every column of the table.

3. Consistent Attribute Values. With the attribute values in a consistent representation,

one can obtain high-quality signals to build accurate ML models. For instance, in Figure 1.3, the

State column have duplicates diluting the domain of the Categorical feature. Also, the values of

the Income attribute are in various currencies. Thus, “data transformation” steps are performed to

fix them.

Prior Art. Self-service visual tools such as Trifacta [18], Excel [35], and Tableau

Prep [154] make it easier for data scientists to perform many data prep steps with a human-in-the-

loop. To automate data prep tasks, there exist open-source AutoML tools such as TransmogrifAI in

Einstein [17], Tensorflow Data Validation (TFDV) in TensorFlow Extended [45], and AutoGluon

from AWS [62]. However, they rely on ad hoc syntactical and rule-based pipelines and are thus

often limited in accuracy. For instance, consider what TransmogrifAI does on the dataset in

Figure 1.3 for a common ML task, customer churn prediction. It assumes a single table as input,

thus requiring users to perform joins when dealing with normalized datasets. Also, it wrongly

calls many Categorical features with integer values as Numeric, e.g., ZipCode. This can cause

the downstream model to produce garbage results. Also, many important data transformation

steps are not handled. For instance, Income column values are not normalized in a common

representation. Thus, the numerical signal from the column can likely be completely ignored
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by the model. Moreover, a large number of duplicates in State column can potentially cause the

feature vector dimensionality to expand which can make the learning difficult.

Challenges. When using existing AutoML tools, data prep issues discussed above can

lead to loss of information and can potentially reduce the accuracy of the model, or even cause

it to fail in some scenarios. Also, performing joins before ML puts an additional burden on not

only the AutoML users but also data scientists when performing human-in-the-loop ML analytics.

The effectiveness of data prep automation of existing tools is not known because of the lack of

formalized task definitions and objective benchmarks to assess them. In other words, there exist

several open questions: Just how good is the automation of data prep in such AutoML tools?

How can one do better? How can we improve the productivity of the users involved? What is the

significance of data prep for downstream ML model accuracy?

Considering these open questions, the thesis of this dissertation is that:

For many critical ML data prep steps, database schema management and ML tech-

niques can be used to simplify, objectively quantify, and automate them to signif-

icantly improve the accuracy of automation, improve productivity, and better the

understanding of accuracy implications for downstream ML.

With a mix of contributions such as creating new benchmark labeled datasets, new

methodologies, and novel empirical analyses, this dissertation shows how we can simplify,

significantly improve the accuracy of automation, and characterize the significance of critical ML

data prep steps. We open source our research artifacts to invite community-driven contributions

in this direction.

1.1 Technical Contributions

In this dissertation, we choose three ubiquitous data prep tasks, one from each component

of the ML data prep workflow: joining tables with key-foreign key dependencies between them,
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Figure 1.4: The type of contributions our work makes with respect to the ML Data Prep
workflow.

ML feature type inference, and category deduplication. We specifically choose these steps

because they are commonly practiced in ML workflows but they have received little attention in

the research community. We show how database schema management and ML techniques can

help achieve several goals such as understanding their utility for ML, objective quantification

of different tasks, and also improved accuracy of automation. Figure 1.4 summarizes our

contributions. We explain our contributions in three parts as follows.

HAMLET++: Avoiding Joins when Learning High-Capacity Classifiers. In this project,

we exploit database schema information with key-foreign key dependencies (KFKD) between

the tables to decide when to avoid join without significantly affecting the ML accuracy of high-

capacity classifiers; thus, reducing the data acquisition burden. A prior work [100] showed that

one can often omit an entire table by exploiting KFKDs in the schema (referred to as “avoid the

join”), but do so without significantly reducing ML accuracy (“safely”) of linear models. The

basis for this is that a KFK join creates a functional dependency between the foreign key and the

features brought in by the join. But their work applied only to linear classifiers.
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We perform a comprehensive empirical and simulation study and analysis to validate the

applicability of the idea of avoiding joins safely to three popular “high-capacity” (i.e., with large

or even infinite VC dimensions) classifiers: decision trees, SVMs, and ANNs. Our empirical

analysis refutes an intuition from prior work and shows that these classifiers are counter-intuitively

more robust to avoiding joins than linear classifiers. Our results raise new research questions at

the intersection of data management and ML theory. Moreover, we highlight two new practical

bottlenecks caused by large domain sizes of foreign key features. We offer novel methods to

improve the interpretability and smoothing mechanism of foreign key features when dealing with

decision trees. We verify their effectiveness empirically. A paper on this work appeared at the

VLDB conference in 2018 [134]. This project is joint work with Arun Kumar and Xiaojin Zhu

and is the subject of Chapter 3.

ML DATA PREP ZOO: Systematically automating and benchmarking ML Data Prep.

In this work, we set up our vision for a methodological and a community-driven effort towards

automating and benchmarking ML data prep steps such as ML feature type inference and data

transformation steps. We find that there exists a semantic gap between what an attribute is in a

database schema and what a feature is for ML. This makes tabular data not directly consumable

by ML. We use ML to close the semantic gap by abstracting specific ML data prep tasks and

cast them as applied ML tasks. For impactful research on this problem, we believe the major

impediment is not new algorithms or theory but rather common task definitions and benchmark

labeled datasets. We discuss research challenges in scaling up data labeling, defining accuracy

metrics, and creating practical tool support. Finally, we announce a public “zoo” of labeled

datasets and pre-trained ML models for data prep tasks to act as a community-led repository for

further research on this problem. A vision paper on this work appeared at the DEEM workshop

as part of the SIGMOD conference in 2019 [133]. This project is joint work with Arun Kumar

and is the subject of Chapter 4.

ML FEATURE TYPE INFERENCE: Benchmarking and Automating for ML. In this
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project, as a case study of our ML Data Prep Zoo vision, we initiate work on benchmarking

and automating the ML feature type inference step by capturing ML semantics of attribute types

in the database schema. The semantic gap between attribute types (e.g., strings, numbers) in

databases/files and ML feature types (e.g., Numeric, Categorical) necessitates type inference.

We formalize and standardize this task by creating a benchmark labeled dataset, which we use

to objectively evaluate existing AutoML tools. Our dataset has 9921 examples and a 9-class

label vocabulary. Our labeled data also offers an alternative approach to automate this task than

existing rule-based or syntax-based approaches: use ML itself to predict feature types. We collate

a benchmark suite of 30 classification and regression tasks to assess the importance of type

inference for downstream models.

An empirical comparison on our labeled data shows that an ML-based approach delivers

a lift of an average 14% and up to 38% in accuracy for identifying feature types compared to

prominent industrial tools. Our downstream benchmark suite reveals that the ML-based approach

outperforms existing industrial-strength tools for 47 out of 60 downstream models. We release

our labeled dataset, models, and downstream benchmarks as part of the ML Data Prep Zoo public

repository with a leaderboard. A paper on this work appeared at the SIGMOD conference in

2020 [135]. This project is joint work with Arun Kumar, Jonathan Lacanlale, Premanand Kumar,

and Kevin Yang and is the subject of Chapter 5.

CATEGORY DEDUPLICATION: Assessing Importance for ML and Making Automa-

tion Accurate. In this project, we take the first step towards empirically characterizing the impact

of Category Deduplication, an important data transformation step on ML with a three-pronged

approach. We first study how duplicates exhibit themselves by creating a labeled dataset of 1248

Categorical columns, where true entities in each column are annotated with their duplicates. We

then curate a downstream benchmark suite of 14 real-world datasets to make observations on the

effect of duplicates on three popular downstream classifiers: Logistic Regression, Random Forest,

and Multi-layer Perceptron (MLP). We finally use simulation studies to validate our observations
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and disentangle multiple confounders that impact ML. We find that duplicates can cause Random

Forest accuracy to drop by a median of 1.6% and up to 11.5% compared to the truth. Moreover,

Logistic Regression and Similarity encoding for Categoricals are more robust to duplicates than

One-hot encoding on the two high-capacity classifiers, Random Forest and MLP.

We also pursue a complementary research direction of accurately automating category

deduplication task using our labeled dataset. We cast this task as a binary classification problem

and build rule-based and learning-based approaches to evaluate them on the task. Our feasibility

study shows that our labeled data is useful to deliver ML-based solutions that are more accurate

than rule-based baselines. We provide intuitive explanations and takeaways that can potentially

help both AutoML developers to build better platforms and ML practitioners to reduce grunt

work. Our work presents novel data artifacts and benchmarks, as well as novel empirical analyses

that can help advance the science of data prep on AutoML platforms. This project is joint work

with Arun Kumar and Thomas Parashos and is the subject of Chapter 6.

1.2 Practical Impact

Throughout this dissertation work, we interacted with AutoML platform developers,

researchers, and data scientists at various companies and open-source communities to understand

their challenges and make it easier for them to adopt our contributions. At the time of writing this

document, the contributions discussed in this dissertation have the following practical impacts.

• Google collaborated with us to adopt the best performing ML models of ML FEATURE

TYPE INFERENCE into Tensorflow Data Validation (TFDV). TFDV is a part of a larger ML

platform called TensorFlow Extended [45] and its role is to perform several data validation

steps before the raw data is fed to ML pipelines. One such step is ML schema infer-

ence, where the ML feature types are identified and directly consumed by the downstream

pipelines. We added two modules to their open source code: a scalable way to do featur-
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ization to extract the features for our models and an inference module with our Random

Forest to populate their schema with our feature types. We improved their inference of

Categorical feature type with integer domain [137]. Google engineers are now reviewing it

on internal benchmarks for adoption.

• A library that implements ML-based feature type inference is open-sourced as Python PIP

package [150]. The library provides easy-to-use APIs to collect ML feature types given a

raw table as Pandas DataFrame.

• We are collaborating with OpenML [155], which is an open-source platform for ML

practitioners and researchers to share their models, datasets, and workflows for reuse. In the

present state, users upload their tabular datasets to the platform with manual annotations of

feature types. The Python library based on our ML FEATURE TYPE INFERENCE work also

provides APIs to interface with OpenML’s Attribute-Relation File Format (ARFF) feature

types [150]. Currently, the OpenML team is doing an internal review to make this library

automatically fill-in feature types for the users. Thus, our work can potentially save manual

grunt work for ∼ 14000 OpenML users.

• AIMaker is an ongoing multi-disciplinary project at UCSD to enable users from different

domains to find and share AI models and datasets [85]. Our ML FEATURE TYPE INFER-

ENCE work is a key component of this project to help automatically match AI Models and

Datasets.

• Integration of our ML feature type inference models with the AutoGluon Tabular project

at AWS is currently under development [149]. A preliminary analysis has shown that

AutoGluon using ML FEATURE TYPE INFERENCE gives more accurate downstream

models than their existing setup.

• Several teams at AWS such as Glue [4], SageMaker [148], and Redshift ML [147] have
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expressed interest in adopting our data and models from ML FEATURE TYPE INFERENCE

for production use.

1.3 Summary

Reducing manual grunt work involved with ML data prep over tabular data is a major

focus area for both researchers and industry building (Auto)ML platforms. Although the major

focus of the end-to-end ML research effort has been on studying automated model selection

and hyper-parameter search in the end-to-end ML pipeline, in this dissertation, we bring the

community’s attention to the importance of understanding and formalizing ML data prep steps.

We take three specific commonly performed tasks in the ML workflow. We then use database

schema management and ML techniques to simplify, objectively measure, and better automate

data prep, thereby also improving the productivity of the users involved. We make a variety

of contributions such as a novel methodological approaches, new benchmark labeled dataset,

pre-trained ML models, and empirical analyses and insights towards our goals.

Our work in this space can help objectively validate and improve existing ML platforms

and can substantially advance the science of building such platforms and automated data prep tools.

Also, our work lays out an important foundation to address several open research questions at the

intersection of ML theory, data management, ML system design, and human-computer interaction,

e.g., complementary open research directions such as devising new labeling data prep interfaces,

novel ML algorithms and architectures to accurately automate data prep, designing ML systems

to guide them with appropriate data prep, and even ML theoretical quantification of the utility of

data prep with bias-variance tradeoff analysis. More importantly, we believe that the research

artifacts delivered by this dissertation are valuable to drive community-driven contributions. This

can substantially accelerate the advancement in the science of further simplifying ML data prep

over tabular data.
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Chapter 2

Preliminaries

We intuitively explain the relevant ML terms, concepts, models, and theory and refer the

interested reader to [75, 109, 139] for a deeper background.

Basics. We focus on classification and regression models, which need a training dataset

with labeled examples to learn the parameters of the model. Examples include logistic regression,

support vector machines (SVMs), decision trees, and artificial neural networks (ANNs). Most

ML models assume that the examples are independently and identically distributed (IID) samples

from an underlying (hidden) data distribution. Complex models known as statistical relational

models avoid the IID assumption and handle correlated examples [66]. Such models are beyond

the scope of this work. A trained model’s prediction error (or accuracy) is measured using a

test dataset not used for training. Popular testing methodologies include holdout validation and

(nested) k-fold cross-validation. In the former, the labeled dataset is split three-ways: one for

training, one for validation (say, to tune hyper-parameters), and one for final testing. In the latter,

the labeled dataset is partitioned into k folds, with k−1 folds used for training (and validation)

and the last fold used for testing; k error estimates are obtained by cycling through each fold for

testing and averaged.

Models. Logistic regression and linear SVM classify examples using a hyperplane; thus,
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they are called linear classifiers. Naive Bayes models the probability of the label by estimating

the conditional probability distribution of each feature and multiplying them all; it can be viewed

as a linear classifier [109]. 1-NN simply picks the training example nearest to a given example

for prediction. Kernel SVM implicitly transforms feature vectors to a different representation and

obtains the so-called “support vectors,” which are examples that help separate classes. An ANN

applies multiple layers of complex non-linear transformations to feature vectors to separate the

classes. Finally, a decision tree learns a disjunction of conjunctive predicates to predict classes.

Theory. The set of prediction functions learnable by a model is called its hypothesis space.

The test error has three components: bias (approximation error), variance (estimation error),

and noise [139]. Informally, bias quantifies the error of a hypothetical “best” function in the

hypothesis space and is related to the capacity of a model’s hypothesis space (how many prediction

functions it can represent), while variance quantifies the error of the actual prediction function

obtained after training relative to the aforementioned hypothetical best function. Typically, a

more complex model (say, with more parameters) has a lower bias but higher variance; this is the

bias-variance trade-off. A classifier’s capacity can be quantified using the Vapnik-Chervonenkis

(VC) Dimension [139]. Intuitively, the VC dimension is the largest number of training examples

the model can classify perfectly regardless of the training label distribution–a capability called

“shattering.” For example, logistic regression in 2 dimensions (features) can shatter at most 3

examples due to the “XOR problem” [156]. In general, given d features, its VC dimension is d+1.

Decision trees, RBF-SVMs, and ANNs typically have large (even infinite) VC dimensions [139];

we call such models high-capacity classifiers. High-capacity classifiers often tend to have higher

variance than simpler linear models (with VC dimensions linear in d), an issue colloquially called

overfitting.

Feature Selection. Feature selection methods are meta-algorithms that are almost always

used with an ML algorithm to improve accuracy and/or interpretability. There are three main

types: (1) Wrappers: Also called subset selection, these methods use the ML algorithm as a
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black-box to search through different feature subsets and pick the one with the lowest error. Since

optimal subset selection is NP-Hard, various heuristic wrappers are popular in practice, including

sequential greedy search [72]. (2) Filters: These methods assign a score to each feature (e.g.,

correlation co-efficient) and the top k features are selected. (3) Embedded: These methods “wire”

feature selection into the ML algorithm, e.g., L1 or L2 regularization for logistic regression.

Typically, feature selection alters the bias-variance balance by tolerating a small increase in bias

for a larger decrease in variance and thus, reducing errors overall.
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Chapter 3

Hamlet++: Avoiding Joins when Learning

High-Capacity Classifiers

3.1 Introduction

In this chapter, we dive deeper into how we tackle the pains of acquiring the data for

ML tasks. Applications often have many tables connected by database dependencies such as

key-foreign key dependencies (KFKDs) [120]. Thus, given an ML task, data scientists almost

always join multiple tables to obtain more features [99]. But conversations with data scientists at

many enterprise and Web companies revealed that even this simple process of procuring tables is

often painful in practice, since different tables are often “owned” by different teams with different

access restrictions. This slows down the ML analytics lifecycle [90]. Recent reports of Google’s

production ML systems also show that features that yield marginal benefits incur high “technical

debt” that decreases code mangeability and increases costs [131, 117].

In this context, [100] showed that one can often omit an entire table by exploiting KFKDs

in the schema (“avoid the join”), but do so without significantly reducing ML accuracy (“safely”).

The basis for this dramatic capability is that a KFK join creates a functional dependency (FD)
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between the foreign key and the features brought in by the join, which we call “foreign features.”1

Example (based on [100]). Consider a common classification task: predicting customer

churn. The data scientist starts with the main table for training (simplified for exposition):

Customers (CustomerID, Churn, Gender, Age, Employer). Churn is the target, while Gender,

Age, and Employer are features. So far, this is a standard classification task. She then notices

the table Employers (Employer, State, Revenue) in her database with extra features about

customers’ employers. Customers.Employer is thus a foreign key feature connecting these

tables. She joins the tables to bring in the foreign features (about employers) because she has a

hunch that customers employed by rich companies in coastal states might be less likely to churn.

She then tries various classifiers, e.g., logistic regression or decision trees.

Using learning theory, [100] revealed a dichotomy in how safe it is to avoid a KFK join,

which we summarize next. Essentially, ML error has two main components, bias and variance;

informally, bias quantifies how complex the ML model is, while variance quantifies how tied the

trained model is to the given training dataset [139]. Intuitively, more complex models have lower

bias and higher variance; this is known as the bias-variance trade-off. Cases with high-variance

are colloquially called overfitting [109]. Avoiding a KFK join is unlikely to raise the bias but

likely to raise the variance, since foreign keys typically have larger domains than foreign features.

In simple terms, avoiding joins might cause extra overfitting. But this extra overfitting subsides

with more training examples, a behavior that was formally quantified using the powerful ML

notion of VC dimension, which indicates the complexity of an ML model. Using this notion, [100]

defined a new quantity, the tuple ratio, which is the ratio of the numbers of tuples of the tables

being joined (customers and employers in our example). As the tuple ratio goes up, it becomes

safer to avoid the join. Users can then configure a VC dimension-specific threshold based on their

error tolerance. For simple classifiers with VC dimensions linear in the number of features (e.g.,

logistic regression and Naive Bayes), this threshold is as low as 20. This idea was empirically

1While KFKDs are not the same as FDs [140], assuming features have “closed” domains, they behave essentially
as FDs in the output of the join [100].
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validated with multiple real-world datasets.

While initially controversial, the idea of avoiding joins safely has been adopted by many

data scientists, including at Facebook, LogicBlox, and MakeMyTrip [1]. Since the tuple ratio

only needs the foreign table’s cardinality rather than the table itself, data scientists can easily

decide if they want to avoid the join or procure the extra table. However, the results in [100] had

a major caveat–they applied only to linear classifiers. In fact, their VC dimension-based analysis

suggested that the tuple ratio thresholds might be too high for high-capacity non-linear classifiers,

potentially rendering this idea inapplicable to such classifiers in practice.

In this work, we perform a comprehensive empirical and simulation study and analysis

to verify (or refute) the applicability of the idea of avoiding joins safely to three popular “high-

capacity” (i.e., with large or even infinite VC dimensions) classifiers: decision trees, SVMs, and

ANNs.

Such complex classifiers are known to be prone to overfitting [109]. Thus, the natural

expectation is that avoiding a KFK join might cause more overfitting and raise the tuple ratio

threshold compared to linear models (i.e., ≫ 20). Surprisingly, our results show the exact

opposite! We start by rerunning the experiments from [100] for such models; we also generalize

the problem slightly to allow non-categorical features. Irrespective of which model is used, the

same set of joins usually turn out to be safe to avoid. Furthermore, on the datasets that had joins

that were not safe to avoid, the decrease in accuracy caused by avoiding said joins (unsafely) was

lower for the high-capacity classifiers. In other words, our work refutes an intuition from the VC

dimension-based analysis of [100] and shows that these popular high-capacity classifiers are

counter-intuitively comparably or more robust to avoiding KFK joins than linear classifiers, not

less.

To understand the above surprising behavior in depth, we conduct a Monte Carlo-style

simulation study to stress test how safe it is to avoid a join. We use decision trees, since they were

the most robust to avoiding joins. We generate data for a two-table KFK join and embed various
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“true” distributions for the target. This includes a known “worst-case” scenario for avoiding joins

for linear classifiers (i.e., errors blow up) [100]. We vary different properties of the data and the

true distribution: numbers of features and training examples, noise, foreign key domain size, and

skew. In very few cases does avoiding the join cause the error to rise beyond 1%. Indeed, the

only scenario with much higher overfitting was when the tuple ratio was less than 3; this scenario

arose in only 1 of the 7 real datasets. These results are in stark contrast to the results for linear

classifiers.

Our counter-intuitive results raise new research questions at the intersection of data

management and ML theory. There is a need to formalize the effects of KFKDs/FDs on the

behavior of decision trees, SVMs, and ANNs. As a first step, we analyze and intuitively explain

the behavior of decision trees and SVMs. Other open questions include the implications of more

general database dependencies on the behavior of such models and the implications of all database

dependencies for other ML tasks such as regression and clustering. We believe that solving these

fundamental questions could lead to new ML analytics systems functionalities that make it easier

to use ML for data analytics.

Finally, we observed two new practical bottlenecks caused by foreign key features,

especially for decision trees. First, the sheer size of their domains makes it hard to interpret and

visualize the trees. Second, some foreign key values may not have any training examples even if

they are known to be in the domain. We adapt standard techniques to resolve these bottlenecks

and verify their effectiveness empirically. Overall, the contributions of this work are as follows:

• To the best of our knowledge, this is the first work to analyze the effects of avoiding KFK

joins on three popular high-capacity classifiers: decision trees, SVMs, and ANNs. We

present a comprehensive empirical study that refutes an intuition from prior work and

shows that these classifiers are counter-intuitively more robust to avoiding joins than linear

classifiers.
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• We conduct an in-depth simulation study with a decision tree to assess the effects of various

data properties on how safe it is to avoid a KFK join.

• We present an intuitive analysis to explain the behavior of decision trees and SVMs when

joins are avoided. We identify open questions for research at the intersection of data

management and ML theory.

• We resolve two new practical bottlenecks with foreign key features by adapting standard

techniques.

3.2 Background

3.2.1 Notation

We focus on the standard star schema KFK join setting, which is ubiquitous in many ap-

plications, including retail, insurance, Web security, and recommendation systems [120, 100, 99].

The fact table, which has the target variable, is denoted S. It has the schema S(SID,Y,XS,FK1, . . . ,

FKq). A dimension table is denoted Ri (i = 1 to q) and it has the schema Ri(RIDi,XRi). Y is

the target variable (class label), XS and XRi are vectors (sequences) of features, RIDi is the

primary key of Ri, while FKi is a foreign key feature that refers to Ri. We call XS home

features and XRi foreign features. Let T be the output of the star join that constructs the full

training dataset by concatenating the features from all base tables. In general, its schema is

T(SID,Y,XS,FK1, . . . ,FKq,XR1, . . . ,XRq). In contrast to our setting, traditional ML formulations

do not distinguish between home features, foreign keys, and foreign features. The number of

tuples in S (resp. Ri) is denoted nS (resp. nRi); the number of features in XS (resp. XRi) is denoted

dS (resp. dRi). Without loss of generality, we assume that the join is not selective, which means nS

is also the number of tuples in T. DFKi denotes the domain of FKi and by definition, |DFKi|= nRi .

We call nS
nRi

the tuple ratio for Ri. If q = 1 (only one foreign table), we drop the subscript in the
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notation and use R, FK, and nR; for simplicity of exposition, we will assume q = 1 and use this

notation.

3.2.2 Background: Avoiding KFK Joins Safely

It was shown in [100] that the FD FK → XR has an interesting and surprising implication

for the bias-variance trade-off: avoiding the KFK join (i.e., omitting XR) is unlikely to increase

the bias because the hypothesis space of almost any classifier does not shrink when XR is avoided,

but in the context feature selection, avoiding the join could result in much higher variance. The

latter is because |DFK| is usually much larger than the domains of the features in XR. For instance,

State in our example only has 50 values but Employer could have millions. This dichotomy led

to the idea of avoiding joins safely: avoid it only if the variance is unlikely to increase much. To

enable this, [100] introduced a simple decision rule with a user-settable threshold based on their

error tolerance. The decision rule adapts a standard bound on variance from the ML literature

that grows with the VC dimension and shrinks with nS and it was simplified for linear models to

enable thresholding directly on the tuple ratio (nS/|DFK|). Thus, as the tuple ratio goes up, there

will be less overfitting, since there are more training examples relative to the model’s capacity.

For linear classifiers, a threshold of 20 ensured the extra overfitting was marginal. But since

high-capacity classifiers are usually more prone to overfitting, this approach suggests that the

tuple ratio threshold might have to be higher for such classifiers.

3.2.3 Assumptions and Scope

For the sake of tractability, we adopt some assumptions from [100], but also drop some

others to generalize the problem. In particular, we drop the assumption that all features are

categorical (finite discrete set); we allow numeric features. We focus on classification and retain

the assumption that FK is not a (primary) key in S; otherwise, it will not be “generalizable,”

i.e., all future examples will have values never seen before. In our example, CustomerID is not
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Table 3.1: Dataset statistics. q is the number of dimension tables. nS is the total number of
labeled examples; since we use nested cross-validation, the tuple ratio listed is 0.6×nS/nR. N/A
means that dimension table can never be discarded because its corresponding foreign key has an
“open domain” and is not generalizable.

Dataset (nS, dS) q (nR, dR) Tuple Ratio

Expedia 942142, 1 2
11939, 8 47.4

37021, 14 N/A

Movies 1000209, 0 2
6040, 4 99.4

3706, 21 162

Yelp 215879, 0 2
11535, 32 11.2
43873, 6 3

Walmart 421570, 1 2
2340, 9 108.1

45, 2 5620.9

LastFM 343747, 0 2
4099, 7 50

50000, 4 4.1

Books 253120, 0 2
27876, 2 5.5
49972, 4 3

Flights 66548, 20 3

540, 5 74
3167, 6 12.6

3170, 6 12.6

generalizable but the foreign key Employer is. We also retain the assumption that all feature

domains are fully known during training; this is a standard assumptions in ML [109, 100].

Handling unseen feature values is called the “cold start” issue in ML [128]. In practice, cold

start is often resolved by temporarily mapping new values to a known “Others” placeholder. As

ML models are periodically retrained, feature domains are expanded with such new information.

In particular, we assume DFK is the same as the set of R.RID values (new FKi values are

mapped to “Others”). Our goal is not to create new ML or feature selection algorithms, nor is to

ascertain which algorithm yields the best accuracy or runtime. We aim to expose and analyze

how KFKDs/FDs enable us to dramatically discard foreign features a priori when learning some

popular high-capacity classifiers.

3.3 Empirical Study with Real Data

We present results for 10 classifiers, including 7 high-capacity ones (CART decision

tree with gini, information gain, and gain ratio; SVM with RBF and quadratic kernels; multi-
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layer perceptron ANN; 1-nearest neighbor), and 3 linear classifiers (Naive Bayes with backward

selection, logistic regression with L1 regularization, and linear SVM). We also tried a few other

feature selection techniques for the linear classifiers: Naive Bayes with forward selection and

filter methods and logistic regression L2 regularization. Since these additional linear classifiers

did not provide any new insights, we omit them due to space constraints.

3.3.1 Datasets

We take the seven real datasets from [100]; these are originally from Kaggle, GroupLens,

openflights.org, mtg.upf.edu/node/1671, and last.fm. Two datasets have binary targets

(Flights and Expedia); the others have multi-class ordinal targets. However, to generalize the

scope of the problem studied, we retain numeric features rather than discretize them as in [100].

The dataset statistics are provided in Table 3.1. We briefly describe the task for each dataset and

explain what the foreign features are. More details about their schemas, including the list of all

features are already in the public domain (listed in [100]). All of our datasets, scripts, and code

are available for download on our project webpage2 to make reproducibility easier.

Walmart: predict if department-wise sales will be high using past sales (fact table) joined

with stores and weather/economic indicators.

Flights: predict if a route is codeshared by using other routes (fact table) joined with

airlines, source, and destination airports.

Yelp: predict if a business will be rated highly using past ratings (fact table) joined with

users and businesses.

MovieLens: predict if a movie will be rated highly using past ratings (fact table) joined

with users and movies.

Expedia: predict if a hotel will be ranked highly using past search listings (fact table)

joined with hotels and search events; one foreign key, viz., the search ID, has an “open” domain,

2https://adalabucsd.github.io/hamlet.html
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i.e., past values will not be seen in the future, which makes it unusable as a feature.

LastFM: predict if a song will be played often using past play information (fact table)

joined with users and artists.

Books: predict if a book will be rated highly using past ratings (fact table) joined with

readers and books.

3.3.2 Methodology

We perform 10-fold nested cross-validation, with a random third of the examples in the

training folds being used for validation during feature selection and/or hyper-parameter tuning).

We compare two approaches for each classifier: JoinAll, which uses all features from all base

tables (the current widespread practice), and NoJoin, which avoids all foreign features a priori (the

approach we study). For additional insights, we also include a third approach for decision trees:

NoFK, which uses all features except the foreign keys. We used the popular R packages “rpart”

for the decision trees (but for gain ratio, we used “CORElearn”) and “e1071” for the SVMs. For

the ANNs, we used the popular Python library Keras on TensorFlow. For Naive Bayes, we used

the code from [100], while for logistic regression with L1 regularization, we used the popular R

package “glmnet”. We used a standard grid search for hyper-parameter tuning, with the grids

described in detail below.

Decision Trees: There are two hyper-parameters to tune: minsplit and cp. minsplit is

the number of observations that must exist in a node for a split to be attempted. Any split that

does not improve the fit by a factor of cp is pruned off. The grid is set as follows: minsplit

∈ {1,10,100,103} and cp ∈ {10−4,10−3,0.01,0.1,0}

RBF-SVM: There are two hyper-parameters: C and γ. C controls the cost of mis-

classification. γ > 0 controls the bandwidth in the Gaussian kernel; given points xi and x j,

k(xi,x j) = exp(−γ · ∥xi − x j∥2). The grid is set as follows: C ∈ {10−1,1,10,100,103} and

γ ∈ {10−4,10−3,0.01,0.1,1,10}. On Movies and Expedia, we perform an extra fine tuning step

23



with γ ∈ {2−7,2−6, . . . ,23} to improve accuracy.

Quadratic-SVM: We tune the same hyper-parameters C and γ for the polynomial kernel

of degree 2: k(xi,x j) = (−γ xT
i · x j)

degree. We use the same grid as RBF-SVM.

Linear-SVM: We tune the C hyper-parameter for the linear kernel: k(xi,x j) = xT
i · x j, C

∈ {10−1,1,10,100,103}.

ANN: The multi-layer perceptron architecture comprises of 2 hidden units with 256 and

64 neurons respectively. Rectified linear unit (ReLU) is used as the activation function. In order

to allow penalties on layer parameters, we do L2 regularization, with the regularization parameter

tuned using the following grid axis: {10−4,10−3,10−2}. We choose the popular Adam stochastic

gradient optimization algorithm [91] with the learning rate tuned using the following grid axis:

{10−3,10−2,10−1}. The other hyper-parameters of the Adam algorithm used the default values.

Logistic Regression: The glmnet package performs automatic hyper-parameter tuning for

the L1 regularizer, as well as the optimization algorithm. However, it has three parameters to

specify a desired convergence threshold and a limit on the execution time: nlambda, which we

set to 100, maxit, which we set to 10000, and thresh, which we set to 0.001.

Tables 3.2 present the 10-fold cross-validation errors of all models on all datasets.

3.3.3 Results

Accuracy. Our first and most important observation is that for almost all the datasets (Yelp

being the exception) and for all three split criteria, the error of the decision tree is comparable

(a gap of within 0.01) between NoJoin and JoinAll. The trend is virtually the same for the

RBF-SVM and ANN as well. We also observe that the trend is almost the same for the linear

models, albeit less robustly so. Thus, regardless of whether our classifier is linear or higher

capacity, the relative behavior of NoJoin vis-a-vis JoinAll is virtually the same. These results

represent our key counter-intuitive finding: joins are no less safe to avoid with the high-capacity

classifiers than with the linear classifiers. The absolute errors of the high-capacity classifiers is
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Table 3.2: 10-fold CV errors for all ML models. We compare the accuracy of JoinAll and
NoJoin within each model. For Expedia and Flights, we use the zero-one error; for the other
datasets, we use the RMSE. The bold font marks the cases where the error of NoJoin is at least
0.01 higher than JoinAll.

