
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Query Optimizations for Deep Learning Systems

Permalink
https://escholarship.org/uc/item/5vc14078

Author
Nakandala, Supun Chathuranga

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5vc14078
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Query Optimizations for Deep Learning Systems

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Supun Nakandala

Committee in charge:

Professor Arun Kumar, Chair
Professor Loki Natarajan
Professor Yannis Papakonstantinou
Professor Lawrence Saul
Professor Geoffrey M. Voelker

2022

Copyright

Supun Nakandala, 2022

All rights reserved.

The dissertation of Supun Nakandala is approved, and it is

acceptable in quality and form for publication on microfilm

and electronically.

University of California San Diego

2022

iii

DEDICATION

This dissertation is lovingly dedicated to my parents, Nilmini and Jayantha.

Their love, encouragement, and sacrifices have helped me achieve

great things in my life.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . x

List of Tables . xv

Acknowledgements . xvii

Vita . xxi

Abstract of the Dissertation . xxiii

Chapter 1 Introduction . 1
1.1 Motivation . 1
1.2 Technical Contributions . 5

1.2.1 Model Building Workloads 5
1.2.2 Model Inference Workloads 7
1.2.3 Transfer Learning Workloads 9

1.3 Summary and Impact . 11

Chapter 2 Background . 13
2.1 Deep Learning . 13
2.2 Mini-batch Stochastic Gradient Descent 14

2.2.1 Forward Pass of Computations 15
2.2.2 Backward Pass of Computations 15

2.3 Model Selection . 16
2.4 Model Inference . 16
2.5 Deep Transfer Learning . 17

Chapter 3 CEREBRO: Query Optimizations for DL Model Selection 19
3.1 Introduction . 19
3.2 Tradeoffs of Existing Approaches 25
3.3 Model Hopper Parallelism . 27

3.3.1 Basic Idea of MOP . 27
3.3.2 Communication Cost Analysis 29

3.4 System Overview . 30
3.4.1 User-facing API . 30
3.4.2 System Architecture . 31

v

3.4.3 System Implementation Details 33
3.5 Cerebro Scheduler . 33

3.5.1 Formal Problem Statement as MILP 34
3.5.2 Approximate Algorithm-based Scheduler 35
3.5.3 Randomized Algorithm-based Scheduler 36
3.5.4 Comparing Different Scheduling Methods 37
3.5.5 Replica-Aware Scheduling 39
3.5.6 Fault Tolerance and Elasticity 39

3.6 Experimental Evaluation . 40
3.6.1 End-to-End Results . 41
3.6.2 Drill-down Experiments 43
3.6.3 Experiments with AutoML Procedures 46

3.7 Discussion and Limitations . 48
3.8 Conclusion . 49

Chapter 4 Applications and Extensions of CEREBRO 51
4.1 Application: UCSD Public Health Data 51

4.1.1 Introduction . 51
4.1.2 Training Data . 52
4.1.3 Model Design . 53
4.1.4 Model Selection . 54
4.1.5 Experimental Results . 55

4.2 Extension: Intermittent Human-in-the-Loop Model Selection using
CEREBRO . 56
4.2.1 Introduction . 56
4.2.2 New Paradigm for Model Selection 58
4.2.3 UIs for Intermittent Specification 59
4.2.4 Decoupled System Architecture 60

Chapter 5 HUMMINGBIRD: Query Optimizations for Classical ML Prediction Serving
on DL Systems . 63
5.1 Introduction . 63
5.2 Background and Challenges . 66

5.2.1 Classical ML Predictive Pipelines 67
5.2.2 Challenges . 67

5.3 System Overview . 68
5.3.1 High-level Approach . 68
5.3.2 System Architecture and Implementation 69
5.3.3 Assumptions and Limitations 71

5.4 Translation . 72
5.4.1 Translating Decision Tree-based Models 72
5.4.2 Summary of Other Techniques 78

5.5 Optimizations . 80

vi

5.5.1 Heuristics-based Strategy Selection 80
5.5.2 Target-independent Optimizations 81

5.6 Experimental Evaluation . 82
5.6.1 Micro-benchmarks . 83
5.6.2 Optimizations . 94
5.6.3 End-to-end Pipelines . 98

5.7 Conclusion . 99

Chapter 6 KRYPTON: Query Optimizations for Deep CNN Prediction Explanations . . 101
6.1 Introduction . 101
6.2 Setup and Preliminaries . 104

6.2.1 Problem Statement and Assumptions 105
6.2.2 Deep Convolutional Neural Networks (CNNs) 107

6.3 Incremental Inference Optimizations 111
6.3.1 Expected Speedups . 111
6.3.2 Single Layer Incremental Inference 113
6.3.3 Propagating Updates across Layers 116
6.3.4 Multi-Query Incremental Inference 118
6.3.5 Putting it All Together . 120

6.4 Approximate Inference Optimizations 120
6.4.1 Projective Field Thresholding 121
6.4.2 Adaptive Drill-Down . 124
6.4.3 Automated Parameter Tuning 125

6.5 Experimental Evaluation . 128
6.5.1 End-to- End Runtimes . 130
6.5.2 Ablation Study . 131
6.5.3 Summary and Discussion 133

6.6 Conclusion . 134

Chapter 7 Extensions of KRYPTON . 135
7.1 Extension: Interactive Diagnosis of CNN Predictions using KRYPTON 135

7.1.1 Introduction . 135
7.1.2 User Interface . 135
7.1.3 OBE Runtime Estimation 137

7.2 Extension: Accelerating OBE for Arbitrary CNNs 138

Chapter 8 VISTA: Query Optimizations for Deep CNN Feature Transfer 141
8.1 Introduction . 141

8.1.1 Current Approach and Systems Issues 144
8.1.2 Our Proposed Approach 145

8.2 Preliminaries and Overview . 147
8.2.1 Definitions and Data Model 147
8.2.2 Problem Statement and Assumptions 148

vii

8.2.3 System Architecture and API 150
8.3 Tradeoffs and Optimizer . 151

8.3.1 Memory Use Characterization 151
8.3.2 Three Dimensions of Tradeoffs 155
8.3.3 The Optimizer . 159

8.4 Experimental Evaluation . 163
8.4.1 End-to-End Reliability and Efficiency 166
8.4.2 Accuracy . 168
8.4.3 Drill-Down Analysis of Tradeoffs 170

8.5 Conclusion . 174

Chapter 9 NAUTILUS: Query Optimizations for DL Model Adaptation 175
9.1 Introduction . 175

9.1.1 Current Practice and Inefficiencies 178
9.1.2 Our Proposed Approach 179

9.2 Preliminaries . 181
9.2.1 Definitions and Data Model 182
9.2.2 Workload Formalization 182
9.2.3 Popular Model Adaptation Schemes 184

9.3 System Overview . 186
9.4 System Optimizations . 188

9.4.1 Multi-Model Graph . 189
9.4.2 Materialization Optimization 191
9.4.3 Model Fusion Optimization 197
9.4.4 Theoretical Speedups . 202

9.5 Experimental Evaluation . 202
9.5.1 End-to-End Runtimes . 204
9.5.2 Accuracy . 207
9.5.3 Drill-Down Analysis . 207

9.6 Conclusion . 210

Chapter 10 Related Work . 212
10.1 Related Work for CEREBRO . 212
10.2 Related Work for HUMMINGBIRD 214
10.3 Related Work for KRYPTON . 215
10.4 Related Work for VISTA . 217
10.5 Related Work for NAUTILUS . 218

Chapter 11 Conclusion and Future Work . 220
11.1 Future Work Related to CEREBRO 220
11.2 Future Work Related to HUMMINGBIRD 221
11.3 Future Work Related to KRYPTON 222
11.4 Future Work Related to VISTA . 223

viii

11.5 Future Work Related to NAUTILUS 223

Appendix A Appendix: CEREBRO . 225
A.1 CEREBRO API Usage Example . 225
A.2 CNN Compute Costs . 229
A.3 Straggler Issue in Celery . 229
A.4 AutoML Procedures . 231

A.4.1 Experiments with HyperBand 231
A.4.2 Experiments with ASHA 232

A.5 Gantt Chart . 235

Appendix B Appendix: KRYPTON . 236
B.1 Interactive Mode Execution . 236
B.2 Integration into PyTorch . 237
B.3 Special Cases for Incremental Inference 238
B.4 Effective Projective Field Size . 239
B.5 Fine-tuning CNNs . 241
B.6 Memory Overhead of IVM . 241
B.7 Visual Examples . 242
B.8 Integrated Gradients Method . 244

Appendix C Appendix: VISTA . 245
C.1 Estimating Intermediate Data Sizes 245
C.2 Pre Materializing a Base Layer . 246
C.3 Runtime Breakdown . 248

Bibliography . 251

ix

LIST OF FIGURES

Figure 1.1: The three high-level DL workload types identified in this dissertation. . . . 2
Figure 1.2: (A) DL systems stack (hardware, compilers, frameworks, and libraries). (B)

Functionality performed by layers in the DL systems stack. (C) Database
management systems analogy for the functionality performed by layers in
the DL systems stack. 3

Figure 1.3: The different systems that we have developed, the workloads they optimize,
and the type of optimizations they perform. 6

Figure 2.1: (A) Deep learning model. (B) Mini-batch stochastic gradient descent in
action. J(θ,X ,y) is the loss function; θ is the set of learnable parameters;
(X ,y) is the training data. 14

Figure 3.1: (A) Cerebro combines the advantages of both task- and data-parallelism.
(B) System design philosophy and approach of CEREBRO/MOP. (C) Model
Hopper Parallelism (MOP) as a hybrid approach of task-parallelism and
data-parallelism. 22

Figure 3.2: Conceptual comparison of MOP/CEREBRO with prior art on two key axes
of resource efficiency: communication cost per epoch and memory/storage
wastage. 23

Figure 3.3: Qualitative comparisons of existing systems on key desiderata for a model
selection system. 26

Figure 3.4: System architecture of CEREBRO. 31
Figure 3.5: Gantt charts of task-parallel and MOP schedules for a sample model selection

workload. 34
Figure 3.6: Scheduler runtimes and makespans of the schedules produced in different

settings. Makespans are normalized with respect to that of Randomized. (A)
Homogeneous cluster and homogeneous training configs. (B) Heterogeneous
cluster and heterogeneous training configs. 38

Figure 3.7: End-to-end results on ImageNet and Criteo. For Celery, we report the runtime
corresponding to the lowest makespan schedule. Celery’s per-epoch runtime
varies between 1.72-2.02 hours on ImageNet; on Criteo, 3.95-5.49 hours.
Horovod uses GPU kernels for communication; hence high GPU utilization. 42

Figure 3.8: (A) Speedup plot (strong scaling). (B) Fault-tolerance. 44
Figure 3.9: Effect of batch size on communication overheads and convergence efficiency.

(A) Runtime against batch size. (B) The lowest validation error after 10
epochs against batch size. 44

Figure 3.10: Reading data from remote storage. 46
Figure 3.11: Reading data from distributed storage. 46
Figure 3.12: HyperOpt learning curves by time. 47
Figure 3.13: ASHA learning curves by time. 48

x

Figure 4.1: Devices used to generate the training data. (A) Hip-worn ActiGraph wGT3X+
device generates a tri-axial acceleration sequence. (B) Thigh-worn activPAL
micro3 device generates a sitting vs not-sitting label sequence. 52

Figure 4.2: CNN-BiLSTM model architecture. 53
Figure 4.3: A) AutoML-based model selection. B) Interactive human-in-the-loop model

selection. C) Our paradigm of intermittent human-in-the-loop model selec-
tion. D) Qualitative comparison of different paradigms. 57

Figure 4.4: User interface for intermittent human-in-the-loop model selection 59
Figure 4.5: High-level system architecture diagram of CEREBRO along with the new

components added to support our intermittent human-in-the-loop model
selection paradigm. 61

Figure 5.1: Prediction serving complexity: state-of-the-art (top) vs. HUMMINGBIRD

(bottom). 65
Figure 5.2: High-level architecture of HUMMINGBIRD. 69
Figure 5.3: Compiling an example decision tree using the GEMM strategy. 74
Figure 5.4: Performance with respect to scaling the batch size on CPU. 86
Figure 5.5: Performance with respect to scaling the batch size on GPU. 86
Figure 5.6: Performance across GPUs for Airline, LightGBM with batch size of 1M . . 89
Figure 5.7: Performance across GPUs for Airline, LightGBM with batch size of 1K . . 89
Figure 5.8: Cost for random forest 100k samples, batch size of 1K. 91
Figure 5.9: Comparison between the different tree strategies as we vary the batch size

and depth. 95
Figure 5.10: Feature selection push down. 95
Figure 5.11: Feature selection injection. 96
Figure 5.12: Speedup/slowdown of pipelines when using HUMMINGBIRD with respect to

baseline Sklearn on CPU . 96
Figure 5.13: Speedup/slowdown of pipelines when using HUMMINGBIRD with respect to

baseline Sklearn on GPU . 96

Figure 6.1: (a) Using a CNN to predict diabetic retinopathy in an OCT image/scan. (b)
Occluding a part of the image changes the prediction probability. (c) By
moving the occluding patch, a sensitivity heatmap can be produced. 102

Figure 6.2: Simplified illustration of the key layers of a typical CNN. The highlighted
cells (dark/red background) show how a small local spatial context in the
first input propagates through subsequent layers. 107

Figure 6.3: Theoretical speedups for popular deep CNN architectures with incremental
inference. 113

Figure 6.4: Simplified illustration of input and output update patches for Convolu-
tion/Pooling layers. 114

Figure 6.5: Illustration of bounding box calculation for differing input update patch
locations for element-wise addition and depth-wise concatenation layers in
DAG CNNs. 117

xi

Figure 6.6: (a) Projective field growth for 1-D Convolution (filter size 2, stride 1). (b)
Projective field thresholding; τ = 5/7. 121

Figure 6.7: (a) Theoretical speedups with projective field thresholding. (b) Mean Square
Error between exact and approximate output of final Convolution/Pooling
layers. 122

Figure 6.8: (a) Schematic illustration of the adaptive drill-down idea. (b) Conceptual
depiction of the effects of S1 and rdrill−down on the theoretical speedup.. . . 126

Figure 6.9: (a) Fitting a second-order curve for SSM against τ on a sample of the OCT
dataset. (b) CDFs of deviation of actual SSIM from the target SSIM (0.9)
with our auto-tuned τ, which turned out to be 0.5, 0.7, and 0.9 for VGG-16,
ResNet-18, and Inception-V3, respectively. 127

Figure 6.10: End-to-end runtimes of KRYPTON and baselines on all 3 datasets, 3 CNNs,
and both GPU and CPU. 129

Figure 6.11: Speedups with only the incremental inference optimization (occlusion patch
stride S = 4). 132

Figure 6.12: Speedups with incremental inference combined with only projective field
thresholding. 132

Figure 6.13: Speedups with incremental inference combined with adaptive drill-down.
For (a), we set S1 = 16. For (b), we set rdrill down = 0.25). 133

Figure 7.1: KRYPTON user interface. 136
Figure 7.2: Runtime estimation using linear regression cost model (occlusion patch size

= 16 and execution mode is exact). 137
Figure 7.3: KryptonGraph generation and execution process. For brevity, only a sub-

graph of a linear CNN is shown. The same method also applies to arbitrary
DAG like CNNs. 139

Figure 8.1: (A) Simplified illustration of a typical deep CNN and its hierarchy of learned
feature layers(based on [290]). (B) Illustration of the CNN feature transfer
workflow for multimodal analytics. 142

Figure 8.2: (A) Comparing the analytics-related capabilities of parallel dataflow (PD)
and DL systems. (B) Manual approach of executing feature transfer at scale
straddling PD and DL systems. (C) The “declarative” approach in VISTA.
(D) Tradeoffs of alternative execution plans on efficiency and reliability . . 143

Figure 8.3: System architecture of the VISTA prototype on top of the Spark-TensorFlow
combine. The prototype on Ignite-TenforFlow is similar and skipped for
brevity. 150

Figure 8.4: (A) Our abstract model of distributed memory apportioning. (B,C) How our
model maps to Spark and Ignite. 154

Figure 8.5: Alternative logical execution plans. (A) Lazy, the de facto current approach.
(B) Reordering the join operator in Lazy. (C) Eager execution plan. (D)
Reordering the join operator in Eager. (E) Our new Staged execution plan. 156

xii

Figure 8.6: End-to-end reliability and efficiency. “×” means the workload crashed.
Overall, VISTA offers the best or near-best runtimes and never crashes, while
the alternatives are much slower or crash in some cases. 165

Figure 8.7: (A) End-to-end reliability and efficiency on GPU. “×” is a workload crash.
(B) Comparing TFT+Beam vs. VISTA on Foods/CPU. 166

Figure 8.8: Test F1 scores for various sets of features for training a logistic regression
model with elastic net regularization with α = 0.5 and a regularization value
of 0.01. 169

Figure 8.9: Runtimes of logical execution plan alternatives for varying data scale and
number of feature layers explored. 170

Figure 8.10: Runtimes of physical plan choices for varying data scale and number of
structured features. 171

Figure 8.11: Varying system configuration parameters. Logical and physical plan choices
are fixed to Staged/AJ and Shuffle/Deser.. 171

Figure 8.12: (A,B) Scaleup and speedup on cluster. (C) Speedup for varying cpu on
one node with 0.25x data. Logical and physical plan choices are fixed to
Staged/AJ and Shuffle/Deser.. 173

Figure 9.1: (A) Human labeler labels batches of most informative data. (B) A pre-trained
model is adapted for a target task. (C) Our approach for optimized DTL
model selection performs materialization and model fusion optimizations.
(D) Contrasting the current practice and our approach. 177

Figure 9.2: Model adaptation schemes. (A) Source model MS. (B) Feature transfer. (C)
Fine-tuning. (D) Adapter training. 184

Figure 9.3: High-level architecture of NAUTILUS and the interactions between system
components. fit(...) method is called for every model selection cycle. . . . 186

Figure 9.4: Valid reuse plan model options for a model with materializable layers. . . . 193
Figure 9.5: (A) A candidate partition containing two source models and the correspond-

ing optimal reuse-plan model. (B) Augmenting reuse plan model with nodes
to represent the backward-pass of training. (C) Topological traversal-based
live tensor analysis for the model graph shown in (B). 198

Figure 9.6: (A) Total model selection time. (B) Model selection time breakdown by
model selection cycle for FTR-2 (only the odd numbered model selection
cycles are shown due to space constraints). (C) Total time for FTR-2 including
data labeling time. 205

Figure 9.7: FTR-2 learning curves with (A) zero and (B) 4 seconds/label data labeling
cost values. 207

Figure 9.8: Model selection time with and without MAT and FUSE optimizations. . . . 208
Figure 9.9: Model selection time for different number of models with and without MAT

and FUSE optimizations. 208
Figure 9.10: FTR-2 model selection time using (A) MAT OPT vs. storage budget and

(B) FUSE OPT vs. memory budget. 209

xiii

Figure 9.11: Average GPU utilization and cumulative disk reads and writes for executing
the FTR-2. 210

Figure A.1: Registering Workers. 225
Figure A.2: Registering Dataset. 226
Figure A.3: Registering Partitions. 226
Figure A.4: Initial Training Configurations. 227
Figure A.5: User-defined input function. 227
Figure A.6: User-defined model function. 228
Figure A.7: Train function. 228
Figure A.8: An unbalanced work schedule generated by Celery for Criteo tests. 231
Figure A.9: Best possible work schedule with Celery for Criteo tests. 232
Figure A.10: Hyperband learning curves by epochs. 233
Figure A.11: Hyperband learning curves by time. 233
Figure A.12: Number of configs vs. the amount of epochs they were run for by. (A) Count

of configs and (B) Fraction of total config count. 234
Figure A.13: Best validation error for each rung of ASHA. 234
Figure A.14: Gantt chart corresponding to the schedule produced by CEREBRO for the Ima-

geNet workload. Each color corresponds to a different training configuration.
Best viewed in color. 235

Figure B.1: Interactive mode execution of incremental inference with Gs of different sizes236

Figure B.2: Custom GPU Kernel integration architecture 237
Figure B.3: Illustration of special cases for which actual output size will be smaller than

the value given by Equation (6.13). 238
Figure B.4: Peak GPU memory usage when performing CNN inference on a batch of

128 images. 242
Figure B.5: Occlusion heat maps for sample images. 243
Figure B.6: Comparison of integrated gradients method against OBE. (a) Heat maps

generated by integrated gradients method with a step size of 50. The three
color channel gradients of a pixels at the same point are aggregated using L2
norm . 244

Figure C.1: VISTA API and sample usage showing values for the input parameters and
invocation. 246

Figure C.2: Spark’s internal record storage format. 247
Figure C.3: Size of largest intermediate table. 247
Figure C.4: Runtimes comparison for using pre-materialized features from a base layer 248
Figure C.5: Drill-down analysis of Speedup Curves. 249

xiv

LIST OF TABLES

Table 3.1: Notation used in Section 3.3 . 27
Table 3.2: Communication cost analysis of MOP and other approaches. ?Full replication.

†Remote reads. ‡Parameters for the example: k = 20, |S| = 20, p = 10, m =
1GB, 〈D〉 = 1TB, and |D|/b = 100K. 29

Table 3.3: Additional notation used in the MOP MILP formulation 33
Table 3.4: Dataset details. All numbers are after preprocessing and sampling of the

datasets. 41
Table 3.5: Workloads. †serialized sizes. 41
Table 3.6: Parameter grid used to randomly sample configuration for Section 3.6.3. . . 47

Table 4.1: Summary of experimental results. 55

Table 5.1: PyTorch tensor operators used by the Tensor DAG Compiler. 71
Table 5.2: Scikit-learn operators currently supported in HUMMINGBIRD. 71
Table 5.3: Notation used in Section 5.4.1 . 73
Table 5.4: Worst-case memory and runtime analysis of different tree translation strategies,

assuming the number of input records and number of trees are fixed. The
notation is explained in Table 5.3 . 73

Table 5.5: Additional notation used in Strategy 2: TreeTraversal 75
Table 5.6: Additional notation used in Strategy 3 . 77
Table 5.7: Batch Experiments (10K records at-a-time) for both CPU (6 cores) and GPU.

Reported numbers are in seconds. 84
Table 5.8: Request/response times in seconds (one record at a time). 87
Table 5.9: Peak memory consumption (in MB) for Fraud. 87
Table 5.10: Conversion times (in seconds) over one core. 90
Table 5.11: Batch experiments for operators on both CPU (1 core) and GPU. Numbers

are in milliseconds. (TS is short for TorchScript) 93
Table 5.12: Request/Response experiments for operators on CPU (single core). Reported

numbers are in milliseconds. 94

Table 6.1: Notation used in this chapter. 105
Table 6.2: Additional notation for Sections 6.3 and 6.4. 115

Table 8.1: Notation for Section 8.3 and Algorithm 7. 160

Table 9.1: Notation used in Section 9.2 . 181
Table 9.2: Additional Notation used in Section 9.4 . 189
Table 9.3: Model selection configurations of workloads. 204

Table A.1: Computation costs of the CNNs used for the simulation experiment comparing
different scheduling methods. 230

Table B.1: Train-validation-test split size for each dataset. 241

xv

Table B.2: Train and test accuracies after fine-tuning. 242

Table C.1: Sizes of pre-materialized feature layers for the Foods dataset (size of raw
images is 0.26 GB). 247

Table C.2: Runtime breakdown for the image data read time and 1st iteration of the
logistic regression model (Layer indices starts from the top and runtimes are
in minutes). 249

xvi

ACKNOWLEDGEMENTS

First and foremost, I am thankful to my Ph.D. advisor Professor Arun Kumar for giving

me the opportunity and teaching me how to become an independent researcher. This dissertation

would not have been possible without his support, guidance, and encouragement. I am also

thankful for his valuable professional advice and support to pursue opportunities beyond my

thesis research. I feel very fortunate to have him as my advisor.

Besides my advisor, my sincere thanks also go to the other members of my thesis commit-

tee: Professor Yannis Papakonstantinou, Professor Geoffrey Voelker, Professor Lawrence Saul,

and Professor Loki Natarajan, for their feedback and comments that helped me complete my

dissertation. I also thank Professor Victor Vianu and Professor Alin Deutsch for their valuable

feedback to improve my work and presentation skills during the database seminar.

I thank my internship mentors: Dr. Vivek Narasayya at Microsoft Research, Professor

Yannis Papakonstantinou at Amazon Web Services, and Dr. Matteo Internlandi at Microsoft, for

the opportunity and the valuable mentorship that they gave me. These internships helped me

gain valuable industrial research exposure, which I highly enjoyed. These internships were a key

motivating reason for me to pursue a career in the industry.

I am also thankful to all my co-authors: Arun Kumar, Yannis Papakonstantinou, Loki

Natarajan, Andrea LaCroix, John Bellettiere, Jordan Carlson, Paul R Hibbing, Jingjing Zou,

Marta M Jankowska, Mikael Anne Greenwood-Hickman, Dori Rosenberg, Fatima Tuz-Zahra,

Karla Saur, Gyeong-In Yu, Konstantinos Karanasos, Carlo Curino, Markus Weimer, Matteo

Interland, Yuhao Zhang, Kabir Nagrecha, Liangde Li, Allen Ordookhanians, and Xin Li. I learned

a lot from them and my dissertation would not have been possible without their collaboration and

valuable contributions.

I was fortunate to make many new friends and colleagues during my Ph.D. studies at

UC San Diego. I would like to especially mention the members of the ADALab, members

of the Database Group, and my research collaborators from the UC San Diego Public Health

xvii

Department. I thank them for the insightful discussions and feedback on my work, papers, and

talks. Finally, I would not be able to achieve anything without the support and understanding

from my family and my beloved wife, Thanya.

The material in this dissertation is based on the following publications.

• Chapter 3 contains material from “Cerebro: A Data System for Optimized Deep Learning

Model Selection” by Supun Nakandala, Yuhao Zhang, and Arun Kumar, which appears

in Proceedings of VLDB Endowment Volume 13, Issue 12, July 2020. The dissertation

author was the primary investigator and author of this paper.

• Chapter 4 Section 4.1 contains material from “The CNN Hip Accelerometer Posture

(CHAP) Method for Classifying Sitting Patterns from Hip Accelerometers: A Validation

Study” by Supun Nakandala, Mikael Anne Greenwood-Hickman, Marta M Jankowska,

Dori Rosenberg, Fatima Tuz-Zahra, John Bellettiere, Jordan Carlson, Paul R Hibbing,

Jingjing Zou, Andrea Z LaCroix, Arun Kumar, and Loki Natarajan, which appears in the

Journal of Medicine & Science in Sports & Exercise Volume 53, Issue 11, November 2021.

The dissertation author was a primary investigator and a primary author of this paper.

• Chapter 4 Section 4.2 contains material from “Intermittent Human-in-the-Loop Model

Selection using Cerebro: A Demonstration” by Liangde Li, Supun Nakandala, and Arun

Kumar, which appears in Proceedings of VLDB Endowment Volume 14, Issue 12, July

2021. The dissertation author’s contribution was in the conceptualization of the system,

parts of the implementation, and advising the junior student through the rest of the system

implementation.

• Chapter 5 contains material from “A Tensor Compiler for Unified Machine Learning Pre-

diction Serving” by Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos,

Carlo Curino, Markus Weimer, and Matteo Interlandi, which appears in Proceedings of

xviii

14th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2020).

The dissertation author was the primary investigator and author of this paper.

• Chapter 6 contains material from “Incremental and Approximate Inference for Faster

Occlusion-based Deep CNN Explanations” by Supun Nakandala, Arun Kumar, and Yannis

Papakonstantinou, which appears in Proceedings of 2019 ACM SIGMOD International

Conference on Management of Data. The dissertation author was the primary investigator

and author of this paper.

• Chapter 7 Section 7.1 contains material from “Demonstration of Krypton: Optimized

CNN Inference for Occlusion-based Deep CNN Explanations” by Allen Ordookhanians,

Xin Lin, Supun Nakandala, and Arun Kumar, which appears in Proceedings of VLDB

Endowment Volume 12, Issue 12, August 2019. The dissertation author’s contribution was

in the conceptualization of the system and advising the junior students through the system

implementation.

• Chapter 7 Section 7.2 contains material from “Incremental and Approximate Computations

for Accelerating Deep CNN Inference” by Supun Nakandala, Kabir Nagrecha, Arun Kumar,

and Yannis Papakonstantinou, which appears in ACM Transactions on Database Systems

Journal Volume 45, Issue 4, December 2020. The dissertation author was the primary

investigator and author of this paper.

• Chapter 8 contains material from “Vista: Optimized System for Declarative Feature Transfer

from Deep CNNs at Scale” by Supun Nakandala and Arun Kumar, which appears in

Proceedings of 2020 ACM SIGMOD International Conference on Management of Data.

The dissertation author was the primary investigator and author of this paper.

• Chapter 9 contains material from “Nautilus: An Optimized System for Deep Transfer

Learning over Evolving Training Datasets” by Supun Nakandala and Arun Kumar, which

xix

appears in Proceedings of 2022 ACM SIGMOD International Conference on Management

of Data. The dissertation author was the primary investigator and author of this paper.

My co-authors have kindly approved the inclusion of the aforementioned publications in my

dissertation.

xx

VITA

2015 B.Sc. in Computer Science, University of Moratuwa, Sri Lanka

2020 M.Sc. in Computer Science, University of California San Diego

2022 Ph.D. in Computer Science, University of California San Diego

PUBLICATIONS

Supun Nakandala and Arun Kumar, “Nautilus: An Optimized System for Deep Transfer Learn-
ing over Evolving Training Datasets”, Proceedings of the 2022 International Conference on
Management of Data (SIGMOD 2022).

Liangde Li, Supun Nakandala, and Arun Kumar, “Intermittent Human-in-the-loop Model
Selection using Cerebro: A Demonstration”, Proceedings of the 2021 Very Large Data Bases
Conference (VLDB 2021), pages 2687-2690, 2021.