(A)
Dataset

Decision Tree
1NN

Gini Information Gain Ratio

JoinAll NoJoin NoFK JoinAll NoJoin NoFK JoinAll NoJoin NoFK JoinAll NoJoin

Expedia 0.2456 0.2524 0.2653 0.2457 0.2500 0.2643 0.2462 0.2464 0.2751 0.2743 0.2685

Movies 1.0263 1.0250 1.0544 1.0320 1.0327 1.0548 1.0345 1.0361 1.0627 1.0958 1.0658

Yelp 1.2929 1.3096 1.2242 1.3062 1.3259 1.2257 1.2452 1.2634 1.2252 1.3567 1.2951

Walmart 0.7829 0.7867 0.8358 0.7839 0.7877 0.8354 0.7893 0.7899 0.8312 0.7938 0.7645

LastFM 0.9431 0.9463 1.1299 0.9445 0.9447 1.1320 0.9547 0.9552 1.1341 1.0463 1.0451

Books 0.9771 0.9797 1.0293 0.9763 0.9845 1.0312 1.0091 1.0093 1.0661 1.0936 1.0857

Flights 0.1388 0.1442 0.2030 0.1440 0.1474 0.1977 0.1419 0.1385 0.1707 0.1128 0.1087

(B)
Dataset

SVM
ANN

Naïve Bayes Logistic Regression

Linear Polynomial RBF BFS L1

JoinAll NoJoin JoinAll NoJoin JoinAll NoJoin JoinAll NoJoin JoinAll NoJoin JoinAll NoJoin

Expedia 0.2131 0.2155 0.2075 0.2129 0.2049 0.2105 0.1896 0.1912 0.2423 0.2450 0.2134 0.2176

Movies 1.0337 1.0342 1.0147 1.0149 0.9855 0.9856 0.9754 0.9755 1.0678 1.0742 1.0350 1.0413

Yelp 1.1950 1.2060 1.1553 1.1662 1.1263 1.1456 1.1965 1.2052 1.1145 1.1842 1.1250 1.1502

Walmart 0.8448 0.8460 0.7942 0.7948 0.7651 0.7656 0.7354 0.7355 0.8821 0.8851 0.8240 0.8243

LastFM 1.0953 1.1149 1.0038 1.0081 0.9643 0.9691 1.0102 1.0255 0.9645 0.9758 0.9838 0.9869

Books 1.1239 1.1262 1.0234 1.0245 0.9839 0.9856 0.9588 0.9585 1.0667 1.0674 0.9719 0.9831

Flights 0.1229 0.1274 0.1013 0.1065 0.0752 0.0802 0.0651 0.0688 0.1313 0.1353 0.1205 0.1230

mostly lower than the linear models; this is expected but orthogonal to our focus. Interestingly,

on Yelp, in which both joins are known to be not safe to avoid for linear models [100], NoJoin

correctly sees a large rise in error against JoinAll–almost 0.07 for Naive Bayes. But the rise is

smaller for some high-capacity classifiers, e.g., RBF-SVM, Gini decision tree, and ANN all see a

rise less than 0.03. Thus, these high-capacity classifiers are counter-intuitively more robust than

linear classifiers to avoiding joins.

We also see that NoFK often has much higher errors than JoinAll and NoJoin. Thus,

foreign key features are useful even for high-capacity classifiers; it is known for linear classifiers

that dropping foreign keys causes bias to shoot up [100]. Interestingly, on Yelp, which has very

low tuple ratios, NoFK has much lower errors than JoinAll and NoJoin.
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Table 3.3: Robustness results for discarding individual dimension tables with a Gini decision
tree.

Dataset Expedia Movies Yelp Walmart LastFM Books

NoR1 0.2456 1.0261 1.2918 0.7846 0.9434 0.9772

NoR2 X 1.0252 1.3077 0.7844 0.9465 0.9869

JoinAll 0.2452 1.0263 1.2929 0.7829 0.9431 0.9771

NoJoins 0.2524 1.0250 1.3096 0.7867 0.9463 0.9797

Flights : NoR1 : 0.1387 NoR2 : 0.1392 NoR3 : 0.1404
NoR1,R2 : 0.1377 NoR1,R3 : 0.1379 NoR2,R3 : 0.1426

To understand the above results more deeply, we conduct a “robustness” experiment by

discarding dimension tables one at a time: Table 3.3 presents these results for the Gini decision

tree. We see that the errors with dropping dimension tables one (or even two) at a time are all still

within 0.01 of NoJoin in all cases, except for Yelp. Even on Yelp, the error increases significantly

only when R2 (users table) is dropped, not R1. As Table 3.1 shows, the tuple ratio for R2 is only

3, while that for R1 is 11.2. Interestingly, the tuple ratio is similarly low (3) for R2 in Books but

NoJoin error is not much higher. Thus, the tuple ratio is only a conservative indicator: it can tell

if an error is likely to rise but the error may not actually rise in some cases. Almost every other

dimension table can safely be discarded. The results were similar for ANN on Yelp and for the

RBF-SVM on Yelp, LastFM, and Books; we skip these for brevity.

Overall, out of 14 dimension tables across the 7 datasets, we are able to safely avoid

(with a tolerance of 0.01) 13 for decision trees and ANN with a tuple ratio threshold of about

3. For RBF-SVM, we were able to safely avoid 11 dimension tables with a tuple ratio threshold

being of about 6. These are in stark contrast to the more modest results reported with the linear

classifiers in [100]: only 7 of the dimension tables could be safely avoided, that too with a tuple

ratio threshold of 20. Thus, we see that the decision trees and ANN need six times fewer training

examples and the RBF-SVM needs three times fewer training examples than linear classifiers to
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Table 3.4: Results of the hypothesis tests.

Dataset
eps = 0 eps = 0.01

α=0.05 α=0.005 α=0.05 α=0.005

Expedia 3 5 10 10

Movies 8 8 10 10

Yelp 1 1 4 5

Walmart 7 8 10 10

LastFM 4 6 9 9

Books 6 7 10 10

Flights 2 4 10 10

avoid significant extra overfitting when avoiding KFK joins. These results are counter-intuitive

because such complex classifiers are known to need more (not less) training examples to avoid

extra overfitting.

For an interesting comparison that we use later in Section 3.5, we also show the results for

1-NN (from “RWeka” in R) in Table 3.2. Surprisingly, this “braindead” classifier has significantly

lower errors with NoJoin than JoinAll for most datasets! We discuss this behavior further in

Section 3.5.

Hypothesis Tests. The cross-validation errors suggest that NoJoin is not significantly

worse than JoinAll for most datasets, especially those with high tuple ratios. We now validate if

the error differences are indeed statistically significant for a given error tolerance. We perform a

one-tailed t-test with the ten folds’ asymmetric error differences between NoJoin and JoinAll for

each model on each dataset. We set the tolerance (ε) to both 0 and 0.01. The null hypothesis is

that the error difference is not significantly higher than ε. Table 3.4 lists the number of models

for which the null hypothesis was not rejected for the standard α = 0.05 confidence level and

the recently recommended stricter level of α = 0.005 [2]. We see that except on Yelp, which has

very low tuple ratios, NoJoin is not statistically significantly worse than JoinAll for most models

(both linear and higher capacity), especially for ε = 0.01 but also for ε = 0 in many cases. For

example, logistic regression on Movies and Yelp has p-values of 0.97 and 0.000026 respectively

for ε = 0.01. Since the p-value for Movies is greater than the α levels, the null hypothesis is
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Figure 3.1: End-to-end runtimes on the real-world datasets: Walmart (W), Expedia (E), Flights
(F), Yelp (Y), Movies (M), LastFM (L) and Books (B).

retained. But for Yelp, the null hypothesis is rejected as the p-value is far below the α levels. Due

to space constraints, we skip the other p-values here but have released all the detailed results on

our project webpage.

Runtimes. A key benefit of avoiding joins safely is that ML runtimes (including feature

selection) could be significantly lowered for linear models [100]. We now check if this holds for

high-capacity classifiers as well by comparing the end-to-end execution times (training, validation

with grid search, and testing). Due to space constraints, we only report Gini metric for decision

trees and RBF kernel for SVMs; these were also the most robust to avoiding joins. All experiments

(except for ANN) were run on CloudLab [126]; we use a custom OpenStack profile running

Ubuntu 14.10 with 40 Intel Xeon cores and 160GB of RAM. The ANN experiments were run on

a commodity laptop with Nvidia GeForce GTX 1050 GPU, 16GB RAM and Windows 10. We

used R version 3.2.2 and TensorFlow version 1.1.0. Figure 3.1 presents the results.

For the high-capacity classifiers, we saw an average speedup of about 2x for NoJoin over

JoinAll. The highest speedup was on the Movies: 3.6x for the decision tree and 6.2x for the

RBF-SVM. As for the ANN, LastFM reported the largest speedup of 2.5x. The speedup for the
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Figure 3.2: Simulation results for Scenario OneXr. For all plots except (E), we fix p = 0.1.
Note that nR ≡ |DFK |. (A) Vary nS, while fixing (nR,dS,dR) = (40,4,4). (B) Vary nR, while
fixing (nS,dS,dR) = (1000,4,4). (C) Vary dS, while fixing (nS,nR,dR) = (1000,40,4). (D)
Vary dR, while fixing (nR,dS,dR) = (1000,40,4). (E) Vary p, while fixing (nS,nR,dS,dR) =
(1000,40,4,4). (F) Vary |DXr |, while fixing (nS,nR,dS,dR) = (1000,40,4,4); all other features
in XR and XS are binary.

linear classifiers were more significant, e.g., over 80x for Naive Bayes on on Movies and and

about 20x for logistic regression on LastFM. These results corroborate the orders of magnitude

speedup reported in [100].

3.4 In-depth Simulation Study

We now dive deeper into the behavior of the decision trees using a simulation study

in which we vary the underlying “true” data distribution and sampling datasets of different

dimensions. We focus on a two-table join for simplicity. We use the decision tree, since it exhibited

the maximum robustness to avoiding KFK joins on the real data. Our study comprehensively

“stress tests” this robustness. Note that our methodology is generic enough to be applicable to

any other classifier too, since we only use generic notions of error and net variance as defined

in [100].

Setup and Data Synthesis There is one dimension table R (q = 1), and all of XS, XR,

and Y are boolean (domain size 2). We control the “true” distribution P(Y,X) and sample labeled
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examples in an IID manner from it. We study two different scenarios for what features are used

to (probabilistically) determine Y : OneXr and XSXR. These scenarios represent opposite extremes

for how likely the (test) error is likely to shoot up when XR is discarded and FK is used as a

representative [100]. In OneXr, a lone feature Xr ∈ XR determines Y ; the rest of XR and XS are

random noise (but note that FK will not be noise because it functionally determines Xr). In

XSXR, all features in XS and XR determine Y . Intuitively, OneXr is the worst-case scenario for

discarding XR because Xr is typically far more succinct than FK, which we expect to translate to

less possibility of overfitting with NoJoin. Note that if we use FK directly in P, XR can be more

easily discarded because FK conveys more information anyway; so, we skip such a scenario.

The following data parameters are varied one at a time: number of training examples (nS),

size of foreign key domain (|DFK| = nR), number of features in XR (dR), and number of features

in XS (dS). We also sample nS
4 examples each for the validation set (for hyper-parameter tuning)

and the holdout test set (final indicator of error). We generate 100 different training datasets and

measure the average test error and average net variance (as defined in [59]) based on the different

models obtained from these 100 runs.

3.4.1 Scenario OneXr

The “true” distribution is set as follows: P(Y = 0|Xr = 0) = P(Y = 1|Xr = 1) = p, where

p is called the probability skew parameter that controls the noise (also called Bayes error [75]).

The exact procedure for sampling examples is as follows: (1) Construct tuples of R by sampling

XR values randomly (each feature value is an independent coin toss). (2) Construct the tuples of

S by sampling XS values randomly (independent coin tosses). (3) Assign FK values to S tuples

uniformly randomly from DFK . (4) Assign Y values to S tuples by looking up into their respective

Xr value (implicit join on FK = RID) and sampling from the above conditional distribution.

We compare JoinAll, NoJoin, and NoFK; we include NoFK for a lower bound on errors,
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Figure 3.3: Scenario OneXr simulations with the same setup as Figure 3.2(B), except for (A)
1-NN and (B) RBF-SVM.

since we know FK does not directly determine Y (although indirectly it does).3 Figure 3.2

presents the results for the test errors for varying each relevant data and distribution parameter,

one at a time.

Interestingly, regardless of the parameter varied, in almost all cases, NoJoin and JoinAll

have almost identical errors (close to the Bayes error)! From inspecting the actual decision trees

learned in these two settings, we found that in almost all cases, FK was used repeatedly for

partitioning; seldom was a feature from XR, including Xr, used. This suggests that FK can indeed

act as a good representative of XR even in this extreme case. In contrast to these results, [100]

found that for linear models, the errors of NoJoin shot up compared to JoinAll (a gap of nearly

0.05) as the tuple ratio starts falling below 20. In stark contrast, as Figure 3.2(B) shows, even

for a tuple ratio of just 3, NoJoin and JoinAll have similar errors with the decision tree. This

corroborates the results seen for the decision tree on the real datasets (Table 3.2). When nS

becomes very low or when |DFK| becomes very high, the absolute errors of JoinAll and NoJoin

increase compared to NoFK. This suggests that when the tuple ratio is very low, NoFK is perhaps

worth trying too. This is similar to the behavior seen on Yelp. Overall, NoJoin exhibits similar

behavior as JoinAll in most cases.

We also ran this scenario for the RBF-SVM (and 1-NN); the trends were similar, except

for the value of the tuple ratio at which NoJoin deviates from JoinAll. Figure 3.3 presents the

results for the experiment in which we increase |DFK|= nR, while fixing everything else, similar

3In general though, NoFK could have much higher errors if FK is part of the true distribution; indeed, NoFK had
much higher errors on many real datasets (Table 3.2).
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Figure 3.5: Scenario OneXr simulations with skew in P(FK). (A-B) Zipfian skew. (C-D)
Needle-and-thread skew. For (A) and (C), we vary the respective skew parameter (Zipfian skew
parameter and needle probability), while fixing (nS,nR,dS,dR) = (1000,40,4,4). For (B) and
(D), we vary nS, while fixing (nR,dS,dR) = (40,4,4), the Zipfian skew parameter to 2 for (B),
and the needle probability to 0.5 for (D).

to Figure 3.2(B) for the decision tree. We see that for the RBF-SVM, the error deviates when the

tuple ratio falls below roughly 6. This corroborates its behavior on the real datasets (Table 3.2).

The 1-NN, as expected, is far less stable and the deviation starts even at a tuple ratio of 100. As

Figure 3.4 confirms, the deviation in error for the RBF-SVM is due to the net variance, which

helps quantify the extra overfitting. This is akin to the extra overfitting reported in [100] using

the plots of the net variance. Intriguingly, the 1-NN sees its net variance exhibit non-monotonic

behavior; this is likely an artifact of its unstable behavior, since fewer and fewer training examples

will match on FK as nR keeps rising.

Finally, we also ran this scenario with a skew in P(FK), which makes it less safe to avoid

the join for linear classifiers [100]. But our simulations with a decision tree show that it is robust

even to foreign key skew in terms of how safe it is to avoid the join. The regular OneXr scenario

samples FK uniformly randomly from DFK (step 3 in the procedure). We now ask if a skew in

the distribution of FK values could widen the gap between JoinAll and NoJoin. To study this

scenario, we modify the data generation procedure slightly: in step 3, we sample FK values with a
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Figure 3.6: Simulation results for Scenario XSXR. The parameter values varied/fixed are the
same as in Figure 3.2 (A)-(D).

Zipfian skew or a needle-and-thread skew. The Zipfian skew simply uses a Zipfian distribution for

P(FK) controlled by the Zipfian skew parameter. The needle-and-thread skew allocates a large

probability mass (parameter p) to a single FK value (the “needle”) and uniformly distributes the

rest of the probability mass to all other FK values (the “thread”). For the linear model case, [100]

reported that as the skew parameters increased, the gap widened. Figure 3.5 presents the results

for the decision tree.

Surprisingly, the gap between NoJoin and JoinAll does not widen significantly no matter

how much skew introduced in either the Zipfian or the needle-and-thread case! This result further

affirms the remarkable robustness of the decision tree when discarding foreign features. As

expected, NoFK is better when nS is low, while overall, NoJoin is quite similar to JoinAll.

3.4.2 Scenario XSXR

Unlike OneXr, we now create a true distribution that maps X ≡ [XS,XR] to Y without any

noise (Bayes error). The exact procedure for sampling examples is as follows: (1) Construct a

true probability table (TPT) with entries for all possible values of [XS,XR] and assign a random

probability to each entry such that the total probability is 1. (2) For each entry in the TPT, pick a

Y value randomly and append the TPT entry; this ensures H(Y |X) = 0. (3) Marginalize the TPT

to obtain P(XR) and from it, sample nR = DFK tuples for R along with an associated sequential

RID value. (4) In the original TPT, push the probability of each entry to 0 if its XR values did not

get picked for R in step 3. (5) Renormalize the TPT so that the total probability is 1 and sample

nS examples (Y values do not change) and construct S. (6) For each tuple in S, pick its FK value
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uniformly randomly from the subset of RID values that map to its XR value in R (an implicit

join). We again compare JoinAll, NoJoin, and NoFK. Figure 3.6 presents the results.

Once again, we see that NoJoin and JoinAll exhibit similar errors in almost all cases, with

the largest gap being 0.017 in Figure 3.6(C). Interestingly, even when the tuple ratio is close

to 1, the gap between NoJoin and JoinAll does not widen much. Figure 3.6(B)) shows that as

|DFK| increases, NoFK remains at low overall errors, unlike both JoinAll and NoJoin. But as

we increase dR or dS, the gap between JoinAll/NoJoin and NoFK narrows because even NoFK

does not have enough training examples. Of course, all gaps virtually disappear as the number of

training examples increases, as shown by Figure 3.6(A). Overall, NoJoin again exhibits similar

behavior as JoinAll.
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Table 3.5: (A) Training errors for the same experiments as Table 3.2. Bold font marks the cases
where the error of NoJoin is at least 0.01 higher than JoinAll.

(A)
Dataset

Decision Tree
1NN

Gini Information Gain Ratio

JoinAll NoJoin NoFK JoinAll NoJoin NoFK JoinAll NoJoin NoFK JoinAll NoJoin

Expedia 0.1425 0.1478 0.1660 0.1442 0.1465 0.1641 0.1455 0.1454 0.1738 0 0

Movies 1.0038 1.0038 1.0476 1.0106 1.0119 1.0545 1.0145 1.0174 1.0551 1.0546 1.0420

Yelp 1.0425 1.0458 1.2149 1.0537 1.0571 1.2290 1.0650 1.0844 1.2358 1.3050 1.1958

Walmart 0.7339 0.7362 0.8212 0.7362 0.7346 0.8298 0.7373 0.7362 0.8176 0.7045 0.7058

LastFM 0.9153 0.9172 1.0947 0.9153 0.9155 1.1059 0.9247 0.9252 1.1092 1.0140 1.0137

Books 0.8439 0.8440 0.8909 0.8750 0.8750 0.8926 0.8957 0.8953 0.9317 1.0701 1.0540

Flights 0.0004 0.0005 0.0121 0.0008 0.0007 0.0079 0.1247 0.1253 0.1261 0 0

(B)
Dataset

SVM
ANN

Naïve Bayes Logistic Regression

Linear Polynomial RBF BFS L1

JoinAll NoJoin JoinAll NoJoin JoinAll NoJoin JoinAll NoJoin JoinAll NoJoin JoinAll NoJoin

Expedia 0.2038 0.2063 0.1934 0.1955 0.1913 0.2017 0.1770 0.1774 0.2350 0.2359 0.2057 0.2058

Movies 1.0149 1.0161 0.9851 0.9836 0.9685 0.9718 0.9558 0.9531 1.0347 1.0360 1.0152 1.0172

Yelp 1.1258 1.1239 1.0838 1.0979 1.0743 1.0927 1.1759 1.1749 1.0572 1.1081 1.1041 1.1183

Walmart 0.8254 0.8261 0.7752 0.7755 0.7456 0.7462 0.6956 0.6951 0.8541 0.8553 0.8028 0.8077

LastFM 1.0461 1.0578 0.9836 0.9830 0.9451 0.9466 0.9848 0.9852 0.9242 0.9253 0.9447 0.9462

Books 1.0737 1.0761 1.0053 1.0059 0.9534 0.9557 0.9338 0.9345 1.0235 1.0245 0.9436 0.9469

Flights 0.0874 0.0914 0.0189 0.0190 0 0 0.0451 0.0500 0.1246 0.1285 0.0971 0.1028

3.4.3 Scenario RepOneXr

We now present results for a new simulation scenario that is a slight twist on OneXr: the

tuples of R are constructed by replicating the value of Xr sampled for a tuple to create all the

other features in XR. That is, XR of an example is just the same value repeated dR times. Note

that the FD FK → XR implies there are at least as many unique FK values as XR values. Thus, by

increasing |DFK| relative to dR, we hope to increase the chance of the model getting “confused”

with NoJoin. Our goal is to see if this widens the gap between JoinAll and NoJoin. Figure 3.7

presents the results for the two experiments on decision trees where (A) has a high tuple ratio

of 25 and (B) has a low tuple ratio of 5. Once again, JoinAll and NoJoin exhibit similar errors

in both the cases. For the RBF-SVM, NoJoin has higher errors at the tuple ratio of 5 but not 25,

while for the 1-NN, NoJoin has higher errors in both cases.

35



3.5 Analysis and Open Questions

3.5.1 Explaining the Results

We now intuitively explain the surprising behavior of decision trees and RBF-SVMs with

NoJoin vis-a-vis JoinAll. We first ask: Does NoJoin compromise the “generalization error”? The

generalization error is the difference of the test and train errors. Table 3.5 lists the train errors

(averaged across the 10 folds). JoinAll and NoJoin are remarkably close for the decision trees

(except for Yelp, of course). The absolute generalization errors are often high, e.g., train error

is almost 0 on Flights with RBF-SVMs but test errors are about 0.08, but this is orthogonal to

our focus–we only note that NoJoin does not increase this generalization error significantly. The

same is true for all the decision trees. Thus, avoiding the KFK joins safely did not significantly

affect the generalization errors the high-capacity classifiers.

Returning to 1-NN, Table 3.2 showed that it has similar errors as RBF-SVM on some

datasets. We now explain why this comparison is useful: RBF-SVM behaves similar to 1-NN

in some cases when FK is used (both JoinAll and NoJoin). But this does not necessarily hurt

its test accuracy. Note that FK is represented using the standard one-hot encoding for RBF-

SVM and 1-NN. So, FK can contribute to a maximum distance of 2 in a (squared) Euclidean

distance between two examples xi and x j. But since XR is functionally dependent on FK, if

xi.FK = x j.FK, then xi.XR = x j.XR. So, if xi.FK = x j.FK, the only contributor to the distance

is XS. But in many of the datasets, since XS is empty (dS = 0), FK becomes the sole determiner

of the distances for NoJoin. This is akin to sheer memorization of a feature’s large domain. Since

we operate on features with finite domains, test examples will also have FK from that domain.

Thus, memorizing FK does not hurt generalization. While this seems similar to how deep neural

networks excel at sheer memorization but still offer good test accuracy [171], the models in our

setting are not necessarily memorizing all features but rather only FK. A similar explanation

holds for the decision tree. If XS is not empty, then it will likely play a major role in the distance
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computations and our setting becomes more similar to the traditional single-table learning setting

(no FDs).

We now explain why NoJoin deviates from JoinAll when the tuple ratio is very low

for RBF-SVM. Even if xi.FK ̸= x j.FK, it is possible that xi.XR = x j.XR. Suppose the “true”

distribution is captured by XR (as in OneXr). If the tuple ratio is very low, there might be many FK

values but the number of distinct XR values might still be small. In this case, given xi, RBF-SVM

(and 1-NN) is more likely to pick an x j that minimizes the distances on XR, thus, potentially

yielding lower errors. But since NoJoin does not have access to XR, it can only use XS and FK.

So, if XS is mostly noise, the possibility of the model getting “confused” increases. To see why,

if there are few other examples that share xi.FK, matching on XS becomes more important. Thus,

a non-match on FK becomes more likely, which means a non-match on the implicit XR becomes

more likely, which in turns makes higher errors more likely. But if there are more examples

that share xi.FK, then a match on FK is more likely. Thus, as the tuple ratio increases, the

gap between NoJoin and JoinAll decreases, as Figure 3.3 showed. Internally, RBF-SVM seems

more robust to such chance mismatches, since it learns a higher-level relationship between all

features compared to 1-NN. Thus, RBF-SVM is more robust to avoiding joins at lower tuples

ratios compared to 1-NN.

Finally, the decision tree’s internal feature selection and partitioning seems to make it

robust to noise from many features. Suppose again the “true” distribution is similar to OneXr.

Since FK already encodes all information that XR provides, the tree almost always uses FK in its

partitioning, often multiple times. This is not necessarily “bad” for test accuracy because test

examples share DFK . But when the tuple ratio is extremely low, the chance of XS “confusing”

the tree against the information FK provides goes up, potentially leading to higher errors with

NoJoin. JoinAll escapes such a confusion due to XR. If XS is empty, then FK will almost surely

be used for partitioning. But with very few training examples per FK value, the chance of sending

it to a wrong partition goes up, leading to higher errors. It turns out that even with just 3 or 4
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Figure 3.8: Domain compression. (A) Flights. (B) Yelp.

training examples per FK value, such issues get mitigated. Thus, decision trees seem even more

robust to avoiding joins.

3.6 Making FK Features Practical

We now discuss two key practical issues caused by a large |DFK| and study how standard

techniques can be adapted to resolve them. Unlike prior work on handling large-domain regular

features [56], foreign key features are distinct, since they have coarser-grained side information

available in foreign features, which can be exploited.

3.6.1 Foreign Key Domain Compression

While foreign key features are clearly often useful for accuracy, they could make in-

terpretability difficult. For example, it is hard to visualize a decision tree that uses a foreign

key feature with 1000s of values. Thus, we consider a simple technique from the ML literature

to mitigate this issue: lossy compression. Essentially, FK with domain DFK is recoded as [m]

(where m = |DFK|). Given a user-specified positive integer “budget” l ≪ m, we want a mapping

f : [m]→ [l].

A standard unsupervised method to construct f is the random hashing trick [161], i.e.,

randomly map from [m] to [l]. We also try a simple supervised method based on filter-based feature

selection that we call the Sort-based method. It preserves more of the information contained in

FK about Y . It is a greedy approach in which we sort DFK based on H(Y |FK = z), z ∈ DFK ,
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compute the differences among adjacent pairs of values, and pick the boundaries corresponding

to the top l − 1 differences (ties broken randomly). This gives us an l-partition of DFK . The

intuition is that by grouping FK values that have comparable conditional entropy, H(Y | f (FK)) is

unlikely to be much higher than H(Y |FK). Note that the lower H(Y |FK) is, the more informative

FK is to predict Y .

We empirically compare the above two heuristics using two real datasets for the Gini

decision tree with NoJoin. Our methodology is as follows. We use the training partition to

construct f and then compress FK for the whole dataset. We then use the validation partition and

obtain cross-validation errors as before. For random hashing, we report the average across five

runs. Figure 3.8 presents the results. On Yelp, both Random and Sort-based have comparable

errors although Sort-based is marginally higher, especially as l increases. But on Flights, the gap

is larger for some values of l although the gap narrows as the l increases. The test error with the

whole DFK (l = m) for NoJoin on Flights was 0.14 (see Table 3.2). Thus, it is surprising to see an

error of only about 0.18 even with such high domain compression. Even more surprisingly, the

test error on Yelp goes down after domain compression from 1.31 to about 1.22. Overall, these

results suggest that FK domain compression, especially with Sort-based, is a promising way to

resolve the large-domain issue rather than dropping FK.

3.6.2 Foreign Key Smoothing

Another issue caused by a large |DFK| is that some FK values might not arise in the

train set but arise in the test set or during deployment. This is not the cold start issue, since

all FK values are from within the closed DFK , but rather an issue of there not being enough

labeled examples to cover all of DFK well. Typically, this issue is handled using smoothing, e.g.,

Laplacian smoothing for Naive Bayes by adding a pseudocount of 1 to all frequency counts [109].

While similar techniques have been studied for probability estimation using decision trees [118],

to the best of our knowledge, this issue has not been handled in general for classification using
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Figure 3.9: Smoothing. (A) Hashing. (B) XR-based.

decision trees. In fact, popular decision tree packages in R simply crash if this issue arises! Note

that SVMs, ANNs, and other numeric feature space-based models do not have this issue, since

they use one-hot encoding of FK.

We consider a simple solution approach: smooth by reassigning an FK value not seen

during training to an FK value that was seen. The reassignment can be done in many ways but for

simplicity sake, we consider only two unsupervised methods: random reassignment and distances

using foreign features (XR). Note that the latter is only feasible in cases where the dimension

tables have been procured; the idea is to use the auxiliary information in XR to smooth FK rather

than just using JoinAll. We smooth using XR as follows: given a test example with FK not seen

during training, obtain an FK seen during training whose corresponding XR feature vector has

the minimum distance with the given test example’s XR (ties broken randomly). The distance

measure is just a sum of the l0 distance for categorical features (count of pairwise mismatches)

and l2 distance for numeric features (Euclidean distance).

The intuition for XR-based smoothing is that if XR is part of the “true” distribution, it may

yield lower errors than random smoothing, but if XR is just noise, both methods become similar.

We empirically compare these methods using the OneXr simulation scenario in which a lone

feature Xr ∈ XR determines the target (with some Bayes error). We introduce a parameter γ that is

the ratio of the number of FK values not seen during training to |DFK|. If γ = 0, smoothing is

not needed; as γ increases, more smoothing is needed. Figure 3.9 presents the results. We see

that XR-based smoothing yields much lower test errors for both NoJoin and JoinAll. In fact, the

smoothed approaches’ errors are comparable to NoFK and the Bayes error for low values of γ
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(< 0.5). As γ gets closer to 1, the errors of XR-based smoothing also increase but not as much

as random smoothing. Overall, these results suggest that one could get “the best of both worlds”

in a way: even if foreign features are available, rather for using them always as in JoinAll, an

often viable alternative is to use them as side information for smoothing foreign key features with

NoJoin, thus still yielding some of the runtime and usability benefits of NoJoin.

3.6.3 Discussion and Limitations

Our results confirm that it is often safe to avoid KFK joins even for popular high-capacity

classifiers. Thus, data scientists can use the tuple ratio rule to easily reduce the burden of data

sourcing for such classifiers too, not just linear models. We also showed that it is possible to avoid

joins safely regardless of whether features are categorical or numeric. This has a new implication

for further theoretical analysis of our results because the analysis in [100] relied on the finiteness

of the hypothesis space due to all features being categorical. But an infinite hypothesis space

does not preclude a finite VC dimension [139]. Extending the theoretical analysis to our more

general setting is an open problem. While we focused on star schemas, our results can be easily

extended to snowflake schemas as well due to the transitivity of FDs. Our results also apply to

single-table data with an acyclic set of FDs, as noted in [100], since a BCNF decomposition can

yield a multi-table scenario.

We recap the limitations and assumptions of our work to help data scientists apply our

idea in the right context. We focused only on popular classification models but our results hold

for both binary and multi-class targets and both categorical and numeric features. If a foreign

key is not generalizable (e.g., search ID in Expedia), it cannot be used directly as a feature and

so, its corresponding join should not be avoided. Finally, we leave it to future work to study the

interplay of our work with cold start techniques and latency trade-offs during model serving.
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3.7 Conclusion

It is high time for the data management community to look beyond just building faster

ML systems and help reduce the pains of data sourcing for ML. Understanding how fundamental

data properties and schema information can simplify end-to-end ML workflows is one promising

avenue in this direction. While the idea of avoiding joins safely has been adopted in practice for

linear classifiers, in this comprehensive study, we show that it works as well or better for popular

high-capacity classifiers too. This goes against the intuition that high-capacity classifiers are

typically more prone to overfitting. We hope that our work spurs discussions and new research on

simplifying data acquisition for ML.