Supun Nakandala, Mikael Anne, Marta M. Jankowska, Dori Rosenberg, Fatima Tuz-Zahra,
John Bellettiere, Jordan Carlson, Paul R. Hibbing, Jingjing Zou, Andrea Z. LaCroix, Arun Kumar,
and Loki Natarajan, “The CNN Hip Accelerometer Posture (CHAP) Method for Classifying
Sitting Patterns from Hip Accelerometers: A Validation Study in Older Adults”, Medicine &
Science in Sports & Exercise, 53(11):2445-2454, 2021

Supun Nakandala, Marta Jankowska, Fatima Tuz-Zahra, John Bellettiere, Jordan Carlson,
Andrea LaCroix, Sheri Hartman, Dori Rosenberg, Jingjing Zou, Arun Kumar, and Loki Natarajan,
“Application of Convolutional Neural Network Algorithms for Advancing Sedentary and Activity
Bout Classification”, Journal for the Measurement of Physical Behaviour, 4(2):102-110, 2021

Arun Kumar, Supun Nakandala, Yuhao Zhang, Side Li, Advitya Gemawat, and Kabir Nagrecha,
“Cerebro: A Layered Data Platform for Scalable Deep Learning”, Proceedings of the 2021
Conference on Innovative Data Systems Research (CIDR 2021), 2021.

Supun Nakandala, Kabir Nagrecha, Arun Kumar, and Yannis Papakonstantinou, “Incremental
and Approximate Computations for Accelerating Deep CNN Inference”, ACM Transactions on
Database Systems (TODS) 45, pages 1-42, 2020.

Supun Nakandala, Arun Kumar, and Yannis Papakonstantinou, “Query Optimization for Faster
Deep CNN Explanations”, ACM SIGMOD Record 49, pages 61-68, 2020.

Supun Nakandala, Yuhao Zhang, and Arun Kumar, “Cerebro: A Data System for Optimized
Deep Learning Model Selection”, Proceedings of the 2020 Very Large Data Bases Conference
(VLDB 2020), pages 2159-2173, 2020.

xxi

Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos, Carlo Curino, Markus
Weimer, and Matteo Interlandi, “A Tensor Compiler for Unified Machine Learning Prediction
Serving”, Proceedings of the 14th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 2020), pages 899-917, 2020.

Supun Nakandala and Arun Kumar, “Vista: Declarative Feature Transfer from Deep CNNs at
Scale”, Proceedings of the 2020 International Conference on Management of Data (SIGMOD
2020), pages 1685-1700, 2020.

Konstantinos Karanasos, Matteo Interlandi, Doris Xin, Fotis Psallidas, Rathijit Sen, Kwanghyun
Park, Ivan Popivanov, Supun Nakandala, Subru Krishnan, Markus Weimer, Yuan Yu, Raghu
Ramakrishnan, and Carlo Curino, “Extending Relational Query Processing with ML Inference”,
Proceedings of the 2020 Conference on Innovative Data Systems Research (CIDR 2020), 2020.

Supun Nakandala, Arun Kumar, and Yannis Papakonstantinou, “Incremental and Approxi-
mate Inference for Faster Occlusion-based Deep CNN Explanations”, Proceedings of the 2019
International Conference on Management of Data (SIGMOD 2019), pages 1589-1606. 2019.

Supun Nakandala, Gyeong-In Yu, Markus Weimer, and Matteo Interlandi, “Compiling Classical
ML Pipelines into Tensor Computations for One-size-fits-all Prediction Serving”, Proceedings of
the Systems for ML workshop at NeurIPS, 2019.

Supun Nakandala, Yuhao Zhang, and Arun Kumar, “Cerebro: Efficient and Reproducible Model
Selection on Deep Learning Systems”, Proceedings of the 3rd International Workshop on Data
Management for End-to-End Machine Learning (DEEM 2019), pages 1-4. 2019.

Allen Ordookhanians, Xin Li, Supun Nakandala, and Arun Kumar, “Demonstration of Krypton:
Optimized CNN Inference for Occlusion-based Deep CNN Explanations”, Proceedings of the
2019 Very Large Data Bases Conference (VLDB 2019), pages 1894-1897, 2019.

xxii

ABSTRACT OF THE DISSERTATION

Query Optimizations for Deep Learning Systems

by

Supun Nakandala

Doctor of Philosophy in Computer Science

University of California San Diego, 2022

Professor Arun Kumar, Chair

Deep Learning (DL) has unlocked unstructured data for analytics. It has enabled new

applications, insights, and value in various domains, including enterprises, domain sciences, and

healthcare. However, DL workloads are highly resource-intensive and time-consuming, which

hinder their adoption. Thus, optimizing them from a systems standpoint has attracted significant

attention in recent years. In this dissertation, we fundamentally re-imagine DL workloads as

data processing workloads and optimize them from a data management standpoint. Using a

combination of abstractions already available in DL practice, new algorithms, system design,

theoretical and empirical analysis, we show how classical query optimization ideas such as

rewrites, multi-query optimization, materialization optimization, incremental view maintenance,

xxiii

approximate query processing, and predicate push-down can be re-imagined in the context of

DL workloads to optimize them. We show that our techniques can enable significant runtime

and resource savings (even over 10X for some cases) for a variety of popular and important

end-to-end DL workloads. Our work fills a critical technical gap in DL systems architecture and

opens up new connections between query optimization and DL systems.

xxiv

Chapter 1

Introduction

1.1 Motivation

Deep Learning (DL) [124] has unlocked unstructured data for analytics. It has enabled

new applications, insights, and value in various domains, including enterprises [137], domain

sciences [282], and even in critical application domains such as in healthcare [160, 148]. However,

DL workloads are highly resource-intensive and time-consuming, which hinder their adoption.

Thus, in recent years, optimizing them from a systems standpoint has attracted significant attention

from the computer systems community.

In this dissertation, we fundamentally reimagine DL workloads as data processing work-

loads to optimize them from a data management standpoint. We identify and optimize three

popular DL workload types: 1) model building, 2) model inference, and 3) transfer learning,

which is a special type of model training workload that reuses pre-trained models. Figure 1.1

presents an illustration of these workload types and several workloads pertaining to each type.

However, one cannot directly apply existing data management techniques to optimize

DL workloads. This is because DL workloads are significantly different from other popular data

processing workloads at various levels, including the data model, computational model, execution

1

(A) Model Building

Labeled Training

Data

Best Model

(C) Transfer Learning

Labeled Training

Data

Pre-Trained Model

(B) Model Inference

Best Model

Model Selection

Feature Transfer

Model Adaptation

Prediction

Serving

Prediction

 Explanations

Best Model

Why model predicted
 pneumonia?

Predictive Analytics,

 IoT, etc..

Analyst

Radiologist

Data Scientist

Data Scientist

…
.

…
.

…
.

<reuse>

Model

Configurations

Feature Transfer/

Model Adaptation Schemes

Figure 1.1: The three high-level DL workload types identified in this dissertation. (A) Model
building workloads. (B) Model inference workloads. (C) Transfer learning workloads. For
each workload type, we also present example workloads, which we focus on optimizing in this
dissertation work.

characteristics, and user interaction modes. For example, DL workloads use 1tensors as the data

model and the neural computational graph as the computational model [124], which are unique to

the DL workloads. DL workloads are also highly data-intensive. Training a DL model with good

accuracy requires millions of training examples [108]. DL workloads are also highly compute-

and memory-intensive [60]. DL model training is a complex iterative numerical optimization

process [124], which can take weeks of computing time even on high-end hardware accelerators

such as GPUs and TPUs. DL models can also have billions of parameters [257], which bloats

their runtime memory footprint. Furthermore, DL model training is an empirical process and

requires a significant amount of exploratory work to pick the best model for a given task. This

exploratory process is also called model selection [124, 173]. Overall, these characteristics hinder

DL adoption for many practitioners.

The computer systems community has identified the lack of specialized systems for DL

1Generalization of matrices to higher dimensions.

2

Program Compilation

Program Execution Query Execution

Program Construction

Workload Specification

(B) Functionality

Query/Workload Specification

e.g., SQL, PL/SQL

(C) DBMS Analogy

Query Compilation
Compilers

…e.g., XLA, TVM

e.g., TensorFlow, PyTorch

(A) DL Systems Stack

Libraries …

Frameworks …

Hardware …

e.g., GPU, TPU

e.g., Keras, HuggingFace
Query Optimization???

Figure 1.2: (A) DL systems stack (hardware, compilers, frameworks, and libraries). (B)
Functionality performed by layers in the DL systems stack. (C) Database management systems
analogy for the functionality performed by layers in the DL systems stack.

as a blocker for DL adoption and has invested in developing optimized systems for DL. These

systems are collectively referred to as DL systems. They span the entire vertical cross-section

of computing. An illustration of the DL systems stack is presented in Figure 1.2 (A). At the

bottom-most layer, there are custom hardware accelerators (e.g., GPUs, TPUs, and custom ASICs)

developed for DL [179]. On the layer above, there are compilers (e.g., TVM [93], XLA [52])

developed for DL. On the very top, there are frameworks (e.g., TensorFlow [54], PyTorch [228])

and libraries (e.g., Keras [131], HuggingFace [284]) developed for DL. In terms of functionality,

the libraries layer provides application programming interfaces (APIs) for specifying various DL

workloads. The frameworks layer contains the application logic needed to construct the final

program. The compiler layer then compiles the program to executable code to execute on the

hardware.

In terms of the layers of functionality, the DL systems stack bears strong similarities to

the database management systems (DBMSs) architecture [237] as shown in Figure 1.2 (C). For

instance, the workload specification aspect of the DL libraries is analogous to the query/workload

3

specification layer in DBMSs (e.g., SQL, PL/SQL). The program construction aspect of the DL

frameworks and program compilation aspects of the DL compilers are collectively analogous to

the query compilation layer in DBMSs. The program execution on the DL hardware is analogous

to the query execution layer in DBMSs. However, one major research gap in the DL systems

stack is the analogous of a query optimization layer. The query optimization layer [150] is a

major component in the DBMS architecture, which enables achieving high efficiencies despite

providing an easy-to-use declarative workload specification interface (e.g., SQL) for the users.

The query optimization layer performs automated optimizations based on the query workload

characteristics such as data access and computation patterns. For other data processing workloads

such as relational query processing, query optimization is an extensively studied area [88].

The lack of a query optimization counterpart in the DL systems stack results in significant

missed opportunities for optimization. Even though the DL compilers perform program-level

compiler optimizations (e.g., operator fusion, loop optimizations [93]), they operate at a lower

granularity and do not optimize for workload-level semantic, logical, and physical characteristics.

Considering this, the thesis of this dissertation is that:

For a variety of end-to-end model building, model inference, and transfer learning

workloads, by characterizing the semantic, logical, and physical characteristics of

those workloads, novel query optimization-inspired techniques can be developed to

significantly improve system efficiency and reduce resource costs of them.

Using a combination of abstractions already available in DL practice, new algorithms, system

design, theoretical and empirical analysis, we show how classical query optimization ideas such

as rewrites [227], multi-query optimization [250], materialization optimization [96], incremental

view maintenance [86], approximate query processing [120], and predicate push-down [272] can

be re-imagined in the context of DL workloads to optimize them. We show that our approach can

enable significant runtime and resource savings (even over 10X for some cases) for a variety of

popular end-to-end DL workloads.

4

1.2 Technical Contributions

In this dissertation, we select five popular and important end-to-end DL workloads and

optimize them from a data management standpoint. We chose these workloads based on our

interactions with DL practitioners and domain scientists and the recent trends identified from

influential DL publications. We identify semantic, logical, and physical characteristics of these

workloads that are not leveraged by existing DL systems and develop new query optimization-

inspired techniques to optimize them. Our physical optimizations operate at the lowest level

and are the closest to the physical execution. Our logical optimizations are higher-level than

physical optimizations. They rearrange the computations and data accesses of a workload while

ensuring the exact output. Our semantic optimizations operate at the highest level and leverage

the workload semantics to trade off the output accuracy with system/resource efficiency.

We bake in our techniques into specialized systems optimized for each DL workload.

As much as possible, we try to leverage existing DL systems and data analytics systems and

implement our ideas on top of these existing systems without making any changes to the internals

of those systems. This approach reduces the implementation efforts and enables wider adoption

of our techniques. It also allows us to automatically benefit from future advancements in the rest

of the DL systems stack (e.g., compilers and architecture). We organize our contributions based

on the type of DL workload they optimize: 1) model building, 2) model inference, and 3) transfer

learning. Figure 1.3 summarizes our contributions.

1.2.1 Model Building Workloads

We focus on model selection workloads, which is an unavoidable step in model training.

Model selection requires training and evaluating several model configurations (sometimes hun-

dreds) before picking the best model. Thus, it significantly increases the resource costs of DL

model training.

5

Semantic
Optimizations

Logical
Optimizations

Physical
Optimizations

Cerebro (Chapter 3)

Hummingbird (Chapter 5)

Krypton (Chapter 6)

Vista (Chapter 8)

Nautilus (Chapter 9)

(A) Model Building

Labeled Training

Data

Best Model

(C) Transfer Learning

Labeled Training

Data

Pre-Trained Model

(B) Model Inference

Best Model

Model Selection

Feature Transfer

Model Adaptation

Prediction

Serving

Prediction

 Explanations

Best Model

Why model predicted
 pneumonia?

Predictive Analytics,

 IoT, etc..

Analyst

Radiologist

Data Scientist

Data Scientist

…
.

…
.

…
.

<reuse>

Model

Configurations

Feature Transfer/

Model Adaptation Schemes

Cerebro

Vista

Nautilus

Hummingbird

Krypton

Figure 1.3: The different systems that we have developed, the workloads they optimize, and the
type of optimizations they perform.

CEREBRO: Query Optimizations for DL Model Selection. We observed that most DL

systems today focus on training one model at a time, reducing throughput and raising overall

resource costs; some also sacrifice reproducibility. We propose CEREBRO, which is a new

data system to raise DL model selection throughput at scale without raising resource costs and

sacrificing reproducibility or accuracy. CEREBRO uses a new parallel DL model training strategy

we call model hopper parallelism. Model hopper parallelism leverages the physical characteristics

of the DL model training process to optimize it. Model hopper parallelism hybridizes task- and

data-parallelism to mitigate the cons of these prior paradigms and offers the best of both worlds.

Experiments on large benchmark datasets show that CEREBRO offers 3X to 10X runtime savings

6

relative to data-parallel systems like Horovod [252] and Parameter Server [187] and up to 8X

memory/storage savings or up to 100X network savings relative to task-parallel systems [261].

This work is the subject of Chapter 3 and is joint work with Yuhao Zhang and Arun Kumar.

A paper on this work appeared at the VLDB conference in 2020 [215]. In Chapter 4 we dive into

the applications and extensions of CEREBRO. There we provide more details about a public health

application case study that was supported by CEREBRO and details on how we extended CEREBRO

to implement a novel human-in-the-loop model selection paradigm. The code for our system is

open source and is available on GitHub: https://github.com/ADALabUCSD/cerebro-system.

1.2.2 Model Inference Workloads

Inference is the process of generating predictions from trained models. We focus on two

inference workloads: 1) prediction serving and 2) prediction explanation.

HUMMINGBIRD: Query Optimizations for Classical ML Prediction Serving on DL

Systems. We observed that while there are specialized systems for DL inference (e.g., TVM [93],

ONNXRuntime [15]), classical ML inference workloads in enterprises are supported in an ad-hoc

manner. Yet, classical machine learning workloads are very popular in enterprises and the lack of

specialized systems support contributes to significant infrastructure complexity and increased

costs [61]. In this work, we use query optimization-inspired techniques to develop a system

called HUMMINGBIRD, which enables classical ML inference on DL systems. HUMMINGBIRD

leverages the logical and physical characteristics of classical ML inference workloads and

rewrites featurization operators and traditional ML models (e.g., decision trees) into a set of tensor

operations supported by DL inference systems. We show that our approach not only reduces the

infrastructure complexity by leveraging existing investments in DL inference systems, but can

also enable significant runtime speedups of up to 3X against hand-crafted GPU kernels, and up to

1200X for predictive pipelines against state-of-the-art frameworks.

This work is the subject of Chapter 5. It was started as an internship project while interning

7

at Microsoft and is joint work with Karla Saur, Gyeong-In Yu, Konstantinos Karanasos, Carlo

Curino, Markus Weimer, and Matteo Interlandi. A paper on this work appeared at the USENIX

OSDI conference in 2020 [213]. The code for our system is open source and is available on

GitHub: https://github.com/microsoft/hummingbird.

KRYPTON: Query Optimizations for Deep CNN Prediction Explanations. Deep

Convolutional Neural Networks (CNNs) [171, 260] are a special type of DL model optimized for

image prediction tasks. They match human-level accuracy in many prediction tasks, resulting in

a growing adoption in various domains including healthcare [160, 148]. Naturally, “explaining”

CNN predictions is a key concern for many users and occlusion-based explanations [290] (OBE)

is a popular technique for understanding CNN predictions. In OBE, one occludes a region of

the image using a patch and moves it around to produce a heat map of changes to the prediction

probability. This approach is computationally expensive due to the large number of re-inference

requests produced, which wastes time and raises resource costs.

In this work, we leverage the semantic, logical, and physical characteristics of the OBE

workload and develop a system we call KRYPTON to optimize it. We cast the OBE workload as

a new instance of the classical incremental view maintenance problem [86]. We create a novel

and comprehensive algebraic framework for incremental CNN inference combining materialized

views with multi-query optimization [250] to reduce computational costs. We also present two

novel approximate inference optimizations that exploit the semantics of CNNs and the OBE task

to further reduce runtimes. Experiments with real data and CNNs show that KRYPTON reduces

runtimes by up to 5X (resp. 35X) to produce exact (resp. high-quality approximate) results

without raising resource requirements.

This work is the subject of Chapter 6 and is joint work with Arun Kumar and Yannis

Papakonstantinou. In Chapter 7, we dive into the extensions of KRYPTON. There we provide

details on how we extended KRYPTON to support interactive CNN prediction diagnosis and

support accelerating OBE for arbitrary CNN models.

8

A paper on this work appeared at the ACM SIGMOD conference in 2019 [211], and it

was recognized as an honorable mention for the ACM SIGMOD 2019 best paper award for its

novelty and innovation in the transfer of database knowledge to—seemingly—unrelated domains.

It also received a SIGMOD 2020 research highlight award and was invited to the ACM TODS

journal in 2020.

1.2.3 Transfer Learning Workloads

Transfer learning [268] is a crucial paradigm for democratizing DL, which reduces the

high resource costs of DL training workloads. It does so by reusing pre-trained DL models instead

of training new models for every new task. We present two scenarios where query optimization-

inspired techniques can be used to optimize transfer learning workloads: 1) deep CNN feature

transfer and 2) DL model adaptation.

VISTA: Query Optimizations for Deep CNN Feature Transfer. Deep CNNs provide

a unique opportunity to holistically integrate image data in enterprise data analytics, which

has hitherto relied mainly on structured data [137]. Since training deep CNNs from scratch is

expensive and laborious, feature transfer has become popular: using a pre-trained CNN, one reads

off certain intermediate output features from the model to represent images and combines them

with other features for a downstream machine learning task. Since no single intermediate output

will always offer the best accuracy in general, such feature transfer requires comparing many

intermediate outputs.

We observed that the current approach to this process on top of DL systems such as

TensorFlow [54] and scalable analytics systems such as Spark [289] is fraught with inefficiency

due to redundant CNN inference and the potential for system crashes due to manual memory

management. We propose VISTA, a system to mitigate such issues by elevating the feature transfer

workload to a declarative level and formalizing the data model of CNN inference. VISTA leverages

the logical and physical characteristics of CNN feature transfer workloads to optimize them. It

9

casts the deep CNN feature transfer workload as a novel instance of multi-query optimization

and enables automated optimization of feature materialization trade-offs, memory usage, and

system configuration. Experiments with real-world datasets and deep CNNs show that apart from

enabling seamless feature transfer, VISTA reduces runtimes by 67%.

This work is the subject of Chapter 8 and is joint work with Arun Kumar. A paper on this

work appeared at the ACM SIGMOD conference in 2020 [210]. The code for our system is open

source and is available on GitHub: https://github.com/AdaLabUCSD/Vista.

NAUTILUS: Query Optimizations for DL Model Adaptation. In DL model adaptation

workloads, one adapts a pre-trained model for a target task instead of training a new model

from scratch. A common practice during this process is to freeze most pre-trained model

parameters [194, 80] and adapt only the remaining. Since no single freezing scheme is universally

the best, one often evaluates several model freezing schemes. Furthermore, this process is repeated

whenever new training data become available for the target task [65, 73]. Today, one executes this

workload by performing computations for the entire pre-trained model and repeats it every time

new training data become available. This approach results in redundant computations in frozen

model parts and causes system inefficiency issues.

We propose NAUTILUS, a system to reduce redundant computations and training over-

heads of DL model adaptation workloads. NAUTILUS leverages the physical characteristics of

model adaptation workload and casts it as a new instance of multi-query optimization [250].

Experiments with end-to-end workloads on benchmark datasets show that NAUTILUS reduces DL

model adaptation runtimes by up to 5X compared to the current practice.

This work is the subject of Chapter 9 and is joint work with Arun Kumar. A paper on this

work will appear at the ACM SIGMOD conference in 2022 [12]. The code for our system is open

source and is available on GitHub: https://github.com/AdaLabUCSD/Nautilus.

10

1.3 Summary and Impact

DL is an emerging data processing workload category that requires specialized systems

support. DL systems stack bears strong similarities to other data processing system stacks

such as DBMSs. However, one major difference of current DL systems stack compared to

the DBMSs is the lack of a counterpart for query optimization. As a result, DL systems miss

significant opportunities for workload optimizations. In this dissertation, we propose novel

query optimization-inspired workload optimization techniques for DL systems. Our optimization

techniques cover three major DL workload categories: 1) model building workloads, 2) model

inference workloads, and 3) transfer learning workloads. We show that our techniques can

significantly improve system efficiency and reduce resource costs of DL workloads. Our work

fills critical technical gaps in DL systems architecture and opens up new connections between

query optimization and DL systems.

Our interactions with domain experts, analysts, and engineers from academic institutions

and industry helped us identify many practical bottlenecks faced when adopting DL. These

bottlenecks became the research focus of this dissertation, and in some cases, we were able to

transition our techniques and systems for real-world adoption. In particular, at the time of writing

this document, the research systems discussed in this dissertation have had the following practical

impacts:

• The CEREBRO system has been used by public health researchers at UC San Diego to train

behavior prediction models on terabyte-scale accelerometer training data [127].

• Ideas from the CEREBRO system has been integrated into the Apache MADLib library, and

VMware has shipped it to their enterprise customers for performing in-database DL model

selection [275].

• The HUMMINGBIRD system has been open-sourced by Microsoft [38] and it has been

11

downloaded over 60,000 times using the PyPI package manager. Also, Microsoft has

integrated the HUMMINGBIRD system to their ONNXRuntime and SynapseML systems.

• We have also started exploring the possibility of adopting ideas from the NAUTILUS system

for public health use cases at UC San Diego.

12

Chapter 2

Background

2.1 Deep Learning

DL is a machine learning paradigm that uses artificial neurons as the building block [124].

DL models take raw features as input and perform a series of transformation operations to

generate the final output predictions. These transformations are organized into groups called

layers. Internally, a DL model is organized as a directed graph of layers. A layer contains multiple

neurons and these neurons are connected to neurons in the input layers through learnable weight

parameters. The output of a neuron is computed by some non-linear function of the sum of its

inputs. Figure 2.1 (A) presents an illustration of a DL model.

The internal layers of a DL model are referred to as hidden layers. During DL model

training, hidden layers automatically learn to extract a hierarchy of relevant features directly from

raw data [290]. Thus, DL significantly deviates from the previous paradigms of machine learning,

which require extensive human effort for engineering the relevant features for a task. In recent

years, DL models have revolutionized unstructured data analytics (e.g., images, speech, text,

time-series data), resulting in near-human accuracies for some prediction tasks [2].

13

Layer

Neuronθ(1) θ(2) θ(3)
Learnable Parameters

θ(4)
θ(5)

θ(6)

(A) (B)J(θ, X, y)
loss values

Parameter

 Update

(local) minimum

loss value

Figure 2.1: (A) Deep learning model. (B) Mini-batch stochastic gradient descent in action.
J(θ,X ,y) is the loss function; θ is the set of learnable parameters; (X ,y) is the training data.

2.2 Mini-batch Stochastic Gradient Descent

DL model training tries to learn optimal values for the model parameters θ using some

loss function J. The loss function essentially captures how good the model approximates the

input-output (X ,y) mappings in the training data. One such widely-used loss function is the

cross-entropy loss function [124].

Given such a loss function, the mini-batch stochastic gradient descent (mini-batch SGD)

method or its variants are used to train DL models. Mini-batch SGD is an iterative numerical

optimization method, which performs multiple scans over the data using small data batches called

mini-batches. A single scan is also called an epoch of training. In an epoch, SGD randomly

samples a mini-batch of training data (X (i:i+n),y(i:i+n)) and calculates the loss J(θ;X (i:i+n);y(i:i+n)).

It then calculates the loss gradients with respect to all the learnable model parameters ∇θ and

updates the parameters to reduce the loss as per Equation 2.1. The parameter gradients are also

weighted by a coefficient η, which is also called the learning rate.

θ = θ−η ·∇θJ(θ;X (i:i+n);y(i:i+n)) (2.1)

Each parameter update tries to reduce the loss value and find optimal values for the model

14

parameters. This process is continued until the model has converged such that the loss value has

reached a minimum value and it wouldn’t improve any further. This process is pictorially depicted

in Figure 2.1 (B). SGD is guaranteed to find the optimal values for the model parameters only

for convex optimization problems. However, DL model training is a non-convex optimization

problem. Yet, it has been shown that SGD can converge to a good local optimum in most cases.

SGD is inherently sequential; deviating from sequential execution may lead to poor convergence

behavior, typically raising the number of parameter updates needed for a given accuracy.

The computations needed for mini-batch SGD are performed in two stages: forward pass

and backward pass.

2.2.1 Forward Pass of Computations

The mini-batch loss values J(θ;X (i:i+n);y(i:i+n)) needed for SGD are calculated using

a forward computation pass over the model. During the forward pass, input feature values X

of a mini-batch are propagated through the layers, where each layer performs some non-linear

transformation. The final layer generates the output predictions. These predictions values and the

actual label values y are then used to calculate the mini-batch loss value.

2.2.2 Backward Pass of Computations

Parameter gradients ∇θ needed for mini-batch SGD are calculated using a backward

computation pass over the model, which is also called backpropagation. Backpropagation

leverages the graph structure of the model and the chain rule of differentiation to efficiently

calculate the gradients. After the forward-pass and the loss computation, backpropagation

calculates the loss gradient with respect to the model outputs and traverses backward from the

model output layers towards the model input layers. Along its path, it propagates the loss gradient

through the layers. The loss gradients with respect to the inputs of a layer, also called the

15

input gradients, are calculated using the loss gradient with respect to the output of that layer.

Backpropagation also calculates the layer parameter gradients ∇θ using the layer output gradients

and uses them to update the learnable parameters.

2.3 Model Selection

The accuracy of a trained DL model heavily depends on the model architecture (e.g., model

graph structure, number of layers, layer types, number of artificial neurons inside a layer) and also

on the various training hyperparameter (e.g., training mini-batch size, learning rate, regularization

values) used during training [124, 173]. Thus, training a DL model is seldom a one-off process.

Practitioners often explore several different model architectures and hyperparameter values before

picking the best configuration for their given task. This empirical process is referred to as model

selection, and it is unavoidable because it is how one controls underfitting vs. overfitting [255].

Model selection is a major bottleneck for the adoption of DL among enterprises and domain

scientists due to both the time spent and resource costs. In chapter 3, we provide more details

about model selection along with a case study and dive deep into our techniques for optimizing it.

2.4 Model Inference

Inference is the process of generating predictions from a trained DL model. DL inference

is a simpler process compared to the training process as it involves only the forward-pass

of computations. Even though the model inference process is simple, it is a key contributor

to the increased system complexity, performance concerns, and overall operational efficiency

of a machine learning infrastructure [29]. For instance, each model is trained once but used

multiple times for inference in a variety of environments. Thus inference dominates infrastructure

complexity for deployment, maintainability, and monitoring. Second, model inference is often

16

in the critical path of interactive and analytical applications, hence its performance (in terms

of latency and throughput) is an important concern for enterprises. Finally, model inference is

responsible for 45-65% of the total cost of ownership of machine learning solutions [61]. In

chapter 5, we provide more details about model inference and dive deep into our techniques for

enabling classical ML inference on DL inference systems.

In addition to making basic predictions, some DL users often seek an “explanation” for

why a DL model predicted a certain prediction. Hence, model explainability workloads have also

become a popular and important DL workload category. Prediction explanations can help users

trust DL models [242], especially in high-stakes applications such as radiology [256], and are a

legal requirement for machine learning applications in some countries [276]. How to explain a

DL model prediction is still an active research question. However, perturbation-based [290] and

gradient-based [251] approaches are two widely used method families for explaining DL model

predictions. In chapter 6, we provide more details about occlusion-based explanation, a widely

used technique for explaining deep convolutional neural network (CNN) predictions, and dive

deep into our techniques for optimizing it.

2.5 Deep Transfer Learning

The success of DL is mainly driven by how it extracts a hierarchy of relevant parameterized

features from raw data, with the parameters learned automatically during training [124]. But,

DL has a major bottleneck: model training is expensive. In many cases, it needs large training

datasets (e.g., millions of records) and incurs high compute costs (e.g., days to weeks of GPU

time). This hinders DL adoption, especially in low-resource settings. These bottlenecks can be

overcome using a paradigm called deep transfer learning (DTL).

DTL leverages the fact that most of the features learned by a DL model when trained on a

large dataset like Wikipedia, are general enough to be reused in other similar settings [245, 181,

17

229, 109]. Thus, instead of training a DL model from scratch, one can reuse a pre-trained model

to 1) transfer features for a target task or 2) adapt the parameters of the DL model for the target

task, instead of training a model from scratch. DTL is a crucial paradigm for democratizing DL.