Chapter 3 contains material from “Are key-foreign key joins safe to avoid when learning

high-capacity classifiers?” by Vraj Shah, Arun Kumar, and Xiaojin Zhu, which appeared in

Proceedings of the 2018 Very Large Data Bases Conference (VLDB’18). The dissertation author

was the primary investigator and author of this paper.
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Chapter 4

ML Data Prep Zoo: Towards Automating

and Benchmarking ML Data Prep

4.1 Introduction

In this chapter, we dive deeper into our vision of a new line of community-driven research

towards automating and benchmarking ML data prep. Surveys of data scientists show that ML

data prep often dominates their time and effort, even up to 80% [152]. It is tedious grunt work

involving tasks such as identifying feature types and extracting feature values. Today, it is

performed mostly manually in tools like Python and R, reducing data scientists’ productivity and

raising costs. Modern datasets also often have 1000s of columns, worseing this issue. Furthermore,

SalesForce, Google, and other cloud vendors are starting to offer end-to-end AutoML platforms

for enterprises; manual data prep at this scale of millions of datasets is untenable [13].

Challenge: Semantic Gap. While the DB community has long studied data cleaning/prep

for SQL analytics, little work has studied the peculiarities of ML data prep. The semantic gap

between what an attribute is in a DB/data file and what a feature is for ML means many tasks

have fallen through the cracks. Thus, a pressing grand challenge for the community is to construct
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CustID
(Varchar)

Time Since
(Varchar)

Zipcode
(Integer)

Income
(Varchar)

Age
(INT)

XYZ
(Varchar)

101 25 months 92092 12000 25 005
102 10 years 92093 USD 1000 56 007
103 15 weeks UNK 50000 34 003
104 10 years 92093. 1000 56 007

Raw CSV file (DB schema)

Task 1: ML Feature 
Type Inference (MC)

Numeric Age

Categorical Zipcode

Not-Generalizable CustID

Datetime Time Since

Embedded 
Number

Income

List …

Context-Specific XYZ

Sentence …

URL …

CustID …

103 …

Task 2: Detect Anomalous
Categories (BC)

Task 3: Category  
Deduplication (BC)

Flagged
Rows

CustID …

102 …

104 …

Similar
Rows

Task 4: Multiple Number  
Units Detection (BC)

Task 5: Embedded Number  
Extraction (Seq2Seq)

months 30

years 365

… …

External Knowledge Base

CustID Time Since Income …

101 750 12000 …

102 3650 1000 …

103 105 50000 …

Task 6: List Domain Extraction
(Seq2SetSeq)

Detect Data  
Type

Schema Extraction  
from DB world

Custom Features: n-
gram, Word2vec, …

ML Feature Types

Figure 4.1: Illustrating major data prep tasks. The user loads a customers table to train, say, a
churn predictor. BC stands for binary classification. MC stands for multi-class classification.
Seq2Seq stands for sequence-to-sequence learning. Seq2SetSeq stands for sequence-to-set-of-
sequence learning.

a shared understanding/terminology of such tasks, understand why they are hard to automate, and

standardize evaluation of automated tools.

Our Vision. To meet the above challenge, we envision a community-driven effort for

automating ML data prep. Our philosophy is to abstract specific ML data prep tasks and cast

them as applied ML tasks. This raises 3 questions. What are the tasks and what is their role? How

to cast them as applied ML tasks? How to create benchmark datasets for comparing tools? In

particular, we believe the critical limiting factor for impactful and replicable research in this space

is not fancier algorithms or theory but the availability of large high-quality labeled datasets for

ML data prep tasks. As an analogy, the formalization of the ImageNet task and dataset spurred

major recent advances in ML-based vision.

We now present our vision of the ML Data Prep Zoo, a repository of common ML

data prep task definitions, benchmark labeled datasets, and pre-trained ML models. Figure 4.1

illustrates 6 tasks we have defined so far based on our conversations with data scientists. We

next explain these tasks and how to cast them as applied ML tasks. We also discuss key research

questions in realizing this vision and explain the different choices. Finally, we describe the ML

Data Prep Zoo repository for our datasets and models and announce competitions for community

contributions.
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4.2 Data Prep Tasks for ML

4.2.1 Task 1: ML Feature Type Inference

Description and Example. The first step is to infer the ML feature types. Most ML

models recognize only numeric or categorical features. This task is surprisingly hard to automate

accurately due to the semantic gap between DB and ML schemas. For example, Zipcode in

Figure 4.1 is an integer; so, Pandas will call it a numeric feature, which is nonsensical! This

semantic gap is bridged today manually by converting it to categorical. This issue is common in

real datasets, since categories are often stored as integers, e.g., disease codes, product types, etc.

Real datasets also often have 100s of features, which means the manual grunt work quickly adds

up.

Casting as an ML Task. We bridge the semantic gap by casting this task as an ML

classification task. We explain this further in Chapter 5. The raw features are a whole column,

including name such as “ZipCode” and sample values such as 90292, 92093, etc. in the above

example. Two classes are numeric and categorical. But there is often not enough information

in the data file to identify a column type, even for humans. This necessitates more classes; we

created a 9-class vocabulary. (1) Numeric and (2) Categorical: These are for columns that can

be (almost) directly used for the target model, e.g., Age in Figure 4.1 is Numeric, while Zipcode

is Categorical. (3) Usable-with-Extraction: These include types such as Datetime, Sentence,

Embedded Number, URL, and List. Such columns have “messy” values, preventing direct use as

numeric or categorical features, e.g., Income and TimeSince require custom extraction before

being used as numeric features. Such extraction is hard to automate fully, but we later discuss a

few common extraction tasks that can be cast as applied ML tasks. (4) Not-Generalizable: Such

columns can not be used as features for the target model because they are not “generalizable,” e.g.,

CustID is a primary key. (5) Context-Specific: This is a catch-all for columns whose type is hard

to tell even for humans, e.g., XYZ has integers but is it really numeric (like Age) or categorical
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(like Zipcode)? To ascertain the type of such columns, data scientists typically need to manually

check the application’s data documentation.

4.2.2 Tasks for Categorical

While a Categorical column can be used directly, data scientists often seek to resolve two

issues with its domain to boost target model accuracy: missing value categories and duplicate

categories. For instance, we saw both“-999” and “unknown” for missing values and both

“CA” and “California” for California in real datasets. One may want to discard missing value

categories and instead use statistical techniques for handling missing values. One may also

want to deduplicate categories to reduce domain size, which helps in the bias-variance tradeoff.

Thus, we formalize two new data prep tasks as binary classification: Task 2: Detect Anomalous

Categories to flag missing value categories and Task 3: Category Deduplication to flag pairs

of categories that are duplicates. The column name and its domain are the raw features for both

tasks. Task 2 is an instance of the entity matching problem in the data cleaning literature but with

much less metadata for devising similarity scores; one could consider Siamese neural networks

for this task.

4.2.3 Tasks for Usable-with-Extraction

Usable-with-Extraction columns require more processing to extract numeric and/or cat-

egorical features, e.g., Income. Figure 4.1 has “USD” prefixing a number, while TimeSince

has “months,” “years,” etc. suffixing numbers. Data scientists often write regular expressions

or custom code to extract such values. While it is perhaps impossible to automate all such

extractions, we identify three common tasks that can be cast as applied ML tasks.

Task 4: Multiple Number Units Detection: Are the units of an embedded number the

same? If not, we need to standardize the units, likely with human intervention and/or external
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knowledge bases about units. In Figure 4.1, TimeSince has multiple units. If yes, we get Task

5: Embedded Number Extraction: What is the embedded number? For instance, extract 1000

from “USD 1000.” This can be seen as both a Seq2Seq task and a sequence-to-regression task. An

encoder-decoder CNN/RNN may fit this task. One could also consider joint multi-task learning

for Tasks 4 and 5.

Task 6: List Domain Extraction: Some columns have lists in a string separated by

commas, space, semicolons, etc. Data scientists typically write custom code to extract the domain

of the list values and use the domain to get new numeric/categorical features for the target model.

This is a complex task that converts a sequence to a set of sequences representing domain entries.

Once could consider more complex neural architectures for this task.

Other Featurization Routines In our current scope, we leave other standard featurization

routines for custom processing to the user. For instance, to process a full English sentence in

a Usable-with-Extraction column, data scientists may want to use bag-of-words, n-grams, or

embeddings like Word2Vec or Doc2Vec. Such feature engineering decisions are orthogonal to

our focus and are often application-specific. Other feature types such as dates and timestamps

can be processed using standard DB techniques, while URLs and custom objects may require

human intervention. One could consider character-level CNNs and RNNs for this task.

4.3 Research Questions and Options

4.3.1 Metrics and Featurization

The accuracy metrics for Tasks 1 to 4 are standard, but for Tasks 5 and 6, we may need to

define new metrics. For Task 5, edit distance and/or squared loss are candidates with differing

results, e.g., “12” is closer to “$12.99” under the latter but not the former although edit distance

helps sequence extractors. Task 6 has a complex structured prediction output, which may need
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a complex loss function (ideally, still differentiable) and multiple accuracy metrics. Even the

featurization of the raw column is an open question, since the ML models for our tasks also need

numeric, categorical, or string features. Several options exist: obtain n-grams or embeddings

from column names and sample values, get summary statistics, and so on. Characterizing which

of these features matter the most is also part of our research, since such featurization matters for

both accuracy and inference latency at deployment time.

4.3.2 Creating Large Labeled Datasets

This is our central research challenge. To the best of our knowledge, there are no large

benchmark labeled datasets for any of our 6 data prep tasks. Manual labeling for each task

each could yield best accuracy but it is highly time-consuming and expensive. There are three

alternative approaches: crowdsourcing, active learning, and weak supervision.

Crowdsourcing labels is common in ML practice, but we face a major quality issue:

most crowd workers are lay users, not data scientists who “get” data prep. In fact, our pilot

run for crowdsourcing labels for Task 1 on the FigureEight platform resulted in too much noise

even with 5 labels per example. Thus, how to structure crowd labeling questions better is an

open research question. Active learning with a data scientist in the loop is another option.

But a key disadvantage here is that we need to fix the task’s ML model beforehand. Finally,

weak supervision is a promising approach here, since it is often possible to write small labeling

functions (LFs) to encode structural heuristics and dictionary lookups for some tasks. A denoising

framework like Snorkel [122] can potentially help boost accuracy over the LFs’ outputs. Snuba-

on-Snorkel [158] can automate the production of LFs for some classification tasks. But an open

challenge is that Snorkel current does not support complex prediction outputs like in Tasks 5 and

6.
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4.3.3 Creating Human-in-the-loop Tools

Our work cannot end at getting ML models for our tasks. To complete the loop,we need

to integrate them for inference in popular data prep ecosystems. There are two main kinds of

tools: programmatic (e.g., R, Pandas, and TFDV) and visual (e.g., Excel and Trifacta). Each

presents its own set of interesting implementation challenges. For the former, simple APIs can be

introduced to plug our trained ML models. For the latter, it is an open research question as to

how to create appropriate interface mechanisms that can exploit both our ML models’ predictions

and human-in-the-loop correction capabilities. For instance, the user could “guide” an ensemble

of ML models based on column semantics or specific column values they see. Looking even

further out, we can integrate ML models with programming-by-example and program synthesis

approaches, especially for Tasks 5 and 6 that require value extraction. This requires resolving

ambiguity in the program search space and defining new ranking schemes aimed at reducing

manual extraction effort.

4.4 Conclusion

We announce the ML Data Prep Zoo, a living public repository (on GitHub) of labeled

data for ML data prep tasks [36]. We release all datasets we create as CSV files. We also release

our trained ML models in Python for the defined tasks. Our first release is for Task 1 and Task 3.

Our trained models include logistic regression, Random Forest, kernel SVM, and a character-level

CNN for Task 1. The Zoo also tabulate the accuracy of the baselines and our models on each

task. We invite contributions from the research community to augment these datasets, create new

data for the other tasks, and/or define new tasks along with their own labeled data and models.

We have a leaderboard for public competitions on the hosted datasets with multiple accuracy and

runtime metrics, inspired by the ImageNet competition. We invite researchers to use our data to

create better featurization and models to automate ML data prep tasks.
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Chapter 4 contains material from “The ML Data Prep Zoo: Towards Semi-Automatic

Data Preparation for ML” by Vraj Shah and Arun Kumar, which appeared in Proceedings of the

3rd International Workshop on Data Management for End-to-End Machine Learning (DEEM’19).

The dissertation author was the primary investigator and author of this paper.
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Chapter 5

ML Feature Type Inference: Benchmarking

and Automating for ML

5.1 Introduction

In this chapter, we initiate the first work on benchmarking and automating a critical ML

data prep task, ML feature type inference. The paradigm of automated machine learning (AutoML)

is beginning to help democratize machine learning for the masses [80]. Cloud vendors have

released AutoML platforms such as Google’s Cloud AutoML [10] and Salesforce’s Einstein [13]

that build ML models on millions of datasets from thousands of small-and-medium enterprises

automatically. The central goal of these platforms is to get an accurate model for the prediction

task while achieving maximum possible automation of the end-to-end ML workflow, especially

on structured data, including data transformations and feature engineering, as well as model

building and hyperparameter tuning. The automation of these steps has been intensively studied

in the ML/data mining [80, 68] and database communities [83, 97]. However, a crucial gateway

step to this whole workflow has received much less attention so far: ML feature type inference.

Datasets are typically loaded as files into the AutoML platforms. As Figure 5.1 illustrates,
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Figure 5.1: Typical workflow in AutoML platforms.

ML feature type inference is the very first step needed for ML over structured data. Features could

be Numeric, Categorical, or something else, as shown in Figure 5.1. Determining the correct

feature type is crucial for the whole workflow to work well: what data transformations to apply,

how to extract features, and how to feed signals to the downstream models. For instance, if a

column is inferred to be of type Timestamp, then several useful features such as day, month, and

year are often extracted automatically for the downstream model. Thus, the accuracy of feature

type inference is critical for the downstream model’s accuracy, and in turn, the effectiveness of

the entire ML platform.

Feature type inference is also performed automatically by many ML platforms, e.g.

TransmogrifAI in Einstein [17], Tensorflow Data Validation (TFDV) in TensorFlow Extended [45],

and AutoGluon from AWS [62]. But surprisingly, there is no objective evaluation to date of how

good their automation of this task is. Thus, mistakes in their automated feature type inference

can propagate and may degrade the workflow. For instance, consider what TFDV does on the

illustrative dataset for a common ML task, customer churn prediction in Table 5.1. It wrongly

calls many Categorical features with integer values as Numeric, e.g., ZipCode. This can cause the

downstream model to produce garbage results. Moreover, Income is inferred as Categorical even

though it has numbers embedded. Such issues can lead to loss of information and can potentially

reduce the accuracy of the model, or even cause it to fail in some scenarios.

One might ask: Why cannot AutoML platform users manually verify their feature types?

From our conversations with AutoML platform engineers at Salesforce and Google, we learned
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that their AutoML tools are used on over tens of thousands of datasets, adding up to millions of

features in production settings. Forcing users to manually annotate features can lead to a tedious,

slow, and error-prone process that also violates the promise of automation. Many domain users

who may not have much ML expertise may not like the platform asking them to manually mark

ML feature types. Thus, AutoML platform engineers prefer ever more accurate automation of

this task. Clearly, this requires them to objectively measure the accuracy of their AutoML tool on

the given task.

5.1.1 This Work’s Focus

Our Focus. We initiate work on benchmarking and objectively quantifying the task

of ML feature type inference in existing open-source industrial-strength AutoML tools. We

formalize and standardize this task by creating a benchmark labeled dataset. This will enable an

objective progress measurement, akin to ImageNet’s role in vision [127]. Moreover, this will help

objectively evaluate and improve AutoML platforms by enabling answers to key questions: How

good are AutoML tools? How can one do better? How does the accuracy of type inference affect

downstream ML model’s accuracy?

Challenge. We first explain why feature type inference is hard to automate for existing

rule-based or syntax-based systems. Datasets are typically loaded from RDBMSs, data lakes, or

filesystems as flat CSV files into AutoML platforms. Thus, there exists a semantic gap between

feature types for ML and attribute types in databases/files. The latter tells us the syntactic datatypes

of columns such as integer, real, or string. This semantic gap means reading syntax as semantics

often leads to nonsensical results. For instance, consider Table 5.1 again. Attributes such as

CustID, Salary, and ZipCode are stored as integers, but only Salary is useful as Numeric. CustID

is unique for every customer, hence it can not be generalized for ML. ZipCode is Categorical,

even though it is stored as integers. In fact, this issue is ubiquitous in real-world datasets, since

categories are often encoded as integers, e.g., item code, state code, etc.
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Table 5.1: A simplified Customers data for churn prediction.
CustID Gender Salary ZipCode XYZ Income HireDate Churn

1501 ‘F’ 1500 92092 005 ‘USD 15000’ ‘05/01/1992’ ‘Yes’

1704 ‘M’ 3400 78712 003 ‘25384’ ‘12/09/2008’ ‘No’

Scope. Our focus is on relational/tabular data, which can be stored in any format (CSV,

JSON, XML, etc.) and with any filesystems. Note that our focus is not to study any upstream

processing steps that users might perform when they load their files into the AutoML tool. Also,

our focus is not on feature engineering and transformation steps over the columns with the

inferred types. We focus only on the ML feature type inference step. Admittedly, this is just

one step in the entire end-to-end ML workflow, but we believe that studying this step in depth is

critical to improve existing AutoML platforms, as we find that accurate type inference is critical

for achieving high downstream model accuracy. Equally importantly, the predictions are more

interpretable with accurate feature types.

5.1.2 Benchmark Comparisons

Our Labeled Dataset and Label Vocabulary. Creating labeled data for the task requires

a common formalized label vocabulary, which is important to create because the dichotomy of

Numeric vs. Categorical is not usually enough for categorizing feature types of raw columns. For

instance, column HireDate in Table 5.1 stores Date type values. Thus, we need more classes. We

survey existing AutoML data prep tools and collect their feature type vocabulary into a common,

practically useful set of labels that can be reused by any AutoML platform, as Figure 5.2 shows.

We gather and hand-label the very first large meta-dataset for benchmarking feature type inference.

Our dataset has 9921 columns from 1240 real data files from sources such as Kaggle and UCI

ML repository. Our labeling process took about 90 man-hours across 5 months.

Current Limitation. We admit that files on Kaggle and UCI ML repository may not be

representative of the truly “in-the-wild” dataset as it may have undergone some pre-processing.

But, it is impractical for researchers to get access to large numbers of publicly releasable data
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from enterprises and organizations due to legal restrictions. Thus, Kaggle and UCI are the closest

sources we have to the real-world data. We believe that our exploratory work is the first step in

the direction of objectively evaluating AutoML tools. We hope that this work starts a conversation

around enhancing such benchmark datasets.

Approaches to Type Inference. There are open-source tools such as Pandas [107],

TransmogrifAI [17], TFDV [45], and AutoGluon [62] that automate this task. They all happen

to be either rule-based or syntax-based. In contrast to prior approaches, our labeled dataset

also presents an alternative approach to type inference: use ML itself to automate this task. We

cast ML feature type inference as a multi-class classification problem and use ML models to

bridge the semantic gap. We extract signals from raw data files that a typical data scientist may

look at to identify the feature type. We summarize the signals in a feature set, which we use to

build standard ML models on our labeled data. We empirically compare the ML-based approach

enabled by our labeled data and existing public tools on our labeled test dataset.

Semantic Type Detection Tools. Recent tools such as Sherlock [79] and AutoType [167]

perform column-level semantic type detection for automated data discovery and cleaning. The

semantic type vocabulary of these tools is not directly usable for the AutoML setting because a

semantic type can belong to multiple ML feature types. This is by design because the application

motivations are different: semantic type detection tools are aimed at Business Intelligence (BI)

tool users to browse attributes more easily, not AutoML users. Thus, it is complementary to our

focus. To understand whether such tools can be ported to the AutoML setting, we use a rule-based

approach to map Sherlock’s semantic types to our vocabulary and evaluate it on our dataset.

Downstream Benchmark Suite. To understand the impact of the accuracy of ML feature

type inference task on the downstream models, we create a downstream benchmark: 30 curated

real-world datasets containing classification and regression tasks from diverse application domains

such as healthcare, retail, sports, etc. The benchmark enables us to answer two key questions:

(1) How does wrong type inference affect downstream performance? (2) How accurate are the
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downstream models delivered by the prior tools and the ML-based approach using our labeled

data relative to performance with true feature types?

Empirical Evaluation and Analysis. An empirical comparison of different approaches

on our labeled data shows that the ML-based approach delivers a lift of an average 14% and up

to 38% in accuracy compared to existing tools for identifying feature types. We then evaluate

and compare different ML models on our dataset. Overall, Random Forest outperforms the other

models and achieves the best 9-class accuracy of 92.6%. We perform an ablation study on our

ML models to characterize what types of features are useful.

Our empirical evaluation on the downstream benchmark suite shows that an ML-based

approach using our labeled data delivers the most accurate downstream model against the prior

tools for 47 out of 60 downstream models. In addition, we find that the wrong types inferred by

existing tools often lead to a significant decrease in the downstream model’s accuracy relative

to their true accuracy. For instance, Pandas underperforms over truth in 45 out of 60 cases.

Finally, we release a repository containing our labeled dataset, trained ML models, downstream

benchmarks, and announce a leaderboard for community contributions.

In summary, this work makes four key contributions.

1. A new benchmark task and dataset. To the best of our knowledge, this is the first work to

formalize and rigorously benchmark the task of ML feature type inference. We create the

first large benchmark labeled datasets for this task with a readily practically useful 9-class

label vocabulary.

2. Benchmarking alternate tools and approaches. Using our new data, we perform extensive

empirical comparisons of open source and industrial (Auto)ML tools. Perhaps surprisingly,

we find that even off-the-shelf ML models with standard featurization trained on our data

significantly outperform all prior approaches.

3. Downstream benchmark suite. The curated benchmark offers evidence that the down-
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Figure 5.2: Feature type vocabulary mapping of TFDV, Pandas, TransmogrifAI, and AutoGluon
to our vocabulary

stream model’s performance can benefit by accurately determining feature types. We find

that an ML model trained on our data for feature type inference often leads to more accurate

downstream models than prior tools.

4. Real-world impact. Google collaborated with us to integrate our best performing ML

models into TFDV to improve its inference of Categorical [137]. Google engineers are

now reviewing it on internal benchmarks for adoption. AWS and OpenML [155] have also

expressed interest in adopting our data and models for production use. Also, we release a

public competition on our labeled dataset to invite contributions to create/augment datasets,

better featurizations, and models.

5.2 Our Dataset

This section discusses our efforts in creating the labeled dataset. We discuss how we

design the label vocabulary, the data sources, the signals we extract from the columns that enable

us to inspect the columns succinctly, and the labelling process.

57



5.2.1 Label Vocabulary

Most ML models ultimately operate over only 2 (final) feature types: Numeric (continuous

set) and Categorical (discrete set). Thus, each example (or column) has to be labelled as either

of the two classes. However, we find that this bifurcation is not enough. This is because

many other column types such as Date, URL, and Primary Keys are inevitable in the raw data

file. Moreover, we find that the data file may not contain enough information to determine the

feature type of a column, even for humans, e.g., column XYZ in Table 5.1. Thus, we need more

classes. We surveyed how the existing open source data prep tools such as Google’s TFDV [45],

TransmogrifAI in Salesforce Einstein [17], and AutoGluon from Amazon AWS [62] approach

type inference and perform type-specific feature transformations. Figure 5.2 shows the feature

type vocabulary of these tools. Inspired by this, we distill a common and practically useful set of

labels for our vocabulary. We discuss the labels below.

(1) Numeric. These attributes are quantitative in nature and can directly be utilized as

a Numeric feature for the downstream ML model. For instance, Salary is Numeric, while ID

attributes such as CustID or integers representing encodings of discrete levels are not.

(2) Categorical. These attributes contain qualitative values that can directly be utilized as

Categorical features for the downstream ML model. There are two major sub-classes: nominal

and ordinal. Ordinal features have a notion of ordering among its values, while nominal do not.

For instance, Year is ordinal, while ZipCode is nominal. Names and coded real-world entities

from a known finite domain set are also Categorical. One often needs to alter the syntax of

Categorical features for the downstream model, e.g., one-hot encoding in Scikit-learn or explicitly

cast as a “factor” variable in R.

(3) Datetime. This class represents attributes containing date or timestamp values, e.g.,

“7/11/2018”, and “21hrs:15min:3sec.” One may choose to extract custom features, either Numeric

or Categorical or both through standard featurization routines. For instance, the month of the year

can be Categorical, while time can be Numeric. Note that, such feature engineering decisions are
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not focus of this work since they are typically application-specific.

(4) Sentence. This class represents attributes containing textual values with semantic

meaning. For instance, a passage of text may provide rich semantic information for a sentiment

analysis application. One may choose to extract custom features, either Numeric or Categorical,

or both through standard featurization routines. For instance, the AutoML platform developer can

route such columns to an n-gram featurization routine or a routine to get Word2Vec embeddings

from an English sentence for the downstream model. Again, we leave such downstream feature

engineering decisions that come after type inference to the AutoML platform developer.

(5) URL. This class is for attributes whose values follow the URL standards [38]. This

requires that the attribute values begin with a protocol followed by a sub-domain and a domain

name. Any following information such as a file path is optional.

(6) Embedded Number. This class denotes attributes with “messy” syntax that preclude

their direct use as Numeric or Categorical features. Thus, they require some form of processing

before being used as as features. For instance, a number may be present along with string(s)

denoting a measurement unit (“30 Mhz” or “USD 45”) and/or special characters (“5,00,000”).

In all cases, a number is typically extracted and the units are standardized (if applicable). One

would typically use regular expressions or custom Python/R scripts for such extraction, e.g.,

converting “USD 45” to 45.

(7) List. These attributes contain a list of items separated by a delimiter. One may write

custom scripts to extract the domain of the list values and get new features for the downstream

model.

(8) Not-Generalizable. An attribute in this class is a primary key in the table or has

(almost) no informative values to be useful as a feature. Similarly, a column with only one unique

value in the whole table offers no discriminative power and is thus useless. Such attributes are

most unlikely to be used as features for the downstream model because they are not “generalizable.”

For example, CustID belongs to this class, since every future customer will have a new CustID. It
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is quite unlikely that one can get any useful features from it. Note that an attribute categorized as

Not-Generalizable does not mean that it can never be useful for the downstream model. One may

obtain some features from such attributes through more custom processing or domain knowledge.

In contrast, even though attributes such as Income and Date may have all unique values in their

columns, they are still generalizable. Thus, they belong to Embedded Numbers and Datetime

respectively since it is highly likely that one can extract useful features from them.

(9) Context-Specific. This class is a catch-all for attributes that require human intervention

either to determine their feature types and/or to inspect their values to build custom featurization

routines. The following examples illustrate this class. (1) Attributes wherein the data file does

not have enough information even for a human to judge its feature type. Such columns typically

have meaningless names, e.g., XYZ in Table 5.1. Judging the feature type would require manually

tracing down the provenance of how this column came to be using external “data dictionaries”

maintained by the application or speaking to the data creator. (2) Attributes whose values require

manual inspection for extracting useful features, e.g., JSON objects, geo-locations, addresses, or

other complex objects that contain information dump about the data.

Our 9-class label vocabulary, while limited, is already practically useful for AutoML

platforms. The label vocabulary can also give other insights to an AutoML platform developer.

For instance, they could look for tables to join when faced with a large-domain Categorical

feature such as ZipCode. They could route attributes marked as Embedded Numbers or Datetime

to suitable Python/R scripts. Moreover, they could dispatch the columns that are marked Not-

Generalizable for any missing values or errors in data entry to appropriate libraries. Finally, they

could prompt for user intervention on only the columns that are marked Context-Specific. This

can reduce user time spent on annotation significantly.
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5.2.2 Data Sources

We gather 1240 CSV data files from sources such as Kaggle and UCI ML repository.

Each column of the CSV file is just one example for our task. We obtain 9921 examples from

all data files. Note that we do not always use all the columns from a single data file for labeling.

We explain this in Section 5.2.4. Kaggle and UCI ML are the largest public data sources that are

closest to real-world datasets. However, we note a caveat that the files on Kaggle and UCI ML

may have undergone some pre-processing. It is almost impossible for researchers to get access

to large numbers of truly “in-the-wild” data from enterprises and other organizations and make

them publicly available due to legal restrictions. But the crux of our point in this work is this:

even on data files from Kaggle and UCI, existing open-source and industrial tools yield relatively

poor accuracy compared to the ML models trained on our data (Section 5.4.2). Thus, we believe

our work is a promising start towards objectively evaluating AutoML platforms.

5.2.3 Base Featurization

To identify the feature type of a raw column, a human data scientist may look at the

column name, some sample values in the column, and even descriptive stats about the column.

For instance, just by reading the attribute name, ZipCode, an interpretable string, a human can tell

its feature type is Categorical. Thus, we represent the columns in a more concise way such that it

emulates what a typical data scientist may look at to determine the feature type. We call this step

Base Featurization. We extract the following base features for every column in the raw data file.

(1) Column name. We extract the column name as it can give crucial semantic clues for

the feature type.

(2) Column values. A human would typically inspect some values in the column to

make sure they make sense. For instance, values with decimal points are likely to mean Numeric

features, while values with delimiters are likely lists. Thus, we extract 5 randomly sampled
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Name

Descriptive Statistics Sample Values

Mean % Distinct Vals … Sample1 Sample2 …

1 Salary 42.75 75 34 56

2 CustID 102.5 100 102 104

3 XYZ 2.5 75 002 001
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5 Income 100 USD 100 1000
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102 92093 USD 100 56 001

103 92093 50000 34 002

104 92093 1000 56 002

3. Model-specific 
feature extraction

# bigrams 
on Name Stats bigrams 

on sample1
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ML model 
trained on our 
labeled data

Gender CName

M AMAZ

F MSFT

M GOOGL

M MSFT

Label
Confidence

Gender CName

Numeric 0 0

Categorical 0.99 0.45
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… … …
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3 Context- Specific
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2. Manual  
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Figure 5.3: Workflow showing our labeling process and how our data is used for ML-based
feature type inference.

distinct attribute values from the column. We choose 5 because we think it is a reasonable number

for a human to understand the column and determine the feature type when doing manual labeling

(Section 5.2.4). However, this number can very well be higher or lower. It can be even tuned

when building an ML model or a heuristic. In fact, from the ablation study of the ML models

built on the base features, we find that even one or two sample values may be good enough to

build an accurate model (Table 5.4).

(3) Descriptive statistics. Finally, a human would look at some descriptive stats about

the column. For instance, if the human finds that all values in the column are NaNs, then they

might classify the column as Not-Generalizable. Considering this, we extract 25 descriptive stats

for a column such as the total number of values, the absolute number and % of NaNs relative

to total values, the absolute number and % of distinct values relative to total values, mean, and

standard deviation. We provide the complete list of these features in Table 5.2.

Each column in the raw data file is an example in the new base featurized file and we

manually label every example of the base featurized file. The base featurization step also helps to

deliver an ML-based approach to type inference.
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5.2.4 Labelling Process

We first use base featurized columns from 360 source files to label them in one of the nine

classes. But, we find that they only contain a small handful of examples for the classes: URL,

List, Sentence, Embedded Number, and Datetime. Thus, we use an additional 880 source data

files to only label the examples for the under-represented classes. We extract these examples from

additional sources as we did not want to create a heavily skewed class label distribution to get

good confidence on all classes. Note that augmenting classes where the number of examples

is under-represented is a common practice in the ML literature [124, 48, 51, 144]. Since our

benchmark contains multiple class-level accuracy metrics (discussed in Section 5.4.1), inspecting

them can provide more confidence with the class predictions. Furthermore, we find that many

data files have a series of column names such as xyz1, xyz2, and so on. Thus, we drop the columns

with a repeating series of names.

To reduce the cognitive load of labelling, we follow the following process. Initially, we

manually label 500 examples. We then use Random Forest with 100 estimators to perform 5-fold

nested cross-validation (CV). The model achieves a classification accuracy of around 74% on

the test set (average across 5 folds). We use this model to predict a class label on all of the 9921

examples. We then group all the examples by these predicted labels and inspect all of them

manually. Such grouping helps reduce the cognitive load caused by class context switches during

labeling. The labeling process took about 90 man-hours across 5 months.

We tried to crowdsource labels for our dataset on the FigureEight platform but abandoned

this effort because the label quality was too low across two trial runs. In our pilot run, we

used a concise label vocabulary with 5 classes: Numeric, Categorical, Needs-Extraction, Not-

Generalizable, and Context-Specific. Needs-Extraction includes the classes: Datetime, Sentence,

URL, Embedded Number, and List. In the first run, we got 5 workers each for 100 examples; in

the second, 7 each for 415. The “golden” dataset were the 500 examples we labeled manually.

We listed several rules and guidelines and provided many examples for worker training. But in
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Table 5.2: List of descriptive statistics features
Descriptive Stats
Total number of values
Number of nans and % of nans
Number of unique values and % of unique values
Mean and std deviation of the column values, word count, stopword count,
char count, whitespace count,  and delimiter count   
Min and max value of the column
Regular expression check for the presence of url, email, sequence of
delimiters, and list on the 5 sample values
Pandas timestamp check on 5 sample values

the end, we found the results too noisy to be useful: in the first run, 4% of examples had 4 unique

labels, 27% had 3, and 69% had 2; in the second run, these were 5%, 21%, and 49%. Majority

voting gave the wrong answer in half of the examples we randomly checked.

5.2.5 Data Statistics

The distribution of class labels in our labeled dataset is: Numeric (36.6%), Categorical

(23.3%), Datetime (7%), Sentence (3.9%), URL (1.5%), Embedded Number (5.7%), List (2.4%),

Not-Generalizable (10.6%), and Context-Specific (8.9%). We provide a complete breakdown of

the cumulative distribution by class for different descriptive statistics in the technical report [136].

We observe that attribute values for Sentence, URL, and List have more characters and words than

other classes. Also, all Numeric sample values and 80% of the Categorical sample values are

single token strings. Furthermore, we find that almost 90% of the Categorical attributes have less

than 1% unique values in its columns. Interestingly, 54% of Not-Generalizable have either one

unique value or only NaN values in their domain. Table 5.2 present all the descriptive stats used

for base featurization.

5.3 Approaches Compared

In this section, we discuss the different approaches to type inference. We first discuss

existing open-source tools that all happen to be either rule-based or syntax-based. We then briefly
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discuss an intuitive rule-based baseline to check if a set of rules can accurately capture our labeled

dataset. Finally, we explain how our labeled dataset is used to build ML models.

5.3.1 Existing Tools

Figure 5.2 shows the feature type vocabulary of these tools and how they map to our label

vocabulary.

Tensorflow Data Validation (TFDV). TFDV is a tool to analyze and transform ML data

in TensorFlow Extended (TFX) pipeline [45]. TFDV uses heuristics to infer ML feature types

such as numeric, categorical, time or date domain, or natural language text from the descriptive

statistics about the column. The users can then review the inferred feature types and can update

them manually.

Pandas. Pandas is a Python library that provides tools for data analysis and data transfor-

mations. It infers syntactic types such as integer, float, or object [107]. It also provides a utility

function that can check the column for the datetime type.

TransmogrifAI. This is an AutoML library for structured data in Salesforce’s AutoML

platform called Einstein [17]. TransmogrifAI supports rudimentary automatic feature type

inference over primitive types such as Integer, Long, Double, Timestamp, and String. It also has

an extensive vocabulary for feature types such as email, phone numbers, zipcodes, etc. However,

users have to manually specify these types for their data.

AutoGluon-Tabular. AutoGluon is an end-to-end AutoML framework from AWS [62].

It classifies each column into numeric, categorical, date/time, text, or columns that needs to be

discarded because they can’t be classified into any of the classes.

Sherlock. Sherlock [79] is a distantly-supervised deep-learning-based tool that identifies

78 semantic types such as Age, Code, Duration, etc. But the semantic types are not directly

usable for AutoML because the same semantic type can span different ML feature types. For

instance, Duration type can be either Numeric (e.g., time elapsed in seconds), Categorical (e.g.,
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time duration belonging to a discrete set), Datetime (e.g. the exact timestamp), or even Sentence

(e.g., duration mentioned in words).

We find that out of 78 semantic types, 55 types can be uniquely mapped to one single class

of our label vocabulary. The number of types that are mapped to 2, 3, and 4 classes of our label

vocabulary are 18, 3, and 2, respectively. We release the mapping between Sherlock semantic

types and our label vocabulary in the technical report [136]. We use a rule-based approach on top

of Sherlock to identify one single feature type given a column. Note that a type from Sherlock

vocabulary can map to multiple types from our label vocabulary. We use a rule-based approach to

exclusively map a semantic type to automatically map it to our label vocabulary. We give two

examples below to illustrate how we perform this mapping.

(1) To map capacity, we use the following rules in order. If the column has less than

20 unique values, then we label them as Categorical. We then check if we can cast the column

to either int or float to label them as Numeric. Next, we check if the average number of space

separated words is greater than 3 to map the column to Sentence. Finally, we use a regular

expression to check if there are numbers followed or preceded by a set of commas and alphabets

for Embedded Number, otherwise we map the column to Categorical.

(2) For duration, we first check if the column has less than 20 unique values to map them

to Categorical. Next, we check if we can cast the column to be either int or float to label them as

Numeric. We perform a pandas timestamp check for Datetime. We check if the average number

of space separated words is greater than 3 to map the column to Sentence, otherwise we map

them to Categorical.

5.3.2 Rule-based Baseline

Figure 5.4 shows the rule-based approach. We use this approach to validate if a set of rules

can accurately represent our labeled dataset. We write 11 rules to capture all the classes using a

flowchart-like structure. We provide two examples below. (1) To identify List, non-empty sample
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Figure 5.4: Flowchart of the rule-based baseline.

values are matched with a regular expression based check of a series of characters separated by a

type of delimiter such as ; | , etc. (2) If either of the % of NaNs or % of unique values in the

column are greater than 99.99% then we mark it as Not-Generalizable.

5.3.3 ML-based Approach using our Data

As shown in Figure 5.3, we use our labeled data to build standard ML models. Base

Featurization is a common step for all ML models. Some ML models cannot operate on the raw

characters of attribute names or sample values. Thus, we extract hand-crafted feature sets from

the attribute names and sample values. We then train several classical ML models, k-NN with a

distance function tuned for our task, and a CNN. Finally, the pre-trained model is used to infer

feature types for columns in an “unseen” CSV file. At the scale of AutoML platforms where

there are potentially millions of columns, human intervention can be costly and slow. The models

output predictions and the corresponding confidence scores for each class. Thus, an ML-based

approach allows users to intervene to prioritize their effort towards Context-Specific types or

columns with low confidence scores that may need more human attention.

Feature Extraction. The attributes with similar names can likely belong to the same

class. For instance, both attributes temperature jan and temperature feb are Numeric. Similarly,

knowing that the sequence of characters are numbers followed by a “/,” can give an indication of
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Datetime. Based on these intuitions, we extract an n-gram feature set from the attribute names

and sample values.

Notation. We denote the descriptive stats by Xstats, the attribute name by Xname, and

randomly sampled attribute values by Xsample (first sampled value referred to as Xsample1 and

similarly for other values). We leverage the commonly used bigram features on the attribute name

(denoted by X2name) and sample value (X2sample).

Classical ML models. We consider classical models: Logistic Regression, RBF-SVM,

and Random Forest. Note that they cannot operate on raw characters of attribute names or sample

values. Thus, we use features: Xstats, X2name, X2sample1, and X2sample2. For scale-sensitive

models such as RBF-SVM and logistic regression, we standardize Xstats to have mean 0 and

standard deviation 1.

Nearest Neighbor. Most implementations of k-NN use a simple Euclidean distance. But,

we can adapt the distance function for the task at hand by defining the weighted distance function

as:

d = ED(Xname)+ γ ·EC(Xstats)

Here, ED (resp. EC) is the edit distance (resp. euclidean distance) between Xname (resp.

Xstats) of a test example and a training example. γ is the parameter that needs to be tuned during

training.

CNN. Inspired by the success of CNN on short text classification tasks [173, 172], we

leverage a character-level CNN for our task. Figure 5.5 (A) shows the architecture of CNN model.

The layers of CNN are shown in Figure 5.5 (B). The network takes attribute name, descriptive

stats, and sample values as input and outputs the class from the label vocabulary. The attribute

name and sample values are first fed into an embedding layer. The embedding layer takes as input

a 3D tensor of shape (NumSamples, SequenceLength, Vocabsize). Each sample (attribute name

or sample value) is represented as a sequence of one-hot encoded characters. SequenceLength

represents the length of this character sequence and Vocabsize denotes the number of unique
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Figure 5.5: (A) The end-to-end architecture of our deep neural network. (B) CNN block’s
layers.

characters represented in corpus. The embedding layer maps characters to dense vectors and

outputs a 3D tensor of shape (NumSamples, SequenceLength, EmbedDim), where EmbedDim

represents the dimensionality of embedding space. The weights are initialized randomly and

during training, the word vectors are tuned such that the embedding space exhibits a specialized

structure for our task.

The resultant tensor from the embedding layers is fed into a CNN module, which consists

of three cascading layers, 2 1-D Convolutions Neural Network, followed by a global max-pooling

layer. The size of the filter (FilterSize) and number of filters (NumFilters) are tuned during

training. We concatenate all CNN modules with descriptive statistics and feed them to a multi-

layer perceptron on top. In the output layer, we use a softmax activation function that assigns a

probability to each class of the label vocabulary. The whole network can be trained end-to-end

using backpropagation.

5.4 Empirical Study and Analysis

We now empirically compare the industrial open source tools and ML models on the

accuracy of type inference. This is the very first empirical comparison of this sort of these
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Table 5.3: Binarized class-specific accuracy of different approaches on our benchmark labeled
held-out test dataset. The bold fonts highlight the most accurate approach/model per class.

Feature Type Metric
Open-source Industrial Tools Sherlock + 

Rules

Baseline Models trained on our data

TFDV Pandas TransmogrifAI AutoGluon Rule-based Log Reg CNN Rand Forest

Numeric

Precision 0.657 0.614 0.605 0.646 0.599 0.773 0.909 0.929 0.934

Recall 1 1 1 1 0.359 0.946 0.943 0.941 0.984

Accuracy 0.814 0.776 0.767 0.805 0.683 0.882 0.946 0.953 0.97

Categorical

Precision 0.396

- -

0.667 0.311 0.577 0.808 0.846 0.913

Recall 0.652 0.534 0.707 0.457 0.884 0.928 0.943

Accuracy 0.691 0.831 0.567 0.798 0.925 0.945 0.966

Datetime

Precision 0.985 0.956 1 1 0.89 0.559 0.951 0.925 0.945

Recall 0.475 0.915 0.454 0.844 0.801 0.135 0.972 0.965 0.972

Accuracy 0.962 0.991 0.961 0.989 0.979 0.931 0.994 0.992 0.994

Sentence

Precision 0.472

- -

0.516 0.354 1 0.913 0.725 0.865

Recall 0.457 0.902 0.554 0.043 0.793 0.804 0.902

Accuracy 0.951 0.956 0.932 0.956 0.987 0.977 0.989

Not-
Generalizable

Precision

- - -

0.465 0.692 0.216 0.732 0.81 0.934

Recall 0.53 0.042 0.507 0.732 0.66 0.86

Accuracy 0.883 0.893 0.747 0.947 0.937 0.978

Context-
Specific

Precision

-

0.08 0.074

-

0.192 0.211 0.747 0.741 0.859

Recall 0.295 0.295 0.168 0.195 0.621 0.663 0.705

Accuracy 0.609 0.582 0.851 0.853 0.944 0.946 0.961

tools, thanks to our new benchmark labeled dataset. The headline result is that our ML models

substantially surpass these prior tools on test accuracy.

5.4.1 Methodology and Setup

Methodolody. We partition our labeled dataset into a train and held-out test set with

80:20 ratio. We perform 5-fold nested cross-validation of the train set, with a random fourth of

the examples in a training fold being used for validation during hyper-parameter tuning. For all

the classical ML models, we use the Scikit-learn library in Python. For CNN, we use the popular

Python library Keras on Tensorflow. We use a standard grid search for hyper-parameter tuning,

with the grids described in detail below.
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Logistic Regression: There is only one regularization parameter to tune: C. Larger the

value of C, lower is the regularization strength, hence increasing the complexity of the model.

The grid for C is set as {10−3,10−2,10−1,1,10,100,103}.

RBF-SVM: The two hyper-parameters to tune are C and γ. The C parameter represents the

penalty for misclassifying a data point. Higher the C, larger is the penalty for misclassification.

The γ > 0 parameter represents the bandwidth in the Gaussian kernel. The grid is set as follows:

C ∈ {10−1,1,10,100,103} and γ ∈ {10−4,10−3,0.01,0.1,1,10}.

Random Forest: There are two hyper-parameters to tune: NumEstimator and MaxDepth.

NumEstimator is the number of trees in the forest. MaxDepth is the maximum depth of

the tree. The grid is set as follows: NumEstimator ∈ {5,25,50,75,100} and MaxDepth ∈

{5,10,25,50,100}.

k-Nearest Neighbor: The hyper-parameter to tune are the number of neighbors to consider

(k) and the weight parameter in our distance function (γ). We use all integer values from 1 to 10

for k. The grid for γ is set as {10−3,0.01,0.1,1,10,100,103}.

CNN Model: We tune EmbedDim, numfilters and filtersize of each Conv1D layer. The

MLP has 2 hidden layers and we tune the number of neurons in each layer. The grid is set as

follows: EmbedDim ∈ {64,128,256}, numfilters ∈ {32,64,128}, filtersize ∈ {2}, and neurons

∈ {250,500,1000}. In order to regularize, we use dropout with a probability from the grid:

{0.25}. Rectified linear unit (ReLU) is used as the activation function. We use the Adam

stochastic gradient optimization algorithm to update the network weights. We use its default

parameters.

We also did a 5-fold leave-data file out cross-validation to “stress-test” the ML models

for new data files. The raw data files were split into 60:20:20 train, validation, and test partitions

where each partition has all columns of a particular data file. Thus, the test partition has columns

of the raw data files that the model has not seen before. The trends of the leave-data file out

approach are similar to the former approach, we discuss its results in the Section 5.4.3.
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Table 5.4: Full 9-class test accuracy of the ML models trained on our data with different feature
sets. X∗

name,X
∗
sample1,X

∗
sample2 denote bigram features (X2name,X2sample1,X2sample2) for classical

ML models and raw character-level features (Xname,Xsample1,Xsample2) for CNN and k-NN. The
bold fonts highlight the most accurate feature set for that model.

Xstats X*name X*sample1 Xstats, X*name Xstats, X*sample1 X*name, X*sample1 X*sample1, X*sample2
Xstats, X*name,
X*sample1

Xstats, X*name,
X*sample1, X*sample2

Logistic
Regression 0.6862 0.7293 0.6603 0.8428 0.7763 0.8043 0.7144 0.8578 0.8643

RBF-SVM 0.8213 0.777 0.6521 0.8724 0.7845 0.8159 0.7131 0.8761 0.8712

Random
Forest 0.9121 0.7785 0.6657 0.9259 0.8956 0.8346 0.7374 0.9216 0.9096

CNN 0.6809 0.8019 0.6805 0.8692 0.7965 0.8655 0.7763 0.8788 0.8701

k-NN 0.8605 0.7839 - 0.8796 - - - - -

Experimental Setup. We use CloudLab [61] with custom OpenStack profile running

Ubuntu 18.04 with 10 Intel Xeon cores and 192GB of RAM. For TFDV, Transmogrifai, Auto-

Gluon, and Pandas, we use version number 0.22.2, 0.7.0, 0.0.11, and 0.25.3 respectively.

Metrics. Our key metric is prediction accuracy for the 9-class task. We also use class-

specific binarization metrics such as precision, recall, F1 score, and confusion matrix.

5.4.2 Comparison of All Approaches

We compare ML models trained on our dataset against open-source tools on our held-out

test data. Figure 5.2 showed the feature type vocabulary of these tools and how they map to our

vocabulary. Since none of these tools support our full 9-class vocabulary, we report results on

binarization of our classes: Numeric vs. all Non-Numeric, Categorical vs. all Non-Categorical,

and similarly for others.

Results. Table 5.3 presents the precision, recall, and overall 2 x 2 diagonal accuracy

results of all approaches on our benchmark labeled held-out test set1. Table 5.5 shows the

train, cross-validation, and test accuracy results of all models trained on our dataset with 5-fold

1 We have released version 2 of our labeled dataset where 32 examples are relabeled after feedback on Github [37].
We find only minor changes in the results without altering any of our trends, conclusions, or takeaways discussed
here. Note that our labeled dataset is a living public repository on Github which we anticipate to grow in the future.
Please refer to our public repository for the up-to-date results.
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Table 5.5: Full 9-class train, validation, and test accuracy of the ML models trained
on our data with different feature sets. X∗

name,X
∗
sample1,X

∗
sample2 denote bigram features

(X2name,X2sample1,X2sample2) for classical ML models and raw character-level features
(Xname,Xsample1,Xsample2) for CNN and k-NN. The bold fonts highlight the most accurate feature
set for that model.

Model Xstats X*name X*sample1 Xstats, X*name Xstats, X*sample1
X*name, 

X*sample1

X*sample1, 
X*sample2

Xstats, X*name,
X*sample1

Xstats, X*name,
X*sample1, X*sample2

Logistic 
Regression

Train 0.6954 0.8553 0.7139 0.9135 0.8288 0.9236 0.7975 0.9471 0.9571

Validation 0.6927 0.7438 0.6551 0.8477 0.7743 0.8226 0.7117 0.8668 0.8749

Test 0.6862 0.7293 0.6603 0.8428 0.7763 0.8043 0.7144 0.8578 0.8643

RBF-SVM
Train 0.892 0.9114 0.7133 0.9475 0.8779 0.9166 0.8392 0.9598 0.9605

Validation 0.8203 0.7768 0.6529 0.8691 0.7847 0.8308 0.718 0.8822 0.8780

Test 0.8213 0.7785 0.6521 0.8724 0.7845 0.8159 0.713 0.8761 0.8712

Random
Forest

Train 0.9771 0.9168 0.7404 0.9817 0.9734 0.9447 0.8406 0.9803 0.9787

Validation 0.9114 0.775 0.6604 0.9236 0.8938 0.837 0.7342 0.9195 0.9162

Test 0.9121 0.777 0.6657 0.9259 0.8956 0.8346 0.7374 0.9216 0.9096

CNN
Train 0.7077 0.9545 0.7433 0.9846 0.8798 0.9855 0.8588 0.9727 0.9891

Validation 0.7016 0.8167 0.6863 0.8768 0.7966 0.8892 0.7903 0.89 0.8821

Test 0.6808 0.8019 0.6805 0.8692 0.7965 0.8655 0.7763 0.8788 0.8701

k-NN
Validation 0.8728 0.8002 - 0.8889 - - - - -

Test 0.8605 0.7839 - 0.8796 - - - - -

cross-validation methodology. Table 5.6 presents the binarized class-specific F1 score of different

approaches on our held-out test set. Table 5.7 shows the confusion matrices of the rule-based

approach, our Random Forest, and Sherlock. We present the results in-depth below.

(1) We see that the ML models achieve significantly higher accuracy than all industrial

tools across the board for all feature types. For instance, a lift of 28% and 14% in accuracy

in predicting Categorical compared to TFDV and AutoGluon respectively. Of all approaches,

Random Forest achieves the highest accuracy in inferring the types.

(2) Interestingly, all the existing tools have a high recall on Numeric but very low preci-

sion. This is because their heuristics are syntactic, which leads them to wrongly classify many

Categorical features such as ZipCode as Numeric. The ML models have a slightly lower recall

on Numeric. This is because, with many features thrown, they get slightly confused and could

wrongly predict a Numeric type as non-numeric. But, the ML models have much higher precision

and high overall accuracy.
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Table 5.6: Binarized class-specific F1 score of different approaches on our benchmark labeled
held-out test dataset. The bold fonts highlight the most accurate approach/model per class.

Feature Type
Open-source Industrial Tools Sherlock + 

Rules

Baseline Models trained on our data

TFDV Pandas TransmogrifAI AutoGluon Rule-based Log Reg CNN Rand Forest

Numeric 0.793 0.761 0.754 0.785 0.449 0.851 0.926 0.935 0.958

Categorical 0.493 - - 0.593 0.432 0.51 0.844 0.885 0.928

Datetime 0.641 0.935 0.624 0.915 0.843 0.217 0.961 0.945 0.958

Sentence 0.464 - - 0.656 0.432 0.082 0.849 0.762 0.883

Not-
Generalizable - - - 0.495 0.079 0.303 0.732 0.727 0.895

Context-
Specific - 0.126 0.118 - 0.179 0.203 0.678 0.7 0.774

(3) Heuristics for identifying Datetime by all the existing tools have high precision, even

higher than the ML models. However, their rules do not capture many Datetime type instances

(e.g., an attribute named BirthDate “19980112”); thus, they have a much lower recall.

(4) The heuristic rules of AutoGluon and TFDV are largely dependent upon the number

of words in a string for accurately inferring Sentence type. Thus, a column with most of its values

having a large number of words will likely get inferred as Sentence by these tools. However, a

Categorical or Context-Specific column (e.g., containing JSON object) can satisfy the criteria

provided by the rules. Thus, AutoGluon and TFDV have low precision on Sentence. On the other

hand, the ML-based approaches have much higher precision.

Other Commercial Tools. There exist other commercial tools that also automate the ML

feature type inference task such as Google AutoML Tables [9], DataRobot [5], and Trifacta [18].

However, since these systems are closed source, we do not know how these tools work. It is also

hard to evaluate their accuracy because: (1) DataRobot has no public/free trial version of their

platform. We got no response to our demo request. (2) AutoML Tables and Trifacta only offer

GUI-based usage where users must upload the raw CSV files manually to identify the feature

types. Both these tools do not provide any programmatic way for evaluation. So, we cannot

evaluate their accuracy automatically. We manually uploaded 5 CSV files from our raw data. All

15 categoricals encoded as integers were (wrongly) classified as Numeric by both tools. Since
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Table 5.7: Confusion matrices (actual class on row and predicted class on column) of (A)
Rule-based baseline (B) Random Forest, and (C) Sherlock.

(B) Numeric Categorical Datetime Sentence URL Embedded Numbers List Not-Generalizable Context-Specific

Numeric 696 3 0 0 0 0 0 2 6

Categorical 12 431 0 4 0 0 0 1 9

Datetime 0 2 137 0 0 2 0 0 0

Sentence 0 3 0 83 0 0 0 3 3

URL 0 2 0 0 30 0 0 0 0

Embedded Numbers 0 5 1 0 0 92 0 0 1

List 0 1 0 3 0 5 43 0 0

Not-Generalizable 3 13 6 4 1 0 0 185 3

Context-Specific 34 12 1 2 0 0 0 7 134

(A) Numeric Categorical Datetime Sentence URL Embedded Numbers List Not-Generalizable Context-Specific

Numeric 669 0 0 0 0 1 0 37 0

Categorical 52 209 8 0 0 2 1 128 57

Datetime 4 7 19 0 0 0 1 90 20

Sentence 0 25 0 4 0 0 2 24 37

URL 0 12 0 0 8 0 0 6 6

Embedded Numbers 0 35 4 0 0 18 0 37 5

List 1 6 0 0 0 0 0 42 3

Not-Generalizable 35 59 0 0 0 2 0 109 10

Context-Specific 105 9 3 0 0 1 3 32 37

(C) Numeric Categorical Datetime Sentence URL Embedded Numbers List Not-Generalizable Context-Specific

Numeric 254 334 5 10 0 0 0 0 104

Categorical 63 323 1 62 0 5 0 0 3

Datetime 1 25 113 2 0 0 0 0 0

Sentence 0 31 0 51 0 2 0 0 8

URL 0 25 0 0 0 0 0 1 6

Embedded Numbers 1 59 0 1 0 36 0 2 0

List 0 17 0 24 0 1 0 1 9

Not-Generalizable 59 123 6 11 0 2 0 9 5

Context-Specific 46 101 2 5 0 4 0 0 32

it is hard to draw any generalizable conclusion if these tools have the same issues as TFDV,

AutoGluon, and TransmogrifAI, we leave it to future work to assert this more systematically.

5.4.3 Comparison of ML-based Approaches

Rule-based Baseline. The 9-class classification accuracy on the held-out test set is only

54%. We observe that this approach achieves 95% and 46% recall in classifying Numeric and

Categorical respectively. The recall for Categorical is low because a category encoded as a
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number is wrongly classified as Numeric. Admittedly, our rules are not exhaustive and one can

always come up with more rules to improve the accuracy. However, writing rules for every little

corner case is excruciating and will likely never be comprehensive.

Sherlock. Sherlock with a rule-based approach that maps their semantic types to our

label vocabulary has an accuracy of just 42%. This is because their semantic type vocabulary

is not suitable towards identifying ML feature types. The number of Sherlock semantic types

(out of 78) that are mapped to ML feature types are: 14 to Numeric, 50 to Categorical, 4 to

Datetime, 7 to Sentence, 11 to Embedded Number, 2 to List and Not-Generalizable, and 18 to

Context-Specific. Since Categorical type occur most frequently, more examples in our labeled

dataset are disproportionately confused with this feature type. For instance, many integer Numeric

attributes are confused with semantic types that often contains discrete set of integers (such as

Credit and Class). Interestingly, Sherlock has a high precision of 89% in identifying Datetime

correctly, even with just 4 semantic type mapped to Datetime.

Classical ML Models. Table 5.4 presents the 9-class accuracy results of the classical ML

models using different feature sets1. We present the 5-fold held-out train and validation accuracy

in Table 5.5. For logistic regression, we see that the descriptive stats alone are not enough, as it

achieves an accuracy of just 69% on the held-out test set. But, for RBF-SVM and Random Forest,

the accuracy with stats alone is already 82% and 91% respectively. Incorporating bigrams of the

attribute name into logistic regression leads to a whopping 15% lift in accuracy. However, adding

more sample values does not give any rise in accuracy, except for logistic regression. Overall,

Random Forest achieves the best 9-class accuracy of 93% using bigrams on the attribute name

along with descriptive statistics.

CNN and Nearest Neighbor. Table 5.4 also shows the CNN and k-NN accuracy1. We

see that with just Xname, the CNN accuracy is already 82%. The descriptive stats lift the accuracy

further by 8%. We find that sample values are not that useful, yielding only a minor lift. With

k-NN, we observe that with only Euclidean distance on descriptive statistics, the accuracy is
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Table 5.8: 5-fold training, cross-validation, and held-out test accuracy of models with leave-
datafile-out methodology. k-NN use our weighted edit distance function.

Model [Xstats,  X2name]

Logistic 
Regression

Train 0.9201
Validation 0.8376
Test 0.8411

RBF-SVM
Train 0.9612

Validation 0.8554

Test 0.8491

Random
Forest

Train 0.9821
Validation 0.9323
Test 0.9199

k-NN
Validation 0.8537
Test 0.8476

already at 86%. The edit distance on the attribute name approach achieves an accuracy of 78%.

Finally, our k-NN weighted edit distance function achieves a high 88% accuracy.

Leave-datafile-out methodology We perform 5-fold leave-datafile-out cross validation to

“stress-test” our models for new data files. In this methodology, the raw data files are split into

60:20:20 train, validation, and test partitions where each partition has columns of the same source

data file. Thus, the test partition has columns of the raw data file that model has not seen before.

Table 5.8 present the train cross-validation, and test accuracy results of the classical ML models

and k-NN with this methodology on the 3-gram features from attribute name and descriptive

stats. We observe that the results are comparable to what we found with k-fold cross-validation

methodology.

5.4.4 Analysis of Errors

We now explain the behavior of the best performing Random Forest on our held-out

test dataset (shortened henceforth as ”OurRF”) by inspecting the raw datatype of the column

values. Table 5.9 shows examples of columns and the corresponding prediction made by OurRF.

We present the full confusion matrix of the predicted class by OurRF vs actual data type of the

attribute value in Table 5.7. We intuitively explain the errors by class below.

77



Table 5.9: Examples of errors made by RandomForest. Numeric (NU), Categorical (CA),
Datetime (DT), Sentence (ST), Not-Generalizable (NG), Embedded Number (EN), URL, List
(LST), and Context-Specific (CS) are feature types.

# Attribute 
Name

Sample
Value

Total 
Values

% Distinct
Values % NaNs Label RF

Prediction
A s1p1c2area 50 9597 3.6 45.2 NU CS

B Tenure Status Own house,
rent lot 41544 0.02 0 CA ST

C End March 4, 1797 45 97.8 2.2 DT EN

D Name Battle of 
Riverrun 38 100 0 ST NG

E %White 18.90% 192 58.9 0 EN CA

F Countries ru; uk; mx 1359 32.9 46.3 LST EN

G q19TalToolResumeScreen #NULL! 25090 0.008 6 NG CA

H Livshrmd 151 9597 1.17 42.3 CS NU

Numeric and Context-Specific. We see that OurRF is less likely to misclassify a Numeric

attribute whose values are floats or negative numbers compared to integers. We observe that

with integers, OurRF gets most confused with Context-Specific class, e.g., s1p1c2area (Table 5.9

example(A)). This is possibly because of the non-sensical attribute name. Similarly, Context-

Specific integers are most commonly misclassified with Numeric (Table 5.9 example(H)).

Categorical and Not-Generalizable. When the sample values are strings with more

than one token, OurRF is more likely to misclassify Categorical as Sentence or Context-Specific

(Table 5.9 example(B)). Not-Generalizable types are often confused with Categorical. For

instance, q19TalTool-ResumeScreen (Table 5.9 example(G)) has only 2 values in its domain:

“NULL!” and “ResumeScreen.” However, OurRF treats “NULL!” as a separate category. Thus,

OurRF is lacking in its semantic understanding ability of sample values.

Other types. We find that our model achieves high precision and recall in inferring other

types such as Datetime and URL. In addition, List types are often confused with Embedded

Number (Table 5.9 example(C)) even though there is no number available for extraction. This can

be due to few available training examples for List type.
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Table 5.10: Number of examples of Country and State type in train and held-out test splits of
our labeled dataset

Train set Held-out test set
Country 56 10
State 29 14

Table 5.11: Accuracy of Random Forest trained using (Xstats,X2sample1) feature set with the
10-class vocabulary (extending our vocabulary one at a time with either Country or State) on the
held-out test set. 9-class accuracy of Random Forest with the same feature set was 0.896.

Adding Semantic type to our Vocabulary
Country State

10-class 
Accuracy

Precision Recall F1 
Score

Binarized 
Accuracy

10-class   
Accuracy

Precision Recall F1 
Score

Binarized 
Accuracy

Adding N labeled  
examples to our 
training dataset

N=100 0.882 0.927 0.911 0.919 0.991 0.875 0.967 0.781 0.864 0.986

N=200 0.881 0.892 0.972 0.93 0.992 0.875 0.942 0.851 0.894 0.988

5.4.5 Extensibility of our Benchmark

We discuss the extensibility of our benchmark and our ML-based approach in three parts

as follows.

Part A. How extensible is our benchmark and ML-based approach to support new

data types?

Setup. We conduct an experiment to understand the overhead of supporting additional

types by expanding our 9-class label vocabulary. To illustrate the effort needed for this extension,

we choose two semantic data types that are commonly used in business intelligence applications:

Country and State. We extend our vocabulary to 10-classes by adding “enough” labeled examples

of these two types one at a time. We then retrain our Random Forest on the extended vocabularies.

We describe this process in detail with the following three steps.

(1) When creating our labeled dataset, we had annotated examples of Country and State

type with Categorical, as they represent a discrete closed domain. Thus, we revisit our Categorical

examples to identify Country and State types. Table 5.10 shows their number of examples in the

train and held-out splits of our labeled data. We find that the number of examples is low to train
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Random Forest and draw any general conclusions for its predictions on both types.

(2) To get access to more labels, we leverage the distantly-supervised labeled data from

the Sherlock data repository. This contains data columns with headers belonging to 78 semantic

types [79], including Country and State. We first relabel the Categorical examples identified as

Country in step 1 to a tenth class. We then add 100 randomly sampled (weakly) labeled examples

for Country from Sherlock data repository to our held-out test set. Thus, our test split has a total

of 110 Country examples. We add N (N = 100 or N = 200) randomly sampled Country examples

from Sherlock data to our train set. We form two train splits where one has 100 more labeled

examples for Country than the other. We do not alter any of the labeled examples for the rest of

the 9-classes.

(3) We use the two train splits to build two Random Forest models operating on Xstats (25

descriptive stats) and X2sample1 (bigrams on the first sample value) feature sets on the 10-classes.

We use the same methodology that we discussed in Section 5.4.1 for evaluation.

We repeat the steps 2 and 3 to extend our 9-classes with State and we again build two

Random Forest models (N = 100 or N = 200) with the same feature set.

Results. Table 5.11 presents the accuracy results of the retrained Random Forest models

with the extended 10-class vocabularies on the held-out test set. We find that precision and recall

are already high with just 156 training examples for Country (N = 100 case). Random Forest

makes most of the wrong predictions in accurately identifying abbreviations of the countries,

e.g., AFG, ALB, etc. Many of such examples are wrongly predicted as Categorical. When

Random Forest is retrained to support State, it achieves a recall of 78% with just 129 training

examples. The recall is lower than that of Country because its domain is more complex since State

includes examples of not just the United States, but also of many other countries. Moreover, we

again notice that Random Forest makes wrong predictions in accurately identifying abbreviations,

e.g, CA, AL, etc. Categorical again causes the most misclassifications, which are reduced by

adding more training examples (N = 200 case), as we notice that recall and F1-score improve
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significantly relative to the N = 100 case.