Thus, the DL community is investing in creating highly reusable pre-trained models, also called

foundation models [76], for various domains. We provide more details about feature transfer

and model adaptation workloads in chapter 8 and chapter 9, respectively, and also dive into our

techniques for optimizing these workloads.

18

Chapter 3

CEREBRO: Query Optimizations for DL

Model Selection

3.1 Introduction

In this chapter, we dive deeper into our techniques for optimizing distributed DL model

selection. Model selection is an unavoidable step when training DL models where practitioners

have to evaluate several different models configurations before picking the best model for their

given task. Model selection significantly amplifies the DL model training costs and makes it a

major bottleneck for adopting DL. Thus optimizing DL model selection from a systems standpoint

is of major importance for democratizing DL.

Case Study. We present a real-world model selection scenario. Our public health

collaborators at UC San Diego wanted to try DL models for identifying different activities

(e.g., sitting, standing, stepping, etc.) of subjects from body-worn accelerometer data. The data

were collected from a cohort of about 600 people and is labeled. Its size is 864 GB. During

model selection, we tried different model architectures such as convolution neural networks

(CNNs), long short-term memory models (LSTMs), and composite models such as CNN-LSTMs,

19

which now offer state-of-the-art results for multivariate time-series classification [220, 161]. Our

collaborators also wanted to try different prediction window sizes (e.g., predictions generated

every 5 seconds vs. 15 seconds) and alternative target semantics (e.g., sitting–standing–stepping

or sitting vs. not sitting). The training process also involves tuning various hyper-parameters such

as learning rate and regularization coefficient.

In the above scenario, it is clear that the model selection process generates dozens, if

not hundreds, of different models that need to be evaluated in order to pick the best one for the

prediction task. Due to the scale of the data and the complexity of the task, it is too tedious and

time-consuming to manually steer this process by trying models one by one. Parallel execution

on a cluster is critical for reasonable runtimes. Moreover, since our collaborators often changed

the time windows and output semantics for health-related analyses, we had to rerun the whole

model selection process over and over several times to get the best accuracy for their evolving

task definitions. Finally, reproducible model training is also a key requirement in such scientific

settings. All this underscores the importance of automatically scaling DL model selection on a

cluster with high throughput.

System Desiderata. We identify the following key desiderata for a DL model selection

system.

1) Scalability. DL often has large training datasets, larger than single-node memory and

sometimes even disk. DL model selection is also highly compute-intensive. Thus, we desire out-

of-the-box scalability to a cluster with large partitioned datasets (data scalability) and distributed

execution (compute scalability).

2) High Throughput. Regardless of manual grid/random searches or more complex

AutoML searches, a key bottleneck for model selection is throughput: how many training

configurations are evaluated per unit time. Higher throughput enables DL users to iterate through

more configurations in bulk, potentially reaching a better accuracy sooner.

20

3) Overall Resource Efficiency. DL training uses variants of mini-batch stochastic

gradient descent (SGD) [71, 77, 79]. To improve efficiency, the model selection system has to

avoid wasting resources and maximize resource utilization for executing SGD on a cluster. We

identify 4 key components of resource efficiency: (1) per-epoch efficiency: time to complete

an epoch of training; (2) convergence efficiency: time to reach a given accuracy metric; (3)

memory/storage efficiency: amount of memory/storage used by the system; and (4) communication

efficiency: the amount of network bandwidth used by the system. In cloud settings, compute,

memory/storage, and network all matter for overall costs because resources are pay-as-you-go;

on shared clusters, which are common in academia, wastefully hogging any resource is unethical.

4) Reproducibility. Ad hoc model selection with distributed training is a key reason

for the “reproducibility crisis” in deep learning [280]. While some Web giants may not care

about reproducibility for some use cases, this is a showstopper issue for many enterprises due to

auditing, regulations, and/or other legal reasons. Most domain scientists also inherently value

reproducibility.

Limitations of Existing Landscape. We compared existing approaches to see how

well they cover the above desiderata. Unfortunately, each approach falls short on some major

desiderata, as we summarize next. Figure 3.3 and Section 3.2 present our analysis in depth.

1) False Dichotomy of Task- and Data-Parallelism. Prior work on model selection

systems almost exclusively focus on the task-parallel setting [186, 185, 149]. This ignores a

pervasive approach to scale to large data on clusters: data partitioning (sharding). A disjoint line

of work on data-parallel DL systems do consider partitioned data but focus on training one model

at a time, not model selection workloads [252, 187]. Model selection on partitioned datasets

is important because parallel file systems (e.g., HDFS for Spark), parallel RDBMSs, and “data

lakes” typically store large datasets in that manner.

2) Resource Inefficiencies. Due to the false dichotomy, naively combining the above

21

Model Hopper Parallelism (Cerebro)
+ high throughput
+ high data scalability
+ low communication cost
+ no memory/storage wastage

Task Parallelism
+ high throughput
 - low data scalability
 - memory/storage wastage

Data Parallelism
+ high data scalability
 - low throughput
 - high communication cost

(A) Model Search/AutoML Procedures

Grid/Random

Search PBT HyperBand … ASHA

Distributed Data

Cerebro/MOP

Deep Learning Systems

Partition 1 Partition 2 Partition p…

(B)

Task-Parallel Systems

Bulk
(Partitions)

Fine-grained
(Mini-batches)

Async.

Sync.

Data-Parallel Systems

Dask, Celery,
Vizier, Spark-

HyperOpt

Async. Param.
Server

Sync. Param.
Server,
Horovod

Spark or
TF Model
Averaging

MOP/CEREBRO
(This Work)

No Partitioning
(Full replication)

(C)

Figure 3.1: (A) Cerebro combines the advantages of both task- and data-parallelism. (B)
System design philosophy and approach of CEREBRO/MOP (introduced in [214]): “narrow
waist” architecture in which multiple model selection procedures and multiple deep learning
tools are supported–unmodified–for specifying/executing DL computations. MOP is our novel
resource-efficient distributed SGD execution approach. (C) Model Hopper Parallelism (MOP) as
a hybrid approach of task- and data-parallelism. It is the first known form of bulk asynchronous
parallelism, filling a major gap in the parallel data systems literature.

mentioned approaches could cause overheads and resource wastage (Section 3.2 explains more).

For instance, using task-parallelism on HDFS requires extra data movement and potential caching,

substantially wasting network and memory/storage resources. An alternative is remote data

storage (e.g., S3) and reading repeatedly at every iteration of SGD. But this leads to orders of

magnitude higher network costs by flooding the network with lots of redundant data reads. On

the other hand, data-parallel systems that train one model at a time (e.g., Horovod [252] and

Parameter Servers [187]) incur high communication costs, leading to high runtimes.

Overall, we see a major gap between task- and data-parallel systems today, which leads to

substantially lower overall resource efficiency, i.e., when compute, memory/storage, and network

22

Co
m

m
un

ic
at

io
n

Co
st

 p
er

 E
po

ch

Memory/storage Wastage

Parameter
Server

BSP

Task-Parallel w/ full remote reads**

(Controllable: Replication rate)
Higher

H
ig

he
r Horovod*

O
nc

e
pe

r
m

in
i-

ba
tc

h
O

nc
e

pe
r

pa
rt

it
io

n

No replica. Full replica.

MOP/Cerebro

Task-Parallel w/
full replication

(Controllable: Caching rate)

Figure 3.2: Conceptual comparison of MOP/CEREBRO with prior art on two key axes of re-
source efficiency: communication cost per epoch and memory/storage wastage. Dashed line
means that approach has a controllable parameter. *Horovod uses a more efficient communica-
tion mechanism than Parameter Server (PS), leading to a relatively lower communication cost.
**Task-Parallelism with full remote reads has varying communication costs (higher or lower
than PS) based on dataset size.

are considered holistically.

Our Proposed System. We propose CEREBRO, a new system for DL model selection

that mitigates the above issues with both task- and data-parallel execution. As Figure 3.1(A)

shows, CEREBRO combines the advantages of both task- and data-parallelism, while avoiding

the limitations of each. It raises model selection throughput without raising resource costs. Our

target setting is small clusters (say, tens of nodes), which covers a vast majority (over 90%) of

parallel ML workloads in practice [224]. We focus on the common setting of partitioned data on

such clusters. Figure 3.1(B) shows the system design philosophy of CEREBRO: a narrow-waist

architecture inspired by [173] to support multiple model selection search procedures and DL

systems.

Summary of Our Techniques. At the heart of CEREBRO is a simple but novel hybrid

of task- and data-parallelism we call model hopper parallelism (MOP) that fulfills all of our

desiderata. MOP is inspired by the multi-query optimization (MQO) [250] in DBMSs and is based

on our insight about a formal optimization theoretic property of SGD: robustness to the random

23

ordering of the data. Figure 3.1(C) positions MOP against prior approaches: it is the first known

form of “Bulk Asynchronous” parallelism, a hybridization of the Bulk Synchronous parallelism

common in the database world and task-parallelism common in the DL world. As Figure 3.2

shows, MOP has the network and memory/storage efficiency of BSP but offers much better

model convergence behavior. Prior work has shown that the BSP approach for distributed SGD

(also called “model averaging”) has poor convergence behavior [116]. Overall, considering all

resources holistically–compute, memory/storage, and network–MOP can be the resource-optimal

choice in our target setting.

With MOP as its basis, CEREBRO devises an optimizing scheduler to efficiently execute

DL model selection on small clusters. We formalize our scheduling problem as a mixed-integer

linear program (MILP). We compare alternate candidate algorithms with simulations and find that

a simple randomized algorithm has surprisingly good performance on all aspects (Section 3.5).

We then extend our scheduler to support replication of partitions, fault tolerance, and elasticity

out of the box (Sections 3.5.5 and 3.5.6). Such systems-level features are crucial for DL model

selection workloads, which can often run for days. Overall, this work makes the following

contributions:

• We present a new parallel SGD execution approach we call model hopper parallelism

(MOP) that satisfies all the desiderata listed earlier by exploiting a formal property of

SGD. MOP is applicable to any ML models trained with SGD. We focus primarily on

DL models due to their growing popularity combined with the pressing issue of their

resource-intensiveness.

• We build CEREBRO, a general and extensible DL model selection system using MOP.

CEREBRO can support arbitrary DL models and data types, as well as multiple DL training

frameworks and model selection search procedures. We integrate it with TensorFlow and

PyTorch.

24

• We formalize the scheduling problem of CEREBRO and compare 3 alternatives (MILP

solver, approximate, and randomized) using simulations. We find that a randomized

scheduler works well in our setting.

• We extend CEREBRO to use partial data replication and support fault tolerance and elasticity.

• We perform extensive experiments on real model selection workloads with two large

benchmark datasets: ImageNet and Criteo. CEREBRO offers 3x to 10x runtime gains over

purely data-parallel systems and up to 8x memory/storage gains over purely task-parallel

systems. CEREBRO also exhibits linear speedup behavior.

3.2 Tradeoffs of Existing Approaches

Most deep learning tools (e.g., TensorFlow) focus on the latency of training one model

at a time, not on throughput. A popular way to raise throughput is parallelism. Thus, various

multi-node parallel execution approaches have been studied. All of them fall short on some

desiderata, as Figure 3.3 shows. We group these approaches into 4 categories:

Embarrassingly Task Parallel. Tools such as Python Dask, Celery, Vizier [122], and

Ray [207] can run different training configurations on different workers in a task-parallel manner.

Each worker can use logically sequential SGD, which yields the best convergence efficiency.

This is also reproducible. There is no communication across workers during training, but the

whole dataset must be copied to each worker, which does not scale to large partitioned datasets.

Copying datasets to all workers is also highly wasteful of resources, both memory and storage,

which raises costs. Alternatively, one can use remote storage (e.g., S3) and read data remotely

every epoch. But such repeated reads wastefully flood the network with orders of magnitude extra

redundant data, e.g., see a realistic cost calculation in Table 3.2.

Bulk Synchronous Parallel (BSP). BSP systems such as Spark and TensorFlow with

25

Desiderata
Embarrassing

Task Parallelism
(e.g., Dask, Celery,

Data Parallelism
Bulk Synchronous

(e.g., Spark)
Centralized Fine-

grained (e.g., Async PS)
Decentralized Fine-

grained (e.g., Horovod)

Reproducibility

Model Hopper
Parallelism
(Our Work)

Data
Scalability

SGD Conv.
Efficiency

Per-Epoch
Efficiency

Mem/Storage
Efficiency

Yes

Highest

High

No (Full Replication)
Wasteful (Remote Reads)

Lowest

Yes

High

Lowest

Yes

High

No

Lowest

High

High

Yes

Yes

Yes

High

Low

Medium Highest

Yes

High

Yes

High

Figure 3.3: Qualitative comparisons of existing systems on key desiderata for a model selection
system.

model averaging [50] parallelize one model at a time. They partition the dataset across workers,

yielding high memory/storage efficiency. They broadcast a model, train models independently on

each worker’s partition, collect all models on the master, average the weights (or gradients), and

repeat this every epoch. Alas, this approach converges poorly for highly non-convex models; so,

it is almost never used for DL training [265].

Centralized Fine-grained. These systems also parallelize one model at a time on par-

titioned data but at the finer granularity of each mini-batch. The most prominent example is

Parameter Server (PS) [187]. PS is a set of systems for data-parallel DL model training. A typical

PS consists of servers and workers; servers maintain the globally shared model weights, while

workers compute SGD gradients on a locally stored data partition. Workers communicate with

servers periodically to update and retrieve model weights. Based on the nature of these communi-

cations, PS has two variants: synchronous and asynchronous. Asynchronous PS is highly scalable

but unreproducible; it often has poorer convergence than synchronous PS due to stale updates

but synchronous PS has higher overhead for synchronization. All PS-style approaches have high

communication due to their centralized all-to-one communications, which is proportional to the

number of mini-batches and orders of magnitude higher than BSP.

Decentralized Fine-grained. The best example is Horovod [252]. It adopts HPC-style

techniques to enable synchronous all-reduce SGD. While this approach is bandwidth optimal,

26

Table 3.1: Notation used in Section 3.3

Symbol Description

S Set of training configurations

p Number of data partitions/workers

k Number of epochs for S to be trained

m Model size (uniform for exposition sake)

b Mini-batch size

D Training dataset (〈D〉 : dataset size, |D| : number of examples)

communication latency is still proportional to the number of workers, and the synchronization

barrier can become a bottleneck. The total communication overhead is also proportional to the

number of mini-batches and orders of magnitude higher than BSP.

3.3 Model Hopper Parallelism

We first explain how MOP works and its properties. Table 3.1 presents some notation.

We also theoretically compare the communication costs of MOP and prior approaches.

3.3.1 Basic Idea of MOP

We are given a set S of training configurations (“configs” for short). For simplicity of

exposition, assume for now each runs for k training iterations, also called k epochs–we relax

this later1. Shuffle the dataset once and split into p partitions, with each partition located on

one of p worker machines. Given these inputs, MOP works as follows. Pick p configs from

S and assign one per worker (Section 3.5 explains how we pick the subset). On each worker,

the assigned config is trained on the local partition for a single sub-epoch, which we also call a

training unit. Completing a training unit puts that worker back to the idle state. An idle worker is

1Section 3.4.2 (Supporting Multiple AutoML Procedures) explains further how CEREBRO can support different
configs being trained for different numbers of epochs.

27

then assigned a new config that has not already been trained and also not being currently trained

on another worker. Overall, a model “hops” from one worker to another after a sub-epoch. Repeat

this process until all configs are trained on all partitions, completing one epoch for each model.

Repeat this every epoch until all configs in S are trained for k epochs. The invariants of MOP can

be summarized as follows:

• Completeness: In a single epoch, each config is trained on all workers exactly once.

• Model training isolation: Two training units of the same config are not run simultaneously.

• Worker/partition exclusive access: A worker executes only one training unit at a time.

• Non-preemptive execution: Once started, individual training units run without preemption.

Insights Underpinning MOP. MOP exploits a formal property of SGD: any random

ordering of examples suffices for convergence [71, 77]. Each of the p configs visits the data

partitions in a different (pseudorandom) yet in sequential order. Thus, MOP offers high accuracy

for all models, comparable to sequential SGD. While SGD’s robustness has been exploited before

in DL systems, e.g., in Parameter Server [187], MOP exploits it at the partition level instead of at

the mini-batch level to reduce communication costs. This is possible because we connect this

property with model selection workloads instead of training one model at a time.

Positioning MOP. As Figure 3.1(C) shows, MOP is a new hybrid of task- and data-

parallelism that is a form of “bulk asynchronous” parallelism. Like task-parallelism, MOP trains

many configs in parallel but like BSP, it runs on partitions. So, MOP is more fine-grained than

task parallelism but more coarse-grained than BSP. MOP has no global synchronization barrier

within an epoch. Later in Section 3.5, we dive into how CEREBRO uses MOP to schedule S

efficiently and in a general way. Overall, while the core idea of MOP is simple–perhaps even

obvious in hindsight–it has hitherto not been exploited in its full generality in DL systems.

28

Table 3.2: Communication cost analysis of MOP and other approaches. ?Full replication.
†Remote reads. ‡Parameters for the example: k = 20, |S| = 20, p = 10, m = 1GB, 〈D〉 = 1TB,
and |D|/b = 100K.

Comm. Cost Example‡

Model Hopper Parallelism kmp|S|+m|S| 4 TB

Task Parallelism (FR?) p〈D〉+m|S| 10 TB
Task Parallelism (RR†) k|S|〈D〉+m|S| 400 TB

Bulk Synchronous Parallelism 2kmp|S| 8 TB

Centralized Fine-grained 2kmp|S|
⌈
|D|
bp

⌉
80 PB

Decentralized Fine-grained 2km(p−1)|S|
⌈
|D|
bp

⌉
72 PB

Reproducibility. MOP does not restrict the visit ordering. So, reproducibility is trivial

in MOP: log the worker visit order for each configuration per epoch and replay with this order.

Crucially, this logging incurs very negligible overhead because a model hops only once per

partition, not for every mini-batch, at each epoch.

3.3.2 Communication Cost Analysis

We summarize the communication costs of MOP and other approaches in Table 3.2. It also

illustrates the communication costs in bytes for a realistic example based on our model selection

case study in Section 3.1. MOP reaches the theoretical minimum cost of kmp|S|. Crucially, note

that this cost does not depend on batch size, which underpins MOP’s higher efficiency. BSP also

has the same asymptotic cost but unlike MOP, BSP typically converges poorly for DL models and

lacks sequential-equivalence. Fine-grained approaches like PS and Horovod have communication

costs proportional to the number of mini-batches, which can be orders of magnitude higher. In

our setting, p is under low 10s, but the number of mini-batches can even be 1000s to millions

based on the batch size.

29

3.4 System Overview

We present an overview of CEREBRO, a DL system that uses MOP to execute DL model

selection workloads.

3.4.1 User-facing API

CEREBRO API allows users to do 2 things: (1) register workers and data; and (2) issue

a DL model selection workload. Workers are registered by IP addresses. As for datasets,

CEREBRO expects a list of data partitions and their availability on each worker. We assume

shuffling and partitioning are already handled by other means, since these are well studied. This

common data ETL step is also orthogonal to our focus and is not a major part of the total runtime

for iterative DL training.

CEREBRO takes the reference to the dataset, set of initial training configs, the AutoML

procedure, and 3 user-defined functions: input f n, model f n, and train f n. It first invokes

input f n to read and pre-process the data. It then invokes model f n to instantiate the neural

architecture and potentially restore the model state from a previous checkpointed state. The

train f n is invoked to perform one sub-epoch of training. We assume validation data is also

partitioned and use the same infrastructure for evaluation. During evaluation, CEREBRO marks

model parameters as non-trainable before invoking train f n. We also support higher-level API

methods for AutoML procedures that resemble the popular APIs of Keras [221]. Note that

model f n is highly general, i.e., CEREBRO supports all neural computational graphs on all data

types supported by the underlying deep learning tool, including CNNs, RNNs, transformers, etc.

on structured data, text, images, video, etc. More details of our APIs, including full method

signatures and a fleshed out example of how to use CEREBRO are provided in the Appendix A.1.

30

Cerebro API

Data
Catalog

Resource
 Catalog

Resource
Monitor

Model
Hopper

Scheduler

Task Executor

Task
Launcher

Hyperband

Grid Search

TensorFlow
Handler

PyTorch Handler

PBT

Cluster

Interactions

Invokes

Flow of data, results,
and information

(1) Register workers and data

(2) Launch model selection workload

 and get results

Catalog

Extensible Components

Figure 3.4: System architecture of CEREBRO.

3.4.2 System Architecture

We adopt an extensible architecture, as Figure 3.4 shows. This allows us to easily support

multiple deep learning tools and AutoML procedures. There are 5 main components: (1) API, (2)

Scheduler, (3) Task Executor, (4) Catalog, and (5) Resource Monitor. Scheduler is responsible

for orchestrating the entire workload. It relies on worker and data availability information from

the Catalog. Task Executor launches training units on the cluster and also handles model hops.

Resource Monitor is responsible for detecting worker failures and updating the Resource Catalog.

Section 3.5 explains how the Scheduler works and how we achieve fault tolerance and elasticity.

Next, we describe how CEREBRO’s architecture enables high system generality.

Supporting Multiple Deep Learning Tools. The functions input f n, model f n, and

train f n are written by users in the deep learning tool’s APIs. We currently support TensorFlow

and PyTorch (it is simple to add support for more). To support multiple such tools, we adopt a

handler-based architecture to delineate tool-specific aspects: model training, checkpointing and

restoring. Note that checkpointing and restoring is how CEREBRO realizes model hops. Task

31

Executor automatically injects the tool-specific aspects from the corresponding tool’s handler

and runs these functions on the workers. Overall, CEREBRO’s architecture is highly general and

supports virtually all forms of data types, DL model architectures, loss functions, and SGD-based

optimizers.

Supporting Multiple AutoML Procedures Metaheuristics called AutoML procedures

are common for exploring training configs. We now make a key observation about such procedures

that underpins our Scheduler. Most AutoML procedures fit a common template: create an

initial set of configs (S) and evaluate them after each epoch (or every few epochs). Based on

the evaluations, terminate some configurations (e.g., as in Hyperband [186] and PBT [149])

or add new configurations (e.g., as in PBT). Grid/random search is a one-shot instance of

this template. Thus, we adopt this template for our Scheduler. Given S, CEREBRO trains all

models in S for one epoch and passes control back to the corresponding AutoML procedure for

convergence/termination/addition evaluations. CEREBRO then gets a potentially modified set

S′ for the next epoch. This approach also lets CEREBRO support data re-shuffling after each

epoch. But the default (and common practice) is to shuffle only once upfront. Grid/random search

(perhaps the most popular in practice), Hyperband, and PBT (and more procedures) conform to

this common template and are currently supported.

ASHA [185] and Hyperopt [70] are two notable exceptions to the above template, since

they do not have a global synchronized evaluation of training configs after an epoch and are

somewhat tied to task-parallel execution. While MOP/CEREBRO cannot ensure logically same

execution as ASHA or HyperOpt on task-parallelism, it is still possible to emulate them on

MOP/CEREBRO without any modifications to our system. In fact, our experiments with ASHA

show that ASHA on CEREBRO has comparable–even slightly better!–convergence behavior than

ASHA on pure task-parallelism (Section 3.6.3).

32

Table 3.3: Additional notation used in the MOP MILP formulation

Symbol Description

T ∈ IR|S|×p Ti, j is the runtime of unit si, j (ith config on jth worker)

C Makespan of the workload

X ∈ IR|S|×p Xi, j is the start time of the execution of ith config on jth partition/worker

Y ∈ {0,1}|S|×p×p Yi, j, j′ = 1⇐⇒ Xi, j < Xi, j′

Z ∈ {0,1}|S|×|S|×p Zi,i′, j = 1⇐⇒ Xi, j < Xi′, j

V Very large value (Default: sum of training unit runtimes)

3.4.3 System Implementation Details

We prototype CEREBRO in Python using XML-RPC client-server package. Scheduler

runs on the client. Each worker runs a single service. Scheduling follows a push-based model–

Scheduler assigns tasks and periodically checks the responses from the workers. We use a

shared network file system (NFS) as the central repository for models. Model hopping is

realized implicitly by workers writing models to and reading models from this shared file system.

Technically, this doubles the communication cost of MOP to 2kmp|S|, still a negligible overhead.

Using NFS greatly reduces engineering complexity to implement model hops.

3.5 Cerebro Scheduler

Scheduling training units on workers properly is critical because pathological orderings

can under-utilize resources substantially, especially when DL model architectures and/or workers

are heterogeneous. Consider the model selection workload shown in Figure 3.5(A). Assume

workers are homogeneous and there is no data replication. For one epoch of training, Figure 3.5(B)

shows an optimal task-parallel schedule for this workload with a 9-unit makespan. Figure 3.5(C)

shows a non-optimal MOP schedulewith also 9 units makespan. But as Figure 3.5(D) shows,

an optimal MOP schedule has a makespan of only 7 units. Overall, we see that MOP’s training

33

Model
Config A B C D E

Runtime 6 3 3 3 6

A

B D

C E

1

2

3

1 2 3 4 5 6 7 8 9

W
or

ke
r

(A) Per-epoch runtimes (B) An optimal task-parallel schedule

B E C D A

A C B E D

C D B E A

1 2 3 4 5 6 7 8 9

A B C D E

B D C E A

C E A B D

1 2 3 4 5 6 7 8 9
(C) A non-optimal MOP schedule (D) An optimal MOP schedule

Figure 3.5: Gantt charts of task-parallel and MOP schedules for a sample model selection
workload.

unit-based scheduling offers more flexibility to raise resource utilization. Next, we formally

define the MOP-based scheduling problem and explain how we design our Scheduler.

3.5.1 Formal Problem Statement as MILP

Suppose the runtimes of each training unit, aka unit times, are given. These can be

obtained with, say, a pilot run for a few mini-batches and then extrapolating (this overhead will

be marginal). For starters, assume each of the p data partitions is assigned to only one worker.

The objective and constraints of the MOP-based scheduling problem is as follows. Table 3.3 lists

the additional notation used here.

Objective: min
C,X ,Y,Z

C (3.1)

34

Constraints:

∀i, i′ ∈ [1, . . . , |S|] ∀ j, j′ ∈ [1, . . . , p]

(a) Xi, j ≥ Xi, j′+Ti, j′−V ·Yi, j, j′

(b) Xi, j′ ≥ Xi, j +Ti, j−V · (1−Yi, j, j′)

(c) Xi, j ≥ Xi′, j +Ti′, j−V ·Zi,i′, j

(d) Xi′, j ≥ Xi, j +Ti, j−V · (1−Zi,i′, j)

(e) Xi, j ≥ 0

(f) C ≥ Xi, j +Ti, j

(3.2)

We need to minimize makespan C, subject to the constraints on C, unit start times X ,

model training isolation matrix Y , and worker/partition exclusive access matrix Z. The constraints

enforce some of the invariants of MOP listed in Section 3.3. Equations 2.a and 2.b ensure model

training isolation. Equations 2.c and 2.d ensure worker exclusive access. Equation 2.e ensures

that training unit start times are non-negative and Equation 2.f ensures that C captures the time

taken to complete all training units.

Given the above, a straightforward approach to scheduling is to use an MILP solver like

Gurobi [134]. The start times X then yield the actual schedule. But our problem is essentially an

instance of the classical open-shop scheduling problem, which is known to be NP-Hard [123].

Since |S| can even be 100s, MILP solvers may be too slow (more in Section 3.5.4); thus, we

explore alternative approaches.

3.5.2 Approximate Algorithm-based Scheduler

For many special cases, there are algorithms with good approximation guarantees that can

even be optimal under some conditions. One such algorithm is “vector rearrangement” [283, 117].

It produces an optimal solution when |S| � p, which is possible in our setting.

35

The vector rearrangement based method depends on two values: Lmax (see Equation 3.3),

the maximum load on any worker; and Tmax (see Equation 3.4), the maximum unit time of any

training configuration in S.

Lmax = max
j∈[1,...,p]

|S|
∑
i=1

Ti, j (3.3)

Tmax = max
i∈[1,...,|S|], j∈[1,...,p]

Ti, j (3.4)

If Lmax ≥ (p2 + p−1) ·Tmax, this algorithm’s output is optimal. When there are lots of

configs, the chance of the above constraint being satisfied is high, yielding us an optimal schedule.

But if the condition is not met, the schedule produced yields a makespan C ≤C∗+(p−1) ·Tmax,

where C∗ is the optimal makespan value. This algorithm scales to large |S| and p because it runs

in polynomial time in contrast to the MILP solver. For more details on this algorithm, we refer

the interested reader to [283, 117].

3.5.3 Randomized Algorithm-based Scheduler

The approximate algorithm is complex to implement in some cases, and its optimality

condition may be violated often. Thus, we now consider a much simpler scheduler based on

randomization. This approach is simple to implement and offer much more flexibility (explained

more later). Algorithm 1 presents our randomized scheduler.

Given S, create Q = {si, j : ∀i ∈ [1, ..., |S|], j ∈ [1, .., p]}, the set of all training units. Note

that si, j is the training unit of configuration i on worker j. Initialize the state of all models and

workers to idle state. Then find an idle worker and schedule a random training unit from Q on

it. This training unit must be such that its configuration is not scheduled on another worker and

it corresponds to the data partition placed on that worker (Line 10). Then remove the chosen

training unit from Q. Continue this process until no worker is idle and eventually, until Q is

36

Algorithm 1 Randomized Scheduling
1: Input: S
2: Q = {si, j : ∀i ∈ [1, . . . , |S|],∀ j ∈ [1, . . . , p]}
3: worker idle← [true, . . . ,true]
4: model idle← [true, . . . ,true]
5: while not empty(Q) do
6: for j ∈ [1, . . . , p] do
7: if worker idle[j] then
8: Q← shuffle(Q)
9: for si, j′ ∈ Q do

10: if model idle[i] and j′ = j then
11: Execute si, j′ on worker j
12: model idle[i]← false
13: worker idle[j]← false
14: remove(Q,si, j′)
15: break
16: wait WAIT TIME

Algorithm 2 When si, j finishes on worker j

1: model idle[i]← true
2: worker idle[j]← true

empty. After a worker completes training unit si, j mark its model i and worker j as idle again as

per Algorithm 2.