Takeaways. We summarize the key takeaways from the above experiment below.

(1) Additional programming cost for feature type inference to support more types is

negligible. We run the same scripts that we used to train the Random Forest model for our

9-classes.

(2) Labeling cost is marginal if one has access to semantic type datasets such as Sherlock

data repository. Since a semantic type can be mapped to one or multiple ML feature types, one

would need to revisit parts of our labeled data to change the labels of relevant examples. From

Table 5.11, we find that the number of labels required to accurately identify semantic types is not

too high. This is because such types are rich with information that is easier to detect with ML

models. Moreover, adding more training labels will always help improve their recall. Note that

there already exist complementary approaches and models for identifying semantic types. Thus,

we explain why we chose not to label new examples of semantic types in Part C below.

(3) There exist negligible or no feature engineering cost. We do not add or remove any

descriptive statistic feature to support the additional types. Table 5.11 shows that we can get

high accuracy for the new types even with the same feature set that we used for the 9-classes.

Thus, our features provide meaningful signals even for the newly added classes. We provide more

evidence of why our feature set is robust in Part B below.

Part B. Why our featurization is robust and broadly applicable to cover any semantic

type?

We designed three custom features to help our ML models identify Datetime, URL, and

List types. These features include two regular expression-based boolean checks to identify

URL and List, and one Pandas timestamp check to identify Datetime. For instance, the regular

expression based boolean feature for List is used to identify if the string contains a series of

characters separated by a delimiter such as ; | , etc. The rest of the descriptive statistics

features do not apply exclusively to a particular class from our 9-classes, but they are generically
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applicable to cover any class.

Setup. To understand if our featurization is robust and broadly applicable, we drop the

three custom type-specific features one at a time from Xstats (our descriptive statistics feature set).

We retain other features X2name (bigrams on the column name) and X2sample1 (bigrams on the first

sample value) as it is. We then retrain our ML models and validate the held-out test accuracies

of Datetime, URL, and List types. If the drop in accuracy of the three classes is significant, then

it would imply the type-specific feature being predominantly important. On the other hand, if

the drop is marginal then it would imply the robustness of the rest of the features to provide

meaningful signals for these classes.

Results. Table 5.14 presents the ablation study results on the held-out test set with the

metric being the 9-class accuracy, precision, and recall of the three classes. We choose model type

family from both extremes of bias-variance tradeoff: Logistic Regression and Random Forest.

We find that 9-class accuracy drops only negligibly when the three features are dropped one at

a time for both models. Moreover, their precision and recall remain either unchanged or drops

marginally with the newly trained model for almost all of the cases. The only cases where the

drop appears significant is with Random Forest on the precision of List and Logistic Regression

on recall of URL. This is because the held-out test set contains 32 and 52 examples of URL type

respectively. Thus, misclassifying just two to three examples more leads to a 5-10% drop in

precision/recall.

Takeaways. We conclude from this analysis that our featurization is robust and broadly

applicable to cover any new class. This is because the signals that we extract from the raw column

are column name (high-level signal), column values (low-level signals), and 25 descriptive stats

(aggregate signals over the column). Thus, these standard features would provide meaningful

signals even for a newly added class. Nevertheless, we do not claim that our featurization is

comprehensive and unbeatable. We have publicly released raw data files as part of our benchmark

and we invite contributions to devise new featurizations. Thus, our feature sets can be easily
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Table 5.12: Examples of Categorical type from our labeled dataset along with semantic type
predicted by Sherlock. Our Random Forest predicts all of them as Categorical.

# Attribute 
Name

Type predicted 
by Sherlock

Total 
Values

# Distinct 
Values Sample 1 Sample 2

A ad744 grades 9597 3 -99 0

B ad7125 ranking 9597 3 0 1

C applicant_race
_name_1 type 466566 7 White Asian

expanded.

Part C. Why it may be more feasible to leverage prior work such as Sherlock directly

for identifying semantic types?

If one chooses to explore semantic types on top of our label vocabulary, then they can

leverage complementary approaches such as Sherlock in conjunction with our ML models, rather

than labeling new examples of such types for our models. To illustrate this, we now discuss how

using Sherlock can complement our ML models to help identify fine-grained semantic types. We

study this in the context of Categorical examples of our labeled data by leveraging the 78 class

semantic vocabulary of Sherlock.

Table 5.12 shows three examples of Categorical type columns from our labeled data along

with semantic type predicted by Sherlock. Note that we don’t need to distinguish the semantic

type of these columns to be used by ML, because ultimately they would be used as a Categorical

feature. Admittedly, detecting semantic types can help one discover and leverage auxiliary

datasets. However, this goal is orthogonal to our focus. We focus on identifying ML feature types

that dictate how columns will be consumed by ML, especially in AutoML environments. Other

goals such as schema matching, data discovery, and data exploration are orthogonal to our focus.

This makes semantic types different and complementary to our ML feature types.

We first find that the notion of what exactly constitutes a semantic type in Sherlock is

ambiguous. We give two examples below to illustrate why it is not possible to unambiguously

identify the true semantic type for every single Categorical example.
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Table 5.13: Accuracy results of Sherlock to identify semantic types on our labeled data. OurRF
denotes our best performing Random Forest on our held-out test dataset.

True Semantic Type
Country State Gender

#Examples in Test Set 10 14 6
#Examples predicted 
correctly by Sherlock

5 9 5

Recall of  Sherlock 50% 64.3% 83.3%
#Examples predicted 
Categorical by OurRF

10 14 6

Given Categorical Prediction from Our Random Forest
#Examples predicted 
correctly by Sherlock

5 9 5

Recall of Sherlock 50% 64.3% 83.3%

(1) Consider example C in Table 5.12, which semantic type does applicant race name 1

belongs to? Is it class, category, classification, or type? Sherlock predicts it as type, but its not

possible for us to verify its true semantic type, even after inspecting the column description in the

source metadata. However, our Random Forest predicts it as Categorical, which is how it will be

used by ML.

(2) It is not trivial to determine the semantic type even for columns with non-sensical

names such as ad744 and ad7125 (example A and B in Table 5.12). These columns are drawn

from one source CSV file and they represent the same real-world entity ( “Adaptation Climatic

Variation”) but for different seasons. Thus, they would belong to the same semantic type, but

Sherlock gives random and different predictions for them. However, our Random Forest again

predicts both of them as Categorical.

Considering this, we limit our analysis to a subset of Categorical columns from our

labeled data where we can unambiguously identify their true semantic type from Sherlock’s label

vocabulary: Country, State, and Gender.

Results. Table 5.13 shows the number of examples of the three semantic types in our held-

out test set. We showcase two approaches on these examples: (1) We run Sherlock independently.

(2) We first get predictions from our best performing Random Forest (OurRF), followed by

running Sherlock on top of OurRF’s Catgeorical predictions. Table 5.13 also presents the
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Table 5.14: Ablation study of our feature set by dropping the three type-specific features one at
a time from Xstats with Logistic Regression and Random Forest on our held-out test set. The
bold font marks the cases where the corresponding type-related feature is dropped.

Logistic Regression

Feature Set 9-class 
Accuracy

Datetime URL List

Precision Recall F1 
Score   

Precision Recall F1 
Score

Precision Recall F1 
Score

[Xstats, X2name, X2sample1] 0.853 0.945 0.972 0.958 0.969 1 0.984 0.875 0.807 0.84
[Xstats, X2name, X2sample1] –

list-specific feature from Xstats
0.855 0.95 0.95 0.95 0.969 1 0.984 0.913 0.807 0.857

[Xstats, X2name, X2sample1] –
url-specific feature from Xstats

0.853 0.95 0.95 0.95 0.967 0.906 0.936 0.915 0.827 0.869

[Xstats, X2name, X2sample1] –
datetime-specific feature from Xstats

0.849 0.936 0.936 0.936 0.969 1 0.984 0.875 0.807 0.84

Random Forest

[Xstats, X2name, X2sample1] 0.922 0.951 0.972 0.961 0.969 0.969 0.969 1 0.769 0.869

[Xstats, X2name, X2sample1] –
list-specific feature from Xstats

0.915 0.958 0.972 0.964 0.969 0.969 0.969 0.951 0.75 0.839

[Xstats, X2name, X2sample1] –
url-specific feature from Xstats

0.913 0.951 0.972 0.961 0.969 0.969 0.969 0.952 0.769 0.851

[Xstats, X2name, X2sample1] –
datetime-specific feature from Xstats

0.914 0.938 0.957 0.947 0.969 0.969 0.969 0.951 0.75 0.839
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Figure 5.6: Comparison of prediction runtimes and breakdown for all models.

accuracy results of Sherlock on the three semantic types with both these approaches. We find

that the recall of Sherlock with both approaches is identical on Country, State, and Gender type.

Thus, Sherlock is truly complementary and it can be used independently or together with our ML

models to identify the semantic types.

5.4.6 Prediction Runtimes and Extensions

We evaluate the running time of ML models in the online phase, i.e, to make predictions

on a new column. This involves base featurization, model-specific feature extraction (only needed
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for the classical models), and inference time. The measurements were made on the test set and

averaged. Figure 5.6 shows the time breakdown of base featurization, model-specific feature

extraction time, and inference time of ML models. Note that base featurization is common for

all models and model-specific feature extraction is needed only for the 3 classical ML models.

All the models finish in under 0.2 sec per column. For classical models, the additional feature

extraction dominates the overall runtime. Since SVM and k-NN are distance-based methods, they

have the highest runtime. Overall, CNN is the fastest.

Our benchmark and ML-based approach can be easily extended to support new additional

types, including semantic types [79]. We showcase the the effort needed for this extension in the

context of two semantic data types that are commonly used in BI applications: Country and State.

We find that the overhead of supporting these additional types in terms of programming cost,

feature engineering cost, and labeling cost is minimal to almost none. We present the complete

discussion in Section 5.4.5.

5.4.7 Robustness of ML models

We now analyse the robustness of our ML models’ predictions to different samples of the

column. Note that our base features including five descriptive stats are generated by leveraging

five random sample values from the column. Thus, a different set of column values can potentially

alter the prediction of our ML models.

We perform a Monte Carlo-style study where we randomly perturb every column from

our held-out test dataset 100 times. In each run, we obtain the first five non-empty distinct

sample values from the column. We then use our ML models trained on Xstats, X2name, and

X2sample1 to get 100 predictions for every column of our held-out test data. We finally count the

percentage of times (out of 100) the predictions of the ML models remain the same as the one

on the original unperturbed column. Figure 5.7 presents the CDFs of these counts on the two

models across the held-out test set. Table 5.15 shows the different nth percentiles of the % of

86



CDF

CDF

% times the prediction of Random 
Forest do not change

% times the prediction of Logistic 
Regression do not change

Figure 5.7: CDFs of the % of times the predictions of Logistic Regression and Random Forest
do not change after perturbing columns from the held-out test data. Number of simulation runs
are set to 100 for all held-out test set columns.

times the predictions of the two models change after perturbation across the held-out test dataset.

We find that both Logistic Regression and Random Forest are really robust to the randomness of

sampling introduced by our base featurization process. For instance, on 5% of the test examples,

the prediction of Random Forest changed only 30% of times. Moreover, we observe that Logistic

Regression is more robust to variability in sample values than Random Forest.

5.5 Downstream Benchmark Suite

To complete the loop on type inference, we now empirically study if doing feature type

inference accurately is essential for downstream model accuracy. Thus, we verify if there are

cases where doing wrong type inference may improve, reduce, or match the downstream accuracy
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Table 5.15: Summary statistics of the percentage of times the predictions of Logistic Regression
and Random Forest do not change after perturbing columns from the held-out test data.

nth Percentile
(over held-out test set)

% times the prediction of do not change

Logistic Regression Random Forest

50 100 100

20 100 100

10 100 89

5 100 70

1 100 54

0.1 95 39

0.01 57 35

relative to true feature types. From Section 5.4.3, we saw that type inference accuracy is highest

for the Random Forest (OurRF) among all ML-based approaches. Thus, we compare the OurRF

against the industrial and open source tools on a suite of downstream tasks we collected and

curated.

5.5.1 Datasets

The impact of type inference is dependent on the dataset and the downstream prediction

task. Since there are unboundedly many datasets and downstream tasks, for the sake of tractability

we got 30 “unseen” datasets from Kaggle, UCI ML repository, and OpenML [155] for evaluation.

Since classification tasks are more common in practice, we got 25 datasets for such tasks, and 5

for regression tasks. Table 5.17 and Table 5.18 presents the downstream datasets with descriptions

such as their number of columns, target classes, and different feature types and attribute types they

contain. We ensure representation of various combinations of feature types with many different

data types (ints, floats, string, dates, timestamps, and even primary keys). We did not cherry-pick

a dataset to particularly suit one approach over another. Overall, we have 566 columns across 30

downstream datasets. We manually label all the columns with their true feature type. The datasets

and their source details are available on the Github repository [37].
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Table 5.16: (A) Type Inference accuracy on 30 downstream datasets. (B) Number of down-
stream datasets where tools underperform, match, or outperform the ground truth downstream
performance or the best performing tool. OurRF is the Random Forest for type inference trained
on our data. LR denotes downstream linear model (Logistic/Linear regression) and RF denotes
downstream Random Forest.

Logistic Regression Random Forest

PD TFDV AGL OurRF PD TFDV AGL OurRF
Underperform truth 23 18 19 11 21 17 16 9
Match truth 6 10 10 16 7 11 12 19
Outperform truth 1 2 1 3 2 2 2 2
Best performing 
tool for a dataset 9 11 10 23 10 14 16 24

(B)

Pandas TFDV AutoGluon OurRF

Column Coverage 300 535 553 566

Type inference accuracy 
given coverage 90.3% 75% 71.4% 91.2% 

(A)

5.5.2 Models and Metrics

In terms of downstream model evaluation, we present both extremes of bias-variance

tradeoff [74]: L2-regularized Logistic regression (high bias, low variance) for classification,

L2-regularized Linear regression (high bias, low variance) for regression, and Random Forest

(low bias, high variance) for both classification and regression. Thus, we have 60 downstream

models in total. We use the accuracy metric scaled to 100 for the classification tasks and the root

mean squared error (RMSE) metric for the regression tasks.

5.5.3 Tools compared

We compare Pandas (PD), TFDV, AutoGluon (AGL), and OurRF, relative to the truth on

30 downstream datasets. We map the feature types inferred by these tools to our label vocabulary

as per Figure 5.2. Columns that are inferred Numeric are retained as is, Categorical columns

are one-hot encoded, Sentence columns are routed through TF-IDF [121], URLs are specially

processed through a word-level bigrams, Not-Generalizable columns are dropped, and the rest of

the types are featurized with bigrams. After featurization, we use the same methodology as in

89



Table 5.17: Accuracy comparison of downstream regression models using inferred types from
“OurRF” against Pandas (PD), TFDV, and AutoGluon (AGL), relative to RMSE with true feature
types. |A| and |Y| are the number of columns and target classes in that dataset resp. * denotes
the cases where OurRF prediction is either EN or CS, where user intervention can help improve
model accuracy or generalization.

Feature 
Types

Raw Attribute 
Types Dataset |A|

Linear Regression – L2 Regularization Random Forest

Truth PD TFDV AGL OurRF Truth PD TFDV AGL OurRF

CA Int MBA 2 0.363 +0.05 +0.05 +0.05 -0 0.384 +0.09 +0.08 +0.09 -0

NU + CA
Int Vineyard 3 2.97 +2 +2 +2 -0 2.7 +0.37 +0.37 +0.37 -0

Int, String Apnea 3 2206.2 +62.5 -0 -0 -0 1355.7 +1972.7 -0 -0 -0

DT Date Accident 1 466 -0 +384.6 -0 -0 589.7 -0 +474.8 -0 -0

NU + CA + 
EN + NG Int, String Car Fuel 11 11.3 -0.09 +0.16 +0.14 +0.01* 11.7 +0.33 +1.1 +0.9 +0.03*

Section 5.4.1 for evaluation. Note that one can plug-in any alternate featurization scheme to derive

more useful features. However, such feature engineering decisions can be application-specific

and are not the focus of this work.

5.5.4 Results

Type Inference Results. Table 5.16 (A) shows the type inference accuracy of all tools on

the downstream datasets. We see that OurRF can correctly infer the feature types for 516 out of

566 columns in these 30 datasets. Pandas has a seemingly high accuracy of 90% but note the low

coverage of columns by its vocabulary, which makes it benefit from high recall. It cannot predict

on the other columns at all. The accuracy of TFDV and AutoGluon is much lower than OurRF;

their coverage is also slightly lower than OurRF.

Downstream Model Performance Table 5.17 and Table 5.18 present the end-to-end

comparison of downstream models built with feature types inferred by Pandas, AutoGluon,

TFDV, and OurRF relative to the true feature types. Table 5.16 (B) offers summary statistics

on how the tools perform relative to the ground truth and other tools. We find that, for a given

dataset and a downstream model, OurRF performs worse than the best performing tool for only

13 out of 60 downstream models. Moreover, OurRF underperforms the truth (perfect feature
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Table 5.18: Accuracy comparison of downstream classification models using inferred types
from “OurRF” against Pandas (PD), TFDV, and AutoGluon (AGL), relative to accuracy with
true feature types. PK denote primary keys.

Feature 
Types

Raw Attribute 
Types Dataset |A| |Y|

Logistic Regression Random Forest

Truth PD TFDV AGL OurRF Truth PD TFDV AGL OurRF

NU
Int, Float Cancer 9 2 60.8 +0 +0 +0 +0 66.7 +0 +0 +0 +0

Int Mfeat 216 10 92.5 +0 +0 +0 -2.7 91.8 +0 +0 +0 -2.3

CA

String Nursery 8 5 92.8 -0.9 +0 +0 +0 98.2 -3.9 +0 +0 +0

String Audiology 69 24 73 -1.3 +0 -1.3 +0 72.2 -0.9 +0 -1.3 +0

Int Hayes 4 3 74.1 -14.1 -14.1 -14.1 +0 78.5 -14.1 -14.1 -14.1 +0

Int Supreme 7 2 99.3 -14.5 -17.1 -14.5 +0 99.4 +0 +0 +0 +0

Int, String Flares 10 2 90.8 +0 +0 +0 +0 89.2 +0.3 +0.3 +0.3 +0

Int, String Kropt 6 18 39.4 -6.9 -6.9 -6.9 +0 68.8 -3.4 -3.4 -3.4 +0

Int, String Boxing 3 2 80.7 -24.4 -25.2 -25.2 -34.1 78.5 -17 -11.9 -11.9 -28.9

NU + CA

Int, String Flags 28 2 68.2 -6.2 -3.6 -6.7 -4.1* 75.9 -1 -2.6 -2.6 -3.1*

Int,Float,String Diggle 8 2 99.9 +0 +0 +0 -5.8 99.9 +0 +0 +0 +0

Int, Float Hearts 13 2 84.9 -0.7 -1.6 -0.7 +0 86.2 -1.3 -3 -1.3 +0

Int, Float Sleuth 10 2 68.9 -3.3 -3.3 -3.3 +0 76.7 +0 +0 +0 +0

CA + NG Int, String Apnea2 3 2 92 -6.7 -0.6 -0.6 -0.6 90.1 -2.3 -0.8 -0.8 -0.8

NU + CA + ST Int, String Auto-MPG 8 3 89.1 -4.8 -8.6 -8.6 -15.9 95.2 +0.5 -18.9 -18.9 -20.5

NU + CA + EN Int,Float,String Churn 19 2 79.1 -0.7 +0.1 -0.1 +0.2 78.7 -0.2 -0.9 -0.8 -0.3

NU + DT + EN Int, Float,  
String, Date NYC 6 15 55.8 +0 -0.1 -0.3 -0.3 67.6 +0 +0.5 +0.8 +0.8

ST String BBC 1 5 97.1 -6.9 +0 +0 +0 96.3 -13.1 +0 +0 +0

DT + ST String, Date Articles 3 2 98.8 -2.1 +0 +0 +0 99.0 -3.2 +0 +0 +0

NU+CA+ST+NG Int,String,PK Clothing 10 5 66.7 -9.2 -9.1 -9.2 +0 64.2 -2.2 -4.9 -2.6 +0

NU + DT + NG Int, String, 
Time, PK IOT 4 2 83.8 -0.3 +0 +0 +3.6* 93.8 -1.4 +0 +0 +0*

NG + CA Int,String, PK Zoo 17 5 75.6 -13.4 -11.1 -8.9 -2.2 77.8 -15.6 -8.9 -6.7 -4.4

NU+CA+EN+NG Int,Float,String PBCseq 18 2 68.6 -1.3 +0.5 +0.5 +6.2* 73 -1.2 -0.1 -0.1 +2.2*

NU + CA + LST 
+ NG + CS

Int, Float, 
String, PK Pokemon 40 36 65.84 -52.2 -52.4 -52.6 -0.6 88.1 -3.9 -3.2 +0 +0

NU + CA + DT +
URL + NG + CS

Int,Float,Date,
String, Time President 26 57 39.5 -7.9 -7.9 -8 -0.9 81.7 -29.4 -23.1 -28.8 -2.1

type predictions) for only 20 downstream models. In contrast, Pandas, TFDV, and AutoGluon

underperform for significantly more models: 44, 35, and 35 respectively. Figure 5.8 presents the

CDF of the magnitude of difference in downstream model performance with different ML feature

type inference approaches compared to Truth. We find that the drop in percentage classification

accuracy with OurRF relative to the Truth is less than 0.88 for 75% of the downstream models. In

contrast, the 75th percentile delta drop in percentage accuracy for Pandas, TFDV, and AutoGluon

relative to the Truth is 6.9, 7.7, and 6.9 respectively for the same downstream classification
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Figure 5.8: CDFs of the differences between downstream model performance with different
approaches for feature type inference relative to performance with perfect feature type inference
(Truth). The first and second row show CDFs on 50 downstream classification models and
10 regression models respectively. This includes both the downstream Linear model and
downstream Random Forest model with (A) Pandas (B) TFDV (C) AutoGluon, and (D) Our best
performing Random Forest (OurRF). For regression models, we normalize the RMSE relative to
the corresponding true RMSE.

models. Moreover, the median increase in percentage normalized RMSE relative to truth is 0 with

OurRF, in contrast to the median of 8.3, 13.7, 4.5 for Pandas, TFDV, and AutoGluon respectively.

Thus, existing tools underperform the truth (perfect predictions of feature types) by a much higher

magnitude than OurRF. We explain the results in-depth below.

1. Why does wrong type inference hurt downstream accuracy? Table 5.17 and

Table 5.18 shows that wrong type inference almost always leads to a drop in accuracy compared

to the accuracy with true feature types. Moreover, the amount of drop depends upon how many

feature types are wrongly classified and how predictive those features are for the target. For

instance, wrong type inference leads AutoGluon and TFDV to underperform on 35 out of 60

downstream models. This led to a reduction of an average of 7% and up to 52% in accuracy

compared to the ground truth-based model. We explain the common patterns of how wrong type

inference affected downstream accuracy below.

(a) MFeat has 216 Numeric integer columns, presenting a best-case scenario for prior

tools as they have the highest possible recall in inferring Numeric. Thus, they classify all columns
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correctly. However, OurRF confuses 7 of them with Categorical, possibly because of their low

domain sizes, thus leading to a drop in accuracy. We verified that this is the primary reason why

OurRF underperforms truth and prior tools on datasets like Auto-MPG and Diggle.

(b) On Zoo, out of 4 Not-Generalizable columns, one column is erroneously predicted

as Categorical by OurRF. Thus, using a feature that offers no discriminative power leads to a

drop in accuracy compared to the ground truth. In contrast, AutoGluon classifies all of them

incorrectly. Other tools like TFDV and Pandas do not even support Not-Generalizable in their

vocabulary. Thus, the drop is much larger for the prior tools. We observe the same pattern across

many datasets like Pokemon, President, and Car Fuel.

2. Why does wrong type inference of integer Categorical often not hurt downstream

Random Forest? Although the categories encoded as integers in Supreme, Flags, Sleuth, and

Vineyard are misclassified by Pandas, AutoGluon, and TFDV, the accuracy of Random Forest

either does not drop or drops only marginally. This is because the Categorical features in these

datasets are either ordinal and/or have binary domain size. Random Forest has zero bias and thus

can potentially represent all categories by doing splits on integers. Linear models, which have

lower VC-dimension, cannot do this. Thus, the linear models often see much higher accuracy

with OurRF than prior tools.

3. How can OurRF exploit user intervention to lift accuracy? Car Fuel has two

Embedded Number columns. Although they are predicted correctly by OurRF, a human can

intervene to extract their values to use them as Numeric instead of the current bigramization.

Thus, a user-in-the-loop can further improve downstream model. Moreover, such intervention

can even help Flags where a Categorical feature was erroneously predicted as Context-Specific

by OurRF.

4. Why is outperforming truth not necessarily beneficial? On IOT, we observe the

lift in accuracy due to a Numeric column called “temp” (denoting temperature) being classified

as Context-Specific. This may not be desired because interpretability can be a concern in this
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Table 5.19: Number of downstream datasets (out of 25) where tools with both numeric and one-
hot encoded representation of integer columns outperform the tool baseline with an exclusive
type specific representation, underperform truth, OurRF, NewRF, or the best performing tool.
NewRF is the Random Forest trained on our labeled dataset adapted to produce multiple feature
representations.

Logistic Regression Random Forest

PD TFDV AGL NewRF PD TFDV AGL NewRF
Underperform truth 20 18 18 13 20 19 16 13
Underperform tool 

baseline 3 1 3 6 11 10 8 5

Outperform tool baseline 11 7 8 7 11 8 7 7
Outperform tool baseline
but worse than NewRF 6 2 4 - 9 5 5 -

Best performing tool for 
a dataset 6 8 7 18 5 6 7 18

application. Predictions are more explainable when using temperature data as Numeric feature

than bigrams.

A Not-Generalizable unique identifier column denoting the “case number” on PBCseq is

predicted as Numeric by OurRF. Even though we notice a significant lift in accuracy compared to

the ground truth, this is not necessarily beneficial in the deployment setting, where every newly

conducted study will have a new case number. Thus, it is very unlikely that the downstream

model will generalize.

Downstream Model Performance with Double Representation. We now give multiple

representations of the column at the same time to the downstream model and study if this can help

recover the gap in performance caused by wrong type inference. We study this in the context of

Numeric vs Categorical dichotomy of the integer columns of our downstream datasets. Thus, with

existing AutoML tools, instead of routing integer columns predicted as Numeric to an exclusive

numerical representation and Categorical columns to an exclusive one-hot encoded representation,

we route integer column to both representations regardless of the predicted feature type.

Note that representation of columns in multiple ways for the downstream models is

completely orthogonal to whether correct feature types are known or not. Multiple representations

can be performed even when the correct feature types are known. Thus, we adapt OurRF to support
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the double representation of integer columns by leveraging the class confidence probabilities of

the prediction. We first use a threshold-based rule to check if the prediction made by OurRF is

confident enough to route the column to an exclusive feature representation corresponding to the

predicted type. We set the threshold to the probability value of 0.4, i.e., the confidence of the

prediction should be at least twice the random guessing accuracy on the integer column. When

the class confidence probability is below the threshold, we route the column to both Numeric and

Categorical representation. We denote this adapted Random Forest with “NewRF.”

Table 5.19 shows summary stats on how the tools supporting double representation

of integer columns perform relative to the same tools supporting an exclusive type-specific

representation on our 25 downstream benchmark datasets. We observe that the accuracy of the

downstream models obtained with existing AutoML tools and NewRF do improve with the double

feature representation on some datasets. We find that the amount of accuracy improvement is

typically higher for the downstream linear model than the downstream Random Forest. e.g.,

an average 3.4% and up to 29.6% on the linear model and of an average 1.3% and up to 21%

on Random Forest with TFDV. Despite this, existing AutoML tools underperform NewRF on

most datasets with both downstream models. In addition, NewRF underperforms the truth on 26

downstream models. In contrast, Pandas, TFDV, and AutoGluon underperform for significantly

more models: 40, 37, and 34 respectively. Overall, we notice that NewRF performs worse than

the best performing tool for only 14 out of 50 downstream models. Thus, accurate inference of

feature types is again critical to building accurate downstream models.

One can even consider exploring different subsets of feature representations for integer

columns. However, this explodes exponentially in the number of columns, which will waste a

lot more runtime and resources, while still having the same interpretability issues. Note that the

discussion of how feature types should be represented is completely orthogonal to our focus.

Knowing a feature type correctly will always provide more information, which can be used to

build better featurization schemes.
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5.5.5 Summary

Overall, OurRF achieves a high accuracy of 91.2% for inferring feature types on 30

unseen datasets from Kaggle, UCI ML repository, and OpenML. Moreover, we find that wrong

feature type inference almost always leads to an accuracy drop for the downstream model relative

to the ground truth, except for the Random Forest on ordinal and/or binary domain Categorical.

More importantly, our labeled dataset is valuable to build an accurate downstream model because

even standard ML models like Random Forest trained on our labeled data achieve the highest

accuracy against existing tools for 47 out of 60 downstream models.

5.6 Discussion

5.6.1 Public Release and Leaderboard

We have released a public repository on GitHub with our entire labeled data for the ML

feature type inference task [37]. We also release the pre-trained ML models: k-NN, logistic

regression, RBF-SVM, Random Forest, and the CNN. The repository tabulates the precision,

recall, and accuracy of all models and existing open-source approaches. The repository includes a

leaderboard for public competition on the hosted dataset with 9-class classification accuracy and

per-class precision, recall, and binarization accuracy being the metric. We release the downstream

benchmark suite containing 30 datasets and the associated code for running the benchmark. Also,

we release the raw 1240 CSV files and we invite researchers and practitioners to use our datasets

and contribute to augmenting them and creating better featurizations and models.

5.6.2 Takeaways

We make all the models and featurization routines available for use by wrapping them

under functions in a Python library [37]. The ML models can be integrated for feature type
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inference into existing data prep environments. We have already integrated our pre-trained

models with TFDV to improve its inference of Categorical [137]. We are also planning to

collaborate with AWS and OpenML on more such integration. We welcome inquiries from

more practitioners interested in adopting or enhancing our benchmark. For visual tools such as

Excel and Trifacta [18], designing new user-in-the-loop interfaces that account for both model’s

prediction and human’s judgement remains an open research question.

5.7 Conclusion

Although ML feature type inference is a crucial data prep step that serves as an entry

point to ML workflow, the industrial players have signifcantly underestimated the importance

of this task. Our work shows that ML feature type inference is a critical task in the end-to-

end ML pipeline. Our objective benchmark (both on the specific task and several downstream

tasks) exposes the shortcomings of the existing solutions. Thus, our first work in this space can

substantially advance the science of building ML platforms and help objectively validate and

improve them.

Chapter 5 contains material from “Towards Benchmarking Feature Type Inference for

AutoML Platforms” by Vraj Shah, Jonathan Lacanlale, Premanand Kumar, Kevin Yang, and Arun

Kumar, which appeared in Proceedings of the 2021 International Conference on Management

of Data (SIGMOD’21). The dissertation author was the primary investigator and author of this

paper.
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Chapter 6

Category Deduplication: Assessing

Importance for ML and Making

Automation Accurate

6.1 Introduction

In this chapter, we dive deeper into a common and specific data prep task of category

deduplication, i.e., consolidating duplicates in the Categorical column. This involves manual

grunt work that is both tedious and time-consuming. Even AutoML users are often asked to

manually perform many data prep steps before using their platforms [8]. Surveys of AutoML

users have repeatedly identified such challenges in conducting data prep [166, 52].

Consider a simplified dataset to be used for a common ML classification task, Customers

Churn prediction in Table 6.1. Duplicates, categories referring to the same real-world object occur

in many Categorical columns such as Gender, State, Country, and Contract. Note that Name is

not Categorical since it offers no discriminative power and cannot be generalized for ML. The

presence of duplicates within a Categorical column can potentially dilute the signal strength that
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Table 6.1: Customers data used for ML Churn Prediction.
CustId Name Age Gender State Country Contract Churn
101 John 42 Male California US monthly ‘Y’

102 Jerry 29 Mail CA United
states

Month-to
-month

‘N’

one can extract for ML. Thus, an ML practitioner would often deduplicate categories before ML.

Even, AutoML platforms often suggest users to manually inspect Categoricals and consolidate

duplicates whenever they arise, as part of their guidelines for obtaining an accurate model [7].

This can involve non-trivial amount of deduplication effort at a Categorical column-level as

duplicates can arise as misspellings, abbreviations, and synonyms, even within the same column.

Note that this problem is related but complementary to entity deduplication issues studied in the

data cleaning literature, as we will explain shortly.