3.5.4 Comparing Different Scheduling Methods

We use simulations to compare the efficiency and makespans yielded by the three alterna-

tive schedulers. The MILP and approximate algorithm are implemented using Gurobi. We set a

maximum optimization time of 5min for tractability sake. We compare the scheduling methods

on 3 dimensions: 1) number of training configs (two values: 16 and 256), 2) number of workers

(two values: 8 and 16), 3) homogeneity/heterogeneity of configs and workers.

Sub-epoch training time (unit time) of a training config is directly proportional to the

compute cost of the config and inversely proportional to compute capacity of the worker. For

the homogeneous setting, we initialize all training config compute costs to be the same and also

37

M
ak

es
pa

n
Sc

he
d.

 T
im

e
(s

)

Cluster Size

A
16 Configs
Homo. cluster and configs

256 Configs
B
16 Configs

Hetero. cluster and configs
256 Configs

Cluster Size

MILP
Approximate
Randomized

Figure 3.6: Scheduler runtimes and makespans of the schedules produced in different settings.
Makespans are normalized with respect to that of Randomized. (A) Homogeneous cluster and
homogeneous training configs. (B) Heterogeneous cluster and heterogeneous training configs.

all worker compute capacities to be the same. For the heterogeneous setting, training config

compute costs are randomly sampled (with replacement) from a set of popular deep CNNs (n=35)

obtained from [60]. The costs vary from 360 MFLOPS to 21000 MFLOPS with a mean of 5939

MFLOPS and standard deviation of 5671 MFLOPS. We provide these computational costs in the

Appendix A.2. For worker compute capacities, we randomly sample (with replacement) compute

capacities from 4 popular Nvidia GPUs: Titan Xp (12.1 TFLOPS/s), K80 (5.6 TFLOPS/s), GTX

1080 (11.3 TFLOPS/s), and P100 (18.7 TFLOPS/s). For each setting, we report the average of 5

runs with different random seeds set to the scheduling algorithms and also the min and max of all

5 runs. All makespans reported are normalized by the randomized scheduler’s makespan.

The MILP scheduler sometimes performs poorer than the other two because it has not

converged to the optimal in the given time budget. The approximate scheduler performs poorly

when both the configs and workers are heterogeneous. It is also slower than the randomized

scheduler.

Overall, the randomized approach works surprisingly well on all aspects: near-optimal

makespans with minimal variance across runs and very fast scheduling. We believe this interesting

superiority of the randomized algorithm against the approximation algorithm is due to some

38

fundamental characteristics of DL model selection workloads, e.g., large number of configurations

and relatively low differences in compute capacities. We leave a thorough theoretical analysis

of the randomized algorithm to future work. Based on these results, we use the randomized

approach as the default Scheduler in CEREBRO.

3.5.5 Replica-Aware Scheduling

So far we assumed that a partition is available on only one worker. But some file systems

(e.g., HDFS) often replicate data files, say, for reliability sake. We now exploit such replicas for

more scheduling flexibility and faster plans.

The replica-aware scheduler requires an additional input: availability information of

partitions on workers (an availability map). In replica-aware MOP, a training configuration need

not visit all workers. This extension goes beyond open shop scheduling, but it is still NP-Hard

because the open shop problem is a special case of this problem with a replication factor of one.

We extended the MILP scheduler but it only got slower. So, we do not use it and skip its details.

Modifying the approximate algorithm is also non-trivial because it is tightly coupled to the open

shop problem; so, we skip that too. In contrast, the randomized scheduler can be easily extended

for replica-aware scheduling. The only change needed to Algorithm 1 is in Line 10: instead of

checking j′ = j, consult the availability map to check if the relevant partition is available on that

worker.

3.5.6 Fault Tolerance and Elasticity

We now explain how we make our randomized scheduler fault tolerant. Instead of just Q,

we maintain two data structures Q and Q′. Q′ is initialized to be empty. The process in Algorithm

1 continues until both Q and Q′ are empty. When a training unit is scheduled, it will be removed

from Q as before but now also added to Q′. It will be removed from Q′ when it successfully

39

completes its training on the assigned worker. But if the worker fails before the training unit

finishes, it will be moved back from Q′ to Q. If the data partitions present on the failed worker

are also available elsewhere, the scheduler will successfully execute the corresponding training

units on those workers at a future iteration of the loop in Algorithm 1.

CEREBRO detects failures via the periodic heart-beat check between the scheduler and

workers. Because the trained model states are always checkpointed between training units, they

can be recovered and the failed training units can be restarted. Only the very last checkpointed

model is needed for the failure recovery and others can be safely deleted for reclaiming storage.

The same mechanism can be used to detect availability of new compute resources and support

seamless scale-out elasticity in CEREBRO.

3.6 Experimental Evaluation

We empirically validate if CEREBRO can improve overall throughput and efficiency of

DL model selection. We then evaluate CEREBRO in depth. Finally, we demonstrate CEREBRO’s

ability to support multiple AutoML procedures.

Datasets. We use two large benchmark datasets: ImageNet [108] and Criteo [102].

ImageNet is a popular image classification dataset. We choose the 2012 version and reshape

the images to 112× 112 pixels2. Criteo is an ad click classification dataset with numeric and

categorical features. It is shipped under sparse representation. We one-hot encode the categorical

features and densify the data. Only a 2.5% random sample of the dataset is used2. Table 3.4.

summarizes the dataset statistics.

Workloads. For our first end-to-end test, we use two different neural architectures and

grid search for hyper-parameters, yielding 16 training configs for each dataset. Table 3.5 offers

2We made this decision only so that all of our experiments can complete in reasonable amount of time. This
decision does not alter the takeaways from our experiments.

40

Table 3.4: Dataset details. All numbers are after preprocessing and sampling of the datasets.

Dataset On-disk size Count Format Class

ImageNet 250 GB 1.2M HDF5 1000
Criteo 400 GB 100M TFRecords Binary

Table 3.5: Workloads. †serialized sizes.

Dataset Model arch. Model
size/MB†

Batch size Learning
rate

Reg. coeff. Epochs

ImageNet {VGG16,
ResNet50}

VGG16:
792,
ResNet50:
293

{32, 256} {10−4,
10−6}

{10−4,
10−6}

10

Criteo 3-layer NN,
1000+500
hidden units

179 {32, 64, 256,
512}

{10−3,
10−4}

{10−4,
10−5}

5

the details. We use Adam [163] as our SGD method. To demonstrate generality, we also present

results for HyperOpt and ASHA on CEREBRO in Section 3.6.3.

Experimental Setup. We use two clusters: CPU-only for Criteo and GPU-enabled for

ImageNet, both on CloudLab [111]. Each cluster has 8 worker nodes and 1 master node. Each

node in both clusters has two Intel Xeon 10-core 2.20 GHz CPUs, 192GB memory, 1TB HDD

and 10 Gbps network. Each GPU cluster worker node has an extra Nvidia P100 GPU. All nodes

run Ubuntu 16.04. We use TensorFlow v1.12.0 as CEREBRO’s underlying deep learning tool. For

GPU nodes, we use CUDA version 9.0 and cuDNN version 7.4.2. Both datasets are randomly

shuffled and split into 8 equi-sized partitions.

3.6.1 End-to-End Results

We compare CEREBRO with 5 systems: 4 data-parallel–synchronous and asynchronous

TensorFlow Parameter Server, Horovod, BSP-style TensorFlow model averaging–and 1 task-

parallel (Celery). For Celery, we replicate datasets to each worker beforehand and stream them

from disk, since they do not fit in memory. I/O time is trivial for DL models, where computation

41

System

ImageNet Criteo

Runtime
(hrs)

GPU
Utili.

(%)

Storage
Footprint

(GB)
Runtime

(hrs)
CPU
Utili.

(%)

Storage
Footprint

(GB)

TF PS -
Async 19.00 8.6 250 28.80 6.9 400

Horovod 5.42 92.1 250 14.06 16.0 400

TF Model
Averaging 1.97 72.1 250 3.84 52.2 400

Celery 1.72 82.4 2000 3.95 53.6 3200

Cerebro 1.77 79.8 250 3.40 51.9 400

(A) Per-epoch makespans and CPU/GPU utilization.

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

)

40

55

70

85

100

Epoch
1 2 3 4 5 6 7 8 9 10

TF Model Averaging Cerebro Horovod
TF Parameter Server - Async. Celery

(B) Learning curves of the respectively best configs on ImageNet.

Figure 3.7: End-to-end results on ImageNet and Criteo. For Celery, we report the runtime
corresponding to the lowest makespan schedule. Celery’s per-epoch runtime varies between
1.72-2.02 hours on ImageNet; on Criteo, 3.95-5.49 hours. Horovod uses GPU kernels for
communication; hence high GPU utilization.

dominates; thus, they can be interleaved. We use TensorFlow features to achieve this. For all other

systems, each worker node has one in-memory data partition. We do not include data copying

in the end-to-end runtimes. For scheduling, Celery uses a FIFO queue and CEREBRO uses the

randomized scheduler. All other systems train models sequentially.

Figure 9.6 presents the results. CEREBRO significantly improves the efficiency and

throughput of model selection. On ImageNet, CEREBRO is over 10x faster than asynchronous PS,

which has a GPU utilization as low as 9%! Synchronous PS was even slower. CEREBRO is 3x

faster than Horovod. Horovod has high GPU utilization because it uses GPU for communication.

42

CEREBRO’s runtime is comparable to model averaging, which is as expected. But note model

averaging converges poorly. Celery’s runtime is dependent on the execution order and thus we

report the runtime on the optimal schedule. On ImageNet, Celery’s runtime is comparable to

CEREBRO. But note that Celery has a highly bloated 8x memory/storage footprint. Overall,

Celery and CEREBRO have the best learning curves–this is also as expected because MOP ensures

sequential equivalence for SGD, just like task-parallelism. Horovod converges slower due to its

larger effective mini-batch size.

On Criteo, CEREBRO is 14x faster than synchronous PS and 8x faster than asynchronous

PS. Both variants of PS report severe CPU under-utilization (< 7%). CEREBRO is also 4x faster

than Horovod. CEREBRO’s runtime is comparable to model averaging, with about 52% CPU

utilization. Celery is somewhat slower than CEREBRO due to a straggler issue caused by the highly

heterogeneous model configs for Criteo. CEREBRO’s MOP approach offers higher flexibility

to avoid such straggler issues. A more detailed explanation is given in the Appendix A.3. All

methods have almost indistinguishable convergence behavior on this dataset: all reached 99%

accuracy quickly, since the class label is quite skewed.

Overall, CEREBRO is the most resource-efficient approach when compute, memory/stor-

age, and network are considered holistically. It also has the best accuracy behavior, on par with

task-parallelism.

3.6.2 Drill-down Experiments

Unless specified otherwise, we now show experiments on the GPU cluster, ImageNet, and

a model selection workload of 8 configs (4 learning rates, 2 regularization values, and ResNet

architectures) trained for 5 epochs. Each data partition is placed on only one worker.

Scalability. We study the speedups (strong scaling) of CEREBRO and Horovod as we

vary the cluster sizes. Figure 3.8(A) shows the speedups, defined as the workload completion

time on multiple workers vs a single worker. CEREBRO exhibits linear speedups due to MOP’s

43

Cluster Size

(A) Speedup (Strong Scaling)

Epoch

(B) Fault Tolerance

Sp
ee

du
p

Ag
ai

ns
t 1

 W
or

ke
r

Pe
r-E

po
ch

 T
im

e
(m

in
ut

es
)

W2 Fails

W1 Fails W1 Recovers

W2 Recovers

1 2 4 8
1
2
3
4
5
6
7
8
9

1 2 4 53
26
28
30
32
34
36
38
40

Figure 3.8: (A) Speedup plot (strong scaling). (B) Fault-tolerance.

Batch Size Batch Size

Ru
nt

im
e

(h
ou

rs
)

(A) Runtime (B) Validation Error

Va
lid

at
io

n
er

ro
r a

t 1
0

ep
oc

hs
 (%

)
Figure 3.9: Effect of batch size on communication overheads and convergence efficiency. (A)
Runtime against batch size. (B) The lowest validation error after 10 epochs against batch size.

marginal communication costs; in fact, it seems slightly super-linear here because the dataset fits

entirely in cluster memory compared to the minor overhead of reading from disk on the single

worker. In contrast, Horovod exhibits substantially sub-linear speedups due to its much higher

communication costs with multiple workers.

Fault Tolerance. We repeat our drill-down workload with a replication factor of 3. We

first inject two node failures and bring the nodes back online later. Figure 3.8(B) shows the time

taken for each epoch and the points where the workers failed and returned online. Overall, we see

CEREBRO’s replica-aware randomized scheduler can seamlessly execute the workload despite

worker failures.

Effect of Batch Size. We now evaluate the effect of training mini-batch size for CEREBRO

and Horovod. We evaluate 5 batch sizes and report makespans and the validation error of the

best model for each batch size after 10 epochs. Figure 3.9 presents the results. With batch size

32, Horovod is 2x slower than CEREBRO. However, as the batch size increases, the difference

narrows since the relative communication overhead per epoch decreases. CEREBRO also runs

44

faster with larger batch size due to better hardware utilization. The models converge slower as

batch size increases. The best validation error is achieved by CEREBRO with a batch size of 32.

With the same setting, Horovod’s best validation error is higher than CEREBRO; this is because

its effective batch size is 256 (32×8). Horovod’s best validation error is closer to CEREBRO’s at

a batch size of 256. Overall, CEREBRO’s efficiency is more stable to the batch size, since models

hop per sub-epoch, not per mini-batch.

Network and Storage Efficiency. We study the tradeoff between redundant remote

reads (wastes network) vs redundant data copies across workers (wastes memory/storage). Task

parallelism forces users to either duplicate the dataset to all workers or store it in a common

repository/distributed filesystem and read remotely. CEREBRO can avoid both forms of re-

source wastage. We assume the whole dataset cannot fit on single-node memory. We compare

CEREBRO and Celery in the following 2 settings:

Reading from remote storage (e.g., S3). In this setting, Celery reads data from a remote storage

repeatedly each epoch. For CEREBRO each worker remotely reads one data partition and caches

it. We change the data scale to evaluate effects on the makespan and the amount of remote

reads. Figure 3.10 shows the results. Celery is slightly slower than CEREBRO due to remote

read overheads. The most significant advantage of CEREBRO is its network bandwidth cost,

which is over 10x lower than Celery’s. After the initial read, CEREBRO only communicates

models weights during training. In situations where reads and networks are not free (e.g., cloud

providers), Celery will incur higher monetary costs than CEREBRO. These results show it is

perhaps better to partition the dataset on S3, cache partitions on workers on the first read, and

then run CEREBRO instead of Celery with full dataset reads from S3 per epoch to avoid copying.

Reading from distributed storage (e.g., HDFS). In this setting, the dataset is partitioned, replicated,

and stored on 8 workers. We then load all local data partitions into each worker’s memory. Celery

performs remote reads for non-local partitions. We vary the replication factor to study its effect

45

Data Scale Data ScaleDa
ta

 re
ad

 b
y

a
w

or
ke

r (
G

B)

Ru
nt

im
e

(h
ou

rs
)

(A) Runtime (B) Network Cost

Figure 3.10: Reading data from remote storage.

Replication Factor Replication FactorDa
ta

 re
ad

 b
y

a
w

or
ke

r (
G

B)

Ru
nt

im
e

(h
ou

rs
)

(A) Runtime (B) Network Cost

Figure 3.11: Reading data from distributed storage.

on the makespan and the number of remote reads. Figure 3.10 presents the results. For replication

factors 1 (no replication), 2, and 4, CEREBRO incurs 100x less network usage and is slightly

faster than Celery. But at a replication factor of 8 (i.e., full replication), CEREBRO is slightly

slower due to the overhead of model hops. For the same reason, CEREBRO incurs marginal

network usage, while Celery has almost no network usage other than control actions. Note that

the higher the replication factor for Celery, the more memory/storage is wasted. CEREBRO offers

the best overall resource efficiency–compute, memory/storage, and network put together–for DL

model selection.

3.6.3 Experiments with AutoML Procedures

We experiment with two popular AutoML procedures: HyperOpt [70] and ASHA [185].

For HyperOpt, we compare CEREBRO and Spark as the execution backends. Spark is a backend

supported natively by HyperOpt; it distributes only the models, i.e., it is task-parallel on fully

replicated data. For ASHA, we compare CEREBRO and Celery as the execution backends. We

46

Table 3.6: Parameter grid used to randomly sample configuration for Section 3.6.3.

Values sampled from

Model [ResNet18, ResNet34]
Learning rate [10−5, . . . , 10−1]
Weight decay coefficient [10−5, . . . , 10−1]
Batch size [16, . . . , 256]

Time (Hours) Time (Hours)

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

) (A) HyperOpt on Spark (B) HyperOpt on Cerebro

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

)
Figure 3.12: HyperOpt learning curves by time.

use ImageNet, GPU cluster, and PyTorch. Training configs are sampled from the grid shown in

Table 3.6. For CEREBRO data is partitioned without replication; for Spark and Celery the dataset

is fully replicated.

Both HyperOpt and ASHA keep exploring different configs until a resource limit is

reached. For HyperOpt, this limit is the maximum number of configs; for ASHA, it is the

maximum wall-clock time. During the exploration HyperOpt uses Bayesian sampling to generate

new configs; ASHA uses random sampling. For both methods, the generated configs are dependent

on the completion order of configs across task-parallel workers. Thus, it is impossible for

CEREBRO to exactly replicate HyperOpt or ASHA ran with task-parallelism. However, we can

closely emulate HyperOpt and ASHA on CEREBRO by making the number of simultaneously

trained configs (|S|) equal to the number of workers (p) and without making any changes to

CEREBRO.

HyperOpt. We run an experiment using HyperOpt with a max config budget of 32. We

train each config for 10 epochs. With this configuration, HyperOpt on CEREBRO (resp. Spark)

took 31.8 (resp. 25.9) hours. Figure 3.12 shows all learning curves. We found that the slightly

47

Hours

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

) (B) ASHA on Cerebro

Hours

(A) ASHA on Celery

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

)

Figure 3.13: ASHA learning curves by time.

higher (23%) runtime of CEREBRO is mainly due to the lower degree of parallelism (|S| = 8).

However, this issue can be mitigated by increasing the number of simultaneously trained configs.

Although individual configs are not comparable across the two systems, the best errors achieved

are close (34.1% on CEREBRO; 33.2% on Celery).

ASHA. We use ASHA with a max epoch budget (R) of 9, a selection fraction (η) of

3, and a time limit of 24hr. With these settings, ASHA trains for a maximum of 13 epochs

over 3 stages: 1, 3, and 9 epochs. Only the more promising configurations are trained for more

epochs. In the given time limit, ASHA on CEREBRO (resp. Celery) explored 83 (resp. 67) configs.

Figure 3.13 shows all learning curves. Like HyperOpt, even though the configs are not directly

comparable, the best errors achieved are close (31.9% on CEREBRO; 33.2% on Celery). More

details about this experiment and experiments with another AutoML procedure (HyperBand) are

presented in the Appendix A.4.

3.7 Discussion and Limitations

Open Source Systems. CEREBRO is open sourced and available for download [53].

MOP’s generality also enabled us to emulate it on existing data-parallel systems. Pivotal/VMware

collaborated with us to integrate MOP into Greenplum by extending the MADlib library [139]

for running TensorFlow on Greenplum-resident data [198, 275]. Greenplum’s customers are

48

interested in this for enterprise ML use cases, including language processing, image recognition,

and fraud detection. We have also integrated CEREBRO into Apache Spark [106]. CEREBRO-

Spark can run MOP on existing resource managers such as YARN and Mesos. Alternatively, one

can also deploy CEREBRO as a standalone application by wrapping it as tasks accepted by the

resource manager.

Other ML Model Families. We focused primarily on DL due to their growing popularity,

high sensitivity to model configurations, and resource intensiveness. However, note that MOP and

CEREBRO’s ideas are directly usable for model selection of any ML models trainable with SGD.

Examples include linear/logistic regression, some support vector machines, low-rank matrix

factorization, and conditional random fields. In fact, since linear/logistic regression can be

trivially expressed in the deep learning tools’s APIs, CEREBRO will work out of the box for them.

CEREBRO’s high memory efficiency makes it easier for users to store the entire large datasets in

distributed memory, which can significantly reduce runtimes of such I/O-bound ML models.

3.8 Conclusion

DL model selection is a highly resource-intensive step that is unavoidable when train-

ing DL models. The high resource costs of DL model selection often hinder DL adoption by

practitioners. In this work, we propose MOP, a multi-query optimization-inspired technique for

parallel SGD execution. MOP is a simple and highly general form of parallel SGD execution

that raises the resource efficiency of DL model selection without sacrificing accuracy or repro-

ducibility. MOP is also simple to implement, which we demonstrate by building CEREBRO, a

fault-tolerant DL model selection system that supports multiple popular DL training systems and

model selection procedures. Experiments with large benchmark datasets confirm the benefits of

CEREBRO.

Chapter 3 contains material from “Cerebro: A Data System for Optimized Deep Learning

49

Model Selection” by Supun Nakandala, Yuhao Zhang, and Arun Kumar, which appears in

Proceedings of VLDB Endowment Volume 13, Issue 12, July 2020. The dissertation author was

the primary investigator and author of this paper. The code for our system is open source and is

available on GitHub: https://github.com/ADALabUCSD/cerebro-system.

50

Chapter 4

Applications and Extensions of CEREBRO

4.1 Application: UCSD Public Health Data

4.1.1 Introduction

CEREBRO is being used for time-series analytics for our public health collaborators at

UCSD. Our collaborators wanted to identify sitting patterns from hip-worn accelerometers. It

has been shown that sitting patterns predict several healthy aging outcomes. These patterns can

potentially be measured using hip-worn accelerometers, but current methods have limited ability

to detect postural transitions. No off-the-shelf techniques suit our collaborators’ task semantics.

So, based on the literature on DL-based time series classification, we tried many DL models with

TensorFlow, including deep CNNs, LSTMs, and composite CNN-LSTMs.

The size of the raw training dataset for this task was close to a 1 TB. We also performed

repeated model selection on a shared GPU cluster at UCSD. Our collaborators also kept changing

the prediction windows (e.g., 5s vs. 15s) and label semantics (e.g., sitting vs. not sitting),

requiring us to rerun model selection over and over. It also underscores the importance of

resource efficiency and the throughput of this process. We also found that existing distributed

DL model selection systems scale poorly; they incur high network communication costs or face

51

Sitting

Not Sitting

Time

Time

Ac
ce

le
ra

tio
n

Tri-Axial Acceleration Data

(Features)

Label Sequence

Hip-worn

ActiGraph wGT3X+

Device

Thigh-worn activPAL

micro3 Device

(A)

(B)

Figure 4.1: Devices used to generate the training data. (A) Hip-worn ActiGraph wGT3X+
device generates a tri-axial acceleration sequence. (B) Thigh-worn activPAL micro3 device
generates a sitting vs not-sitting label sequence.

data scalability issues. This use case was a key motivation for building CEREBRO and migrating

this workload to CEREBRO. Convolutional Neural Network Hip Accelerometer Posture (CHAP)

models are the outcome of this work. They are now the state-of-the-art method for identifying

sitting patterns from hip-worn accelerometer data for public health applications.

4.1.2 Training Data

Training data for CHAP models were obtained from the Adult Changes in Thought (ACT)

study, an ongoing longitudinal cohort study that maintains an active enrollment of approximately

2,000 older adults (65 y old) in Washington State [243]. The participants were asked to wear a

hip-worn ActiGraph wGT3X+ (see Figure 4.1 (A)), activated using ActiLife software to capture

30 Hz triaxial, and a thigh-worn activPAL micro3 (see Figure 4.1 (B)), activated using a 10s

minimum threshold for labeling postural transitions. Participants were asked to wear both devices

52

…

CNN Base BiLSTM Network Softmax Output Layer

Figure 4.2: CNN-BiLSTM model architecture.

24-hours/day for one week. Participants also recorded self-reported sleep logs throughout their

device wear. We selected data from 709 participants for our work.

4.1.3 Model Design

The CHAP model classifies sitting versus non-sitting behavioral postures and postural

transitions from 10 Hz triaxial ActiGrah data (downsampled from 30 Hz via boxcar aggregation

to reduce the size of the dataset). All computations were made on 10-second non-overlapping

windows of continuous 10 Hz data, containing 100 triaxial acceleration values. The 10-second

window size was chosen to align with activPAL’s 10-second minimum threshold for labeling

postural transitions. We used a model architecture family called CNN-BiLSTM architecture [241].

Figure 4.2 presents an illustration of the architecture of this model. It has three main components:

1) a CNN base, 2) a BiLSTM network, and 3) a softmax output layer akin to a logistic regression

classifier. The first component automatically extracted features for identifying sitting versus

non-sitting for each time point; the second component refined these features by considering

53

neighboring time points and the most likely sequence of events; the third component converted

the extracted features to a final classification label (sitting or non-sitting).

4.1.4 Model Selection

We trained several model configurations on the training data and compared their per-

formance when applied to the holdout validation data. Model configurations varied on four

dimensions:

• BiLSTM window size (7 and 9 minutes).

• Number of neurons in a CNN layer (3200 and 6400 neurons).

• Learning rate (0.001 and 0.0001).

• Regularization coefficient (0.001 and 0.0001).

All possible unique combinations of domain values were tested, for a total of 16 unique

model configurations tested. These comparisons enabled us to identify the best model configura-

tion, based on several performance metrics. Metrics included overall and balanced classification

accuracy, the ability to accurately capture transitions (i.e., changes in posture), sitting and non-

sitting bout deviations, and Kolmogorov-Smirnov statistics for comparing CHAP-predicted vs.

true (activPAL) labels of sitting and non-sitting bouts. Models with low accuracy or high variance,

relative to competing models, on any of these metrics were eliminated.

We found that rigorous model selection is key to finding model configurations that result

in good accuracies as the model accuracies varied significantly depending on the configuration

(accuracies varied between 60%-93%). Three models performed equally well on all metrics, and

these models were used to create a hybrid ensemble model that made classifications based on the

majority vote. This ensemble model represented the complete CHAP model.

54

Table 4.1: Summary of experimental results.

Metric Cut Point Method TLBC CHAP

Minute-level prediction accuracy 74% 83% 93%
Sit-to-stand transition sensitivity 73% 26% 83%
Sit-to-stand transition positive predictive value 30% 71% 83%
Mean sitting bout duration (activPAL 15.4 mins) 9.4 mins 49.4 mins 15.7 mins

4.1.5 Experimental Results

Using data from a test set, we compared the performance of CHAP to the performance

of two other classification approaches that are commonly used in the field: 1) the standard

ActiGraph cut-point (AG cut-point) method [84], and 2) a previously developed two-level behavior

classification (TLBC) machine-learned model [113] designed to differentiate sitting from standing

postures. Table 4.1 presents a summary of our experimental results.

For minute level sitting vs. non-sitting classification, CHAP performed better (93%

agreement with activPAL) than other methods (74%-83% agreement). CHAP also outperformed

other methods in its sensitivity to detecting sit-to-stand transitions: cut-point (73%), TLBC (26%),

and CHAP (83%). CHAPs positive predictive value of capturing sit-to-stand transitions was

also superior to other methods: cut-point (30%), TLBC (71%), and CHAP (83%). Day-level

sitting pattern metrics, such as mean sitting bout duration, derived from CHAP did not differ

significantly from activPAL, whereas other methods did: activPAL (15.4 mins mean sitting bout

duration), CHAP (15.7 mins), cut-point (9.4 mins), TLBC (49.4 mins)

Overall, CHAP was the most accurate method for classifying sit-to-stand transitions and

sitting patterns from free-living hip-worn accelerometer data in older adults. This promotes

enhanced analysis of older adult movement data, resulting in more accurate measures of sitting

patterns and opening the door for large-scale cohort studies into the effects of sitting patterns on

healthy aging outcomes.

55

4.2 Extension: Intermittent Human-in-the-Loop Model Se-

lection using CEREBRO

4.2.1 Introduction

In this work, we extend CEREBRO to implement a novel model selection paradigm that

mitigates the drawbacks of existing ones. When training DL models practitioners have to perform

model selection where they search over a potential configuration space of model architectures

and training hyperparameters, in order to pick the best model.

Paradigms for Searching the Configuration Space. We found two main paradigms: 1)

AutoML and 2) interactive human-in-the-loop. In the AutoML-based paradigm, the user will initi-

ate a model selection workload by specifying a configuration search space and a canned AutoML

procedure. AutoML procedures implement a search heuristic such as Bayesian optimization (e.g.,

HyperOpt [70]), evolutionary search (e.g., PBT [149]), and random search (e.g., ASHA [185]).

It then uses the parallelism available in a cluster (or a single machine) to perform automated

high-throughput configuration exploration. As model selection progresses, the user will receive

the results of the explored configurations. Figure 4.3 (A) presents an illustration of this paradigm.

While there are advanced AutoML procedure implementations of the above-mentioned search

heuristics, recent surveys [78] have shown that ML practitioners often use simple techniques like

grid search (explore all configurations) or random search (randomly sample configurations).

In interactive human-in-the-loop model selection [286, 87], the user retains full control

over the search process. They will explicitly specify a configuration (or a few configurations)

to be explored and wait until it finishes. Based on the results of the explored configurations

and human intuition about the search space, they will specify the next configuration (or set of

configurations) to explore. Figure 4.3 (B) presents an illustration of this paradigm.