Considering the laborious nature of the deduplication task, we ask: How do Categorical

duplicates impact commonly used ML classifiers? Is category deduplication effort even worth-

while for ML? Is it always needed regardless of the employed Categorical encoding scheme? We

take a step towards answering these questions by developing an in-depth scientific understanding

of the importance of category deduplication for ML. Our objectives are two-fold. (1) Perform an

extensive empirical study to measure the impact of Categorical duplicates on ML and distill the

findings into actionable insights for handling them. This can help ML practitioners decide when

and how to prioritise their cleaning effort. Moreover, this can enable AutoML platform builders

design better ML workflows. (2) Present critical artifacts that can help advance the science of

building AutoML platforms by providing researchers an apparatus to tackle open questions in

this direction.

Our Approach. We identify that the impact on ML accuracy in presence of Categorical

duplicates can be characterized with several confounders such as duplication properties (e.g., #

duplicates per entity), training data properties (e.g., # available training examples), Categorical

encoding method (e.g., One-hot), and ML model (e.g., high variance model such as Random
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Forest). Figure 6.1 details these confounders. Considering this, we make three component

contributions to covers our goals. (1) We produce a labeled data to study how real-world

duplicates arise. This helps us set up the duplication properties in the simulation study. More

importantly, this can serve as a valuable artifact for the community to address many important

open questions such as automating deduplication itself. (2) We phenomenalise the impact on ML

accuracy by empirically benchmarking with real-world data containing duplicates in presence

of multiple confounders. (3) The significance of each confounder is hard to discern when all

confounders act together. Thus, we use simulation study to disentangle the impact with all

confounders and explain the phenomenon discretely. We explain each component below.

1. Hand-Labeled Data. To understand the behavior of Categorical duplicates, we

first ask several important questions: How do duplicates manifest themselves in the real-world

columns? Do they happen often? How much can the domain size of the Categoricals be reduced

with deduplication? We address them by creating the first hand-labeled dataset where true entities

within a Categorical column are annotated with corresponding duplicates. Our dataset includes

1248 string Categorical columns from 217 raw CSV files. The labeling process took about 120

man-hours across 5 months.

The utility of our labeled dataset is two-fold. (1) Get an average-case and worst-case

estimate of several properties of duplicates such as their occurrences, cardinalities, and the fraction

of entities that are diluted with duplicates. This enables us to control the synthetic duplication

process that is real-world representative in the simulation study. (2) Provide a methodological

approach to help address several critical open questions such as benchmarking and automating

the deduplication task itself. For instance, this can benefit the data cleaning community which is

often limited with synthetic datasets to evaluate their methods for a lack of annotated real data

such as this, albeit for different cleaning operations [40].

2. Downstream Benchmark Suite. We create a benchmark suite of 14 real-world

datasets to empirically benchmark the impact of Categorical duplicates. We make the following
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Figure 6.1: High-level summarization of confounders impacting ML accuracy in presence of
duplicates.

choices with each confounder. (1) We choose three popular classifiers from the entire spectrum of

bias-variance tradeoff: low-capacity Logistic Regression (LR) and high-capacity Random Forest

(RF) from the two ends. We choose a high-capacity multi-layered perceptron (MLP) with VC

dimension lower than RF somewhere in between them [138]. LR and RF are also the two most

popular classifiers among ML practitioners, as per Kaggle data science survey [143]. (2) We focus

on three easy to understand Categorical encoding schemes, One-hot, String-based (applicable for

tree learners), and Similarity. We choose the first two since they are already popular in practice,

as per study on OpenML workflows [101]. We choose Similarity as it offers category duplicates

with a feature vector representation that is similar to that of their true entities. In contrast, One-hot

leads to duplicates with feature vectors orthogonal to their true entities. There exists a large stock

of encoding methods for representing Categoricals [73]. We leave studying them to future work

for tractability sake. We make empirical observations in the two extremes of (3) Data regime in

terms of the training examples per category. (4) Amount of duplication in terms of the parameters

that characterize duplicates. (5) Relevancy of Categorical column with duplicates for the ML

task.

3. Synthetic Simulation Study. We perform a simulation study to intricately study how

six different confounders such as the fraction of entities with duplicates and data regime affect ML

accuracy. We disentangle the structural model parameters impacting the bias-variance tradeoff by

fixing the model capacity. We use high bias models such as shallow Decision Tree, a low-capacity

Multi-layer Perceptron (MLP), and LR and also high-capacity RF and MLP to showcase the two

extremes of each model’s bias spectrum. We embed two different true distributions that present
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two scenarios of how RF and hyperplane-based classifiers fit the data. The duplicates are then

introduced with a process that is informed by the understanding of how they occur within our

labeled data. Here, we have two objectives. (1) Confirm the validity of the observations we make

with the downstream benchmark suite. (2) Disentangle and characterize the effect of duplicates

with multiple confounders individually to make the impact interpretable. Moreover, we expose

a critical shortcoming of the commonly used Categorical encodings, One-hot and String when

duplicates arise during the deployment in the test set but not during training.

Relationship to Prior Work. Entity Matching (EM) solutions [93, 174, 105] operate

at a tuple-level since they have access to the entire feature vectors of the two tables. Note that

tuple-level duplicates do not necessarily imply duplication in Categorical strings, and also vice

versa. Thus, problem of EM is orthogonal to category deduplication. Admittedly, it is possible to

view category deduplication as an extension of row-level deduplication but doing so is non-trivial.

Regardless, our focus is to study only the impact of category deduplication on ML and not how

to perform deduplication. We leave it to future work to automate this, including potentially

extending existing row-level deduplication works.

Note that a Categorical column for an ML model assumes values from a finite closed

domain. Thus, non-generalizable open domain person names, custom processable addresses, or

even semantically rich textual descriptions used in public datasets [93, 94] and string matching

literature [102, 46] are not Categorical; thus, they are beyond the scope of this work. Although

incidental Categorical duplicates do arise in prior datasets [93, 103, 46], we posit that we need

a systematic benchmark to characterize and understand their impact on ML accuracy that prior

works do not focus on. A prior work evaluated the impact of many data cleaning steps on

ML [103]. Our work is along the same direction, but they did not specifically explore Categorical

deduplication and its causal confounders that matter for accuracy. We deep dive into Categorical

deduplication to offer empirical rigor and understand the importance of task scientifically, rather

than a coarse-grained study of cleaning for ML.
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Empirical Evaluation. An empirical comparison of our downstream benchmark suite

reveals that deduplication can often improve the ML accuracy significantly, e.g., the impact with

duplicates on LR, RF, and MLP using One-hot encoding is significant (more than 1% accuracy)

on 6, 11, and 8 datasets (out of 14) respectively. Thus, LR gets impacted much less than the

high-capacity RF and MLP. Moreover, we find that Similarity encoding is more robust than other

encodings to tolerate duplicates. Overall, we make eight such observations on the significance of

the confounders with the downstream benchmark suite. We confirm all of them with simulation

study. Specifically, we find that the presence of duplicates can often cause extra overfitting, which

reduces as the number of training examples per category rises. Moreover, we provide explanations

and insights into how ML models with different biases behave with duplicates. For instance, we

find that LR is (perhaps counter-intuitively) more robust to duplicates than high-capacity RF and

MLP because although duplicates increase feature dimensionality of Categoricals, LR often just

ignores the extra dimensions by setting their weights close to 0.

Making Deduplication Automation Simpler and Accurate. Although category dupli-

cates can often impact downstream ML accuracy substantially, none of the existing open source

AutoML tools such as AutoGluon [62], AutoML Tables [9], and TransmogrifAI [17] support an

automated deduplication workflow. Cleaning duplicates manually can be slow and frustrating

for many users, especially non-technical lay users who were promised end-to-end automation

of the entire ML workflow. Thus, we pursue a complementary research direction of accurately

automating category deduplication task using our labeled dataset. We cast this task as a binary

classification problem and build rule-based and learning-based approaches to evaluate them on

the task. Our feasibility study shows that our labeled data is useful to deliver ML-based solutions

that are more accurate than rule-based baselines.

Takeaways for Practitioners. We distill our empirical analysis into a handful of action-

able takeaways for ML practitioners and AutoML developers. For instance, LR is more robust

to adverse impact of Categorical duplicates than high-capacity RF and MLP as it overfits less.
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Moreover, Similarity is more robust than other encodings to tolerate Categorical duplicates,

thereby diminishing the utility of category deduplication. We also expose a critical shortcoming

of One-hot and String encodings, when Categorical duplicates arising in the deployment but not

during training can lead to significant degradation in ML performance.

Some of these insights may be considered folklore by practitioners, but this work is the

first in-depth systematic scientific study to assess the impact of Categorical duplicates on ML.

We explain the impact from the bias-variance tradeoff perspective to put the empirical results

on a rigorous footing. Our analyses can benefit practitioners to systematically understand the

various confounders that matter for accuracy. Also, this can be useful to develop better practices

and design ML workflows that are robust to Categorical duplicates. Moreover, our work opens

up new research directions at the intersection of ML theory, data management, and ML system

design. Finally, we open source our entire benchmark including our labeled data, downstream

suite, and simulation framework [36].

In summary, our work makes the following key contributions.

1. A new benchmark dataset. To the best of our knowledge, this is the first work to

curate a large labeled dataset specifically for Categorical duplicates where the entities

are annotated. We present several insights that characterizes how Categorical duplicates

exhibit themselves.

2. Empirical benchmarking to understand the significance of category deduplication on

ML. Our curated downstream benchmark containing “in-the-wild” datasets enables us to

point out cases where ML may or may not benefit with category deduplication.

3. Characterization of confounders with simulation study. Our synthetic study can dis-

entangle and explain the impact of confounders on how Categorical duplicates affect

ML.

4. Utility of our study. We present the first in-depth scientific empirical study to systematically
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Table 6.2: Notations used to study the impact of Categorical duplicates on ML.
Symbol Meaning
C Set of category values in the column 𝐴!
E Set of unique real-world entities referred by categories from C
ED Subset of real-world entities that have at least 1 duplicate; ED ⊆ 𝐸

occ(Z) Sum of occurrences of all categories present in set Z; Z ⊆ C

D A set of non-empty sets of duplicate values for 
each entity in ED; |D|	=	|ED|

charactertize when and why category deduplication can help/not help ML. We present

several practical insights for practitioners. We identify open questions for further research

and how our labeled data can be a key enabler to address them. Also, we open source our

benchmark to enable more community-driven contributions.

5. Utility of our labeled data. We show that even classical ML models (trained on our labeled

dataset) with standard features can outperform the rule-based solutions for accurately

automating category deduplication task.

6.2 Background

6.2.1 Assumptions and Scope

We focus on the ML classification setting over structured data. We call the ML model to

be trained over the data as the “downstream model.” This refers to the ML model that is built

on the table after deduplication has been done. Note that our goal is not to study the upstream

deduplication process itself, which is handled manually in this work. We leave designing

automated upstream deduplication mechanisms to future work. We focus on understanding

how duplicates manifest themselves in real-world and how they impact the performance of the

downstream models. Specifically, we study them in the context of string nominal Categorical

features, which do not have a notion of ordering among its values. Note that a Categorical feature

contains mutually exclusive values from a known finite domain set. In contrast, Text type features
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Table 6.3: A simplified example to illustrate our notions with State column categories.

Category set Ci

(𝟏 ≤ 𝒊 ≤ |C|)
Occurrence of

Category (occ({Ci}))
Entity set Ej

(𝟏 ≤ 𝒋 ≤ |E|)
New York C1 60

New York E1NY C2 30
new york C3 10
California C4 70 California E2Ca C5 30
Wisconsin C6 100 Wisconsin E3

can take arbitrary string values. Thus, generic open domain addresses or person names are not

Categorical. We study duplicates arising in Categorical column, which is not the actual target for

the prediction task.

6.2.2 Definitions

We present terms and notations needed to study the effect of Categorical duplicates in

the context of implications for ML accuracy. We first draw upon notations from a mix of both

database theory [106] and ML literature [74] for known concepts. A relational table is defined

by schema R(A1,A2, ...,An,Y ) with a relation (instance) r. We use A to denote a set of columns

{A1,A2, ...,An} and Y is the target column for prediction. Note that, formally, a column is referred

to as an attribute [106]. Let Al(l ∈ [1,n]) be a Categorical column with a domain dom(Al)⊆ L ,

where L is the set of strings with finite length. A relation r is defined over A as a set of mappings

with {t p : A →
⋃n

l=1 dom(Al), p = 1...|r|}, where for each tuple t p ∈ r, t p(Al) ∈ dom(Al), |r| is

the number of examples in the the table.

Note that Categorical strings are not directly consumable by most ML models. Thus, an

encoding scheme is required to transform the set of columns A to a feature vector to train an ML

model. We explain this further in Section 6.4.1. We now reuse and adapt terminologies from

existing database [106, 49] and ML literature [74] together for terms that we need for the rest of

this work. Table 6.2 lists the notations and Table 6.3 explains the terms used with an example.

For simplicity of exposition, we focus on one Categorical column with duplicates, Al ∈ A .
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DEFINITION (CATEGORY). A Category set Cl = {Cl
1,C

l
2, ...,C

l
|Cl |} contains all unique

domain values occurring in the column Al . Note that Cl is also referred to as the active domain of

Al relative to relation r [106], i.e., Cl=adom(Al,r)={c ∈ dom(Al) | ∃t p ∈ r, t p(Al) = c}. We drop

the superscript (Cl) and simplify the active domain operation with C only to make it succinct for

follow up set algebra. Each distinct value in the column is defined as “category.” For Table 6.3

example, C = {New York, NY, new york, California, Ca, Wisconsin}.

DEFINITION (ENTITY). An Entity set E ⊆ C represents a subset of Categories that

conceptually refer to different real-world objects. A category from set C can be uniquely mapped

to an entity from set E. Let the mapping function be denoted by M : C → E. In Table 6.3, there

are three unique real-world state objects, i.e., E = {New York, California, Wisconsin}. Note

that entities are defined at a conceptual level; thus, referring to New York as new York or NY is

identical. But for ease of exposition, we assume the category that most frequently represents an

entity (ties broken lexicographically) in the column to be the true entity. There exist multiple

categories representing the same entity, i.e., M(C1)=M(C2)=M(C3)=E1={New York}.

DEFINITION (OCCURRENCE). We define Occurrence (or percentage Occurrence) of

category Ci as percentage of times Ci represents E j in the column. For instance, whenever

real-world New York entity occurs, 30% and 10% of the times NY and new york represents them

respectively. New York is referred to as the entity since it occurs more than NY and new york.

We define the Occurrence function as occ : Z → [0,100]. The input Z is a subset Z ⊆C

such that all categories of the subset map to a unique entity E j ( j ∈ [1, |E|]), i.e., E j = M(Z1) =

M(Z2) = ...= M(Z|Z|). The output is the sum of occurrence values for all categories present in

the input set which is a real number in [0,100]. occ(Z) = occ(Z1)+occ(Z2)+ ...+occ(Z|Z|). For

instance, occ({C1}) = 60,occ({C2,C3}) = 40, and occ({C1,C4}) = Undefined.

DEFINITION (DUPLICATE). There exist a duplicate for E j whenever E j = M(Z1) =

M(Z2) = ... = M(Z|Z|) and |Z| > 1. Whenever E j occurs, the % times it is represented by
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Table 6.4: Three pairs of duplicate tuples from three different datasets of the Magellan data
repository [93].

Dataset Name Left Tables Right Tables

Restraunt
Address Phone number Name Address Phone number Name

1929 Hillhurst Ave,
Los Angeles, CA (323) 644-0100 Alcove Cafe 

& Bakery
1929 Hillhurst Ave,

Los Angeles, CA 90027 (323) 644-0100 Alcove Cafe 
& Bakery

Ebooks

Author Title Price Author Title Price

John D.T. White
101 Things You May 

Not Have Known 
About the US Masters

5.99 John White
101 Things You May 

Not Have Known About
the US Masters

5.49

Citations

Author Entry Type Title Author Entry Type Title
David A. Cohn and Zoubin

Ghahramani and 
Michael I. Jordan

article
Active Learning 
with Statistical 

Models

Cohn, David A and 
Ghahramani, Zoubin
and Jordan, Michael I

article Active learning with 
statistical models

Z1,Z2, and Zn are occ(Z1),occ(Z2), and occ(Zn) respectively. Without the loss of generality, we

assume that occ(Z1)¿=occ(Z2)¿=...¿=occ(Z|Z|). Since Z1 most frequently represents the entity

(ties broken lexicographically), the other categories Z2, ...,Zn are referred to as duplicates of the

entity E j. We define ED ⊆ E as the subset of the entities that contain at least one duplicate,

i.e., ∃Z ⊆C s.t. |Z|> 1 and M(Z1) = ... = M(Z|Z|) = ED j( j ∈ [1, |ED|]). We define a duplicate

set Dk(k ∈ [1, |ED|]) for every entity in ED such that Dk = {Z2,Z3, ...,Z|Z|} represents a set of

duplicate values, e.g., ED1 = California, D1 = {Ca} and ED2 = New York, D2 = {new york, NY}.

DEFINITION (CATEGORY DEDUPLICATION). Category Deduplication is the task of

mapping categories from set C to an entity from set E with the mapping function M. The new

column after the assignment is called the deduplicated column. The category set C and entity set

E of the deduplicated column are identical.

DEFINITION (COLUMN RELEVANCY). Let Acc(A) be the % classification accuracy

obtained by the ML model with a set of columns A to be used as features in the input. Relevancy

of a column Al ∈ A is defined as Acc(A)−Acc(A −{Al}). This quantifies the predictive power

of the column Al for the downstream task.

108



6.3 Hand-Labeled Dataset

We create a labeled dataset of Categorical columns where Entities in each column is

annotated with their duplicates whenever present. This enables us to understand how real-world

duplicates manifest themselves and what do the sets E,ED,D and their occurrences look like.

We now discuss how this dataset is created, the types of real-world duplicates present, and our

dataset analysis with stats and important insights into the behavior of duplicates.

6.3.1 Existing EM datasets

Labeled datasets used in the entity deduplication literature such as Magellan [93] involve

duplicates at a tuple-level. But this is an orthogonal problem to category deduplication. Tuple-

level duplicates do not necessarily imply duplication in the Categorical strings. Likewise,

duplication in a Categorical column may not lead to row-level duplicates. We present three pairs

of duplicate records from three different datasets of the Magellan data repository in Table 6.4.

Note that generic open domain attributes such as author person names and addresses are not

Categorical features for ML. Instead, such features are context-specific where either custom

features are extracted or are completely dropped as they may not generalize for ML. Moreover,

Title in Citations datasets has rich semantic information and is typically used as a Text or Sentence

type feature. A Categorical feature assumes mutually exclusive values from a known finite domain

set. We find that almost all of the Magellan datasets involve duplication in non-Categorical

features such as generic person names, company names, addresses, and textual values with rich

semantic information. Thus, they are not relevant for us to study category deduplication. We focus

exclusively on the Categorical features and curate the first labeled dataset of entities annotated

with duplicates within a Categorical column.
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Table 6.5: Duplication types with examples from our hand-labeled data
Duplication Types Column name Category Examples

1 Capitalization Country “United States” , “united States”
2 Misspellings Gender “Male” , “Mail” , “Make” , “msle”

3 Abbreviation State “California” , “CA”
preparer_title “Senior Counsel” , “Sr. Counsel”

4 Difference of 
Special Characters

City “New York” , “ New  York,  ”
Colour “Black/Blue” , “Black-Blue”

5 Different Ordering Colour “GoldWhite“ , 
“WhiteGold” , “Gold/White” 

6 Synonyms Gender “Female” , “Woman”
Venue “Festival Theatre”, “Festival Theater”

7 Presence of
Extra Information City “Houston” , “Houston TX” , 

“Houston TX 77055”

8 Different grammar Colour “triColor” , “tricolored”
Venue ”Auditorium” , “TheAuditorium”

6.3.2 Data Sources

We constructed a large real-world dataset of 9921 columns manually annotated with a

standardized 9-class label vocabulary of ML feature types [135]. The classes include feature types

such as Numeric, Categorical, Datetime, Sentence, and Not-Generalizable (e.g., primary keys).

We use [135]’s dataset to obtain raw CSV files that contain at least one string Categorical column

in order to be inspected manually for duplicates. Overall, we obtain 1248 string Categorical

columns spanning over 217 raw CSV files.

6.3.3 Labeling Process

Among the Categorical columns we collected, we do not know which columns contain

duplicates beforehand. This necessitates us to manually scan through all the 1248 Categorical

columns and look for duplicates in them. We follow the below process at a column-level to reduce

the cognitive load of labeling. For every Categorical column, we use an Excel spreadsheet to

enumerate its category set along with the count of times each category appears in the column.

Before scanning the category set, we sort the categories by their appearance count in descending

order and their values in lexicographic order. This helps up catch the true entities early on in

the file. Recall that we call the category that most frequently represents a real-world object the
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(1−|E|/|C|) %

CDF

(A)

(|ED|/	|E|)	%

(B)

𝑜𝑐𝑐({𝐷!"})

(C)

|𝐷! |

(D)

Figure 6.2: CDF over all Categorical columns with at least 1 duplicate on (A) percentage
of entities that have at least one duplicate. (B) Duplicate set sizes over all k ∈ [1, |ED|]. The
maximum duplicate set size is 148. (C) Duplicate set occurrences over all k ∈ [1, |ED|], i ∈
[1, |Dk|]. (D) percentage of reduction in domain size with deduplication.

true entity. As we scan the category set, we annotate duplicates with their corresponding entities

in the column. Thus, we construct sets E,ED, and D, along with their occurrences for all the

columns. The entire labeling process took roughly 120 man-hours across 5 months.

6.3.4 Types of Duplicates

We find that there exist eight types of duplication from our labeled dataset. We present

these types with examples in Table 6.5. The differences shown are relative to the representation

of the true entity. We now clarify some of the types. Type 4 denotes the difference of any

non-alphanumeric special characters including comma, period, and white spaces. Type 5 denotes

different ordering within multi-valued categories. Type 8 categories have either a common

stem/lemma, presence of stopwords, or a common singular representation. Note that a duplicate

can have duplication of multiple types and an entity can have numerous duplicates, each belonging

to multiple types, e.g., given ED1= New York and D1 = {new-york., NY}, “new-york.” has both

Type 1 and 4 duplication, and the entity New York has duplicates with duplication of Type 1, 3,

and 4.

6.3.5 Data Statistics and Takeaways

We annotated 56573 entities across all 1248 string Categorical columns. We find 4% of

those entities have the presence of at least one duplicate with a total of 3475 duplicates. Thus,
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Type Number

(A)

% of all 
duplicates

(B)

Number of Types of 
duplication per duplicate

% of all 
duplicates

Number of Types of 
duplication per entity

(C)

% of all 
entities

Figure 6.3: Histogram plots to illustrate how duplication types (from Table 4) arise across all
columns in all files. x and y denote x-axis and y-axis respectively. (A) y% duplicates have
duplication of at least one x Type Number. (B) y% duplicates have x different duplication types
within. (C) y% entities have duplicates with x different duplication types within.

a large fraction of the entities are already clean without any duplication. Overall, 52 columns

from 33 raw CSV files have the presence of at least one duplicate. There are three parameters

that quantify the amount of duplication within a column. (1) Fraction of entities that have at

least one duplicate (|ED|/|E|). (2) Duplicate set size for all entities present in the column (set D).

(3) Duplicate occurrences occ({Dki}),k ∈ [1, |ED|], i ∈ [1, |D|]. Figure 6.2 plots the cumulative

distribution function (CDF) of these parameters over all columns in our labeled dataset that has

at least 1 duplicate. We also report CDF of the % reduction in domain size of the columns with

deduplication. We summarize the presented results with key takeaways below.

(1) We first explain the worst-case scenario that can arise due to duplicates. This is critical

to understand because in a real-world deployment setting, the developers have to factor in the

tail percentiles when building end-to-end automation pipelines. We find that almost 17% of the

columns that have duplicates have them in all of their entities! Furthermore, 7% of duplicates

across all columns occur at 50%, i.e., the representation of the duplicate and the true entity are

same. Additionally, 1% of all entities have more than five duplicates. However, the presence of

more than 10 duplicates per entity is quite unlikely (less than 0.5%). Finally, deduplication can

reduce the domain size of the Categorical column substantially by up to 99%. Overall, we find

that whenever duplicates arise in the column, they can occur quite often.

(2) We now discuss the presence of duplicates with the average case scenario. We find
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that whenever an entity is diluted with duplicates, almost 90% of the time they have one or two

duplicates! Duplicate set sizes follow a long-tail distribution, most entities have small duplicate

set sizes and very few entities have a lot of duplicates. This can make catching duplicates and

deduplicating them particularly challenging, as they can go unnoticed. Moreover, the occurrence

of duplicates approximately follows a uniform distribution, i.e., all occurrence values up to 50%

are roughly equally likely. Finally, |ED|/|E| values of 10-35% fall close to the median.

(3) We present how different duplication types (from Table 6.5) are represented in our

labeled data in Figure 6.3. We find that the Difference of Special Characters and Capitalization

issues represents the two most common types of duplicates. On the other hand, Synonyms and

Grammar issues are relatively less common. Moreover, whenever duplicates exist, 17% of the

time they belong to more than one duplication type (maximum observed is 4 duplication types).

Also, 19% of entities have duplicates that can be mapped to multiple types (maximum observed

is 6 duplication types).

6.4 Downstream Benchmark

We now empirically study the impact of category duplicates on the downstream ML

tasks. We curate a downstream benchmark suite of 14 real-world datasets, each containing a

column with duplicates. We use this to empirically evaluate and compare three commonly used

Categorical encoding schemes both with and without the presence of duplicates. Finally, we

make several important observations on the different confounders that impact the relationship of

Categorical duplicates with downstream ML classifiers.

6.4.1 Models and Encodings

We choose three popular downstream classifiers used among the ML practitioners as per

Kaggle data science survey [143]: LR, RF, and a two-layered MLP. These popular models also
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present representative choices from the bias-variance tradeoff spectrum [74]: high bias and low

variance approach with LR and low bias and high variance approaches with RF and MLP. Note that

MLP’s VC dimension is in between the LR and RF [138].

We encode the Categorical columns with three commonly used encoding schemes: (1)

One-hot encoding (OHE). (2) String encoding (StrE) [119] (3) Similarity encoding (SimE) [47].

OHE is the standard approach to encode nominal Categoricals as it follows their two properties.

(1) Each category is orthogonal to one another. (2) Pairwise distance between any two categories

is identical. With a category set Cl (for Al) closed during training, OHE sets feature vector

X p
l =[1(t p(Al) =Cl

1), ...,1(t
p(Al) =Cl

|Cl |)], where 1(.) is the indicator function and p = 1..|r|. RF

with OHE performs binary splits on the data. RF can also handle raw “stringified” Categorical

values by performing set-based splits on the data. We refer to this as StrE. Note that StrE is not

applicable for LR, since it cannot handle raw string values. Both OHE and StrE assume that the

Categorical domain is closed with ML inference, i.e., new categories in the test not seen during

training are handled by mapping them to a special category, “Others.” SimE takes into account

the morphological variations between the categories. The feature vector for category set Cl is

given as X p
l = [Sim(t p(Al),Cl

1), ...,Sim(t p(Al),Cl
|C|)], where Sim(.) is a similarity metric defined

as the dice-coefficient over n-gram (n ranges from 2 to 4) strings [43]. This feature vector can

be computed even for any new categories arising in test set which are unseen during training for

SimE.

6.4.2 Real Datasets and Labeling

We collect 14 datasets from real open-source data portals such as Chicago city, New

York state, California state, Pittsburgh health, Open source mental illness project, and real data

surveys from FiveThirtyEight, EveryDayData, and Kaggle. Specifically, we obtain the following

datasets: Midwest Survey [24], Mental Health [27], EU IT [29], Relocated Vehicles [22], Health

Sciences [21], Salaries [23], TSM Habitat [19], Building Violations [39], Wifi [31], Etailing [32],
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Table 6.6: Statistics of the column containing duplicates in our downstream benchmark datasets.
|r|, |A |, and |Y | are the total number of examples, number of columns, and number of target
classes in the given dataset respectively. |rC| denotes the number of training examples (averaged
over 5 folds) per category of the set C. P is the fraction of |E| (averaged across 5-folds) that
has at least 1 duplicate being mapped to “Others” category in the validation set with OHE
and StrE. We use colors green, blue, red with hand-picked thresholds to visually present and
better interpret the cases where the amount of duplication is low (1−|E|/|C|< 0.25), moderate
(1−|E|/|C|> 0.25 & < 0.50), and high (1−|E|/|C|> 0.50) respectively. We use the following
thresholds with the same colors to better interpret the data regime: low (|rC| < 5), moderate
(|rC|> 5 & < 25), and high (|rC|> 25). Note that the data regime moves up with deduplication
as category set size has shrunk.

Datasets |r| |A| |𝑌|
Amount of Duplication Data Regime

P %!"
|!|

%
median
|𝐷! |

median
occ {𝐷!"}

|C| 1-
|!|
|$|

% |rC| |rC| after dedup
(Increase w.r.t Raw)

Midwest Survey 2778 29 9 33.1 2 4 1008 64 2.5 6.5 (2.6x) 23.6

Mental Health 1260 27 5 40 3.5 2.3 49 69.4 23.2 81.2 (3.5x) 25.3

Relocated Vehicles 3263 20 4 33.2 1 20 1097 35.8 2.5 3.8 (1.5x) 14.9

Health Sciences 238 101 4 36.4 2 6 56 60.7 3.6 8.3 (2.3x) 26.4

Salaries 1655 18 8 24 1 25 647 29.2 1.8 2.2 (1.2x) 10.9

TSM Habitat 2823 48 19 11 1 25 912 11.4 2.6 2.9 (1.1x) 14.6

EU IT 1253 23 5 24 1.5 12.5 256 34.8 3.9 5.9 (1.5x) 19.5

Halloween 292 55 6 31.3 2 11.1 163 50.9 1.5 3 (2x) 22.8

Utility 4574 13 95 38.4 1 20 199 30.7 16.2 24.3 (1.5x) 6.2

Mid or Feed 1006 78 5 21.4 6 0.8 37 62.2 20.6 59.7 (2.9x) 24.3

Wifi 98 9 2 30.3 2.5 12.5 69 52.2 1.3 2.5 (1.9x) 26.1

Etailing 439 44 5 47.8 4 5.9 71 67.6 5.3 14.3 (2.7x) 28.7

San Francisco 148654 13 2 10.7 1 25 2159 9.8 46.3 50.9 (1.1x) 3.2

Building Violations 22012 17 6 51 2 4.8 270 63 53.7 145 (2.7x) 4.4

Halloween [26], Mid or Feed [30], San Francisco [28], and Utility [33]. Each dataset has a column

with duplicates. We manually deduplicate them by following the labeling process described in

Section 6.3.3. We leave automating deduplication task with a learning-based approach using

our hand-labeled data to future work. To make sure that an upstream deduplication model is not

evaluated on the same data it was trained with, we keep the downstream dataset separate from the

hand-labeled data.

Table 6.6 presents the statistics with different confounders that can potentially impact the

ML performance over four of our datasets. There are four data-dependent confounders that can

potentially impact the ML performance. (1) Three parameters characterizing duplicates: |ED|/|E|,
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Table 6.7: Classification accuracy comparison of downstream models with different Categorical
encoding schemes on Raw (column with duplicates) vs. Deduped (deduplicated column) data.
Accuracy results for Deduped are shown relative to the Raw as delta drop in % accuracy. Green,
blue, and red colors denote cases where the Deduped accuracy relative to Raw is significantly
higher, comparable, and significantly lower (error tolerance of 1%) respectively.