False Dichotomy of Existing Paradigms. We compare the above two paradigms on two

56

Intermittent

Human-in-the-loop

(Our Approach)Add/stop/
resume configs

(A) (B) (C)

Time

Search

space Results Results

Time

Config
Result Result

Time

Search

space

Results
Config

Config
Result Results

(D)

Use human intuition
(high)

(high)

M
od

el
 e

xp
lo

ra
tio

n

th
ro

ug
hp

ut AutoML

Interactive

Human-in-the-loop

Figure 4.3: A) AutoML-based model selection. B) Interactive human-in-the-loop model
selection. C) Our paradigm of intermittent human-in-the-loop model selection. D) Qualitative
comparison of different paradigms.

dimensions: 1) model exploration throughput and 2) the ability to use human intuition. As shown

in Figure 4.3 (D), AutoML-based model selection is capable of performing high-throughput

model exploration. But the only time it relies on human intuition is during the initial specification

of the search space. As a result, it may inefficiently explore the configuration space and incur

significant resource costs, which could have been avoided by a simple human intervention! On

the other hand, the human-in-the-loop model selection primarily relies on human intuition but

operates at very-low throughput levels due to the inherent limitations of human interactivity. Also,

it can be tedious and time-consuming. Overall, we see a major gap between AutoML-based and

human-in-the-loop model selection paradigms today.

This Work. To overcome the above-mentioned drawbacks, we propose a new paradigm

for model selection, which we call intermittent human-in-the-loop model selection. It is a

hybrid of both AutoML-based and interactive human-in-the-loop model selection. However,

unlike in the interactive human-in-the-loop paradigm, human exploration is not mandatory

in our approach. As an analogy, the former is akin to instant messaging (IM), whereas our

paradigm is akin to email threads or Slack channels. Without interactivity, the former becomes

not usable. But our approach is more flexible due to asynchronous, spread-out-over-time yet

stateful exchanges that can even subsume full interactivity. We implement our paradigm in

the CEREBRO system [215], a system for resource-efficient deep learning model selection. We

57

also extend the CEREBRO system with a graphical user interface, a REST API, and perform

changes to existing components to support our new paradigm. Our paradigm is an ideal fit

for deep learning model selection workloads due to their long-running nature. But it is readily

applicable to any other ML model family too. A short video of our system can be found on our

project web page: https://adalabucsd.github.io/cerebro.html.

4.2.2 New Paradigm for Model Selection

Our intermittent human-in-the-loop model selection paradigm for model selection breaks

the false dichotomy of AutoML-based and interactive human-in-the-loop model selection. It

starts similar to the AutoML-based paradigm where the user specifies the search space and picks

a canned AutoML procedure like Grid, Random, or even a more advanced AutoML procedure

like HyperOpt. However, instead of passively waiting by just consuming the results of explored

configurations, we enable the user to steer the model selection process. They can now create new

individual configurations or batch of configurations using a refined search space, stop running

configurations, and resume stopped configurations.

Creating new configurations outside the control of the AutoML procedure enables the

user to inject human intuition into the overall model selection process. New configurations can

also be created by first cloning an existing configuration along with its trained parameters and

then by tweaking only some of the hyper-parameters like learning rate or batch size. Users can

use this feature to make the model training adaptable based on human intuition. They can also

dynamically reprioritize the training of some configurations over the others by using the stop

and resume feature. Thus, as shown in Figure 4.3 (D) our paradigm can seamlessly navigate

the exploration throughput and human intuition usage tradeoff space based on the available user

interaction level.

58

(A)

(B)

(C)

(E)

(D)

Figure 4.4: User interface for intermittent human-in-the-loop model selection. (A) UI to either
pick a canned ML model (e.g., ResNet50) or upload a script file defining a custom model. (B)
UI to specify experiment metadata, training data information, and configuration search space.
(C) Model training performance visualization using embedded TensorBoard. (D) UI listing all
configurations and controls to add/stop/resume configurations. (E) UI to create a drill-down
model selection workload.

4.2.3 UIs for Intermittent Specification

System UI provides graphical controls that enable the user to perform intermittent human-

in-the-loop model selection. It is implemented using Python Dash visualization library and runs

in a web browser which makes it portable. It is integrated with a backend REST API to perform

the user-requested actions.

The user will start interacting with our system by either picking a canned ML model from

a roster or by uploading a Python script defining a custom ML model using the UI shown in

Figure 4.4 (A). We currently support four popular deep learning models in our roster: ResNet50,

MobileNet, BERT-base, and DistilBert. New models can be easily added to the roster. Also, the

custom script option can support arbitrary Keras models. After picking a model, the user will be

then prompted with the UI shown in Figure 4.4 (B) to specify a name, description, AutoML search

59

procedure, names of features and label columns, the path to the training data, and the maximum

number of training epochs for any model. If a custom script is uploaded, the user is required

to specify the entry point function name in that script. This entry point function should take a

dictionary of configuration values as input and return compiled Keras model as output. The user

is also required to specify the search spaces for the available configurations. The list of available

configurations is fixed for a canned model. For a custom model, user can manually define the

configurations that the model depends on. After specifying these values, the user can launch the

model selection workload. While the workload is running, the user can visualize model training

metrics, such as loss and accuracy, through an embedded TensorBoard UI as shown in Figure 4.4

(C). They can also add/stop/resume configurations using the controls shown in Figure 4.4 (D) or

create a new drill-down workload on a refined search space using the UI shown in Figure 4.4 (E).

4.2.4 Decoupled System Architecture

Implementing our paradigm requires decoupling configuration exploration logic from

model training and being able to multiplex the training of multiple configurations on a fixed set

of resources. Otherwise, it is simply not possible to run multiple model selection workloads

at the same time or even increase the model selection throughput of a single workload without

provisioning more resources. While resource provisioning has become easy with cloud computing,

cloud users also often need to limit their resource usages due to cost concerns. For others like

domain science users, it may be simply not possible to provision more resources such as in

fixed-sized campus clusters.

We implement our paradigm in the CEREBRO system. CEREBRO uses a novel parallel

execution strategy called model hopper parallelism (MOP) that can significantly increase the

model selection throughput without provisioning more resources. It does so by breaking the

training of a single model configuration over partitioned data into multiple units called sub-epochs

and multiplexing the training of multiple configurations–one epoch at a time–by asynchronously

60

Model
Selection

APIs
Backend

(e.g., Spark)

Storage
(e.g., HDFS)

REST
APIsUI

single

model selection

workload

model selection

workload 1

model selection

workload n

add/stop/resume

configs

…

query config statuses

Cerebro system

designed for executing a

single AutoML-based model
selection workload.

Scheduler

Existing Cerebro
components

Newly added

components

Modified

components

Figure 4.5: High-level system architecture diagram of CEREBRO along with the new compo-
nents added to support our intermittent human-in-the-loop model selection paradigm.

scheduling sub-epochs on workers. A sub-epoch essentially trains the configuration for one pass

over the locally available partition of the data. Originally, the CEREBRO system was designed

to execute a single AutoML-based model selection workload at a time. Figure 4.5 presents the

high-level architecture of the CEREBRO system.

We leverage the epoch-level scheduling template of CEREBRO to support our new

paradigm. We also add a new graphical user interface (UI), a REST API and update CERE-

BRO’s model selection APIs and scheduler to achieve our requirements. UI sends user requests to

the model selection APIs through the REST API. We changed the model selection APIs such that

they now write the configurations to an SQLite database instead of directly interacting with the

scheduler. User-created configurations are also directly added to this database. The scheduler

will then read all the configurations that need to be trained from this database and train them

for one epoch. After completing training for one epoch it will update the training metrics of the

configuration in the database. And this process will continue. Whenever the user wants to stop

(resp. resume) a configuration, it will be marked as such in the database and will be ignored (resp.

considered back) by the scheduler for training. Figure 4.5 presents the system architecture of the

modified CEREBRO system.

61

Chapter 4 Section 4.1 contains material from “The CNN Hip Accelerometer Posture

(CHAP) Method for Classifying Sitting Patterns from Hip Accelerometers: A Validation Study”

by Supun Nakandala, Mikael Anne Greenwood-Hickman, Marta M Jankowska, Dori Rosenberg,

Fatima Tuz-Zahra, John Bellettiere, Jordan Carlson, Paul R Hibbing, Jingjing Zou, Andrea Z

LaCroix, Arun Kumar, and Loki Natarajan, which appears in the Journal of Medicine & Science

in Sports & Exercise Volume 53, Issue 11, November 2021. The dissertation author was a primary

investigator and a primary author of this paper. The CHAP models are open source and are

available on GitHub: https://github.com/ADALabUCSD/DeepPostures.

Chapter 4 Section 4.2 contains material from “Intermittent Human-in-the-Loop Model

Selection using Cerebro: A Demonstration” by Liangde Li, Supun Nakandala, and Arun Kumar,

which appears in Proceedings of VLDB Endowment Volume 14, Issue 12, July 2021. The disserta-

tion author’s contribution was in the conceptualization of the system, parts of the implementation,

and advising the junior student through the rest of the system implementation.

62

Chapter 5

HUMMINGBIRD: Query Optimizations for

Classical ML Prediction Serving on DL

Systems

5.1 Introduction

In this chapter, we dive deeper into our techniques for enabling classical machine learning

inference on DL systems. Classical machine learning is the term used to broadly categorize all

machine learning model families, which are not based on DL. While deep learning is highly

popular for unstructured data analytics, classical machine learning is still the king for structured

data analytics [56]—examples include predictive maintenance, customer churn prediction, and

supply-chain optimizations [118]. A recent analysis by Amazon Web Services found that 50%

to 95% of all ML applications in an organization are based on classical ML [61]. As a point of

comparison with DL systems, scikit-learn, a popular library used for classical ML, is used about

5 times more than PyTorch [228] and TensorFlow [54] combined, and growing faster than both.

Acknowledging this trend, classical ML capabilities have been recently added to DL systems,

63

such as the ONNX-ML [14] flavor in ONNX [42] and TensorFlow’s TFX [67].

Predictive Pipelines. Unlike in DL, where the output of model training/model selection

step is a single model, in classical ML the output is a predictive pipeline: a Directed Acyclic

Graph (DAG) of operators. Such pipelines are typically comprised of up to tens of operators

out of a set of hundreds [233] that fall into two main categories: (1) featurizers, which could be

either stateless imperative code (e.g., string tokenization) or data transformations fit to the data

(e.g., normalization); and (2) models, commonly decision tree ensembles or (generalized) linear

models, fit to the data. Note that the whole pipeline is required to perform a prediction.

A Missing Abstraction. Today’s featurizers and model implementations are not ex-

pressed in a shared logical abstraction, but rather in an ad-hoc fashion using programming

languages such as R, Python, Java, C++, or C#. This hints to the core problem with today’s

approaches to model inference: the combinatorial explosion of supporting many operators (and

frameworks) across multiple target environments. Figure 5.1 (top) highlights this visually by

showing how existing solutions lead to an O(N×M) explosion to support N operators from

various ML frameworks against M deployment environments (e.g., how to run a scikit-learn

model on an embedded device?). Furthermore, [233] shows that the number of libraries used

in data science (a metric correlated to N) increased by roughly 4× in the last 2 years. It is

expected that M is also destined to grow as ML is applied more widely across a broad range

of enterprise applications and hardware (e.g., [30, 7, 147, 154, 46]). From the vantage point of

implementing systems for model inference, this is a daunting proposition. We argue that any

brute-force approach directly tackling all combinations would dilute engineering focus leading

to costly and less optimized solutions. In fact, today, with very few exceptions (e.g., NVIDIA

RAPIDS [13] for GPU), classical ML operators are only implemented for CPUs.

This state of affairs is in contrast with the DL space, where neural networks are authored

using tensor transformations (e.g., multiplications, convolutions), providing an algebraic abstrac-

tion over computations. Using such abstractions rather than imperative code not only enables

64

St
at

e
of

 th
e

ar
t

H
um

m
in

gb
ird

O(N x M)

…

(N operators, M environments)

(N operators translated to K tensor operators)

…

O(N)

O(K x M)
existing infra

Figure 5.1: Prediction serving complexity: state-of-the-art (top) vs. HUMMINGBIRD (bottom).

evolved optimizations [52, 93] but also facilitates support for diverse environments (such as

mobile devices [43], web browsers [48], and hardware accelerators [30, 154, 147]), unlocking

new levels of performance and portability.

Our Solution. To bypass this N×M explosion in implementing classical ML operators,

we built HUMMINGBIRD (HB for short). HUMMINGBIRD leverages query optimization-inspired

techniques to translate a broad set of classical ML operators into a small set of K core operators,

thereby reducing the cost to O(N)+O(K×M), as shown in Figure 5.1 (bottom). This is also the

key intuition behind the ONNX model format [42] and its various runtimes [16]. However, with

HUMMINGBIRD we take one further bold step: we demonstrate that this set of core operators

can be reduced to tensor computations and therefore be executed over DL systems. This allows

us to piggyback on existing investments in DL compilers, runtimes, and specialized hardware,

65

and reduce the challenge of “running K operators across M environments” for classical ML to

just O(N) operator translations. This leads to improved performance and portability, and reduced

infrastructure complexity.

Contributions. In this work we answer three main questions:

1. Can classical ML operators (both linear algebra-based such as linear models, and algorith-

mic ones such as decision trees) be translated to tensor computations?

2. Can the resulting computations in tensor space be competitive with the imperative alterna-

tives we get as input (e.g., traversing a tree)?

3. Can HUMMINGBIRD reduce software complexity and improve model portability?

Concretely, we: (1) port thousands of benchmark predictive pipelines to two DL systems

(PyTorch and TVM); (2) show that we can seamlessly leverage hardware accelerators and deliver

speedups of up to 3× against hand-crafted GPU kernels, and up to 1200× for predictive pipelines

against state-of-the-art frameworks; and (3) qualitatively confirm improvements in software

complexity and portability by enabling scikit-learn pipelines to run across CPUs and GPUs.

Organization. The remainder of the chapter is organized as follows. Section 5.2 provides

some background, and Section 5.3 presents an overview of HUMMINGBIRD. Section 5.4 describes

the translation from classical ML to tensor computations, whereas Section 5.5 discusses various

optimizations. Section 5.6 presents our evaluation, then we conclude.

5.2 Background and Challenges

We first provide background on classical ML predictive pipelines. We then explain the

challenges of translating classical ML operators and predictive pipelines into tensor computations.

66

5.2.1 Classical ML Predictive Pipelines

The result of the data science workflow over classical ML are predictive pipelines, i.e.,

Directed Acyclic Graphs (DAGs) of operators such as trained models, preprocessors, featurizers,

missing-value imputers. The process of presenting a trained predictive pipeline with new data

to obtain a prediction is referred to as inference. Packaging a trained pipeline into a single

artifact is common practice [57]. These artifacts are then embedded inside host applications,

or containerized and deployed in the cloud to perform model scoring [232, 101]. ML.NET

(.NET-based), scikit-learn (Python-based), and H2O (Java-based) are popular toolkits to train and

generate pipelines. However, it is important to note that they are primarily optimized for training,

not for inference. Predictive pipeline inference is challenging, as their operators are implemented

in imperative code, and do not follow a shared logical or physical abstraction. Supporting every

operator in all target environments requires a huge effort, which is why these frameworks have

limited portability.

5.2.2 Challenges

HUMMINGBIRD combines the strength of classical ML pipelines on structured data [188]

with the computational and operational simplicity of DL systems for model inference. To do

so, it relies on a simple yet key observation: once a model is trained, it can be represented as

a prediction function transforming input features into a prediction score (e.g., 0 or 1 for binary

classification), regardless of the training algorithm used. The same observation naturally applies

to featurizers fit to the data. Therefore, HUMMINGBIRD only needs to translate the prediction

functions (not the training logic) for each operator in a pipeline into tensor computations and

stitch them appropriately. Towards this goal, we identify two challenges.

1. Challenge 1: How can we map classical predictive pipelines into tensor computations?

Pipelines are generally composed of operators (with predictive functions) of two classes: al-

67

gebraic (e.g., scalers or linear models) and algorithmic (e.g., one-hot encoder and tree-based

models). While translating algebraic operators into tensor computations is straightforward,

the key challenge for HUMMINGBIRD is the translation of algorithmic operators. Algorith-

mic operators perform arbitrary data accesses and control flow decisions. For example, in

a decision tree ensemble potentially every tree is different from each other, not only with

respect to the structure, but also the decision variables and the threshold values. Conversely,

tensor operators perform bulk operations over the entire set of input elements.

2. Challenge 2: How can we achieve efficient execution for tensor-translated classical ML

operators? The ability to translate predictive pipelines into DAGs of tensor operations does

not imply adequate performance of the resulting DAGs. In fact, common wisdom would

suggest the opposite: even though DL systems naturally support execution on hardware

accelerators, tree-based methods and commonly used data transformations are well known

to be difficult to accelerate [100], even using custom-developed implementations.

5.3 System Overview

In this section we explain our approach to overcome the challenges outlined in Sec-

tion 5.2.2, and present HUMMINGBIRDS’s architecture and implementation details. We conclude

this section by explaining assumptions and limitations.

5.3.1 High-level Approach

In HUMMINGBIRD, we cast algorithmic operators into tensor computations. You will

notice that this transformation introduces redundancies, both in terms of computation (we perform

more computations than the original classical ML operators) and storage (we create data structures

that store more than what we actually need). Although these redundancies might sound counter-

intuitive at first, we are able to transform the arbitrary data accesses and control flow of the original

68

Hummingbird

Pipeline

Parser

Fe
at

ur
ize

r 1

Fe
at

ur
ize

r 1

…
…

M
L

M
od

el

Target DL
System 1
Target DL
System 1

…

…

Tensor

DAG

Translator
Optimizer

Input: Trained
Classical ML Pipeline

Figure 5.2: High-level architecture of HUMMINGBIRD.

operators into tensor operations that lead to efficient computations by leveraging state-of-the-art

DL systems.

For a given classical ML operator, there exist different strategies for translating it to tensor

computations, each introducing a different degree of redundancy. We discuss such strategies for

representative operators in Section 5.4. The optimal tensor implementation to be used varies and

is informed by model characteristics (e.g., tree-structure for tree-based models, or sparsity for

linear models) and runtime statistics (e.g., batch size of the inputs). Heuristics at the operator

level, target-independent optimizations at the pipeline level, and target-specific optimizations at

the execution level enable HUMMINGBIRD to further improve predictive pipelines performance

end-to-end. The dichotomy between target-independent and target-specific optimizations allow us

to both (1) apply optimizations unique to classical ML and not captured by the DL systems; and

(2) exploit DL system optimizations once the classical ML is lowered into tensor computations.

Finally, HUMMINGBIRD is able to run end-to-end pipelines on the hardware platforms supported

by the target DL system.

5.3.2 System Architecture and Implementation

The high-level architecture of HUMMINGBIRD is shown in Figure 5.2. HUMMINGBIRD

has three main components: (1) Pipeline Parser, (2) Optimizer, and (3) Tensor DAG Translator.

69

Pipeline Parser. In this phase, input pipelines are parsed one operator at a time, and each

operator is wrapped into a container object. Each operator’s container maintains (1) the inputs and

outputs of the operator, and (2) the operator signature that codifies the operator type (e.g., “scikit-

learn decision tree”). HUMMINGBIRD parser also introduces a set of extractor functions that are

used to extract the parameters of each operator (e.g., weights of a linear regression, thresholds of

a decision tree). Operator signatures dictate which extractor function should be used for each

operator. At startup time, extractor functions are registered into a hash table, mapping operator

signatures to the related extractor function. HUMMINGBIRD parser is extensible, allowing users to

easily add new extractor functions. HUMMINGBIRD supports over 40 scikit-learn operators (listed

in Table 5.2), as well as parsers for XGBoost [92], LightGBM [159], and ONNX-ML [14]. At

the end of the parsing phase, the input pipeline is “logically” represented in HUMMINGBIRD as a

DAG of containers storing all the information required for the successive phases. HUMMINGBIRD

parser is based on skl2onnx [47].

Optimizer. In this phase, the DAG of containers generated in the parsing phase is

traversed in topological order in two passes. During the first traversal pass, the Optimizer extracts

the parameters of each operator via the referenced extractor function and stores them in the

container. Furthermore, since HUMMINGBIRD supports different operator implementations based

on the extracted parameters, the Optimizer annotates the container with the translation strategy to

be used for that specific operator (5.5.1). During the second pass, HUMMINGBIRD tries to apply

target-independent optimizations (5.5.2) over the DAG.

Tensor DAG Translator. In this last phase, the DAG of containers is again traversed

in topological order and a conversion-to-tensors function is triggered based on each operator

signatures. Each conversion function receives as input the extracted parameters and generates a

PyTorch’s neural network module composed of a small set of tensor operators (listed in Table 5.1).

The generated module is then exported into the target DL systems format. The current version of

HUMMINGBIRD supports PyTorch/TorchScript, ONNX, and TVM output formats. The target-

70

Table 5.1: PyTorch tensor operators used by the Tensor DAG Compiler.

matmul, add, mul, div, lt, le, eq, gt,
ge, &, |, �, �, bitwise xor, gather,
index select, cat, reshape, cast, abs,
pow, exp, arxmax, max, sum, relu, tanh,
sigmoid, logsumexp, isnan, where

Table 5.2: Scikit-learn operators currently supported in HUMMINGBIRD.

Supported ML Models

LogisticRegression, SVC, NuSVC, LinearSVC, SGDClassifier, Logisti-
cRegressionCV, DecisionTreeClassifier/Regression, RandomForestClas-
sifier/Regression, ExtraTreesClassifier/Regressor, GradientBoostingClas-
sifier/Regression, HistGradientBoostingClassifier/Regressor, Isoltation-
Forest, MLPClassifier, BernoulliNB, GaussianNB, MultinomialNB

Supported Featurizers

SelectKBest, VarianceThreshold, SelectPercentile, PCA, KernelPCA,
TruncatedSVD, FastICA, SimpleImputer, Imputer, MissingIndicator,
RobustScaler, MaxAbsScaler, MinMaxScaler, StandardScaler, Binarizer,
KBinsDiscretizer, Normalizer, PolynomialFeatures, OneHotEncoder,
LabelEncoder, FeatureHasher

specific optimizations are triggered at this level.

5.3.3 Assumptions and Limitations

In this work, we make a few simplifying assumptions. First, we assume that predictive

pipelines are “pure”, i.e., they do not contain arbitrary user-defined operators. There has been

recent work [236] on compiling imperative UDFs (user-defined functions) into relational algebra,

and we plan to make use of such techniques in HUMMINGBIRD in the future. Second, we do

not support sparse data well. We found that current support for sparse computations on DL

systems is primitive and not well optimized. We expect advances in DL systems to improve on

this aspect—TACO [164] is a notable such example. Third, although we support string operators,

we currently do not support text feature extraction (e.g., TfidfVectorizer). The problem in

this case is twofold: (1) translating regex-based tokenizers into tensor computations is not trivial,

71

and (2) representing arbitrarily long text documents in tensors is still an open challenge. Finally,

HUMMINGBIRD is currently limited by single GPU memory execution. Given that several DL

systems nowadays support distributed processing [252, 189], we plan to investigate distributed

inference as future work.

5.4 Translation

HUMMINGBIRD supports translating several algorithmic operators into tensor compu-

tations. Given their popularity [233], in Section 5.4.1 we explain our approach for tree-based

models. Section 5.4.2 gives a summary of other techniques that we use for both algorithmic and

arithmetic operators.

5.4.1 Translating Decision Tree-based Models

HUMMINGBIRD has three different strategies for translating tree-based models. Strategies

differ based on the degree of redundancy introduced. Table 5.3 explains the notation used in

this section. We summarize the worst-case runtime and memory footprints of each strategy in

Table 5.4. HUMMINGBIRD currently supports only trees built over numerical values: support for

missing and categorical values is under development. For the sake of presentation, we assume all

decision nodes perform < comparisons.

Strategy 1: GEMM. We cast the evaluation of a tree as a series of three GEneric Matrix

Multiplication (GEMM) operations interleaved by two element-wise logical operations. Given a

tree, we create five tensors which collectively capture the tree structure: A,B,C,D, and E. A

captures the relationship between input features and internal nodes. B is set to the threshold

value of each internal node. For any leaf node and internal node pair, C captures whether the

internal node is a parent of that internal node, and if so, whether it is in the left or right sub-tree.

D captures the count of the internal nodes in the path from a leaf node to the tree root, for which

72

Table 5.3: Notation used in Section 5.4.1

Symbol Description

N, I,L,F,C Ordered lists with all nodes, internal nodes, leaf nodes, features, and
classes, respectively.

X ∈ Rn×|F | Input records (n is the number of records).

A ∈ R|F |×|I| Ai, j =

{
1, I j evaluates Fi

0, Otherwise

B ∈ R|I| Bi = ThresholdValue(Ii)

C ∈ R|I|×|L| Ci, j =


−1, L j ∈ RightSubTree(Ii)

1, L j ∈ LeftSubTree(Ii)
0, Otherwise

D ∈ R|L| Dk = ∑

k∈L
path−−→Root

1(k == LeftChild(Parent(k)))

E ∈ R|L|×|C| Ei, j =

{
1, Li

map to−−−−→C j

0, Otherwise

Table 5.4: Worst-case memory and runtime analysis of different tree translation strategies,
assuming the number of input records and number of trees are fixed. The notation is explained
in Table 5.3

Strategy Memory Runtime
GEMM O(|F ||N|+ |N|2 + |C||N|) O(|F ||N|+ |N|2 + |C||N|)
TT O(|N|) O(|N|)
PTT O(2|N|) O(|N|)

the internal node is the left child of its parent. Finally, E captures the mapping between leaf nodes

and the class labels. Given these tensors, Algorithm 3 presents how we perform tree scoring for

a batch of input records X . A graphical representation of an execution of the GEMM strategy is

depicted in Figure 5.3.

The first GEMM is used to match each input feature with the internal node(s) using it. The

following < operations is used to evaluate all the internal decision nodes and produces a tensor of

0s and 1s based on the false/true outcome of the conditions. The second GEMM operation generates

an encoding for the path composed by the true internal nodes, while the successive == operation

returns the leaf node selected by the encoded path. Finally, the third GEMM operation maps the

73

𝐹! < 0.5
T

𝐹! < 2.4𝐶"

𝐹# < 2.0 𝐹$ < 5.5

𝐶# 𝐶"

𝐶"𝐶#

F
𝐼!

𝐼" 𝐼#
𝐼$

𝐿!

𝐿# 𝐿$

𝐿" 𝐿%

0.1 4.6 1.9 0.8 3.5

0 0 0 0
0 1 0 0
1 0 0 1
0 0 0 0
0 0 1 0

0.5 2.0 5.5 2.4 0 0 1 1

1 1 -1 -1 -1
1 -1 0 0 0
0 0 1 1 -1
0 0 1 -1 0

2 1 2 1 0

1 0
0 1
0 1
1 0
1 0

0 10 0 1 0 0

!
×

#

$
< ⇒

'('*				'+				',	

0 0 1 1 × ==
.(.*			.+			.,			./

0
1

⇒
0(0*

2

× ⇒

Figure 5.3: Compiling an example decision tree using the GEMM strategy.

Algorithm 3 GEMM Strategy (Notation explained in Table 5.3)
1: Input:X ∈ Rn×|F |, Input records
2: Output:R ∈ {0,1}n×|C|, Predicted class labels
3: // Evaluate all internal nodes
4: T ← GEMM(X, A) //T ∈ Rn×|I|

5: T ← T < B //T ∈ Rn×|I|

6: // Find the leaf node which gets selected
7: T ← GEMM(T, C) //T ∈ Rn×|L|

8: T ← T == D //T ∈ Rn×|L|

9: // Map selected leaf node to class label
10: R← GEMM(T, E) //R ∈ Rn×|C|

selected leaf node to the class label.

This strategy can be easily applied to support tree ensembles and regression tasks too. For

tree ensembles, we create the above 2-dimensional tensors for each tree and batch them together.

As the number of leaf nodes and internal nodes can vary among trees, we pick the maximum

number of leaf nodes and internal nodes for any tree as the tensor dimensions and pad the smaller

74

Table 5.5: Additional notation used in Strategy 2: TreeTraversal

Symbol Description

NL ∈ Z|N| NLi =

{
LeftChild(Ni),Ni ∈ I
i,Otherwise

NR ∈ Z|N| NRi =

{
RightChild(Ni),Ni ∈ I
i,Otherwise

NF ∈ Z|N| NFi =

{
k,(Ni ∈ I)∧ (Ni evaluates Fk)

1,Otherwise

NT ∈ R|N| NTi =

{
ThresholdValue(Ni),Ni ∈ I
0,Otherwise

NC ∈ Z|N|×|C| NCi,k=

{
1,(Ni ∈ L)∧ (Ni

map to−−−−→Ck)

0,Otherwise

tensor slices with zeros. During scoring, we invoke the batched variants of GEMM and logical

operations and perform a final ReduceMean operation over the batched dimension to generate the

ensemble output. For regression tasks, we initialize E with label values.

Strategy 2: TreeTraversal (TT). In the GEMM strategy, we incorporated a high degree of

computational redundancy by evaluating all internal nodes and leaf nodes. Here, we try to reduce

the computational redundancy by mimicking the typical tree traversal—but implemented using

tensor operations. In this strategy, the tree structure is captured by five tensors: NL,NR,NF ,NT ,

and NC. We formally define these tensors in Table 5.5. The same column index (last dimension)

across all tensors corresponds to the same tree node. NL and NR capture the indices of the left and

right nodes for a given node. If the node is a leaf node, we set these to the index of the given node.

Similarly, NF and NT capture the feature index and threshold value for each node, respectively.

For leaf nodes, we set NF to 1 and NT to 0. Finally, NC captures the class label of each leaf node.

For internal nodes this can be any value; we set it to 0.