Dataset 

Logistic Regression (LR) Random Forest (RF)

Relevancy OHE OHE SimE Relevancy OHE OHE StrE SimE

Raw Deduped Raw Deduped Raw Deduped Raw Deduped Raw Deduped Raw Deduped Raw Deduped

Midwest Survey 10.6 +9.4 57.2 +9.4 66.7 +2.1 4.6 +11.5 49.1 +11.5 59.2 +10 64.9 +4.4

Mental Health -1.3 +1.3 46.9 +1.3 46.3 +0.6 0.2 +1.1 47.9 +1.1 47.8 -0.1 47.4 -1.7

Relocated Vehicles 18.1 +4 82.9 +4 88.4 +0.4 6.1 +3 72.5 +3 81.3 +4.1 88.3 -0.1

Health Sciences -1.3 +0.9 58.7 +0.9 60 +1.8 -1.8 +2.2 53.3 +2.2 61.8 +0 60 -2.7

Salaries -1.1 +0.1 30.4 +0.2 32.4 -1.3 -1 +1.7 64.7 +1.7 69.6 +1.3 94.6 +0.4

TSM Habitat 0 +0 50.7 +0 50.7 +0 4.8 +0.4 71.2 +0.4 84.1 +1.4 71.2 +0.4

EU IT 0 +0 29.1 +0 29.1 +0 2.1 +1.2 41.2 +1.2 43.6 -0.6 47.8 +4

Halloween 0.4 +3.4 42.6 +3.4 49.8 +1.1 -1.9 +1.5 40 +1.5 36.2 +1.5 34.7 -4.9

Utility 1.4 -0.2 42.4 -0.2 43 +0.3 -6.7 +1.4 58.8 +1.4 46.3 +1.2 43.2 +1.4

Mid or Feed 0 +1.7 40.5 +1.7 41.5 -1.2 -1 +2.5 40.2 +2.5 35.7 -0.2 36.2 +1.8

Wifi -2.1 +1.1 64.2 +1.1 58.9 +8.4 -1.1 +5.3 60 +5.3 57.9 +4.2 50.5 +3.2

Etailing 0.7 -0.5 41.1 -0.5 38.9 +1.8 -2.5 +2 40 +2 44.5 +1.1 38.2 +3

San Francisco 26.9 -0.1 86 -0.1 85.5 +0 24.3 +0.1 83.4 +0.1 83.9 -0.3 86 +0

Building Violations 0.1 +0 91.6 +0 91.9 +0 0 -0.1 97.5 -0.1 97.3 +0.1 97.6 +0

|Dk|, occ(Dk). We use the quantity % reduction in domain size with deduplication (1-|E|/|C|) to

summarize the amount of duplication. (2) Data regime relative to the complexity of the prediction

task. We simplify it as the number of training examples per category value (|rC|). We ensure

that our selected datasets sufficiently represent different ranges of values (high vs. low measured

relatively) in each confounder spectrums. This allows us to make empirical observations by

assessing their significance in Section 6.4.4. We use simulation study (Section 6.5) to disentangle

the impact individually with all confounders. We hope our work inspires more data benchmark

standardization in this space with industry involvement.

6.4.3 Methodology

We partition each dataset into an 80:20 split of train and test set. We perform 5-fold

cross-validation and use a fourth of the examples in the train set for hyper-parameter search. We

tune the regularization parameter for LR. We tune the number of trees and their maximum depth
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for RF with values for each ranging from 5 to 100. The MLP architecture comprises of 2 hidden

units with 100 neurons each and is L2 regularized.

Experimental Setup. We use CloudLab [61] with custom OpenStack profile running

Ubuntu 18.04, 10 Intel Xeon cores, and 160GB of RAM. We use python scikit-learn [115],

H2O [11], and SimilarityEncoder [15] packages to implement OHE, StrE, and SimE respectively.

We use a standard grid search for hyper-parameter tuning, with the grids described in detail below.

Logistic Regression: There is only one regularization parameter to tune: C. Larger the

value of C, lower is the regularization strength, hence increasing the complexity of the model.

The grid for C is set as {10−3,10−2,10−1,1,10,100,103}.

Random Forest: There are two hyper-parameters to tune: NumEstimator and MaxDepth.

NumEstimator is the number of trees in the forest. MaxDepth is the maximum depth of

the tree. The grid is set as follows: NumEstimator ∈ {5,25,50,75,100} and MaxDepth ∈

{5,10,25,50,100}.

MLP: The multi-layer perceptron architecture comprises of 2 hidden units with 100

neurons each. We do L2 regularization with the regularization parameter tuned using the following

grid axis: {10−4,10−3,10−2}.

6.4.4 Results

Table 6.7 and 6.8 shows the end-to-end comparison of the downstream ML models built

with different encoding schemes in terms of diagonal accuracy. As an example, on Midwest

Survey, RF with OHE of Categoricals delivers a 9-class classification accuracy of 49.1% on the

Raw dataset. Cleaning its duplicates (Deduped) lead to an 11.5% lift in accuracy relative to the

Raw. Table 6.9 shows summary statistics of how the different encoding schemes perform with

the two ML models and also relative to one another on the 14 datasets. Finally, we present the

generalization performance of the ML classifiers with the overfitting gap (difference between
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Table 6.8: Downstream accuracy comparison of (high-capacity) MLP with different Categorical
encoding on Raw vs. Deduped.

Dataset Relevancy 
OHE on Raw

OHE SimE

Raw Deduped Raw Deduped

Midwest Survey 16.4 54.7 +9.5 63.4 +3.8

Mental Health -3.8 42.4 +2 43.2 -0.4

Relocated Vehicles 21.9 83.6 +3.6 89.6 +0

Health Sciences -4 55.1 +4.9 56.4 +1.8

Salaries -5.6 22 +0.5 19.9 +5.4
TSM Habitat 0.1 50.7 -2.7 50.7 -2.7

EU IT 6.9 13.4 -2.4 6.8 +5
Halloween -1.5 41.9 +4.2 43 +0.8

Utility 16.1 65.1 +2.3 73.2 +2.5
Mid or Feed -0.5 34 +2 32.7 +0.2

Wifi -6.3 52.6 +2.1 48.4 +3.2
Etailing 0.2 40.2 -3 37.2 +0

San Francisco 26.9 86 +0.1 86.1 -0.1
Building Violations 0.1 97.2 +0 97.4 +0

train and validation set accuracies) on both Raw and Deduped in Table 6.10. We summarize our

results with eight important observations below.

O1. We find that there exist several downstream cases where Deduped improves the

accuracy of ML over Raw for any encoding scheme. For instance, the delta increase in accuracy

with Deduped on RF with OHE is of median 1.6% and up to 11.5% compared to Raw (across 14

datasets). Moreover, the delta increase in accuracy is of median 2% and up to 9.5% for MLP.

O2. Delta increases in accuracies with Deduped are typically higher with RF and MLP than

LR. The median delta increases in accuracy with RF and MLP using OHE are 1.6 and 2, compared

to 0.6 for LR. Thus, LR is more robust to duplicates than both high-capacity classifiers, RF and

MLP.

O3. Deduped helps RF using OHE the most, StrE the second most, and SimE the least

(see Table 6.9). Interestingly, the median lifts in accuracies due to deduplication with SimE are

just 0.4 and 0.5 on RF and MLP respectively. Overall, SimE improves the ML performance in just

˜40% downstream cases. This is because, SimE considers morphological variations between the

category strings and maps a duplicate to a similar feature vector as the true entity. So, duplicates
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Table 6.9: Summary statistics to illustrate the impact of deduplication on ML models using
different encoding schemes with 14 downstream datasets. ∗ and † denote two and one cases
where both encoding schemes perform the best resp.

LR Random Forest (RF) MLP

OHE SimE OHE StrE SimE OHE SimE

% lift in accuracy with Deduped

Mean 1.5 1 2.4 1.7 0.7 1.7 1.4

Median 0.6 0.4 1.6 1.2 0.4 2 0.5

75th percentile 1.6 1.6 2.4 1.5 2.7 3.3 3

Max 9.4 8.4 11.5 10 4.4 9.5 5.4

# downstream datasets where

>1% lift in accuracy 
on Deduped

6 5 11 8 6 8 6

Best performing
encoding on Raw

6* 10* 5 3 6 6† 9†

Best performing
encodin on Deduped

5* 11* 5 3 6 8* 8*

are often located close to their true entities in the feature space. Thus, any further lift in accuracy

due to deduplication is marginal.

O4. Deduplication reduces the overfitting gap for all models (from Table 6.10). Thus,

deduplication can reduce the variance component of the test error and improve the generalization

ability of the classifiers. Since RF and MLP are more prone to overfitting than LR, their lifts in

accuracies with Deduped are more significant. This also explains the observation O2.

O5. If the magnitude of overfitting gap on Raw is insignificant (less than 1%), then the

amount of possible reduction in overfitting with Deduped is also small. Thus, it’s not worthwhile

to deduplicate if the overfitting gap on Raw is already low, to begin with. We observe this will all

the datasets where the overfitting gap is close to 1%, e.g., San Francisco and Building Violations.

We observe this across the three downstream classifiers.

O6. Deduplication increases the column Relevancy for all models, i.e., the column

becomes more predictive for the downstream tasks after deduplication. Note that the amount of

increase in column Relevancy with Deduped also quantifies the accuracy lift with Deduped.

O7. The accuracy lifts with Deduped on all the models are more significant when the
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Table 6.10: Delta drop in % overfitting gap in accuracy with OHE. The overfitting gap for
Deduped is shown relative to the Raw.

Dataset
LR Random Forest (RF) MLP

Raw Deduped Raw Deduped Raw Deduped

Midwest Survey 24.4 -9.4 50.7 -14.2 45.1 -10.4

Mental Health 11.7 -3.5 42.3 -7.2 26.7 -0.2

Relocated Vehicles 17 -4.1 27.3 -3.1 16.4 -3.6

Health Sciences 9.3 -5.9 35 -8.1 44.9 -4.9

Salaries 1.9 +0.2 34.6 -1 1.4 -0.5
TSM Habitat 1.9 -0 28 -0 0.1 +0.5

EU IT 1.2 -0 53.1 -6.6 1.4 +0.9
Halloween 38.3 -3.5 50.9 -5.8 58.1 -4.2

Utility 0.7 -0.3 41.2 -1.4 26.1 -3
Mid or Feed 34.2 -12.8 58.4 -1.1 66 -2

Wifi 11.1 -2.1 26.2 +1.3 47.4 -2.1
Etailing 41.2 -7.7 54.4 -1.6 59.7 +2.9

San Francisco 0.5 -0 -0.2 -0 1.1 -0.1
Building Violations 0.2 +0.1 1.8 -0.1 1.1 -0.2

column has high Relevancy unless there exist a high-data regime (a large number of training

examples per category). Thus, if a column has already high Relevancy on Raw, to begin with, it

may be worthwhile conservatively to deduplicate, e.g., Relocated Vehicles and Midwest Survey.

O8. High-data regime is robust to the impact of duplicates than the low-data regime,

regardless of the amount of duplication. Even a high amount of duplication has a negligible

impact in the high-data regime, e.g., Building Violations has a massive 63% reduction in domain

size due to deduplication, but there exist a large number of training examples per category. We do

not see any lift in accuracy with deduplication on any of the ML models.

Results with Additional Evaluation Metrics We also rerun our downstream benchmark

suite using additional evaluation metrics such as macro/micro average of precision, recall, and

F1-score. We check if using these additional evaluation metrics alter any empirical observations

or conclusions in Section 6.4.4. Note that the micro average of precision, recall, and F1-score is

identical to the accuracy of multi-class classification [69], which we already reported in Tables

6 and 7. Thus, we use the macro average of precision, recall, and F1-score [69] as evaluation
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Table 6.11: Comparison of downstream models in terms of Macro F1 score with different
Categorical encoding schemes on Raw (column with duplicates) vs. Deduped (deduplicated
column) data. Results for Deduped are shown relative to the Raw as delta drop in % F1
score. Green, blue, and red colors denote cases where the Deduped F1 score relative to Raw is
significantly higher, comparable, and significantly lower (error tolerance of 1%) respectively.

Dataset 

Logistic Regression Random Forest MLP

OHE SimE OHE StrE SimE OHE SimE

Raw Deduped Raw Deduped Raw Deduped Raw Deduped Raw Deduped Raw Deduped Raw Deduped

Midwest Survey 55.7 +10.3 65.4 +2.7 44.9 +12.6 56.5 +11.7 63.4 +5 54.3 +9.7 63.3 +3.7

Mental Health 42 -0.6 40.1 +0.8 40.3 +0 39.3 -1.3 38 +0.8 39.3 +2.7 41.1 +0.5

Relocated Vehicles 82.8 +4 88.4 +0.4 71.6 +3.5 81.3 +3.7 88.3 -0.1 83.6 +3.6 89.5 +0

Health Sciences 56.1 +0.7 57.4 +2.2 51.5 +3.3 59.1 -0.5 59.2 -3.7 54.7 +5.4 56.6 +1.8

Salaries 27.4 +1.3 30.5 -2 57.6 +2.1 64.5 +1.9 93.8 +0.4 15.9 +3.4 14.7 +8.7

TSM Habitat 34.1 +0 34.1 +0 68.5 +0 82.2 +1.6 85.7 +0.6 24.6 +4 19.1 +12.3

EU IT 16.1 +0 16.1 +0 33.6 +1.1 36.8 +0.2 43.1 +2.7 9.3 -2.2 4.2 +4.8

Halloween 37.1 +3.8 45.7 +0.5 34.2 +3 33.2 +1.7 31.1 -4.9 38.8 +4.1 40.9 -0.6

Utility 37 +0.1 38.5 +0.3 58.2 +1.5 44.9 +1.4 41.8 +1.7 65.2 +2 73.4 +2.2

Mid or Feed 37.2 +0.2 39.1 -3.6 35.2 +1.8 26.6 -0.3 26.1 +2.6 33 +1.9 31.2 +0.4

Wifi 54.9 +1.5 50.7 +8.2 52.7 +8.5 54.3 -4.5 50.2 +1.9 51.6 +2.3 48.3 +2.6

Etailing 37.2 -2.3 37.5 -0.1 33.3 +3 36.3 +1.4 32.9 +3.1 39.4 -3.1 36.7 +0

San Francisco 85.9 -0.1 85.6 -0.1 83 +0.3 83.3 +0.3 86.1 -0.1 86 +0.1 86 +0.1

Building Violations 89.4 +0 89.3 +0.1 97.5 -0.1 97 +0.1 97.4 +0.1 97.5 +0.1 97.2 +0.4

metrics and rerun our downstream benchmark suite. We check if evaluating with macro F1 score

alters the conclusion made with % diagonal classification accuracy as the metric in regard to the

varied confounder.

Overall, we find that none of the empirical conclusions made with diagonal accuracy

change even with these additional evaluation metrics. Table 6.11 presents the comparison of

downstream models with different Categorical encoding schemes in terms of macro F1 scores.

Table 6.12 (similar to Table 8) showcases the aggregate statistics over all evaluation metrics.

Finally, we present the generalization performance of the ML classifiers with the overfitting gap,

difference between train and validation macro F1 scores in Table 6.13 here (similar to Table

9). We confirm the validity of all observations O1-O8 made with the downstream benchmark

suite with the additional evaluation metrics. As an example, we still find that the delta increases

in macro F1-score, precision, and recall with Deduped are higher with Random Forest and
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Table 6.12: Summary statistics over 14 downstream datasets in terms of Macro F1-score,
precision, and recall to showcase the impact of deduplication on ML models.

F1 score
LR Random Forest MLP

OHE SimE OHE StrE SimE OHE SimE

% lift in accuracy with Deduped

Mean 1.4 0.7 2.9 1.4 0.7 2.4 2.6

Median 0.2 0.2 2 1.4 0.7 2.5 1.2

75th percentile 1.5 0.7 3.2 1.9 2.5 3.9 3.4

Max 10.3 8.2 12.6 11.7 5 9.7 12.3

# downstream datasets where

>1% lift wrt metric
on Deduped 5 3 10 8 6 10 7

Precision
LR Random Forest MLP

OHE SimE OHE StrE SimE OHE SimE

% lift in accuracy with Deduped

Mean 1.8 1.1 4.2 1.2 0.7 1.7 1.9

Median 0.9 0.3 3.2 1 0.5 1.9 1.7

75th percentile 2.9 2.1 6.2 1.9 2.8 3.4 2.8

Max 10.3 8.1 14.7 11.9 5.8 9.8 9.8

# downstream datasets where

>1% lift wrt metric
on Deduped 7 4 10 7 6 9 8

Recall
LR Random Forest MLP

OHE SimE OHE StrE SimE OHE SimE

% lift in accuracy with Deduped

Mean 1.6 0.9 2.4 1.9 0.7 2.3 2.7

Median 0.9 0.4 1.6 1.3 0.6 2.1 1.3

75th percentile 1.6 1.1 2.4 2.1 2.7 4.1 3.7

Max 9.4 8.4 10.8 10 4.4 9.5 15

# downstream datasets where

>1% lift wrt metric
on Deduped 7 4 10 9 6 9 7

Multi-layer Perceptron (MLP) than Logistic Regression. Moreover, we again find that Similarity

encoding is more robust than other encoding schemes to tolerate duplicates. Note that the focus of

this work is on interpreting the impact on ML with features having different duplication properties

and not on disentangling the impact at a per-class basis.

Overall, there exist six confounders that can potentially impact the downstream ML:

|ED|/|E|, |Dk|,occ(Dk), |rC|, column Relevancy, and fraction of entities that have duplicate(s)

being mapped to “Others” along with their occurrences in the unseen test set. Beyond our

observations, there exists a non-trivial interaction of the six confounders that impact ML. Thus,

we use the simulation study in the next section to disentangle and study them separately.

6.5 In-depth Simulation Study

We now use a Monte Carlo-style simulation study to dive deeper into the impact of

each confounder on the downstream ML. This study helps us not only validate our empirical
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Table 6.13: Delta drop in % macro F1 overfitting gap of the ML models with OHE. The
overfitting gap for Deduped is shown relative to the Raw.

Dataset
LR Random Forest MLP

Raw Deduped Raw Deduped Raw Deduped

Midwest Survey 25.3 -10 55 -15.8 45.5 -10.6

Mental Health 12.5 -3.4 49.8 -7.9 28.9 +1.5

Relocated Vehicles 17 -4.1 28.2 -3.7 16.4 -3.6

Health Sciences 7.5 -6.5 35.1 -8.6 45.3 -5.4

Salaries 2.3 -0.8 41.6 -1.4 0.8 +0.6

TSM Habitat 2.1 -0 30.6 -4.8 1.3 +0.2

EU IT 0.1 -0 60 -6.8 1 +1.1

Halloween 40.4 -3.8 56.2 -7.2 61.2 -4.1

Utility 0.1 -0.9 41.8 -1.5 26 -2.9

Mid or Feed 35.7 -12.4 63.3 -0.4 67 -1.9

Wifi 11.9 -2.6 31.8 -4.8 46.8 +0.8

Etailing 43.3 -6.7 60.6 -2.3 60.6 +3

San Francisco 0.6 -0.2 0.1 +0.1 1.1 -0.1

Building Violations 0.1 +0.1 1.8 +0.1 1.2 -0.2

observations but also makes the significance of each confounder impacting ML more interpretable.

Moreover, it reveals the limitations of commonly used encoding schemes when unseen duplicates

arise in the test set.

Encoding Schemes. We focus this study in the context of OHE and StrE. Note that OHE

representation masks out the actual category values by treating each category as an orthogo-

nal representation to one another. In contrast, SimE require the categories to be semantically

meaningful strings. We find from Table 6.5 and Figure 6.3 that an entity can have duplication

of multiple types. Constructing a fine-grained simulator that generates semantically meaningful

duplicates while preserving the same ground truth entity is non-trivial and intricate from the

language standpoint. Thus, we leave designing an apt simulation mechanism for SimE to future

work.

Downstream Models. The structural model parameters such as the number of tree

estimators and maximum allowed tree depth for RF and the specific MLP architecture can largely

impact the bias-variance tradeoff. Thus, we fix them to disentangle their impact and better
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illustrate our findings by presenting two extremes of RF’s and MLP’s bias spectrum. We use

high-bias models such as shallow decision tree with a restricted tree depth of 5 (denoted as

ShallowDT), a low-capacity MLP comprising of two hidden units with 5 neurons each (denoted as

LoCapMLP), and also LR. In addition, we use low-bias high-capacity RF with the number of tree

estimators and maximum allowed tree depth being fixed to 50 (denoted as HiCapRF). These values

represent the median best-fit parameters obtained by performing a grid search (with the grids

being same as Section 6.4.3) over the synthetically generated data described in Section 6.5.1. We

again use a high-capacity MLP comprising of two hidden units with 100 neurons each (HiCapMLP).

Setup. There is one relational table with Y being boolean (domain size is 2). We include

three Categorical columns in the table and set |A | to 3. We set the entity set size of every columns

to |E| = 10, i.e., all columns have a domain size of 10.

Data Synthesis. We set up a “true” distribution P(A ,Y ) and sample examples in an

independently and identically distributed manner. We study two different simulation scenar-

ios: AllA and Hyperplane. These scenarios represent two opposite extremes of how RF and

hyperplane-based classifiers fits the data. AllA represents a complex joint distribution where all

features obtained from A determine Y . Although a high-capacity model such as RF can recover

this with rule-based splits, LR can extremely underfit. Hyperplane represents a distribution

where the data is simply separable with a hyperplane. This distribution is well-suited for LR

and MLP (where each neuron defines a hyperplane), but represents a bad-case scenario for RF

that requires many numbers of splits to recover the true concept. We sample |r| number of total

examples, where the examples for training, validation, and test are split in 60:20:20 ratio. We then

introduce synthetic duplicates in one of the columns of the table in different ways. We vary the six

confounders one at a time and study their impact on ML accuracy along with how they trend as

the parameter is varied. We generate 100 different (clean) training datasets and 10 different dirty

datasets for every clean one. We measure the average test accuracy and the average overfitting

gap of all models obtained from these 1000 runs.
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6.5.1 Scenario AllA

Data generating process. We create a true distribution that maps all features obtained

from A to Y . The exact sampling process is as follows. (1) Construct a conditional probability

table (CPT) with entries for all possible values of A from 1 to |E|. We then assign P(Y = 0|A) to

either 0 or 1 with a random coin toss. (2) Construct |r| tuples of A by sampling values uniform

randomly from |E|. (3) We assign Y values to tuples of A by looking up into their respective

CPT entry. (4) We perform the train, validation, and test split of this clean dataset and obtain the

binary classification accuracy of the ML models on the test split.

Duplication process. We introduce duplicates in a column Al ∈ A of the clean dataset in

the following fashion. (1) Fix fraction of entities to be diluted with duplicates, e.g., |ED|/|E|=30

(2) Form set ED (set of entities that are to be diluted with duplicates) by sampling uniformly

randomly |ED| categories from |E| (E1 to E|E|), e.g., ED={E3,E5,E8}. (3) For every entity in

set ED, fix the duplicate set size |Dk|,∀1 ≤ k ≤ |ED|, e.g., |Dk|=1,∀1≤k≤3. We assume that

all entities have identical duplicate set sizes. We relax this assumption later when introducing

skew in the duplication parameters. (4) Given |Dk|, we form the set D by introducing duplicates,

e.g., D1={E3-duplicate1},D2={E5-duplicate1},D3={E8-duplicate1}. (5) Fix occ(Dk),1 ≤ k ≤

|ED|,1 ≤ i ≤ |Dk|. For every duplicate value d in D, set occurrence occ(d)=occ(Dk)/|Dk|, i.e.,

we assume that all the duplicates representing an entity are equally likely to occur. We also relax

this assumption later. (6) We perform the same train, validation, and test split of the resulting

dataset as obtained in step 4 of the data generating process. We finally obtain the test accuracy of

the ML models on the dirty dataset.

Results. We use our labeled data to pick appropriate values for the confounders such that

we can showcase an average and worst-case scenario. We vary all confounders one at a time

while fixing the rest. We confirm the trends and observations made with italics.

Varying the data regime. Figure 6.4 (A) presents the delta drop in %accuracy with

duplication relative to the ground truth clean dataset on HiCapRF as the number of training
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Figure 6.4: AllA scenario results for HiCapRF with OHE and StrE. (A-D) Duplicates present
in train, validation, and test set. (E-F) Only test set is diluted with duplicates. (A) Vary |r|t (#
training examples) while fixing (|ED|/|E|,occ(Dk), |Dk|) = (30,25,1) (B) Vary |ED|/|E| while
fixing (|r|t ,occ(Dk), |Dk|) = (3000,25,1) (C) Vary occ(Dk) while fixing (|r|t , |ED|/|E|, |Dk|) =
(3000,30,1) (D) Vary |Dk| while fixing (|ED|/|E|, |r|t ,occ(Dk)) = (30,3000,25), for all
k∈[1, |ED|]. Parameter settings of (E) and (F) are same as (B) and (C) resp.

examples (|r|t) are varied with both OHE and StrE. We find that with the rise in |r|t , the delta

drop in accuracy decreases. With just 3 training examples per CPT entry (|r|t=3k and total entries

in CPT=1k), the presence of duplicates can cause a drop of median 2.3% and up to 4.3% accuracy

with OHE. With 10 training examples, the median and max drops in accuracy due to duplicates

with OHE are 0.3% and 0.7% respectively. This confirms our observation on the downstream

benchmark suite: A higher data regime is more robust to duplication than a lower data regime.

The same trend holds with StrE encoding and also all the other classifiers: LR, ShallowDT,

LoCapMLP and HiCapMLP. Thus, a high-data regime can tolerate duplicates by remaining

more agnostic to the model qbiases. Moreover, increasing the amount of duplication for a high

data regime (|r|t = 10k) has a marginal impact on the accuracy. Thus, even high duplication has a

marginal impact in the high-data regime.

Varying the parameters that control the amount of duplication. Figure 6.4 (B-D)

shows how different duplication parameters influence HiCapRF. We notice a clear trend: the drop
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Figure 6.5: AllA simulation scenario results for LR, ShallowDT, HiCapRF, LoCapMLP,
and HiCapMLP with OHE. |X | = 3. (A) Vary |r|t (# training examples) , while fixing
(|ED|/|E|,occ(Dk), |Dk|) = (30,25,1). (B) Vary |ED|/|E|, while fixing (|r|t ,occ(Dk), |Dk|) =
(3000,25,1). (C) Vary occ(Dk), while fixing (|r|t , |ED|/|E|, |Dk|) = (3000,30,1). (D) Vary
|Dk|, while fixing (|ED|/|E|, |r|t ,occ(Dk)) = (30,3000,25), for all k ∈ [1, |ED|].

in accuracy with HiCapRF rises with the increase in any of the three duplication controlling

parameters, |ED|/|E|, occ(Dk), and |Dk|. As |ED|/|E|, occ(Dk), and |Dk| are each increased 5
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Figure 6.6: AllA simulation scenario results for ShallowDT and HiCapRF with StrE. (A)
Vary |r|t (# training examples) , while fixing (|ED|/|E|,occ(Dk), |Dk|) = (30,25,1). (B) Vary
|ED|/|E|, while fixing (|r|t ,occ(Dk), |Dk|) = (3000,25,1). (C) Vary occ(Dk), while fixing
(|r|t , |ED|/|E|, |Dk|) = (3000,30,1). (D) Vary |Dk|, while fixing (|ED|/|E|, |r|t ,occ(Dk)) =
(30,3000,25), for all k ∈ [1, |ED|].

folds, the magnitude increase in delta drop accuracy with duplicates using OHE are 5.3x,2.1x,

and 1.4x respectively. In contrast, the same magnitude increases using StrE are 7.3x,3.4x, and

1.6x respectively. Thus, among the three duplication parameters, |ED|/|E| has the most drastic

effect on HiCapRF. The effects of the increase in |Dk| are less pronounced because all other

parameters including occ(Dk) are kept fixed. Thus, there exist more duplicates for the same

occurrence. Interestingly, we find from Figure 6.4 that StrE is more robust to duplicates than OHE

regardless of the parameter being varied, as the delta drop in accuracy with StrE is comparatively

lower, although significant in high duplication cases.

Figure 6.5 presents how a key confounder (|ED|/|E|) affects the other studied classifiers.

We find that all the high-bias models behave similarly as they show a marginal drop in accuracy

even when all the entities are diluted with duplicates. In contrast, HiCapMLP exhibits similar

behavior as HiCapRF when |ED|/|E| is increased. Note that the absolute accuracies of the

high-bias approaches are lower than that of high-capacity ones. Overall, both high-capacity

classifiers are more susceptible to the adverse performance impact of duplicates than the high-
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Figure 6.7: AllA scenario results for Random Forest with OHE and StrE where hyper-
parameters are tuned with grid search. |X |= 3. (A) Vary |r|t (# training examples) , while fixing
(|ED|/|E|,occ(Dk), |Dk|) = (30,25,1). (B) Vary |ED|/|E|, while fixing (|r|t ,occ(Dk), |Dk|) =
(3000,25,1). (C) Vary occ(Dk), while fixing (|r|t , |ED|/|E|, |Dk|) = (3000,30,1). (D) Vary
|Dk|, while fixing (|ED|/|E|, |r|t ,occ(Dk)) = (30,3000,25), for all k ∈ [1, |ED|].

bias approaches. We notice the same trend as the other confounders (occ(Dk) and |Dk|) are varied.

Figure 6.6 shows the results as the confounders are varied for HiCapRF with StrE. Figure 6.7

shows the same results when the Random Forest parameter are tuned using grid search. We

again note that a high-data regime is more robust to duplication than a low-data regime for

both encoding schemes.All the high-bias approaches are more robust to duplication than the

high-capacity models. Also, duplication confounders can have significant adverse performance

effects on high-capacity classifiers

Introducing skewness in the duplication parameters. Until now, we assumed that all

entities in ED have identical duplicate set sizes |Dk| and all duplicates in Dk are equally likely to

occur. From our labeled data, we find that most entities have small duplicate set sizes and only a

few entities have many duplicates. Also, some duplicates in the same set Dk are more likely to

occur than others. Thus, we relax these two assumptions and include distributions in |Dk| and

occ(Dk) that can better represent the duplication process. We alter our duplication process and

approximate |Dk| with a long-tail Zipfian distribution and occ(Dk) with a Needle-and-Thread
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Figure 6.8: Effects of skew parameters on AllA simulation scenario for Random Forest
with OHE. |A| is preset to 3. (A) Vary Zipfian skew parameter zp of |Gk|, while fixing
(|r|t , |ED|/|E|) = (3000,30). (B) Vary needle probability parameter np of occ(Gk), while
fixing (|r|t , |ED|/|E|,zp) = (3000,30,2).

distribution, varying the skew amount one at a time. Figure 6.8 presents the results. We find that

the delta drop in % accuracy due to duplicates remains significant regardless of the amount of

skew in |Dk| and occ(Dk). With the Zipfian skew in |Dk|, the delta drop is highest at uniform

distribution in |Dk| (no skew setting) and marginally decreases as the skewness parameter is

increased. On the other hand, when a needle-and-thread skew in occ(Dk) is present, one duplicate

from set Dk has a probability mass np (needle parameter). The remaining 1-np probability mass

is uniformly distributed over the rest of the duplicates in Dk. We find that the delta drop due to

duplicates decreases while still remaining significant when one duplicate value is more likely to

occur than the rest (as np is increased). Overall, the overarching conclusion from this analysis is

that none of our results or takeaways change or get invalidated with this setup.

Varying properties of duplicates being mapped to “Others.” We study how duplicates

that do not arise in the train set but are present in the test set (say, during deployment) can impact

the downstream ML. We modify and repeat our duplication process on just the test set while

keeping the train set intact. We introduce just one duplicate in the test set that gets mapped

to “Others.” Figure 6.4 (E-F) presents the results on HiCapRF with OHE where |ED|/|E| and

occ(Dk) are varied. We find that the delta drop in accuracies with all parameters are even more

higher than the corresponding delta drops when both train and test set were duplicated (Figure 6.4
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Figure 6.9: AllA results on HiCapRF. We set |A | = 4 and vary |ED|/|E|, while fixing
(|r|t ,occ(Dk), |Dk|)=(5000,25,1). Duplicates introduced on the column with (A) non-positive
Relevancy (noisy column) (B) high Relevancy (predictive column).

(B-C)). This simply suggests that the presence of unwarranted duplicates during the test can cause

downstream ML to suffer significantly.

Varying column Relevancy. So far, we used all the columns in the dataset as part of CPT.

Thus, all columns have high Relevancy. We now study low vs. high Relevancy setting with a slight

twist in our simulation. We introduce an additional noisy column in the clean dataset: All except

one column participates in CPT. Thus, we have the presence of both high and low Relevancy

columns in the dataset. We introduce duplicates in both types of columns one at a time. Figure 6.9

presents the results. We find that duplication on a highly relevant column has a significant adverse

impact on HiCapRF performance. In contrast, the impact is negligible when duplicates are

introduced over the noisy column. Even increasing the amount of duplication creates no impact

with the low relevancy column. We even observe the same trend with HiCapMLP.

6.5.2 Scenario Hyperplane

Data generating process. We set up distribution with a true hyperplane to separates the

classes. (1) We define and fix the normal vector of the hyperplane with weights, Wi,1¡=i¡=|A |.