Given these tensors, Algorithm 4 presents how we perform scoring for a batch of input

records X . We use Gather and Where operations which can be used to perform index-based

slicing and conditional value selection. We first initialize an index tensor TI corresponding to

75

Algorithm 4 TreeTraversal Strategy (Notation in Tables 5.5)
1: Input:X ∈ Rn×|F |, Input records
2: Output:R ∈ {0,1}n×|C|, Predicted class labels
3: // Initialize all records to point to k, with k the index of Root node.
4: TI ←{k}n //TI ∈ Zn

5: for i← 1 to TREE DEPTH do
6: // Find the index of the feature evaluated by the current node. Then find its value.
7: TF ←Gather(NF ,TI) //TF ∈ Zn

8: TV ←Gather(X ,Tf) //TV ∈ Rn

9: // Find the threshold, left child and right child
10: TT ←Gather(NT ,TI) //TT ∈ Rn

11: TL←Gather(NL,TI) //TL ∈ Zn

12: TR←Gather(NR,TI) //TR ∈ Zn

13: // Perform logical evaluation. If true pick from TL; else from TR.
14: TI ←Where(TV < TT ,TL,TR) //I ∈ Zn

15: // Find label for each leaf node
16: R←Gather(NC,TI) //R ∈ Zn

all records in X , which points to the root node. Using TI , we Gather the corresponding feature

indices and use them to Gather the corresponding feature values from X . Similarly, we also

Gather left node indices, right node indices, and node thresholds. Using these gathered tensors,

we then invoke a Where operation which checks for the tree node decisions. Based on the

evaluation, for each record the Where operator either returns the left child index or right child

index. To perform full tree scoring, the above steps have to be repeated until we reach a leaf node

for all records in X . We exploit the fact that (1) TREE DEPTH is a known property of the input

model at translation time, and (2) all leaf nodes are at a depth ≤ TREE DEPTH, to iterate for that

fixed number of iterations to ensure that all records have found their corresponding leaf node.

Tensors are created in such a way that if one of the indices reaches a leaf node before running

for TREE DEPTH iterations, the same class label will keep getting selected. At translation time,

we unroll all iterations and remove the for loop to improve efficiency. For ensembles, we create

tensors for each tree and batch them together. However, between trees the number of nodes and

dimensions may differ, so we use the maximum node count for any tree as the dimension and pad

the remaining elements.

76

Table 5.6: Additional notation used in Strategy 3

Symbol Description

I′ ∈ Z2D−1
,L′ ∈ Z2D

Internal and leaf nodes of the perfect tree ordered by
level.

N′F ∈ Z|I′| N′Fi
= k ⇐⇒ I′i evaluates Fk

N′T ∈ R|I′| N′Ti
= ThresholdValue(I′i)

N′C ∈ Z|L′|×|C| N′Ci,k
=

{
1,Ni

map to−−−−→Ck

0,Otherwise

Strategy 3: PerfectTreeTraversal (PTT). Similar to the previous one, this strategy also

mimics the tree traversal. However, here we assume the tree is a perfect binary tree. In a perfect

binary tree, all internal nodes have exactly two children and all leaf nodes are at the same depth

level. Assume we are given a non-perfect binary tree with a TREE DEPTH of D, and Lk is a leaf

node which is at a depth of Dk < D. To push Lk to a depth D, we replace Lk with a perfect sub-tree

of depth D−Dk and map all the leaf nodes of the sub-tree to Ck: the label of the original leaf

node. The decision nodes in the introduced sub-tree are free to perform arbitrary comparisons as

the outcome is the same along any path. By pushing all leaf nodes at depth < D to a depth of D,

we transform the original tree to a perfect tree with the same functionality.

Working on perfect trees enables us to get rid of NL and NR tensors as we can now calculate

them analytically, which also reduces memory lookup overheads during scoring. Thus we create

only three tensors to capture the tree structure: N′F ,N
′
T , and N′C (Table 5.6). They capture the

same information as NF ,NT ,NC but have different dimensions and have a strict condition on the

node order. Both N′F and N′T have 2D−1 elements and the values correspond to internal nodes

generated by level order tree traversal. N′C has 2D elements with each corresponding to an actual

leaf node from left to right order.

Given these tensors, in Algorithm 5 we present how PTT works. From a high-level point

of view, it is very similar to the TT strategy with only a few changes. First, the index tensor TI is

initialized to all ones as the root node is always the first node. Second, we get rid of finding the

77

Algorithm 5 PTT Strategy (Notation in Tables 5.6)
1: Input:X ∈ Rn×|F |, Input records
2: Output:R ∈ {0,1}n×|C|, Predicted class labels
3: // Initialize all records to point to the root node.
4: TI ←{1}n //TI ∈ Zn

5: for i← 1 to TREE DEPTH do
6: // Find the index of the feature evaluated by the current node. Then find its value.
7: TF ←Gather(NF ,TI) //TF ∈ Zn

8: TV ←Gather(X ,Tf) //TV ∈ Rn

9: // Find the threshold
10: TT ←Gather(NT ,TI) //TT ∈ Rn

11: // Perform logical evaluation. If true pick left child; else right child.
12: TI ← 2×TI + Where(TV < TT ,0,1) //I ∈ Zn

13: // Find label for each leaf node
14: R←Gather(N′C,TI) //*R ∈ Zn

left index and right index of a node and using them in the Where operation. Instead, the Where

operation returns 0 for true case and 1 for the false case. By adding this to 2×TI we get the index

of the child for the next iteration. For ensembles, we use the maximum TREE DEPTH of any tree as

D for transforming trees to perfect trees. We create tensors separate for each tree and batch them

together for N′C. But for N′F and N′T instead of batching, we interleave them together in some

order such that values corresponding to level i for all trees appear before values corresponding to

level i+1 of any tree.

5.4.2 Summary of Other Techniques

Next, we discuss the other techniques used across classical ML operators to efficiently

translate them into tensor computations.

Exploiting Automatic Broadcasting. Broadcasting [36] is the process of making two

tensors shape compatible for element-wise operations. Two tensors are said to be shape compatible

if each dimension pair is the same, or one of them is 1. At execution time, tensor operations

implicitly repeat the size 1 dimensions to match the size of the other tensor, without allocating

78

memory. In HUMMINGBIRD, we heavily use this feature to execute some computation over

multiple inputs. For example, consider performing a one-hot encoding operation over column

Xi ∈ Rn with a vocabulary V ∈ Zm. In order to implement this using tensor computations, we

Reshape Xi to [n,1] and V to [1,m] and calculate R = Equal(X , V), R ∈ {0,1}n×m. The Reshape

operations are for free because they only modify the metadata of the tensor. However, this

approach performs redundant comparisons as it checks the feature values from all records against

all vocabulary values.

Minimize Operator Invocations. Given two approaches to implement a classical ML

operator, we found that often picking the one which invokes fewer operators outperforms the

other—even if it performs some extra computations. Consider a featurizer that generates feature

interactions. Given an input X ∈ Rn×d , with d = |F |, it generates a transformed output R ∈

Rn× d·(d+1)
2 with Ri = [X2

i,1, ...,X
2
i,d,Xi,1Xi,2, ...Xi,d−1Xi,d]. One way to implement this operator is

to compute each new feature separately by first Gathering the corresponding input feature

columns, perform an element-wise Multiplication, and conCatenate all new features. However,

this approach requires performing d2 +d +1 operations and hence is highly inefficient due to

high operator invocation overheads. Alternatively, one could implement the same operator as

follows. First, Reshape X into X ′ ∈ Rn×d×1 and X ′′ ∈ Rn×1×d . Then perform a batched GEMM

using these inputs, which will create R′ ∈ Rn×d×d . Finally, Reshape R′ to R′′ ∈ Rn×d2
. Notice

that each row in R′′ has all the values of the corresponding row in R, but in a different order. It also

has some redundant values due to commutativity of multiplication (i.e., xix j = x jxi). Hence, we

perform a final Gather to extract the features in the required order, and generate R. Compared to

the previous one, this approach increases both the computation and the memory footprint roughly

by a factor of two. However, we can implement feature interaction in just two tensor operations.

Avoid Generating Large Intermediate Results. Automatic broadcasting in certain

cases can become extremely inefficient due to the materialization of large intermediate tensors.

Consider the Euclidean distance matrix calculation, which is popular in many classical ML

79

operators (e.g., SVMs, KNN). Given two tensors X ∈ Rn×d and Y ∈ Rm×d , the objective is to

calculate a tensor D ∈ Rn×m, where Di, j = ||Xi−Yj||22. Implementing this using broadcasting

requires first reshaping X to X ′ ∈ Rn×1×d , Y to Y ′ ∈ R1×m×d , calculate (X ′−Y ′) ∈ Rn×m×d , and

perform a final Sum over the last dimension. This approach causes a size blowup by a factor of

d in intermediate tensors. Alternatively, a popular trick [59] is to use the quadratic expansion

of Di, j = ||Xi||22 + ||Yj||22− 2 ·XiY T
j and calculate the individual terms separately. This avoids

generating large intermediate tensors.

Fixed Length Restriction on String Features. Features with strings of arbitrary lengths

pose a challenge for HUMMINGBIRD. Strings are commonly used in categorical features, and

operators like one-hot encoding and feature hashing natively support strings. To support string

features, HUMMINGBIRD imposes a fixed length restriction, with the length being determined by

the max size of any string in the vocabulary. Vocabularies are generated during training and can

be accessed at translation time by HUMMINGBIRD. Fixed length strings are then encoded into an

int8.

5.5 Optimizations

In this section we discuss the key optimizations performed by the HUMMINGBIRD’s

Optimizer: heuristics for picking operator strategies (Section 5.5.1) and target-independent

optimizations (Section 5.5.2). Recall that our approach also leverages target-specific optimizations

at the DL Compiler level. We refer to [24, 93] for runtime-specific optimizations.

5.5.1 Heuristics-based Strategy Selection

For a given classical ML operator, there can be more than one translation strategy available.

In the previous section we explained three such strategies for tree-based models. In practice, no

strategy consistently dominates the others, but each is preferable in different situations based on

80

the input and model structure. For instance, the GEMM strategy gets significantly inefficient as the

size of the decision trees gets bigger because of the large number of redundant computations.

This strategy performs O(2D) (D is the depth of the tree) computations whereas the original

algorithmic operator needs to perform only O(D) comparisons. Nevertheless, with small batch

sizes or a large number of smaller trees, this strategy can be performance-wise optimal on modern

hardware, where GEMM operations can run efficiently. With large batch sizes and taller trees, TT

techniques typically outperform the GEMM strategy and PTT is slightly faster than vanilla TT due to

the reduced number of memory accesses. But if the trees are too deep, we cannot implement PTT

because the O(2D) memory footprint of the associated data structures will be prohibitive. In such

cases, we resort to TT. The exact crossover point where GEMM strategy outperforms other strategies

is determined by the characteristics of the tree model (e.g., number of trees, maximum depth of

the trees), runtime statistics (e.g., batch size), and the underlying hardware (e.g., CPUs, GPUs).

For instance, from our experiments (see Figure 5.9) we found that the GEMM strategy performs

better for shallow trees (D≤ 3 on CPU, ≤ 10 on GPU) or for scoring with smaller batch sizes.

For tall trees, using PTT when D≤ 10 give a reasonable trade-off between memory footprint and

runtime, which leaves vanilla TreeTraversal the only option for very tall trees (D > 10). These

heuristics are currently hard-coded.

5.5.2 Target-independent Optimizations

We discuss two novel optimizations, which are unique to HUMMINGBIRD. HUMMING-

BIRD’s approach of separating the prediction pipeline from training pipeline, and representing

them in a logical DAG before translation into tensor computations facilitate the optimization of

end-to-end pipelines.

Feature Selection Push-Down. Feature selection is a popular operation that is often

used as the final featurization step as it reduces over-fitting and improves the accuracy of the

classical ML model [105]. However, during inference, it can be pushed down in the pipeline

81

to avoid redundant computations such as scaling and one-hot encoding for discarded features

or even reading the feature at all. This idea is similar to the concept of projection push-down

in relation query processing [272] but through user-defined table functions, which in our case

are the classical ML operators. For operators such as feature scaling, which performs 1-to-1

feature transformations, selection push-down can be easily implemented. However, for operators

such as one-hot encoding and polynomial featurization, which perform 1-to-m or m-to-1 feature

transformations, the operator will have to absorb the feature selection and stop generating those

features. For example, say one-hot encoding is applied on a categorical feature column which has

a vocabulary size of 10, but 4 of those features are discarded by the feature selector. In such cases,

we can remove such features from the vocabulary. Note that for some “blocking” operators [182],

such as normalizers, it is not possible to push-down the feature selection.

Feature Selection Injection. Even if the original pipeline doesn’t have a feature selection

operator, it is possible to inject one and then push it down. Linear models with L1 regularization

(Lasso) is a typical example where feature selection is implicitly performed. The same idea can

be extended to tree-based models to prune the features that are not used as decision variables. In

both of these examples, the ML model also has to be updated to take into account the pruned

features. For linear models we prune the zero weights; for tree models, we update the indices of

the decision variables.

5.6 Experimental Evaluation

In our experimental evaluation we report two micro-benchmark experiments showing how

HUMMINGBIRD performs compared to current state-of-the-art for inference over (1) tree ensem-

bles (Section 5.6.1); (2) other featurization operators and classical ML models (Section 5.6.1).

Then we evaluate the optimizations by showing: (1) the need for heuristics for picking the

best tree-model implementation (Section 5.6.2); and (2) the benefits introduced by the target-

82

independent optimizations (Section 5.6.2). Finally, we conduct an end-to-end evaluation using

pipelines (Section 5.6.3). We evaluate both CPUs and hardware accelerators (GPUs).

Hardware and Software Setup. For all the experiments (except when stated otherwise)

we use an Azure NC6 v2 machine equipped with 112 GB of RAM, an Intel Xeon CPU E5-2690

v4 @ 2.6GHz (6 virtual cores), and an NVIDIA P100 GPU. The machine runs Ubuntu 18.04 with

PyTorch 1.3.1, TVM 0.6, scikit-learn 0.21.3, XGBoost 0.9, LightGBM 2.3.1, ONNX runtime 1.0,

RAPIDS 0.9, and CUDA 10. We run TVM with opt level 3 when not failing; 0 otherwise.

Experimental Setup. We run all the experiments 5 times and report the truncated mean

(by averaging the middle values) of the processor time. In the following, we use ONNX-ML to

indicate running an ONNX-ML model (i.e., traditional ML part of the standard) on the ONNX

runtime. Additionally, we use bold numbers to highlight the best performance for the specific

setup (CPU or GPU). Note that both scikit-learn and ONNX-ML do not natively support hardware

acceleration.

5.6.1 Micro-benchmarks

Tree Ensembles

Setup. This experiment is run over a set of popular datasets used for benchmarking

gradient boosting frameworks [37]. We first do a 80%/20% train/test split over each dataset.

Successively, we train a scikit-learn random forest, XGBoost [92], and LightGBM [159] models

using the default parameters of the benchmark. Specifically, we set the number of trees to 500 and

maximum depth to 8. For XGBoost and LightGBM we use the scikit-learn API. Note that each

algorithm generates trees with different structures, and this experiment helps with understanding

how HUMMINGBIRD behaves with various tree types and dataset scales. For example, XGBoost

generates balanced trees, LightGBM mostly generates skinny tall trees, while random forest is a

mix between the two. Finally, we score the trained models over the test dataset using different

83

Table 5.7: Batch Experiments (10K records at-a-time) for both CPU (6 cores) and GPU.
Reported numbers are in seconds.

Algorithm Dataset
Baselines (CPU) HUMMINGBIRD CPU Baselines (GPU) HUMMINGBIRD GPU

Sklearn ONNX-ML PyTorch TorchScript TVM RAPIDS TorchScript TVM

Rand. Forest

Fraud 2.5 7.1 8.0 7.8 3.0 N/A 0.044 0.015
Epsilon 9.8 18.7 14.7 13.9 6.6 N/A 0.13 0.13

Year 1.9 6.6 7.8 7.7 1.4 N/A 0.045 0.026
Covtype 5.9 18.1 17.22 16.5 6.8 N/A 0.11 0.047
Higgs 102.4 257.6 314.4 314.5 118.0 N/A 1.84 0.55
Airline 1320.1 timeout timeout timeout 1216.7 N/A 18.83 5.23

LightGBM

Fraud 3.4 5.9 7.9 7.6 1.7 0.014 0.044 0.014
Epsilon 10.5 18.9 14.9 14.5 4.0 0.15 0.13 0.12

Year 5.0 7.4 7.7 7.6 1.6 0.023 0.045 0.025
Covtype 51.06 126.6 79.5 79.5 27.2 N/A 0.62 0.25
Higgs 198.2 271.2 304.0 292.2 69.3 0.59 1.72 0.52
Airline 1696.0 timeout timeout timeout 702.4 5.55 17.65 4.83

XGBoost

Fraud 1.9 5.5 7.7 7.6 1.6 0.013 0.44 0.015
Epsilon 7.6 18.9 14.8 14.8 4.2 0.15 0.13 0.12

Year 3.1 8.6 7.6 7.6 1.6 0.022 0.045 0.026
Covtype 42.3 121.7 79.2 79.0 26.4 N/A 0.62 0.25
Higgs 126.4 309.7 301.0 301.7 66.0 0.59 1.73 0.53
Airline 1316.0 timeout timeout timeout 663.3 5.43 17.16 4.83

batch sizes. We compare the results against HUMMINGBIRD with different DL inference system

backends and an ONNX-ML version of the model generated using ONNXMLTools [33]. When

evaluating over GPU, we also compared against NVIDIA RAPIDS Forest Inference Library

(FIL) [45]. We don’t compare against GPU implementations for XGBoost or LightGBM because

we consider FIL as state-of-the-art [34]. For the CPU experiments, we use all six cores in the

machine, while for request/response experiments we use one core. We set a timeout of 1 hour for

each experiment.

Datasets. We use 6 datasets from NVIDIA’s gbm-bench [37]. The datasets cover a wide

spectrum of use-cases: from regression to multiclass classification, from 285K rows to 100M,

and from few 10s of columns to 2K.

List of Experiments. We run the following set of experiments: (1) batch inference,

both on CPU and GPU; (2) request/response where a single record is used for inference; (3)

scaling experiments by varying batch sizes, both over CPU and GPU; (4) evaluation of how

84

HUMMINGBIRD behaves on different GPU generations; (5) dollar cost per prediction; (6) memory

consumption; (7) validation of the produced output with respect to scikit-learn; and finally (8)

time spent on translating the models.

Batch Inference. Table 5.7 reports the inference time for random forest, XGBoost and

LightGBM models run over the 6 datasets. The batch size is set to 10K records. Looking at the

CPU numbers from the table, we can see that:

1. Among the baselines, scikit-learn models outperform ONNX-ML implementations by 2 to

3×. This is because ONNX-ML v1.0 is not optimized for batch inference.

2. Looking at the HUMMINGBIRD’s backends, there is not a large difference between PyTorch

and TorchScript, and in general these backends perform comparable to ONNX-ML.

3. The TVM backend provides the best performance on 15 experiments out of 18. In the worst

case TVM is 20% slower (than scikit-learn); in the best cases it is up to 2× faster compared

to the baseline solutions.

Let us look now at the GPU numbers of Table 5.7:

1. Baseline RAPIDS does not support random forest nor multiclass classification tasks. For

the remaining experiments, GPU acceleration is able to provide speedups of up to 300×

compared to CPU baselines.1

2. Looking at HUMMINGBIRD backends, TorchScript is about 2 to 3× slower compared to

RAPIDS. TVM is instead the faster solution on 14 experiments out of 18, with a 10% to

20% improvement wrt RAPIDS.

1The original FIL blog post [34] claims GPU acceleration to be in the order of 28× for XGBoost, versus close to
300× in our case (Airline). We think that the difference is in the hardware: in fact, they use 5 E5-2698 CPUs for a
total of 100 physical cores, while we use a E5-2690 CPU with 6 (virtual) physical cores. Additionally, they use a
V100 GPU versus a P100 in our case.

85

1 100 10000 1000000
Batch Size

102

103

Ti
m

e
(s

)
onnx-ml
hb-torchscript
hb-tvm
lgbm

Figure 5.4: Performance with respect to scaling the batch size on CPU (Higgs, LightGBM), 6
cores

100 1000 10000 100000 1000000
Batch Size

101

102

Ti
m

e
(s

)

fil
hb-torchscript
hb-tvm

Figure 5.5: Performance with respect to scaling the batch size on GPU (Airline, LightGBM)

The results are somehow surprising: HUMMINGBIRD targets the high-level tensor APIs

provided by PyTorch and TVM, and still it is able to outperform custom C++ and CUDA

implementations.

Request/response.

In this scenario, one record is used for inference at a time. For this experiment we run

inference over the entire test datasets, but with batch size equal to 1. We used the same datasets

and setup of Section 5.6.1, except that (1) we removed the Airline dataset since no system was

able to complete within the 1 hour timeout; and (2) we only use one single core. The results are

depicted in Table 5.8:

1. Unlike the batch scenario, ONNX-ML is much faster compared to scikit-learn, in some

86

Table 5.8: Request/response times in seconds (one record at a time).

Algorithm Dataset
Baselines HUMMINGBIRD

Sklearn ONNX-ML PT TS TVM

Rand. Forest

Fraud 1688.22 9.96 84.95 75.5 11.63
Epsilon 2945.42 32.58 153.32 134.17 20.4

Year 1152.56 18.99 84.82 74.21 9.13
Covtype 3388.50 35.49 179.4 157.8 34.1
Higgs timeout 335.23 timeout timeout 450.65

LightGBM

Fraud 354.27 12.05 96.5 84.56 10.19
Epsilon 40.7 29.28 167.43 148.87 17.3

Year 770.11 16.51 84.55 74.05 9.27
Covtype 135.39 209.16 854.07 822.93 42.86
Higgs timeout 374.64 timeout timeout 391.7

XGBoost

Fraud 79.99 7.78 96.84 84.61 10.21
Epsilon 121.21 27.51 169.03 148.76 17.4

Year 98.67 17.14 85.23 74.62 9.25
Covtype 135.3 197.09 883.64 818.39 43.65
Higgs timeout 585.89 timeout timeout 425.12

Table 5.9: Peak memory consumption (in MB) for Fraud.

Framework Random Forest LightGBM XGBoost

Sklearn 180 182 392
ONNX-ML 265 258 432
TorchScript 375 370 568

TVM 568 620 811

cases even more than 100×. The reason is that ONNX-ML is currently optimized for single

record, single core inference, whereas scikit-learn design is more towards batch inference.

2. PyTorch and TorchScript, again, behave very similarly. For random forest they are faster

than scikit-learn but up to 5× slower compared to ONNX-ML. For LightGBM and XGBoost

they are sometimes on par with scikit-learn, sometime slower.

3. TVM provides the best performance in 11 cases out of 15, with a best case of 3× compared

to the baselines.

These results are again surprising, considering that tensor operations should be more

optimized for bulk workloads rather than request/response scenarios.

87

Scaling the Batch Size. We study how the performance of baselines and HUMMING-

BIRD’s backends change with the batch size. Figures 5.4 and 5.5 depicts the performance variation

over CPU and GPU, respectively. We report only a few combinations of dataset / algorithm, but

all the other combinations behave similarly. Starting with the CPU experiment, we can see that

ONNX-ML has the best runtime for batch size of 1, but then its performance remains flat as

we increase the batch size. TorchScript and scikit-learn did not complete within the timeout for

batch equal to 1, but, past 100, they both scale linearly as we increase the batch size. TVM is

comparable to ONNX-ML for batch of 1; for batches of 100 records it gets about 5× faster, while

it scales like TorchScript for batches greater than 100. This is likely due to the fact that TVM

applies a set of optimizations (e.g., operator fusion) that introduce a constant-factor speedup

compared to TorchScript.

Looking at the GPU numbers (Figure 5.5), TorchScript and TVM again follow a similar

trend, with TVM being around 3× faster than TorchScript. Both TVM and TorchScript plateau at

about a batch size of 10K. RAPIDS FIL is slower than TorchScript for small batch sizes, but it

scales better than HUMMINGBIRD. This is because of its custom CUDA implementation that is

able to better use hardware under higher utilization. Interestingly, FIL as well plateaus at around

100K records. The custom CUDA implementation introduces a 50% gain over HUMMINGBIRD

with TVM runtime over large batches.

Scaling Hardware. We tested how RAPIDS FIL and HUMMINGBIRD (TorchScript and

TVM) scale as we change the GPU model. For this experiment we tried both with a large batch

size (1M records, Figure 5.6 (a)) to maximize hardware utilization, and a smaller batch size (1K,

Figure 5.7 (b)). We ran this on all datasets across random forest, LightGBM, XGBoost with

similar results, and present the Airline dataset (the largest) with LightGBM as a representative

sample. We tested on three NVIDIA devices: K80 (the oldest, 2014), P100 (2016), and V100

(2017). From the figures, in general we can see that: (1) RAPIDS FIL does not run on the K80

because it is an old generation; (2) with a batch size of 1K we get slower total inference time

88

k80 p100 v100
Nvidia Model

0

5

10

15

20

Ti
m

e
(s

)

hb-torchscript
hb-tvm
fil

Figure 5.6: Performance across GPUs for Airline, LightGBM with batch size of 1M

k80 p100 v100
Nvidia Model

0

20

40

60

80

Ti
m

e
(s

)

hb-torchscript
hb-tvm
fil

Figure 5.7: Performance across GPUs for Airline, LightGBM with batch size of 1K

because we don’t utilize the full hardware; (3) TorchScript and TVM runtimes for HUMMINGBIRD

scale similarly on different hardware, although TVM is consistently 4 to 7× faster; (4) FIL scales

similarly to HUMMINGBIRD, although it is 50% faster on large batches, 3× slower for smaller

batches; (5) TorchScript is not optimal in memory management because for batches of 1M it fails

on the K80 with an OOM exception. Finally, we also were able to run HUMMINGBIRD on the

new Graphcore IPU [30] over a single decision tree.

Cost. Figure 5.8 shows the cost comparison between the Azure VM instance equipped

with GPU, and a comparable one without GPU (E8 v3). The plot shows the cost of executing

100k samples with a batch size of 1K for random forest. The cost is calculated based on the hourly

rate of each VM divided by the amortized cost of a single prediction. We executed scikit-learn on

the CPU and TorchScript and TVM on the GPU for comparison. We found that the CPU cost was

89

Table 5.10: Conversion times (in seconds) over one core.

Algorithm Dataset ONNX-ML
HUMMINGBIRD

PyTorch TorchScript TVM

Rand.Forest

Fraud 1.28 0.55 0.58 102.37
Epsilon 7.53 2.63 2.67 108.64

Year 7.11 2.77 2.86 69.99
Covtype 9.87 2.16 2.2 106.8
Higgs 8.25 2.41 2.44 103.77
Airline 6.82 2.42 2.53 391.07

LightGBM

Fraud 1.34 0.98 1.06 3.42
Epsilon 11.71 7.55 7.60 9.95

Year 9.49 6.11 6.15 8.35
Covtype 32.46 22.57 23.12 26.36
Higgs 6.73 25.04 26.3 109
Airline 11.52 6.38 6.47 8.19

XGBoost

Fraud 0.55 0.65 0.7 86.59
Epsilon 6.86 25.89 25.94 113.4

Year 5.66 23.4 23.54 110.24
Covtype 9.87 2.16 2.20 106.8
Higgs 6.73 25.04 26.3 109

significantly higher (between 10×-120×) across all experiments. 2 An interesting result was that

the oldest GPU was the most cost effective, with the K80 and TVM having the lowest cost for

13 out of the 18 experiments (including LightGBM and XGBoost, not pictured). This result is

explained by the fact that the K80 is readily available at significantly lower cost.

Memory Consumption. We measured the peak memory consumption over the Fraud

dataset and for each algorithm. We used the memory usage function in the memory profiler

library [40]. The numbers are reported in Table 5.9, and are the result of the execution over 1

core with a batch size of 1K. As we can see, scikit-learn is always the most memory efficient.

ONNX-ML consumes from 10% to 50% more memory, while HUMMINGBIRD with TorchScript

runtime consumes from 50% to about 2× more memory than scikit-learn. Conversely, TVM

consumes from 2× to 3× more memory with respect to scikit-learn. We think that TVM is more

2Note: airline times out for random forest for CPU with 1K batch.

90

CPU
SKL

k80
TS

k80
TVM

p100
TS

p100
TVM

v100
TS

v100
TVM

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07

Co
st

 (i
n

ce
nt

s)

Fraud
Epsilon
Year

Covtype
Higgs
Airline

Figure 5.8: Cost for random forest 100k samples, batch size of 1K.

memory hungry because it optimizes compute at the cost of memory requirements. Note that the

batch size influences the total memory consumption.

Output Validation. Since we run tree ensemble models as tensor operations, we could

introduce rounding errors over floating point operations. Therefore, we need to validate that indeed

the outputs produced match. To evaluate this, we used the numpy testing.assert allclose

function, and we set the relative and absolute errors to 10−5. We validate both the final scores and

the probabilities (when available) for all combinations of datasets and algorithms. Out of the 18

experiments listed in Table 5.7, 9 of them returned no mismatches for HUMMINGBIRD, 12 in the

ONNX-ML case. Among the mismatches, the worst case for HUMMINGBIRD is random forest

with Covtype where we have 0.8% of records differing from the original scikit-learn output. For

the Epsilon dataset, HUMMINGBIRD with random forest returns a mismatch on 0.1% of records.

All the remaining mismatches effect less than 0.1% of records. Note that the differences are small.

The biggest mismatch is of 0.086 (absolute difference) for Higgs using LightGBM. For the same

experiment ONNX-ML has an absolute difference of 0.115.

Conversion Time. Table 5.10 shows the time it takes to convert a trained model into

a target DL system. The numbers are related to the generation of models running on a single

core. This cost occurs only once per model and are not part of the inference cost. As we can see,

91

converting a model to ONNX-ML can take up to a few tens of seconds; HUMMINGBIRD with

PyTorch backend is constantly about 2× to 3× faster with respect to ONNX-ML in converting

random forests models, while it varies for LightGBM and XGBModels. TorchScript models are

generated starting from PyTorch models, and in general this further conversion step does not

introduce any major overhead. Finally, conversion to TVM is much slower, and it might take

more than 3 minutes. This is due to code generation and optimizations introduced in TVM.

As a final note: parallel (i.e., more than 1 core) and GPU execution introduced further

conversion time overheads, especially on TVM. For instance, TVM can take up to 40 minutes to

convert a random forest model for execution on GPU.

Operators

Setup. This micro-benchmark is a replication of the suite comparing scikit-learn and

ONNX-ML operators [32]. We test all scikit-learn operators of the suite that are supported by

both ONNX-ML and HUMMINGBIRD (minus tree ensembles models). The total number of tested

operators is 13, and they are a mix of classical ML models (Logistic Regression, Support Vector

Machines, etc.) and featurizers (e.g., Binarizer, Polynomial, etc.). For this micro-benchmark we

score 1 million records.

Datasets. We use the Iris datasets [39] with 20 features.

List of Experiments. We run the following experiments: (1) batch inference over 1M

records, both on CPU and GPU; (2) request/response over 1 record; (3) memory consumption

and conversion time. All the output results are correct.

Batch Inference. The batch numbers are reported in Table 5.11. On CPU, scikit-learn is

faster than ONNX-ML, up to 6× for polynomial featurizer, although in most of the cases the two

systems are within a factor of 2. HUMMINGBIRD with TorchScript backend is competitive with

scikit-learn, whereas with TVM backend HUMMINGBIRD is faster on 8 out of 13 operators, in

92

Table 5.11: Batch experiments for operators on both CPU (1 core) and GPU. Numbers are in
milliseconds. (TS is short for TorchScript)

Operator
Baselines (CPU) HUMMINGBIRD CPU HUMMINGBIRD GPU

Sklearn ONNX-ML TS TVM TS TVM

Log. Regres. 970 1540 260 47 13 15
SGDClass. 180 1540 270 49 11 15
LinearSVC 110 69 260 51 12 18

NuSVC 3240 4410 2800 3000 140 72
SVC 1690 2670 1520 1560 120 41

BernoulliNB 280 1670 290 65 12 14
MLPClassifier 930 1860 910 1430 17 31
Dec.TreeClass. 59 1610 560 35 13 16

Binarizer 98 75 39 59 38 38
MinMaxScaler 92 200 78 57 38 38

Normalizer 94 140 83 97 39 40
Poly.Features 4030 29160 6380 3130 340 error

StandardScaler 150 200 77 58 38 38

general a speedup of about 2× compared to scikit-learn. If now we focus to the GPU numbers,

we see that HUMMINGBIRD with TorchScript backend compares favorably against TVM on 11

operators out of 13. This is in contrast with the tree ensemble micro-benchmark where the TVM

backend was faster than the TorchScript one. We suspect that this is because TVM optimizations

are less effective on these “simpler” operators. For the same reason, GPU acceleration does

not provide the speedup we saw for the tree ensemble models. In general, we see around 2×

performance improvement over the CPU runtime: only polynomial featurizer runs faster, with

almost a 10× improvement. TVM returns a runtime error when generating the polynomial

featurizer model on GPU.

Request/response. Table 5.12 contains the times to score 1 record. The results are similar

to the request/response scenario for the tree ensemble micro-benchmark. Namely, ONNX-ML

outperform both scikit-learn and HUMMINGBIRD in 9 out of 13 cases. Note, however, that all

frameworks are within a factor of 2. The only outlier is polynomial featurizer which is about 10×

faster on HUMMINGBIRD with TVM backend.

93

Table 5.12: Request/Response experiments for operators on CPU (single core). Reported
numbers are in milliseconds.

Operator
Baselines HUMMINGBIRD

Sklearn ONNX-ML TS TVM

LogisticRegression 0.087 0.076 0.1 0.1
SGDClassifier 0.098 0.1 0.12 0.1

LinearSVC 0.077 0.05 0.11 0.1
NuSVC 0.086 0.072 4.1 0.14

SVC 0.086 0.074 2.3 0.12
BernoulliNB 0.26 0.1 0.07 0.11

MLPClassifier 0.15 0.11 0.1 0.12
DecisionTreeClassifier 0.087 0.074 0.44 0.12

Binarizer 0.064 0.053 0.063 0.1
MinMaxScaler 0.066 0.060 0.058 0.1

Normalizer 0.11 0.063 0.072 0.1
PolynomialFeatures 1.2 1 0.5 0.1

StandardScaler 0.069 0.048 0.059 0.1

Memory Consumption and Conversion Time. We measured the peak memory con-

sumed and conversion time for each operator on each DL system. We used batch inference

over 1K records. For memory consumption, the results are in line with what we already saw

in Section 5.6.1. Regarding the conversion time, for ONNX-ML and HUMMINGBIRD with

TorchScript, the conversion time is in the order of few milliseconds. The TVM backend is slightly

slower but still in the order of few tens of milliseconds (exception for NuSVC and SVC which

take up to 3.2 seconds). In comparison with the tree ensembles numbers (Table 5.10), we confirm

that these operators are simpler, even from a translation perspective.

5.6.2 Optimizations

Tree Models Translation

Next we test the different tree-based models implementation to make the case for the

heuristics.

Datasets. For this experiment we employ a synthetic dataset randomly generated with

94

lg
bm rf

xg
b

model

10 1

100

101

102

Ru
nt

im
e

(s
)

batch size=1/max depth=3

lg
bm rf

xg
b

model

10 1

100

101

102

batch size=1/max depth=7

lg
bm rf

xg
b

model

10 1

100

101

102

batch size=1/max depth=12
original onnxml GEMM TreeTraversal PerfectTreeTraversal

lg
bm rf

xg
b

model

10 3

10 2

10 1

Ru
nt

im
e

(s
)

batch size=1000/max depth=3

lg
bm rf

xg
b

model

10 2

10 1

100
batch size=1000/max depth=7

lg
bm rf

xg
b

model

10 2

10 1

100

batch size=1000/max depth=12
original onnxml GEMM TreeTraversal PerfectTreeTraversal

Figure 5.9: Comparison between the different tree strategies as we vary the batch size and
depth.

10

20

30

40

Ru
nt

im
e

(s
)

percentile=0.2

10

20

30

40

percentile=0.4

10

20

30

40

percentile=0.6

10

20

30

40

percentile=0.8

10

20

30

40

percentile=1.0
HB w\ FS push down HB w\o FS push down Sklearn

Figure 5.10: Feature selection push down.

5000 rows and 200 features.

Experiments Setup. We study the behavior of the tree implementations as we change

the training algorithm, the batch size, and the tree depth. For each experiment we set the number

of trees to 100. We use the TVM backend. Each experiment is run on 1 CPU core.

Results. Figure 5.9 shows the comparison between the different tree implementations, and

the two scikit-learn and ONNX-ML baselines. In the top part of the figure we run all experiments

using a batch size of 1; on the bottom part we instead use a batch size of 1K. In the column on

the left-hand side, we generate trees with a max depth of 3; 7 for the middle column, and 12 for

95

5

10

15

20

25

30

35

40

Ru
nt

im
e

(s
)

coefficient=0.001

5

10

15

20

25

30

35

40
coefficient=0.01

5

10

15

20

25

30

35

40
coefficient=0.1

5

10

15

20

25

30

35

40
coefficient=1

5

10

15

20

25

30

35

40
coefficient=10

HB w\ FS injection HB w\o FS injection Sklearn

Figure 5.11: Feature selection injection.

100

101

102

103

Sl
ow

 D
ow

n

2X10X 2X 10X 100X

Pipelines
100

101

102

103

Sp
ee

d
Up

Figure 5.12: Speedup/slowdown of pipelines when using HUMMINGBIRD with respect to
baseline Sklearn on CPU

100

101

102

103

Sl
ow

 D
ow

n

2X10X 2X 100X

Pipelines
100

101

102

103

Sp
ee

d
Up

Figure 5.13: Speedup/slowdown of pipelines when using HUMMINGBIRD with respect to
baseline Sklearn on GPU

column on the right-hand side. In general, two things are apparent: (1) HUMMINGBIRD is as fast

as or better than the baselines; and (2) no tree implementation is always better than the others.

The GEMM implementation outperforms the other two for small batch sizes, whereas TT and PTT

are better over larger batch sizes. Between TT and PTT, the latter is usually the best performant

96

(although not by a large margin). PTT however creates balanced trees, and fails for very deep

trees.

Target-independent Optimizations.

Next we test the optimizations described in Section 5.5.2.

Dataset. We use the Nomao dataset [41] with 119 features.

Feature Selection Push Down. In this experiment we measure the benefits of the feature

selection push down. In Figure 5.10 we compare HUMMINGBIRD with and without feature

selection push-down, and the baseline implementation of the pipelines in scikit-learn. We use a

pipeline which trains a logistic regression model with L2 loss. The featurization part contains one-

hot encoding for categorical features, missing value imputation for numerical values, followed

by feature scaling, and a final feature selection operator (scikit-learn’s SelectKBest). We vary

the percentile of features that are picked by the feature selection operator. In general, we can see

that HUMMINGBIRD without optimization is about 2× faster than scikit-learn in evaluating the

pipelines. For small percentiles, the feature selection push-down optimization delivers a further

3×. As we increase the percentile of features that are selected, the runtime of HUMMINGBIRD

both with and without optimizations increase, although with the optimization HUMMINGBIRD is

still 2× faster than without.

Feature Selection Injection. In this experiment we evaluate whether we can improve

the performance of pipelines with sparse models by injecting (and then pushing down) feature

selection operators. The pipeline is the same as in the previous case but without the feature

selection operator. Instead we train the logistic regression model with L1 regularization. In

Figure 5.11 we vary the L1 regularization coefficient and study how much performance we can

gain. Also in this case, with very sparse models we can see up to 3× improvement with respect

to HUMMINGBIRD without optimization. Performance gains dissipate as we decrease the sparsity

97

of the model.

5.6.3 End-to-end Pipelines

Setup. In this experiment we test HUMMINGBIRD over end-to-end pipelines. We down-

loaded the 72 tasks composing the OpenML-CC18 suite [44]. Among all the tasks, we discarded

all the “not pure scikit-learn” ML pipelines (e.g., containing also arbitrary Python code). We

successively discarded all the pipelines returning a failure during training. 88% of the remaining

pipelines are exclusively composed by operators supported by HUMMINGBIRD, for a total of 2328

ML pipelines. Among these, 11 failed during inference due to runtime errors in HUMMINGBIRD;

we report the summary of executing 2317 pipelines. These pipelines contain an average of 3.3

operators, which is in line with what was observed in [233].

Datasets. For this experiment we have 72 datasets in total [44]. The datasets are a curated

mix specifically designed for classical ML benchmarking. We did the typical 80%/20% split

between training and inference. The smaller dataset has just 100 records, the bigger 19264, while

the median value is 462. The minimum number of columns for a dataset is 4, the maximum 3072,

with a median of 30.

Results. Figure 5.12 and Figure 5.13 summarize the speedup / slowdown introduced

by HUMMINGBIRD when scoring all 2317 pipelines. As we can see, HUMMINGBIRD is able

to accelerate about 60% of the pipelines on CPU (5.12). In general, the slowest pipeline gets

about 60× slower with respect to scikit-learn, the fastest instead gets a 1200× speed up. The

slowdowns are due to a couple of factors: (a) the datasets used for these experiments are quite

small; (b) some pipelines contain largely sparse operations (i.e., SVM on sparse inputs); (c)

several pipelines are small and do not require much computation (e.g., a simple inputer followed

by a small decision tree). These three factors are highlighted also by the fact that even if we move

computation to the GPU (5.13), still 27% of the pipelines have some slowdown. Note however

98

that (1) both sparse and small pipelines can be detected at translation time, and therefore we

can return a warning or an error; (2) DL inference systems are continuously adding new sparse

tensor operations (e.g., [49]); and (3) an option could be to add a specific DL system backend for

sparse tensor operations (e.g., we have a prototype integration with TACO [164]). In general, DL

inference systems are relatively young, and HUMMINGBIRD will exploit any future improvement

with no additional costs.

With GPU acceleration (Figure 5.13), 73% of the pipelines show some speedup. The

slowest pipeline gets about 130× slower with respect to scikit-learn, the fastest instead gets a

speedup of 3 orders of magnitude. Some of the pipelines get worse from CPU to GPU execution.

This is due to (1) sparsity; (2) small compute; and (3) data movements between CPU and GPU

memory. Indeed we run all pipelines on GPU, even the ones for which in practice would not

make much sense (e.g., a decision tree with 3 nodes). We leave as future work an extension to our

heuristics for picking the right hardware backend.

5.7 Conclusion

Classical ML is widely used for structured data analytics in enterprises. Yet, establishing

systems support for classical ML has not garnered the same attention as it has for DL, especially

for inference workloads. Current bespoke system implementations for classical ML inference

introduce significant infrastructure complexity and miss significant opportunities for optimization.

In this work, we use query optimization-inspired techniques to translate classical ML pipelines

to tensor computations. This approach enables us to leverage the DL inference systems for

classical ML inference and also support heterogeneous hardware backends (e.g., CPUs, GPUs)

for inference. The results are compelling: even though we target high-level tensor operations, we

outperform custom C++ and CUDA implementations. To our knowledge, HUMMINGBIRD is the

first system able to run classical ML inference on heterogeneous hardware.

99

Chapter 5 contains material from “A Tensor Compiler for Unified Machine Learning

Prediction Serving” by Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos,

Carlo Curino, Markus Weimer, and Matteo Interlandi, which appears in Proceedings of 14th

USENIX Symposium on Operating Systems Design and Implementation (OSDI 2020). The

dissertation author was the primary investigator and author of this paper. The code for our system

is open source and is available on GitHub: https://github.com/microsoft/Hummingbird.

100

Chapter 6

KRYPTON: Query Optimizations for Deep

CNN Prediction Explanations

6.1 Introduction

In this chapter, we dive deeper into our techniques for optimizing occlusion-based deep

CNN prediction explanations [290], or OBE for short. OBE is a popular technique for explaining

CNN predictions and it works as follows: place a small square patch (usually gray) on the image

to occlude those pixels. Rerun CNN inference, illustrated in Figure 6.1(a), on the occluded image.

The probability of the predicted class will change, as Figure 6.1(b) shows. Repeat this process

by moving the patch across the image to obtain a sensitivity heatmap of probability changes, as

Figure 6.1(c) shows. This heatmap highlights regions of the image that were highly “responsible”

for the prediction (red/orange color regions). Such localization of the regions of interest allows

users to gain intuition on what “mattered” for the prediction. For instance, the heatmap can

highlight the diseased areas of a tissue image, which a radiologist can then inspect more deeply

for further tests. Overall, OBE is popular because it is easy for non-technical users to understand.

Alas, OBE is highly expensive computationally. Deep CNN inference is already expensive;

101

Input OCT Retina
Image

CNN composed of Convolution, Pool, ReLU,
and Fully-Connected layers

Probability having
Diabetic

Retinopathy

yes 96.3%

CNN

(a) CNN inference

(b) CNN inference with an occluding patch (c) Occlusion experiment output

Probability of
having Retinopathy

no 3.7%

yes 15.4%

no 84.6%

Figure 6.1: (a) Using a CNN to predict diabetic retinopathy in an OCT image/scan. (b)
Occluding a part of the image changes the prediction probability. (c) By moving the occluding
patch, a sensitivity heatmap can be produced.

OBE just amplifies it by issuing a large number of CNN re-inference requests (even 1000s). For

example, [296] report 500,000 re-inference requests for 1 image, which took 1hr even on a

GPU! Such long wait times can hinder users’ ability to consume explanations and reduce their

productivity. One could use more compute hardware, if available, since OBE is embarrassingly

parallel across re-inference requests. But this may not always be affordable, especially for domain

scientists, or feasible in all settings, e.g., in mobile clinical diagnosis. Extra hardware can also

raise monetary costs, especially in the cloud.

In this work, we use a query optimizations-inspired lens to formalize, optimize, and accel-

erate OBE. We start with a simple but crucial observation: the occluded images are not disjoint

but share most of their pixels; so, most of CNN re-inference computations are redundant. This

observation leads us to connect OBE with two classical data management concerns: incremental

view maintenance (IVM) and multi-query optimization (MQO). Instead of treating a CNN as a

“blackbox,” we open it up and formalize CNN layers as “queries.” Just like how a relational query

converts relations to other relations, a CNN layer converts tensors (multidimensional arrays) to

other tensors. So, we reimagine OBE as a set of tensor transformation queries with incrementally

updated inputs. With this fresh database-inspired view, we introduce several novel CNN-specific

102

query optimization techniques to accelerate OBE.

Our first optimization is incremental inference. We first materialize all tensors produced

by the CNN. For every re-inference request, instead of rerunning inference from scratch, we

treat it as an IVM query, with the “views” being the tensors. We rewrite such queries to reuse

the materialized views as much as possible and recompute only what is needed, thus avoiding

computational redundancy. Such rewrites are non-trivial because they are tied to the complex

geometric dataflows of CNN layers. We formalize such dataflows to create a novel algebraic

rewrite framework. We also create a “static analysis” routine to tell us up front how much

computations can be saved. Going further, we batch all re-inference requests in OBE to reuse the

same materialized views. This is a form of MQO, which we call batched incremental inference.

We also create a GPU-optimized kernel for such execution. To the best of our knowledge, this

is the first instance of IVM being combined with MQO in query optimization, at least for CNN

inference.

We then introduce two novel approximate inference optimizations that allow users to

tolerate some degradation in visual quality of the heatmaps produced to reduce runtimes further.

These optimizations build upon our incremental inference optimization to trade off heatmap

quality in a user-tunable manner. Our first approximate optimization, projective field thresholding,

draws upon an idea from neuroscience and exploits the internal semantics of how CNNs work.

Our second approximate optimization, adaptive drill-down, exploits the semantics of the OBE

task and the way users typically consume the heatmaps produced. We also present intuitive

automated parameter tuning methods to help users adopt these optimizations.

We prototype our ideas in the popular deep learning system PyTorch to create a tool

we call KRYPTON. It works on both CPU and GPU and currently supports a few popular deep

CNNs (VGG16, ResNet18, and InceptionV3). We perform a comprehensive empirical evaluation

of KRYPTON with three real-world image datasets from recent radiology and computer vision

papers. KRYPTON yields up to 35X speedups over the current dominant practice of running

103

re-inference with just batching for producing high-quality approximate heatmaps and up to 5X

speedups for producing exact heatmaps. We then analyze the utility of each of our optimizations.

Overall, this work makes the following contributions:

• To the best of our knowledge, this is the first work to formalize and optimize the execution

of occlusion-based explanations (OBE) of CNN predictions from a data management

standpoint.

• We cast OBE as an IVM problem to create a novel and comprehensive algebraic framework

for incremental CNN inference. We also combine our IVM technique with an MQO-style

technique to further reduce computational redundancy in CNN inference.

• We present two novel approximate inference optimizations for OBE that exploit the seman-

tics of CNNs and properties of human perception.

• We prototype our ideas in a tool, KRYPTON, and perform an extensive empirical evaluation

with real data and deep CNNs. KRYPTON speeds up OBE by even over an order of

magnitude in some cases.

Outline. Section 6.2 explains our problem setup, assumptions, and CNN dataflow model.

Section 6.3 (resp. Section 6.4) presents our incremental (resp. approximate) inference optimiza-

tions. Section 6.5 presents the experimental evaluation and we conclude in Section 6.6.

6.2 Setup and Preliminaries

We now state our problem formally and explain our assumptions. We then formalize the

dataflow of the layers of a CNN, since these are required for understanding our techniques in

Sections 6.3 and 6.4. Table 6.1 lists our notation.

104

Table 6.1: Notation used in this chapter.
Symbol Meaning

f Given deep CNN; input is an image tensor;
output is a probability distribution over class
labels

L Class label predicted by f for the original
image I:img

T:l Tensor transformation function of layer l of
the given CNN f

P Occlusion patch in RGB format

SP Occlusion patch striding amount

G Set of occlusion patch superimposition posi-
tions on I:img in (x,y) format

M Heat map produced by the OBE workload

HM,WM Height and width of M

◦◦◦(x,y) Superimposition operator. A ◦(x,y) B, super-
imposes B on top of A starting at (x,y) posi-
tion

I:l (I:img) Input tensor of layer l (Input Image)

O:l Output tensor of layer l

CI :l,HI :l,WI :l Depth, height, and width of input of layer l

CO:l,HO:l,WO:lDepth, height, and width of output of layer l

Kconv:l Convolution filter kernels of layer l

Bconv:l Convolution bias value vector of layer l

Kpool:l Pooling filter kernel of layer l

HK :l,WK :l Height and width of filter kernel of layer l

S:l;Sx:l;Sy:l Filter kernel striding amounts of layer l; S:l ≡
(Sx:l,Sy:l), strides along width and height di-
mensions

P:l;Px:l;Py:l Padding amounts of layer l; P:l ≡ (Px:l,Py:l),
padding along width and height dimensions

6.2.1 Problem Statement and Assumptions

We are given a CNN f that has a sequence (or DAG) of layers l, each of which has a tensor

transformation function T:l . We are also given the image I:img for which the occlusion-based

explanation (OBE) is desired, the class label L predicted by f on I:img, an occlusion patch P

in RGB format, and occlusion patch stride SP . We are also given a set of patch positions G

105

constructed either automatically or manually with a visual interface interactively. The OBE

workload is as follows: produce a 2-D heat map M, wherein each value corresponds to a position

in G and has the prediction probability of L by f on the occluded image I ′x,y:img (i.e., superimpose

occlusion patch on image) or zero otherwise. More precisely, we can describe the OBE workload

with the following logical statements:

WM = b(width(I:img)−width(P)+1)/SP c (6.1)

HM = b(height(I:img)−height(P)+1)/SP c (6.2)

M ∈ IRHM×WM (6.3)

∀ (x,y) ∈ G : (6.4)

I
′
x,y:img← I:img ◦◦◦(x,y) P (6.5)

M[x,y]← f (I
′
x,y:img)[L] (6.6)

Steps (6.1) and (6.2) calculate the dimensions of the heat map M. Step (6.5) superimposes

P on I:img with its top left corner placed on the (x,y) location of I:img. Step (6.6) calculates the

output value at the (x,y) location by performing CNN inference for I ′x,y:img using f and picks the

prediction probability of L. Steps (6.5) and (6.6) are performed independently for every occlusion

patch position in G. In the non-interactive mode, G is initialized to G = [0,HM)× [0,WM).

Intuitively, this represents the set of all possible occlusion patch positions on I:img, which yields a

full heat map. In the interactive mode, the user may manually place the occlusion patch only at a

few locations at a time, yielding partial heat maps.

We assume the CNN is used for classification (or regression), since only such applications

typically use OBE. One could create CNNs that predict an image “segmentation” instead, but

labeling image segments for training such CNNs is tedious and expensive. Thus, most recent

applications of CNNs in healthcare, sociology, and other domains rely on classification CNNs

106

34
134 34 21 21189

78 45 93 11114

134 49 11 1826

39 45 0 11114

123 67 1 525

0

0

0

0

0

0

0 0 0 0 0

134 34 21 21189

78 45 93 11114

134 49 11 1826

39 45 0 11114

123 67 1 525

0

0

0

0

0

0

0 0 0 0 0

134 34 2189

78 45 9314

134 49 1126

39 45 014

0

0

0

0

0

0

0 0 0 0 0

0 0 0 0 0

0

0

0

0

Convolution Layer
Padding=(1,1)
Stride=(1,1)

Padding

-3.2 23.2 2.1

2 34 0

-79 1 -6

-3.2 23.2 2.1

2 34 0

-79 1 -6

-3.2 23.2 2.1

2 34 0

-79 1 -6

-3.2 23.2 2.1

2 34 0

-79 1 -6

-3.2 23.2 2.1

2 34 0

-79 1 -6

98 -35 2.1

68 34 12

58 0.35 -6

Element-wise
product

34 -45.2 893 -2

0 11 4.56 59

4 -12 78 13

56 8 -58 1

373 893 -2

0 11 4.56 59

4 -12 78 13

56 8 -58 1

-34

Conv. Layer Input

Convolution Filters of Layer 1

ReLU Layer

34 -45.2 893 -2

0 11 4.56 59

4 -12 78 13

56 8 -58 1

373 893 0

0 11 4.56 59

4 0 78 13

56 8 0 1

0

max(0, x)

Max Pool Layer
Filter Size=(2,2),
Padding=(0,0),

Stride=(2,2)

373 893

56 78
56 78

893

Conv. Layer Output / ReLU Layer
Input

ReLU Layer Output/ Max Pool
Layer Input

Max Pool Layer
Output

Operates on a local context
covering the full depth . Output size
is determined by input size, stride,
padding, and filter size.

Operates on individual values.
Preserves input dimensions.
Outputs zeros for negative values.

Operates on a local contexts with each
depth slice separately. Takes in a 2D input
and outputs the maximum of it as output.
Larger than one strides reduces the output
size.

Bank of 3D filters. Depth of
a filter and the depth of the
input are the same.

373

(a) (b) (c)

Figure 6.2: Simplified illustration of the key layers of a typical CNN. The highlighted cells
(dark/red background) show how a small local spatial context in the first input propagates
through subsequent layers. (a) Convolution layer (for simplicity sake, bias addition is not
shown). (b) ReLU Non-linearity layer. (c) Pooling layer (max pooling). Notation is explained in
Table 6.1.

and use OBE [160, 148, 204, 63, 278]. Other approaches to explain CNN predictions have been

studied, but since they are orthogonal to our focus, we summarize them in Section 10.3. We

assume f is from a roster of well-known deep CNNs; we currently support VGG16, ResNet18,

and InceptionV3. We think this is a reasonable start, since most recent OBE applications use only

such well-known CNNs from model zoos [6, 11]. But we note that our techniques are generic

enough to apply to any CNN; we leave support for arbitrary CNNs to future work.

6.2.2 Deep Convolutional Neural Networks (CNNs)

CNNs are a type of neural networks specialized for images [180, 124]. CNNs typically

surpass older hand-crafted image features such as SIFT and HOG in accuracy [195, 103]. CNNs

are organized as layers of various types, each of which transforms a tensor (multidimensional array,

typically 3-D) into another tensor: Convolution uses image filters from graphics to extract features,

but with parametric filter weights (learned during training); Pooling subsamples features in a

spatial-aware manner; Batch-Normalization normalizes the output tensor; Non-Linearity applies

an element-wise non-linear function (e.g., ReLU); Fully-Connected is an ordered collection

of perceptrons [124]. The output tensor of a layer can have a different width, height, and/or

depth than the input. An image can be viewed as a tensor, e.g., a 224×224 RGB image is a

107

3-D tensor with width and height 224 and depth 3. A Fully-Connected layer converts a 1-D

tensor (or a “flattened” 3-D tensor) to another 1-D tensor. For simplicity of exposition, we group

CNN layers into 3 main categories based on the spatial locality of how they transform a tensor:

(1) Transformations with a global context, e.g., Fully-Connected; (2) Transformations at the

granularity of individual elements, e.g., ReLU or Batch Normalization; and (3) Transformations

at the granularity of a local spatial context, e.g. Convolution or Pooling.

Global context granularity. Such layers convert the input tensor holistically into an

output tensor without any spatial context, typically with a full matrix-vector multiplication.

Fully-Connected is the only layer of this type. Since every element of the output will likely be

affected by the entire input, such layers do not offer a major opportunity for faster incremental

computations. Thankfully, Fully-Connected layers typically arise only as the last layer(s) in deep

CNNs (and never in some recent deep CNNs), and they typically account for a negligible fraction

of the total computational cost. Thus, we do not focus on such layers for our optimizations.

Individual element granularity. Such layers apply a “map()” function on the elements of

the input tensor, as Figure 6.2(b) illustrates. Thus, the output has the same dimensions as the input.

Non-Linearity (e.g., with ReLU) falls under this category. The computational cost is proportional

to the “volume” of the input tensor (product of the dimensions). If the input is incrementally

updated, only the corresponding region of the output will be affected. Thus, incremental inference

for such layers is straightforward. The computational cost of the incremental computation is

proportional to the volume of the updated region.

Local spatial context granularity. Such layers perform weighted aggregations of slices

of the input tensor, called local spatial contexts, by multiplying them with a filter kernel (a tensor

of weights). Thus, input and output tensors can differ in width, height, and depth. If the input

is incrementally updated, the region of the output that will be affected is not straightforward to

ascertain–this requires non-trivial and careful calculations due to the overlapping nature of how

108

filters get applied to local spatial contexts. Both Convolution and Pooling fall under this category.

Since such layers typically account for the bulk of the computational cost of deep CNN inference,

enabling incremental inference for such layers in the OBE context is a key focus of this Work.

The rest of this section explains the machinery of the dataflow in such layers using our notation.

Section 6.3 then uses this machinery to explain our optimizations.

Dataflow of Convolution Layers. A layer l has CO:l 3-D filter kernels arranged as a 4-D

array Kconv:l , with each having a smaller spatial width WK :l and height HK :l than the width WI :l

and height HI :l of the input tensor I:l but the same depth CI :l . During inference, cth filter kernel

is “strided” along the width and height dimensions of the input to produce a 2-D “activation

map” A:c = (ay,x:c) ∈ IRHO:l× WO:l by computing element-wise products between the kernel and

the local spatial context and adding a bias value as per Equation (6.7). The computational cost

of each of these small matrix products is proportional to the volume of the filter kernel. All the

2-D activation maps are then stacked along the depth dimension to produce the output tensor

O:l ∈ IRCO:l×HO:l×WO:l . Figure 6.2 (a) presents a simplified illustration of this layer.

ay,x:c =
CI :l

∑
k=0

HK :l−1

∑
j=0

WK :l−1

∑
i=0

Kconv:l[c,k, j, i]

× I:l[k,y−b
HK :l

2
c+ j,x−bWK :l

2
c+ i]

+Bconv:l[c]

(6.7)

Dataflow of Pooling Layers. Such layers behave essentially like Convolution layers

but with a fixed (not learned) 2-D filter kernel Kpool:l . These kernels aggregate a local spatial

context to compute its maximum or average element. But unlike Convolution, Pooling operates

independently on the depth slices of the input tensor. It takes as input a 3-D tensor Ol of depth CI :l ,

width WI :l , and height HI :l . It produces as output a 3-D tensor O:l with the same depth CO:l =CI :l

but a different width of WO:l and height HO:l . The filter kernel is typically strided over more

109

than one pixel at a time. Thus, WO:l and HO:l are usually smaller than WI :l and HI :l , respectively.