Each weight Wi with cardinality |E| is randomly sampled from a list of non-zero integers

([−5,5]n{0}) without replacement. Note that the integer weights are chosen only to make

the distance calculation simpler in step (3). The trends of our results do not change even if
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Figure 6.10: Hyperplane scenario results for LR, ShallowDT, HiCapRF, LoCapMLP, and
HiCapMLP with OHE. |X | = 3. (A) Vary |r|t (# training examples) , while fixing
(|ED|/|E|,occ(Dk), |Dk|) = (30,25,1). (B) Vary |ED|/|E|, while fixing (|r|t ,occ(Dk), |Dk|) =
(3000,25,1). (C) Vary occ(Dk), while fixing (|r|t , |ED|/|E|, |Dk|) = (3000,30,1). (D) Vary
|Dk|, while fixing (|ED|/|E|, |r|t ,occ(Dk)) = (30,3000,25), for all k ∈ [1, |ED|].

the weights are chosen from real number uniform distribution. (2) Construct |r| tuples of A by

sampling values uniformly randomly from |E|. Thus, with fixed weights, the hyperplane over
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Figure 6.11: Hyperplane scenario results on HiCapRF with OHE. Only test set is diluted
with duplicates. (A) Vary |ED|/|E|, while fixing (|r|t ,occ(Dk), |Dk|) = (3000,25,1). (B) Vary
occ(Dk), while fixing (|r|t , |ED|/|E|, |Dk|) = (3000,30,1).
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Figure 6.12: Hyperplane results on HiCapRF. We set |A | = 4 and vary |ED|/|E|, while fixing
(|r|t ,occ(Dk), |Dk|) = (5000,25,1). Duplicates introduced on the column with (A) non-positive
Relevancy (noisy column) (B) high Relevancy (predictive column).

One-hot encoded example feature vectors is given by ∑
i=|A |
i=1 Wi ·Ai = 0. (3) Examples for which

∑
i=|A |
i=1 Wi ·Ai >= 0 are labeled positive (Y =0) and remaining examples are labeled negative (Y =1).

This generates the true dataset where all columns have high Relevancy. We introduce duplicates

in them by following the same duplication process as Section 6.5.1.

Results. Figure 6.10 shows the delta drop in accuracy due to duplicates with all models

using OHE. We find that all high-bias approaches are again robust to the presence of duplicates

even when all entities are diluted with duplicates. Interestingly, HiCapMLP exhibits only marginal

impact with duplicates. In contrast, duplicates affect HiCapRF significantly, especially in a

high-duplication regime. We explain this interesting behavior in Section 6.5.3. We vary other
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Figure 6.13: AllA setting results on (A) LR (B) ShallowDT (C) HiCapRF (D) LoCapMLP (E)
HiCapMLP (with the same setup as Figure 6.4(B)).

confounders such as the other duplication parameters, the fraction of entities being mapped to

“Others,” and column Relevancy. We confirm the same trends that we saw with all models in

AllA scenario, except with HiCapMLP which behaves similar to LR than HiCapRF. We present the

results in-depth below.

Varying the data regime and the parameters that control the amount of duplication.

Figure 6.10 presents the delta drop in classification accuracy due to duplicates with all models

using OHE. We again note that as the number of available training examples is increased, the

delta drop in accuracy due to duplicates decreases for HiCapRF. Raising the other duplication

parameters such as |ED|/|E|,occ(Dk), |Dk| also increases the adverse performance impact of

duplicates on HiCapRF. Interestingly, we find that HiCapMLP exhibits only a marginal amount

of overfitting on the Hyperplane simulation scenario. Thus, we do not see any impact due to

duplicates on HiCapMLP and also on all the high-bias approaches.

Varying properties of duplicates being mapped to “Others” and column Relevancy.

We now repeat the simulation scenario presented in Section 6.5 but with Hyperplane setting,

i.e. the true distribution is given by a hyperplane that separates the classes. Figure 6.11 presents

the results when only the test set is diluted with duplicates. We again note that the presence of

duplicates in the test set impacts HiCapRF significantly. Figure 6.12 presents the Hyperplane

simulation results when we have the presence of both high and low relevancy columns in the

dataset. We again find that the duplication on a noisy column has a marginal impact on HiCapRF,

while duplicates the on relevant column affect it significantly.
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6.5.3 Explanations

We now intuitively explain the general behavior of the ML classifiers in presence of

duplicates on the two simulation settings with OHE. We check the generalization ability of

the ML models with the overfitting gap. Figure 6.13 presents the overfitting gap results of all

classifiers with OHE on the AllA scenario. We find that the delta drop in accuracy (Figure 6.4)

closely follows the increase in the overfitting gap due to duplicates with both high-capacity

models, HiCapRF and HiCapMLP. That is, the increase in overfitting or variance with duplicates

explains the accuracy drop we see. Thus, duplicates can negatively impact the generalization

capability of the high-capacity models, which are prone to overfitting. However, as the number

of training examples rises, the amount of overfitting subsides. This explains our trends in the

high-data regime.

Now with the Hyperplane setting, LR exhibits no amount of extra overfitting with dupli-

cates. This is because the VC dimension of the LR is linear in the number of features. As the

dimensionality of the feature space expands with duplicates, the VC dimension of LR expands.

We get an expanded logistic hypothesis space with duplication that is a superset of the true logistic

hypothesis space. Thus, a larger hypothesis space can potentially lead to more variance unless the

true concept is simple enough to recover in an expanded feature space. We check the weights of

the hyperplane learned with LR in presence of duplicates where a higher weight indicates higher

importance. We find that the absolute weights of duplicate features are often close to zero. This

suggests that the LR can learn the true concept by completely ignoring the extra dimensions. Thus,

the variance does not rise. Also with MLP, each neuron functioning as a hyperplane classifier

can easily recover the true hyperplane. Thus, even HiCapMLP doesn’t overfit as much on the

Hyperplane setting. In contrast, HiCapRF with OHE makes many binary splits on the clean data

to recover the hyperplane, causing the tree to fully grow to the restricted height. Chances of

further overfitting with duplicates are reduced with a limited height. Thus, we less significant

drop in accuracy with duplicates on HiCapRF in the Hyperplane setting compared to AllA. This
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also explains why a set-based split with StrE is more robust than binary splits with OHE as it

allows to pack more category splits within the same tree height.

6.6 Towards Making Deduplication Automation Accurate

Category duplicates can often impact downstream ML accuracy substantially. However,

what is missing in the existing open source AutoML tools is an automated deduplication workflow.

The present art of deduplicating categories is still largely manual and relies on ad hoc rule-based

approaches. This may not suffice in an AutoML environment, where given arbitrary data, it is

difficult to decide the number of rules to use, which rules to apply, and with what threshold to

apply. Thus, we take a step towards accurately automating category deduplication tasks using our

labeled dataset (Section 6.3). Moreover, this enables us to assess the accuracy of automation.

6.6.1 Task

We simplify the Categorical deduplication problem with the following task: Given

category set C, identify all pairs of categories that refer to the same real-world entity or are

duplicates. In this work, we cast this task as a binary-class classification problem. We enumerate

all possible pairs of categories from C. We then use rule-based and learning-based approaches

(built using our labeled data) to assess their accuracies on the task. Admittedly, the time complexity

of the enumeration is quadratic in the size of the category set, which can be large. However, in

this work, we focus only on the feasibility study. We showcase that our labeled data is valuable to

deliver learning-based solutions that are more accurate than rule-based solutions. We leave the

scalability study with blocking mechanisms to reduce the quadratic complexity of enumeration to

future work.
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6.6.2 Rule-based Baselines

We build 3 rule-based baselines to validate if a set of rules can sufficiently identify the

duplicates. We call the category pair a duplicate if the lowercase of the two categories is identical

(B1 baseline), their Levenshtein edit distance is 1 (B2 baseline). B3 baseline uses a set of 6

rules (duplicate if any applies) to capture misspellings, synonyms, capitalization, ordering, and

morphological variations. We provide two rules below. (1) To detect synonyms, we leverage a

doc2vec model, pre-trained on English Wikipedia articles to obtain a feature representation for

each of the two categories [25]. We then obtain a list of the top 100 words that are closest in

terms of cosine distance for each of the two categories. The pair is marked duplicate if any of

the categories belong to the top 100 closest words of the other’s doc2vec representation. (2) We

check misspellings with Jaccard distance threshold of 0.9.

6.6.3 ML-based approach using our data

We leverage the two classical learning-based approaches: Logistic Regression and Ran-

dom Forest. We use two kinds of features for the prediction problem. (1) 8 category-level features

to get aggregate stats about both categories such as absolute occurrence count, occurrence count

relative to examples, the total number of characters, words, uppercases, lowercases, and special

characters present. (2) 14 similarity features to estimate the “distance” between the categories

such as Cosine, Hamming, Levenshtein, and Jaccard distance, and % common uni/bi/tri-grams.

6.6.4 Empirical Methodology

We consider 33 raw CSV files from our labeled data where there exists at least one

Categorical column with duplicates. Overall, we get 52 Categorical columns with duplicates

(ColswithDups) and 533 columns without any duplicates (ColswithoutDups). We form one train,

validation, and test set by splitting each of ColswithDups and ColswithoutDups in 60:20:20 ratio.

137



Table 6.14: Lift in precision, recall, F1-score, and binary-class classification accuracy on our
benchmark labeled test dataset (averaged across 5 random splits) with rule-based and ML-based
approaches, relative to the random baseline. LogReg and RForest are Logistic Regression and
Random Forest respectively.

Dataset 

train, validation, and test splits are kept intact train, validation, and test splits are rebalanced

Majority
Baseline

Rule-based Our ML Models Majority 
Baseline

Rule-based Our ML  Models

B1 B2 B3 LogReg RForest B1 B2 B3 LogReg RForest

Duplicates

Precision 0 +100 +9.2 +0.6 +36 +49 0 +100 +64.2 +71.6 +96.9 +95.4

Recall 0 +8.5 +12.5 +31.4 +47.8 +48.9 0 +8.5 +12.5 +31.4 +76.9 +69.7

F1 Score 0 +15 +4.1 +1.1 +28.5 +42.9 0 +15 +19.8 +43.1 +84.8 +80

Non-
Duplicates

Precision 99.9 +0 +0 +0 +0 +0 80 +1.4 +1.8 +5.2 +14.7 +13

Recall 100 +0 +0 -2.2 +0 +0 100 +0 -2 -2.2 -0.7 -0.8

F1 Score 99.9 +0 +0 -1.1 +0 +0 88.9 +0.9 +0.3 +2.1 +8 +7.1

Overall Accuracy 99.9 +0 +0 -2.1 +0 +0 80 +1.7 +0.9 +4.5 +14.9 +13.3

We then enumerate all possible pairs of categories occurring in the column, with a max of 0.5M

pairs per column for the tractability sake. Since the splits are done at a column-level, the test

partition has category pairs of the columns not seen before. To control for randomness in results

from the choice of splits, we perform 5 random (train/validation/ test) splits of our dataset and

report the averaged results.

With the above methodology, we kept all the splits of the data intact, which makes them

heavily imbalanced towards non-duplicate pairs. However, in practice, one may prune out unlikely

matches (say obvious non-duplicate pairs with a blocking heuristic), instead of enumerating all

possible category pairs. Thus, to showcase a real-world representative deployment scenario, we

rebalance all the splits of the data. We downsample non-duplicate pairs randomly such that the

ratio 20:80 duplicate:non-duplicate pairs is maintained for every column. Again, we report the

averaged accuracy results from 5 random splits of our data.

6.6.5 Results

Table 6.14 shows the average lift in precision, recall, F1-score, and accuracy on our test

dataset with rule-based and the ML-based approaches, relative to the majority baseline (predict
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all category pairs as non-duplicate). We find that both the ML approaches are substantially

more accurate than the three rule-based baselines, regardless of how data is balanced, e.g., a lift

of 10.4% in binary class accuracy with Logistic model compared to B3 baseline when data is

rebalanced. Overall, these results suggest that our labeled dataset is valuable to provide not only

an objective way of measuring the task accuracy but also automating the task more accurately

than the baselines. Although duplicates are identified with high precision and recall with our ML

model, there remains an accuracy gap for improvement. We discuss how our approach can be

further improved in future work in Section 6.7.2.

6.7 Discussion

6.7.1 Public Release

We release a public repository on GitHub with our entire benchmark suite [36]. This

includes our labeled dataset of entities in the string Categorical columns annotated with their

category duplicates, along with their raw CSV files. We also release the downstream benchmark

suite with raw and deduped versions of all datasets, synthetic benchmarks, and code to run them.

6.7.2 Takeaways

We find that the presence of duplicates can potentially impact downstream ML accuracy

significantly. The amount of impact can be characterized by multiple confounders that interact in

non-trivial ways. It is not always possible to disentangle the impact on downstream ML with each

confounder individually. However, our analysis with downstream benchmark suite and simulation

studies can provide insights into when cleaning effort would be more or less beneficial. The

current practice among ML practitioners and AutoML platform developers to handle Categorical

duplicates is largely ad hoc rule-based and completely oblivious to many confounders. We first
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give general guidelines and actionable insights to help them prioritise their deduplication effort

and also potentially design better end-to-end automation pipelines respectively. We then lay out

the critical open questions in this direction for researchers.

1. For ML practitioners and AutoML platform developers.

a. Make ML workflows less susceptible to the adverse performance impact of

category duplicates. LR is less prone to overfitting than RF and MLP when duplicates arise. Also,

StrE is relatively more robust than OHE when using RF. Moreover, SimE inherently exploits

the presence of similarly valued duplicates in the Categoricals. This makes it significantly

more robust from duplicates compared to OHE and StrE. Moreover, unseen duplicates that

arise during the deployment phase can degrade ML performance with OHE or StrE. Overall,

Similarity encoding and/or a Logistic Regression can be utilized by ML practitioners and AutoML

developers if they desire to guard their pipelines against any adverse drop in ML performance

from likely duplicates. Moreover, the impact of duplicates get mitigated in a higher-data regime

compared to a low-data regime. Thus, whenever possible, one can consider getting more train

data to offset their impact by trading off runtime.

b. Track the overfitting gap of ML models. Deduplication can reduce the overfitting

gap caused by duplicates on downstream ML. Thus, cleaning duplicates may not be worthwhile if

the overfitting gap is already low on the raw dataset. Monitoring and presenting it as an auxiliary

metric to the AutoML user can provide them with more confidence about the downstream

performance.

c. Simulate duplications in your data with the synthetic suite. Our synthetic simu-

lation suite provides an empirical methodological infrastructure for understanding the category

deduplication effect in presence of different confounders. Given an arbitrary dataset, it can

create semi-synthetic variants of category duplicates by modeling them with various observed

properties from our labeled data. Also, the impact becomes more interpretable when confounders

are disentangled, e.g., quantifying the impact of “Others” in a deployment setting with OHE.
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6.8 Conclusion

Our empirical analysis using downstream benchmark suite and simulation studies shows

that duplicates impact high-capacity classifiers much more than Logistic Regression. Also, we

find that Similarity Encoding is significantly more robust than One-hot and String Encoding.

Thus, Category Deduplication, a data prep commonly performed may not always be needed. Our

takeaways from this work provide actionable insights and guidelines to help ML practitioners

prioritise their deduplication effort. Also, AutoML developers can use these analyses to design

robust end-to-end automation pipelines. Moreover, our work opens up major open questions for

research that require contributions from the community. Also, our feasibility study shows that

our labeled data is useful to deliver ML-based solutions that are more accurate than rule-based

baselines.

Chapter 6 contains material from “An Empirical Study on (Non-)Importance of Cleaning

Categorical Duplicates before ML” by Vraj Shah, Thomas Parashos, and Arun Kumar, which

has been submitted for publication of the material. The dissertation author was the primary

investigator and author of this material.
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Chapter 7

Related Work

7.1 Related Work for Hamlet++

Database Dependencies and ML. Optimizing ML over joins of multiple tables was

studied in [99, 130, 125, 98], but their goal was primarily to reduce runtimes without affecting

ML accuracy. ML over joins was also studied in [168] but their focus was on devising a new ML

algorithm. In contrast, our work studied the more fundamental question of whether KFK joins can

be avoided safely for ML classifiers. We first demonstrated the feasibility of avoiding joins safely

in [100] for linear models. In this work, we revisit that idea for high-capacity classifiers and also

empirically verify mechanisms to make foreign key features more practical. Embedded multi-

valued dependencies (EMVDs) are database dependencies that are more general than functional

dependencies [41]. The implication of EMVDs for probabilistic conditional independence in

Bayesian networks was originally described by [114] and further explored by [162]. However,

their use of EMVDs still requires computations over all features in the data instance. In contrast,

avoiding joins safely omits entire sets of features for complex ML models without performing

any computations on the foreign features. There is a large body of work on statistical relational

learning (SRL) to handle joins that cause duplicates in the fact table [66]. But as mentioned
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before, our work focuses on the regular IID setting for which SRL might be an overkill.

Feature Selection. The ML and data mining communities have long studied feature

selection methods [72]. Our goal is not to design new feature selection methods nor is it compare

existing ones. Rather, we study if KFKDs/FDs in the schema let us to avoid entire tables a

priori for some popular high-capacity classifiers, i.e., “short-circuiting” feature selection using

database schema information to reduce the burden of data sourcing. The trade-off between

feature redundancy and relevancy is well-studied [72, 169, 92]. The conventional wisdom is that

even a feature that is redundant might be highly relevant and thus, unavoidable in the mix [72].

Our work shows that, perhaps surprisingly, even highly relevant foreign features can be safely

discarded in many practical classification tasks for many high-capacity classifiers. There is prior

work on exploiting FDs in feature selection; [146] infers approximate FDs using the dataset

instance and exploits them during feature selection, FOCUS [42] is an approach to bias the input

and reduce the number of features, while [54] proposes a measure called consistency to aid in

feature subset search. Our work is orthogonal to these algorithms because they all still require

computations over all features, while avoiding joins safely omits foreign features without even

looking at them and obviously, without performing any computations on them. To the best of our

knowledge, no feature selection method exhibits such a dramatic capability. Gini and information

gain are known to be biased towards large-domain features in decision trees [56]. Different

approaches have been studied to resolve this issue [78]. Our work is orthogonal because we

study how KFKDs/FDs enable us to ignore foreign features a priori safely. Even with the gain

ratio score that is known to mitigate the bias towards large-domain features, our main findings

stand. Unsupervised dimensionality reduction methods such as random hashing and PCA are

also popular [75]. Our foreign key domain compression techniques for decision trees are inspired

by such methods.

Data Integration. Integrating data and features from various sources for ML often

requires applying and adapting data integration techniques [104, 58], e.g., integrating features
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from different data types in recommendation systems [84], sensor fusion [89], dimensionality

reduction during feature fusion [65], and controlling data quality during data fusion [60]. Avoiding

joins safely can be seen as one schema-based mechanism to reduce the integration burden by

predicting a priori if a source table is unlikely to improve accuracy. It is an open challenge to

devise similar mechanisms for other types of data sources, say, using other schema constraints,

ontology information, and sampling. There is also a growing interest in making data discovery

and other forms of metadata management easier [63, 77]. Our work can be seen as a mechanism

to verify the potential utility of some of the discovered data sources using their metadata. We

hope our work spurs more research in this direction of exploiting ideas from data integration and

data discovery to reduce the data sourcing burden for ML tasks.

7.2 Related Work for ML Data Prep Zoo

Data Prep and Cleaning. TFDV [45] is a tool for managing ML-related data in Ten-

sorFlow Extended. It uses conservative rule-based heuristics to infer ML schema from column

statistics. Our ML-based approach raises accuracy of ML schema inference substantially. DataL-

inter is a rule-based tool to inspect a data file and flag possible data quality issues to the user [81].

It still requires users to perform data transformations manually, which makes it orthogonal to our

focus. There is growing work on reducing data cleaning effort using ML properties (e.g., [96]).

Our work is part of this growing direction but our work specifically targets data prep tasks and

casts them as applied ML tasks.

AutoML Platforms. Existing AutoML platforms such as Einstein [13] and AutoWeka [95]

focus mainly on model selection, not ML-based ML data prep. Thus, the models we produce

can enhance such platforms. OpenML [155] is an open-source platform for ML users to share

and compare models, data, and analysis workflows. Our focus on creating high-quality labeled

datasets for semi-automating ML data prep tasks is thus complementary. Our artifacts can be
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contributed to OpenML for spurring more research on end-to-end AutoML platforms. We could

also get more analysis workflows from OpenML to enhance our work in the future.

7.3 Related Work for ML Feature Type Inference

AutoML Platforms. Several AutoML tools such as AutoWeka [145] and Auto-sklearn [64]

have an automated search process for model selection, allowing users to spend no effort for algo-

rithm selection or hyper-parameter search. However, these AutoML systems do not automate

the ML feature type inference task. Several tools perform automatic data transformation steps

and generate a set of useful features given a dataset [87, 86]. However, Deep Feature Synthesis

algorithm [86] assumes that the ML feature types are provided explicitly as input, while Ex-

ploreKit [87] operates on the syntactic types. Thus, such automatic feature engineering tools can

benefit by leveraging the ML models trained on our labeled data.

Other end-to-end AutoML platforms such as Einstein AutoML [13], AutoML Tables [9],

and AutoGluon [62] do automate the type inference task. We believe that the standardization of

the task and our benchmark labeled dataset is valuable to objectively compare and improve their

AutoML platforms. The ML models trained on our labeled dataset can be integrated into such

AutoML platforms to improve their type inference accuracy. In addition, other ML platforms

such as Airbnb’s Zipline [3], Uber’s Michelangelo [20], Facebook’s FBLearner Flow [6], and

commercial platforms such as H20.AI [11] and DataRobot [5] are complementary to our focus

and they can also benefit by adopting models trained on our data.

ML Data Prep and Cleaning. Auto-Type [167] is a semantic type detection tool that

synthesizes type detection logic for semantic types such as EAN Code, Swift Code, etc. But

it too is complementary and not directly usable for AutoML just like Sherlock. DataLinter is

a rule-based tool that inspects a data file and raises potential data quality issues as warnings

to the user [81]. However, ML feature type inference must be done manually. Many works
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study program synthesis-based approaches [70, 71, 83, 76] and/or visual interfaces [18] to reduce

manual data transformation grunt work in data prep. There is also much work on reducing data

validation and cleaning effort (e.g., [96, 97, 129]). Our work further this general direction on

reducing manual effort but it is complementary to all these prior works: our paper is the first to

formalize and benchmark ML feature type inference in AutoML platforms.

Database Schema Inference. DB schema inference has been explored in some prior

work. Google’s BigQuery does syntactic schema detection when loading data from external

data warehouses [14]. [44] infers a schema from JSON datasets by performing map and reduce

operations using pre-defined rules. But DB schema inference task is syntactic. For instance, the

attribute type with integer values has to be identified as an integer. In contrast, with ML type

inference the attributes with type integer can be Categorical.

Benchmarks. OpenML AutoML Benchmark focuses on understanding the automation

of model selection and hyper-parameter search components of the ML workflow [67]. However,

they do not cover any data prep steps. CleanML benchmark focuses on studying the effect of data

cleaning operations on downstream models [103]. However, they do not handle the feature type

inference task. Thus, both benchmarks are orthogonal to our work.

Data/Model Repositories. OpenML [155] is an open-source collaborative repository

for ML practitioners and researchers to share their models, datasets, and workflows for reuse

and discussion. Our labeled datasets can be made available to the OpenML community to invite

more contributions for augmenting the current labeled dataset and for building more sophisticated

models. Hence, our work is complementary to OpenML.

7.4 Related Work for Category Deduplication

Empirically Studying the Impact on ML. CleanML [103] analyses the impact of many

data cleaning steps on downstream ML classification tasks. However, they do not cover Cate-
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gorical deduplication step. Open source AutoML benchmark [67] performs a comparative study

of many AutoML tools in terms of the overall classification accuracy with their model selection

routines. However, understanding any data prep step from downstream ML accuracy standpoint

is not the focus of their work. A previous work [135] performed an objective benchmarking of

a specific data prep step for ML, namely the feature type inference task. We build upon their

open-sourced datasets but we study a completely different problem.

AutoML Platforms. Several AutoML libraries allow users to perform automated ML

algorithm and hyper-parameter search without covering any data prep tasks [64, 145, 112]. Other

AutoML platforms that offer (or claim to offer) end-to-end ML support such as Salesforce Einstein

TransmogrifAI [17], Google AutoML Tables [10], and Amazon AutoGluon [62] do automate

many data prep tasks. However, none of them handles Categorical duplicates. Instead, the users

are asked to explicitly clean and remove inconsistencies in Categorical columns before using their

platforms [8]. Our labeled data can lead to more contributions from the community to automate

the deduplication task. Moreover, we believe that our downstream benchmark, our analysis with

simulation studies, and takeaways are all valuable to improve their AutoML platforms.

Data Prep and Cleaning for ML. There exists numerous data prep tools such as rule-

based tools [81], exploratory data analysis-based libraries [116], visual interfaces [18], and

program synthesis-based tools [76, 83] to reduce user’s manual grunt work effort and allow them

to productively prepare their data for ML. In addition, Auto-insight generator tools [160, 57, 55]

allow users to discover interesting statistical properties of a given dataset. Our work’s insights

can complement all these tools to reduce human time and effort and make their analysis more

interpretable. Some works have studied human-in-the-loop data cleaning to improve ML accuracy

and reduce user effort [96, 97]. However, they do not support a cleaning operation when

Categorical duplicates arise. Our labeled data can spur more follow-up works in this general

direction of automating and improving data prep for ML.
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Entity Matching (EM). EM, the task of identifying whether records from two tables refer

to the same real-world entity has received much attention with rule-based [141, 113, 142], learning-

based [93, 110, 105, 174], semi-supervised [88], unsupervised [165], and active-learning [108]

approaches. Our focus is on analyzing the impact of category duplicates and category deduplica-

tion on downstream ML. In the service of this goal, we offer new hand-labeled data, benchmarks,

and simulations. We do not propose new techniques for EM or even category deduplication. Thus,

prior work on EM is complementary to ours in terms of utility for AutoML platforms.

EM solutions [93, 174, 105] operate at a tuple-level since they have access to the entire fea-

ture vectors of the two tables. Note that tuple-level duplicates do not necessarily imply duplication

in Categorical strings. Likewise, duplication in a Categorical column does not necessarily lead to

row-level duplicates. Thus, problem of EM is orthogonal to category deduplication. Admittedly,

it is possible to view category deduplication as an extension of row-level deduplication but doing

so is non-trivial. Regardless, our focus is to study only the impact of category deduplication on

ML and not how to perform deduplication. We leave it to future work to automate this, including

potentially extending existing row-level deduplication works. Moreover, a Categorical column

assumes values from a finite closed domain. Thus, generic open domain addresses, person names,

or even textual descriptions that are used in public EM datasets [93, 94] are not Categorical and

not enough to study this task.

148



Chapter 8

Conclusion and Future Work

In this dissertation, we take a step towards simplifying three critical ML data prep tasks

over tabular data: joining tables with key-foreign key dependencies between them, ML feature

type inference, and category deduplication. We use DB schema management along with ML

techniques to simplify, objectively quantify, and automate them. This not only improve the

productivity of the data scientists, but also makes it easier to validate (Auto)ML tools. Our

objective benchmark on both data prep tasks and downstream tasks exposes several shortcomings

of the existing solutions and the common ML practice. This can help ML practitioners glean

actionable insights to help them prioritise their data prep effort. Also, this can potentially lead

to better design of end-to-end automation pipelines. In this Chapter, we provide an overview

of several exciting research directions at the intersection of ML theory, data management, ML

system design, and human computer interaction for future work.

8.1 Future Work Related to Hamlet++

While our analysis intuitively explains the behavior of decision trees and RBF-SVMs,

there are many open questions for research. Is it possible to quantify the probability of wrong

partitioning with a decision tree as a function of the data properties? Is it possible to quantify the
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probability of mismatched examples being picked by RBF-SVM? Why does the theory of VC

dimension predict the opposite of the observed behavior with these models? How do we quantify

their generalization if memorization is allowable and what forms of memorization are allowed?

Answering these questions would provide deeper insights into the effects of KFKDs/FDs on such

classifiers. It could also yield more formal mechanisms to characterize when avoiding joins is

feasible beyond just looking at tuple ratios.

There are database dependencies more general than FDs: embedded multi-valued depen-

dencies and join dependencies [140]. How do these dependencies among features affect ML

models? There are also conditional FDs, which satisfy FD-like constraints among subsets of

rows [140]; how do such data properties affect ML models? Finally, Armstrong’s axioms imply

that foreign features can be divided into arbitrary subsets before being avoided; this opens up

a new trade-off space between avoiding XR and using it XR. How do we quantify this trade-off

and exploit it? Answering these questions would open up new connections between data man-

agement and ML theory and potentially enable new functionalities for ML analytics systems.

Other interesting avenues include understanding the effects of other database dependencies on

ML, including regression and clustering models, and designing an automated “advisor” for data

sourcing for ML tasks, especially when there are heterogeneous data types and sources.

8.2 Future Work Related to ML Data Prep Zoo

In this dissertation, we focused on benchmarking and automating two critical ML data prep

tasks: ML Feature Type Inference and Category Deduplication. However, there still remains other

tasks open for benchmarking such as Embedded Number Extraction and Value Standardization,

which we discussed in Chapter 4. Our philosophy of using ML to automate data prep can directly

be applied here as well. We see two major avenues of future work.

1. Creating large labeled dataset for data prep tasks is the major research challenge.
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Although, manual annotations deliver us high-quality datasets, it is not scalable for other tasks.

Also, weak supervision currently do not support complex prediction outputs. Crowdsourcing is

the most feasible option for many data prep tasks such as Embedded Number Extraction unlike

ML Feature Type Inference task, which we found to be too technically nuanced for lay crowd

workers. Designing appropriate mechanisms and interfaces to support such data prep through

crowdsoucing is an open question. How a task is designed by a requester is very critical for quality

as it has been shown in number of literatures [164, 82]. Setting up task design requires addressing

several open questions such as how are instructions given to workers, how the human computation

process is set up, financial incentives provided to them, how tasks are assigned and how worker’s

responses are aggregated. Data augmentation in slices where examples are under-represented

can potentially be tried to synthesize labeled data. Also, there remains many open questions with

regard to employing weak supervision: how much is weak supervision helpful? what sort of weak

supervision rules can be created? How to create new interfaces for weak supervision?

2. An another important research question to answer is how much of ML data prep

can we get away with? Answering this question would require characterizing the downstream

performance in terms of appropriate confounders. For instance, we found in Chapter 6 that

for many confounder settings such as Logistic regression and Similarity Encoding, Category

deduplication task can be completely avoided. Likewise, for Embedded Number Extraction task,

n-grams provide an alternative representation for numbers with the vector representation of n-

gram always larger than the integer representation. So, is the step even needed for a high-capacity

classifier? Answering this question requires characterizing this formally from a learning theory

standpoint.
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8.3 Future Work Related to ML Feature Type Inference

We see three main avenues of improvement for researchers wanting to improve accuracy:

better features, better models, and/or getting more labeled data.

First, designing features that can perfectly capture human-level reasoning is an open

research question. We found that descriptive stats and attribute names are most useful for

prediction, while raw attribute values have only marginal utility. Thus, one can consider designing

better featurization routines for them. Second, capturing more semantic knowledge of attributes

with an alternative neural architecture is another open problem. Finally, based on our analysis

in Section 5.4.4, one potential way to increase the accuracy is to create more labeled data in

categories of examples where ML models get confused, e.g., for List type. Weak supervision and

denoising with Snorkel [122] and/or Snuba [159] is one potential mechanism to amplify labeled

datasets and teach the ML models to learn better.

8.4 Future Work Related to Category Deduplication

We discuss three major open questions for research that require contributions from the

community.

a. Design accurate methods for deduplication. While our ML models for deduplication

outperforms rule-based baselines, there remains a large scope of improvement. There are mainly

two ways to enhance our performance results. (1) Capturing semantic-level characteristics of

the categories with either designing features or with deep learning models like Siamese neural

network [111]. (2) Data amplification through augmentation in slices where examples are under-

represented. Table 6.5 can provide guidelines on how to synthesize duplicates. Existing weak

supervision environments can augment them further [123, 159].

b. Define new benchmark tasks. In an AutoML production setting with millions of

features, one cannot possibly perform deduplication over all columns. Given a cleaning budget in
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terms of accuracy and runtime, how to guide an AutoML platform to prioritize which column

to clean? One can consider designing a coarse-grained classifier to help identify them, but how

does a column-level featurization look like? Our labeled data can be leveraged and amplified at a

column-level to assess the accuracy of such approaches.

c. Theoretical quantification. Our empirical study suggests that duplicates can increase

variance since the hypothesis space of the model can grow. This opens up several research

questions at the intersection of ML theory and data management: Is it possible to establish bounds

on the increase in variance using VC-dimension theory [157]? Can we set up a decision rule to

formally characterize when deduplication would be needed?
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Paolo Papotti, Jorge-Arnulfo Quiané-Ruiz, Armando Solar-Lezama, and Nan Tang. Gener-
ating concise entity matching rules. In Semih Salihoglu, Wenchao Zhou, Rada Chirkova,
Jun Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM International Conference
on Management of Data, SIGMOD Conference 2017, Chicago, IL, USA, May 14-19, 2017,
pages 1635–1638. ACM, 2017.

[142] Rohit Singh, Venkata Vamsikrishna Meduri, Ahmed K. Elmagarmid, Samuel Madden,
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