Figure 6.2(c) presents a simplified illustration of this layer. Overall, both Convolution and Pooling

layers have a similar dataflow along the width and height dimensions, while differing on the

depth dimension. Since OBE only concerns the width and height dimensions of the image

and subsequent tensors, we can treat both these types of layers in a unified manner for our

optimizations.

Relationship between Input and Output Dimensions. For Convolution and Pooling

layers, WO:l and HO:l are determined by WI :l and HI :l , WK :l and HK :l , and two other parameters

that are specific to that layer: stride S:l and padding P:l . Stride is the number of pixels by which

the filter kernel is moved at a time; it can differ along the width and height dimensions: Sx:l and

Sy:l , respectively. In practice, most CNNs have Sx:l = Sy:l . Typically, Sx:l ≤WK :l and Sy:l ≤ HK :l .

In Figure 6.2, the Convolution layer has Sx:l = Sy:l = 1, while the Pooling layer has Sx:l = Sy:l = 2.

For some layers, to help control the dimensions of the output to be the same as the input, one

“pads” the input with zeros along the width and height dimensions. Padding P:l captures how much

such padding extends these dimensions; once again, padding values can differ along the width

and height dimensions: Px:l and Py:l . In Figure 6.2 (a), the Convolution layer has Px:l = Py:l = 1.

Given these parameters, width (similarly height) of the output tensor is given by the following

formula:

WO:l = (WI :l−WK :l +1+2×Px:l)/Sx:l (6.8)

Computational Cost of Inference. Deep CNN inference is computationally expensive.

Convolution layers typically account for a bulk of the cost (90% or more) [85]. Thus, we can

roughly estimate the computational cost of inference by counting the number of fused multiply-

add (FMA) floating point operations (FLOPs) needed for the Convolution layers. For example,

110

applying a Convolution filter with dimensions (CI :l,HK :l,WK :l) to compute one element of the

output tensor requires CI :l ·HK :l ·WK :l FLOPs, with each FLOP corresponding to one FMA. Thus,

the total computational cost Q:l of a layer that produces output O:l of dimensions (CO:l,HO:l,WO:l)

and the total computational cost Q of the entire set of Convolution layers of a given CNN f can

be calculated as per Equations (6.9) and (6.10).

Q:l = (CI :l ·HK :l ·WK :l)(CO:l ·HO:l ·WO:l) (6.9)

Q = ∑
l in f

Q:l (6.10)

6.3 Incremental Inference Optimizations

We start with a theoretical characterization of the speedups incremental inference can

yield. We then dive into our novel algebraic framework to enable incremental CNN inference and

combine it with our multi-query optimization for OBE.

6.3.1 Expected Speedups

In relational IVM, when a part of the input relation is updated, we recompute only the

part of output that gets changed. We bring this notion to CNNs; a CNN layer is our “query” and

the materialized feature tensor is our “relation.” OBE updates only a part of the image; so, only

some parts of the tensors need to be recomputed. We create an algebraic framework to determine

which parts these are for a CNN layer (Section 6.3.2) and how to propagate updates across layers

(Section 6.3.3). Given a CNN f and the occlusion patch, our framework determines using “static

analysis” over f how many FLOPs can be saved, yielding us an upper bound on speedups.

More precisely, let the output tensor dimensions of layer l be (CO:l,HO:l,WO:l). An

incremental update recomputes a smaller local spatial context with width WP :l ≤WO:l and height

111

HP :l ≤ HO:l . Thus, the computational cost of incremental inference for layer l, denoted by Qinc:l ,

is equal to the volume of the individual filter kernel times the total volume of the updated output,

as given by Equation (6.11). The total computational cost for incremental inference, denoted Qinc,

is given by Equation (6.12).

Qinc:l = (CI :l ·HK :l ·WK :l)(CO:l ·HP :l ·WP :l) (6.11)

Qinc = ∑
l in f

Qinc:l (6.12)

The above costs can be much smaller than Q:l and Q in Equations (6.9) and (6.10) earlier.

We define the theoretical speedup as the ratio Q
Qinc

. It tells us how beneficial incremental inference

can be in the best case without performing the inference itself. It depends on several factors: the

occlusion patch size, its location, the parameters of layers (kernel dimensions, stride, etc.), and so

on. Calculating it is non-trivial and requires careful analysis, which we perform. The location of

patch affects this ratio because a patch placed in the corner leads to fewer updates overall than

one placed in the center of the image. Thus, the “worst-case” theoretical speedup is determined

by placing the patch at the center.

We perform a sanity check experiment to ascertain the theoretical speedups for a few

popular deep CNNs. For varying occlusion patch sizes (with a stride of 1), we plot the theoretical

speedups in Figure 6.3. VGG-16 has the highest theoretical speedups, while DenseNet-121 has

the lowest. Most CNNs fall in the 2X–3X range. The differences arise due to the specifics of the

CNNs’ architectures: VGG-16 has small Convolution filter kernels and strides, which means full

inference incurs a high computational cost (Q = 15 GFLOPs). Thus, VGG-16 benefits the most

from incremental inference. Note the image size is assumed to be 224×224 for this plot; if the

image is larger, the theoretical speedups will be higher.

While speedups of 2X-3X may sound “not that significant” in practice, we find that

112

4 8 12 16 20 24 28 32
Patch Size

2

4

6

8

Th
eo

re
tic

al
 S

pe
ed

up

AlexNet
VGG16
VGG19
ResNet18
ResNet50
DenseNet121
MobileNet
Squeezenet1.0
Inception3

Figure 6.3: Theoretical speedups for popular deep CNN architectures with incremental infer-
ence.

they indeed are significant for at least two reasons. First, users often wait in the loop for OBE

workloads for performing interactive diagnoses and analyses. Thus, even such speedups can

improve their productivity, e.g., reducing the time taken on a CPU from about 6min to just 2min,

or on a GPU from 1min to just 20s. Second, and equally importantly, incremental inference is

the foundation for our approximate inference optimizations (Section 6.4), which amplify the

speedups we achieve for OBE. For instance, the speedup for Inception3 goes up from only 2X

for incremental inference to up to 8X with all of our optimizations enabled. Thus, incremental

inference is critical to optimizing OBE.

6.3.2 Single Layer Incremental Inference

We now present our algebraic framework for incremental updates to the materialized

output tensor of a CNN layer. As per the discussion in Section 6.2.2, we focus only on the non-

trivial layers that operate at the granularity of a local spatial context (Convolution and Pooling).

We call our modified version of such layers “incremental inference operations.”

Determining Patch Update Locations. We first explain how to calculate the coordinates

and dimensions of the output update patch of layer l given the input update patch and layer-

specific parameters. Figure 6.4 presents a simplified illustration of these calculations. Our

coordinate system’s origin is at the top left corner. The input update patch is shown in red/dark

113

0

0

Input Output

Updated patch in
the output

Updated patch in the input

Input patch that needs to be read in
to the transformation operator

0

0

Padding

Filter kernel

Figure 6.4: Simplified illustration of input and output update patches for Convolution/Pooling
layers.

color and starts at (xI
P :l,y

I
P :l), with height HI

P :l and width W I
P :l . The output update patch starts at

(xO
P :l,y

O
P :l) and has a height HO

P :l and width W O
P :l . Due to overlaps among filter kernel positions

during inference, computing the output update patch requires us to read a slightly larger spatial

context than the input update patch–we call this the “read-in context,” and it is illustrated by the

blue/shaded region in Figure 6.4. The read-in context starts at (xR
P :l,y

R
P :l), with its dimensions

denoted by W R
P :l and HR

P :l . Table 6.2 summarizes all this additional notation for this section.

The relationship between these quantities along the width dimension (similarly along the height

dimension) can be expressed as follows:

xO
P :l = max

(
d(Px:l + xI

P :l−WK :l +1)/Sx:le,0
)

(6.13)

W O
P :l = min

(
d(W I

P :l +WK :l−1)/Sx:le,WO:l
)

(6.14)

xR
P :l = xO

P :l×Sx:l−Px:l (6.15)

W R
P :l = WK :l +(W O

P :l−1)×Sx:l (6.16)

114

Table 6.2: Additional notation for Sections 6.3 and 6.4.
Symbol Meaning

xI
P :l,y

I
P :l Start coordinates of input update patch for

layer l

xR
P :l,y

R
P :l Start coordinates of read-in context for layer

l

xO
P :l,y

O
P :l Start coordinates of output update patch for

layer l

HI
P :l,W

I
P :l Height and width of input update patch for

layer l

HR
P :l,W

R
P :l Height and width of read-in context for layer

l

HO
P :l,W

O
P :l Height and width of output update patch for

layer l

τ Projective field threshold

rdrill−down Drill-down fraction for adaptive drill-down

Equation (6.13) calculates the coordinates of the output update patch. As shown in Figure

6.4, padding effectively shifts the coordinate system and thus, Px:l is added to correct it. Due

to overlaps among the filter kernels, the affected region of the input update patch (blue/shaded

region in Figure 6.4) will be increased by WK :l−1, which needs to be subtracted from the input

coordinate xI
P :l . A filter of size WK :l that is placed starting at xI

P :l−WK :l +1 will see an update

starting from xI
P :l . Equation (6.14) calculates the width of the output update patch which is

essentially the number of filter kernel stride positions on the read-in input context. However,

this value cannot be larger than the output size. Given these, a start coordinate and width of the

read-in context are given by Equations (6.15) and (6.16); similar equations hold for the height

dimension (skipped for brevity).

Incremental Inference Operation. For layer l, given the transformation function T:l , the

pre-materialized input tensor I:l , input update patch P O
:l , and the above calculated coordinates

and dimensions of the input, output, and read-in context, the output update patch P O
:l is computed

as follows:

115

U = I:l[:,x
R
P :l : xR

P :l +W R
P :l,y

R
P :l : yR

P :l +HR
P :l] (6.17)

U = U ◦◦◦
(xI

P :l−xR
P :l),(y

I
P :l−yR

P :l)
P I

:l (6.18)

P O
:l = T:l(U) (6.19)

Equation (6.17) slices the read-in context U from the pre-materialized input tensor I:l .

Equation (6.18) superimposes the input update patch P I
:l on it. This is an in-place update of the

array holding the read-in context. Finally, Equation (6.19) computes the output update patch

P O
:l by invoking T:l on U. Thus, we avoid performing inference on all of I:l , thus achieving

incremental inference and reducing FLOPs.

6.3.3 Propagating Updates across Layers

Sequential CNNs. Unlike relational IVM, CNNs have many layers, often in a sequence.

This is analogous to a sequence of queries, each requiring IVM on its predecessor’s output.

This leads to a new issue: correctly and automatically configuring the update patches across

all layers of a CNN. Specifically, output update patch P O
:l of layer l becomes the input update

patch of layer l +1. While this seems simple, it requires care at the boundary of a local context

transformation and a global context transformation, e.g., between a Convolution (or Pooling)

layer and a Fully-Connected layer. In particular, we need to materialize the full updated output,

not just the output update patches, since global context transformations lose spatial locality for

subsequent layers.

Extension to DAG CNNs. Some recent deep CNNs have a more general directed acyclic

graph (DAG) structure for layers. They have two new kinds of layers that “merge” two branches

in the DAG: element-wise addition and depth-wise concatenation. Element-wise addition requires

116

Input 1 Input 2 Output

Figure 6.5: Illustration of bounding box calculation for differing input update patch locations
for element-wise addition and depth-wise concatenation layers in DAG CNNs.

two input tensors with all dimensions being identical. Depth-wise concatenation takes two input

tensors with the same height and width dimensions. We now face a new challenge–how to

calculate the output update patch when the two input tensors differ on their input update patches

locations and sizes? Figure 6.5 shows a simplified illustration of this issue. The first input has

its update patch starting at coordinates (xI
P1:l,y

I
P1:l) with dimensions HI

P1:l and W I
P1:l , while the

second input has its update patch starting at coordinates (xI
P2:l,y

I
P2:l) with dimensions HI

P2:l and

W I
P2:l . This issue can arise with both element-wise addition and depth-wise concatenation.

We propose a simple unified solution: compute the bounding box of the input update

patches. So, the coordinates and dimensions of both read-in contexts and the output update patch

will be identical. Figure 6.5 illustrates this. While this will potentially recompute parts of the

output that do not get modified, we think this trade-off is acceptable because the gains are likely

to be marginal for the additional complexity introduced into our framework. Overall, the output

update patch coordinate and width dimension are given by the following (similarly for the height

dimension):

xO
P:l = min(xI

P1:l,x
I
P2:l)

W O
P :l = max(xI

P1:l +W I
P1:l,x

I
P2:l +W I

P2:l)−min(xI
P1:l,x

I
P2:l)

(6.20)

117

6.3.4 Multi-Query Incremental Inference

OBE issues |G| re-inference requests in one go. Viewing each request as a “query” makes

the connection with multi-query optimization (MQO) [250] clear. The |G| queries are also not

disjoint, since the occlusion patch is typically small, which means most pixels are the same

for each query. Thus, we now extend our IVM framework for re-inference with an MQO-style

optimization fusing multiple re-inference requests. An analogy with relational queries would be

having many incremental update queries on the same relation in one go, with each query receiving

a different incremental update.

Batched Incremental Inference. Our optimization works as follows: materialize all

CNN tensors once and reuse them for incremental inference across all |G| queries. Since the

occluded images share most of their pixels, parts of the tensors will likely be identical too. Thus,

we can amortize the materialization cost. One might ask: why not just perform “batched” inference

for the |G| queries? Batched execution is standard practice on high-throughput compute hardware

like GPUs, since it amortizes CNN set up costs, data movement costs, etc. Batch sizes are tuned to

optimize hardware utilization. We note that batching is an orthogonal (albeit trivial) optimization

compared to our MQO. Thus, we combine both of these ideas to execute incremental inference in

a batched manner. We call this approach “batched incremental inference.” Empirically, we find

that batching alone yields limited speedups (under 2X), but our batched incremental inference

amplifies the speedups. Algorithm 6 formally presents the batched incremental inference operation

for layer l.

BATCHEDINCREMENTALINFERENCE first calculates the geometric properties of the

output update patches and read-in contexts. A temporary tensor U is initialized to hold the

input update patches with their read-in contexts. The for loop iteratively populates U with

corresponding patches. Finally, T:l is applied to U to compute the output patches. We note that

for the first layer, all input update patches will be identical to the occlusion patch. But for the later

118

Algorithm 6 BATCHEDINCREMENTALINFERENCE

Inputs:
T:l : Original Transformation function
I:l : Pre-materialized input from original image
[P I

1:l, ...,P I
n:l] : Input patches

[(xI
P1:l,y

I
P1:l), ...,(x

I
Pn:l,y

I
Pn:l)] : Input patch coordinates

W I
P :l,H

I
P :l : Input patch dimensions

1: Calculate [(xO
P1:l,y

O
P1:l), ...,(x

O
Pn:l,y

O
Pn:l)]

2: Calculate (W O
P :1,H

O
P :l)

3: Calculate [(xR
P1:l,y

R
P1:l), ...,(x

R
Pn:l,y

R
Pn

: l)]

4: Calculate (W R
P :l,H

R
P :l)

5: Initialize U ∈ IRn×depth(I:l)×HR
P :l×W R

P :l

6: for i in [1,...,n] do
7: T1← I:l[:,x

R
Pi:l : xR

Pi:l +W R
P :l,y

R
Pi:l : yR

Pi:l +HR
P :l]

8: T2← T1 ◦◦◦(xI
Pi:l
−xR

Pi:l
),(yI

Pi:l
−yR

Pi:l
)
Pi:l

9: U[i, :, :]← T2
10: [P O

1:l, ...,P
O
n:l]← T (U)

11: return [P O
1:l, ...,P

O
n:l], [(x

O
P1:l,y

O
P1:l), ...,(x

O
Pn:l,y

O
Pn:l)], (W O

P :l,H
O
P :l)

layers, the update patches will start to deviate depending on their locations and read-in contexts.

GPU Optimized Implementation. Empirically, we found a dichotomy between CPUs

and GPUs: BATCHEDINCREMENTALINFERENCE yielded expected speedups on CPUs, but it

performed dramatically poorly on GPUs. In fact, a naive implementation of BATCHEDINCRE-

MENTALINFERENCE on GPUs was slower than full re-inference! We now shed light on why this

is the case and how we tackled this issue. The for loop in line 6 of Algorithm 6 is essentially

preparing the input for T:l by copying values (slices of the materialized tensor) from one part of

GPU memory to another sequentially. A detailed profiling of the GPU showed that these sequen-

tial memory copies are a bottleneck for GPU throughput, since they throttle it from exploiting its

massive parallelism effectively. To overcome this issue, we created a custom CUDA kernel to

perform input preparation more efficiently by copying memory regions in parallel for all items in

the batched inference request. This is akin to a parallel for loop tailored for slicing the tensor. We

119

then invoke T:l , which is already hardware-optimized by modern deep learning tools [95]. We

defer more details on our custom CUDA kernel to the Appendix B.2. Also, since GPU memory

might not be enough to fit all |G| queries, the batch size for GPU execution might be smaller than

|G|.

6.3.5 Putting it All Together

We summarize the end-to-end workflow of our incremental inference optimizations for

OBE. We are given the CNN f , image I:img, predicted class label L, occlusion patch P and its

stride SP , and the set of occlusion patch positions G. Pre-materialize the output tensors of all

layers of f with I:img as the input. Prepare occluded images (I ′(x,y):img) for all positions in G.

For batches of I ′(x,y):img as the input, invoke the transformations functions of the layers of f in

topological order and calculate the corresponding entries of heat map M. For transformations

with local spatial context, invoke BATCHEDINCREMENTALINFERENCE. For layer that precede a

global context transformation, materialize the full updated output. For all other layers, invoke the

original transformation function. M is now the output heat map.

6.4 Approximate Inference Optimizations

Since incremental inference is exact, i.e., it yields the same heat map as full inference, it

does not exploit a capability of human perception: tolerance of some degradation in visual quality.

Thus, we now build upon our IVM framework to create two novel heuristic approximate inference

optimizations that trade off the heat map’s quality in a user-tunable manner to accelerate OBE

further. We note that our optimizations operate at the logical level and are complementary to more

physical-level optimizations such as low-precision computation [206] and model pruning [138].

We first present the techniques and then explain how to tune them.

120

1

3

6

7

6

3

1

3

6

7

6

3

(a) Projective Field (b) Projective field thresholding

Figure 6.6: (a) Projective field growth for 1-D Convolution (filter size 2, stride 1). (b) Projective
field thresholding; τ = 5/7.

6.4.1 Projective Field Thresholding

The projective field of a CNN neuron is the slice of the output tensor that is connected to

it [3]. It is a term from neuroscience to describe the effects of a retinal cell on the output of the

eye’s neuronal circuitry [107]. This notion sheds light on the growth of the size of the update

patches through the layers of a CNN. The 3 kinds of layers (Section 6.2.2) affect the projective

field size growth differently. Transformations at the granularity of individual elements do not

alter the projective field size. Global context transformations increase it to the whole output. But

local spatial context transformations, which are the most crucial, increase it gradually at a rate

determined by the filter kernel’s size and stride: additively in the size and multiplicatively in

the stride. The growth of the projective field size implies the amount of FLOPs saved by IVM

decreases as we go to the higher layers of a CNN. Eventually, the output update patch becomes as

large as the output tensor. This growth is illustrated by Figure 6.6(a).

Our above observation motivates the main idea of this optimization, which we call

projective field thresholding: truncate the projective field from growing beyond a given threshold

fraction τ (0< τ≤ 1) of the output size. This means inference in subsequent layers is approximate.

Figure 6.6(b) illustrates the idea for a filter size 3 and stride 1. One input element is updated

(shown in red/dark); the change propagates to 3 elements in the next layer and then 5, but it then

121

(a)

(b)

Figure 6.7: (a) Theoretical speedups with projective field thresholding. (b) Mean Square Error
between exact and approximate output of final Convolution/Pooling layers.

gets truncated because we set τ = 5/7. This approximation can alter the accuracy of the output

values and the heat map’s visual quality. Empirically, we find that modest truncation is tolerable

and does not affect the heat map’s visual quality too significantly.

To provide intuition on why the above happens, consider histograms on the side of

Figures 6.6(a,b) that list the number of unique “paths” from the updated element to each element

in the last layer. It resembles a Gaussian distribution, with the maximum paths concentrated on

the middle element. Thus, for most of the output patch updates, truncation will only discard a

few values at the “fringes” that contribute to an output element. Of course, we do not consider

the weights on these “paths,” which is dependent on the given trained CNN. Since the weights

can be arbitrary, a tight formal analysis is unwieldy. But under some assumptions on the weights

values (similar to the assumptions in [197] for understanding the “receptive field” in CNNs), in

Appendix B.4 we show that this distribution does indeed converge to a Gaussian. Thus, while this

idea is a heuristic, it is grounded in a common behavior of real CNNs. Overall, since most of

the contributions to the output elements are concentrated around the center, such truncation is

often affordable. Note that this optimization is only feasible in conjunction with our incremental

122

inference framework (Section 6.3) to reuse the remaining parts of the tensors and save FLOPs.

We extend the formulas for the output-input coordinate calculations to account for τ. For the

width dimension, the new formulas are as follows (similarly for the height dimension):

W O
P :l = min

(
d(W I

P :l +WK :l−1)/Sx:le,W O
P :l
)

(6.21)

If W O
P :l > round(τ×W O

:l) : (6.22)

W O
P :l = round(τ×W O

:l) (6.23)

W I
Pnew:l =W O

P :l×Sx:l−WK :l +1 (6.24)

xI
P :l += (W I

P :l−W I
Pnew:l)/2 (6.25)

W I
P :l =W I

Pnew:l (6.26)

xO
P :l =max

(
d(Px:l + xI

P :l−WK :l +1)/Sx:le,0
)

(6.27)

Equation (6.21) calculates the width assuming no thresholding. But if the output width

exceeds the threshold, it is reduced as per Equation (6.23). Equation (6.24) calculates the input

width that would produce an output of width W O
P :l; we can think of this as making W I

P :l the subject

of Equation (6.21). If the new input width is smaller than the original input width, the starting

x coordinate should be updated as per Equation (6.25) s.t. the new coordinates correspond to

a “center crop” compared to the original. Equation (6.26) sets the input width to the newly

calculated input width. Equation (6.27) calculates the x coordinate of the output update patch.

Theoretical Speedups. We modify our “static analysis” framework to determine the

theoretical speedup of incremental inference (Section 6.3) to also include this optimization using

the above formulas. Consider a square occlusion patch placed on the center of the input image.

Figure 6.7 (a) plots the new theoretical speedups for varying patch sizes for 3 popular CNNs

for different τ values. As expected, as τ goes down from 1, the theoretical speedup goes up for

123

all CNNs. Since lowering τ approximates the heat map values, we also plot the mean square

error (MSE) of the elements of the exact and approximate output tensors produced by the final

Convolution or Pooling layers on a sample (n=30) of real-world images. Figure 6.7 (b) shows the

results. As expected, as τ drops, MSE increases. But interestingly, the trends differ across the

CNNs due to their different architectural properties. MSE is especially low for VGG-16, since

its projective field growth is rather slow relative to the other CNNs. We acknowledge that using

MSE as a visual quality metric and tuning τ are both unintuitive for humans. We mitigate these

issues in Section 6.4.3 by using a more intuitive quality metric and by presenting an automated

tuning method for τ.

6.4.2 Adaptive Drill-Down

This heuristic optimization is based on our observation about a peculiar semantics of

OBE that lets us modify how G (the set of occlusion patch locations) is specified and handled,

especially in the non-interactive specification mode. We explain our intuition with an example.

Consider a radiologist explaining a CNN prediction for diabetic retinopathy on a tissue image.

The region of interest typically occupies only a tiny fraction of the image. Thus, it is an overkill to

perform regular OBE for every patch location: most of the (incremental) inference computations

are effectively “wasted” on uninteresting regions. In such cases, we modify the OBE workflow to

produce an approximate heat map using a two-stage process, illustrated by Figure 6.8(a).

In stage one, we produce a lower resolution heat map by using a larger stride–we call it

stage one stride S1. Using this heat map, we identify the regions of the input that see the largest

drops in predicted probability of the label L. Given a predefined parameter drill-down fraction,

denoted rdrill−down, we select a proportional number of regions based on the probability drops. In

stage two, we perform OBE only for these regions with original stride value (we also call this

stage two stride, S2) for the occlusion patch to yield a portion of the heat map at the original

higher resolution. Since this process “drills down” adaptively based on the lower resolution heat

124

map, we call it adaptive drill-down. Note that this optimization also builds upon the incremental

inference optimizations of Section 6.3, but it is orthogonal to projective field thresholding and

can be used in addition.

Theoretical Speedups. We now define a notion of theoretical speedup for this optimiza-

tion; this is independent of the theoretical speedup of incremental inference. We first explain the

effects of rdrill−down and S1. Setting these parameters is an application-specific balancing act. If

rdrill−down is low, only a small region will need re-inference at the original resolution, which will

save a lot of FLOPs. But this may miss some regions of interest and thus, compromise important

explanation details. Similarly, a large S1 also saves a lot of FLOPs by reducing the number

of re-inference queries in stage one. But it runs the risk of misidentifying interesting regions,

especially when the size of those regions are smaller than the occlusion patch size. We now define

the theoretical speedup of adaptive drill-down as the ratio of the number of re-inference queries

for regular OBE without this optimization to that with this optimization. We only need the counts,

since the occlusion patch dimensions are unaltered, i.e., the cost of a re-inference query is the

same with or without this optimization. Given a stride S, the number of re-inference queries

is
HIimg

S · WIimg
S . Thus, the theoretical speedup is given by the following equation. Figure 6.8(b)

illustrates how this ratio varies with S1 and rdrill−down.

speedup=
S2

1

S2
2 + rdrill−down ·S2

1
(6.28)

6.4.3 Automated Parameter Tuning

We now present automated parameter tuning methods for easily configuring our approxi-

mate inference optimizations.

Tuning Projective Field Thresholding. As Section 6.4.1 explained, τ controls the visual

125

Stage
1

Stage 2

Final Output
P

re
di

ct
ed

 P
ro

ba
bi

lit
y

1.0

0.5

S1 rdrill-down

S
pe

ed
up

S
pe

ed
up

rdrill-down
fixed

S1 fixed

(a) (b)

Figure 6.8: (a) Schematic illustration of the adaptive drill-down idea. (b) Conceptual depiction
of the effects of S1 and rdrill−down on the theoretical speedup..

quality of the heat map. There is a spectrum of visual quality degradation: imperceptible changes

to major structural changes. But mapping τ to visual quality directly is likely to be unintuitive for

users. Thus, to measure visual quality more intuitively, we adopt a cognitive science-inspired

metric called Structural Similarity (SSIM) Index, which is widely used to quantify human-

perceptible differences between two images [279]. In our case, the two “images” are the original

and approximate heat maps. SSIM is a number in [−1,1], with 1 meaning a perfect match. SSIM

values in the [0.90,0.95] range are considered almost imperceptible distortions in many practical

multimedia applications such as image compression and video encoding [279].

Our tuning process for τ has an offline “training” phase and an online usage phase. The

offline phase relies on a set of sample images (default 30) from the same application domain.

We compute SSIM for the approximate and exact heat maps for all sample images for a few τ

values (default 1.0,0.9,0.8, . . . ,0.4). We then learn a second-degree polynomial curve for SSIM

as a function of τ with these data points. Figure 6.9(a) illustrates this phase and the fit SSIM-τ

curves for 3 different CNNs using sample images from an OCT dataset (Section 6.5). In the

online phase, when OBE is needed on a given image, we expect the user to provide a target

SSIM for the quality–runtime trade-off they want (1 yields the exact heat map). We can then

use our learned curve to map this target SSIM to the lowest τ. Figure 6.9(b) shows the CDFs of

126

(a)

(b)

Figure 6.9: (a) Fitting a second-order curve for SSM against τ on a sample of the OCT dataset.
(b) CDFs of deviation of actual SSIM from the target SSIM (0.9) with our auto-tuned τ, which
turned out to be 0.5, 0.7, and 0.9 for VGG-16, ResNet-18, and Inception-V3, respectively.

differences between the target SSIM (0.9) and the actual SSIM yielded when using our auto-tuned

τ on both the training set and a holdout test set (also 30 images). In 80% of the cases, the actual

SSIM was better than the user-given target; never once did the actual SSIM go 0.1 below the

target SSIM. This suggests that our auto-tuning method for τ works, is robust, and applicable to

different CNNs.

Tuning Adaptive Drill-Down. As Section 6.4.2 explained, the speedup offered by

adaptive drill-down is controlled by two parameters: stage one stride S1 and drill-down fraction

rdrill−down. We expect the user to provide rdrill−down (default 0.25), since it captures the user’s

intuition about how large or small the region of interest is likely to be in the images in their

specific application domain and dataset. We also expect the user to provide a “target speedup”

ratio (default 3) for using this optimization to capture their desired quality-runtime trade-off.

Higher the user’s target speedup, the more we sacrifice the quality of the “non-interesting regions”

(1− rdrill−down fraction of the heat map). Our automated tuning process sets S1 using these two

user-given settings. Unlike the tuning of τ, setting S1 is more direct, since this optimization

127

relies on the number of re-inference queries, not SSIM. Let target denote the target speedup; the

original occlusion patch stride is S2. Equation 6.29 shows how we calculate S1; it is obtained by

making S1 the subject of Equation 6.28. Since S1 cannot be larger than the image width Wimg

(similarly Himg) and due to the constraint of (1− rdrill−down ·speedup) being positive, we also

have an upper bound on the possible speedups as per Equation 6.30.

S1 =

√
target

1− rdrill−down · target
·S2 (6.29)

speedup < min

(
W 2

img

S2
2 + rdrill−down ·W 2

img
,

1
rdrill−down

)
(6.30)

6.5 Experimental Evaluation

We integrated our optimization techniques with the popular deep learning framework

PyTorch to create a tool we call KRYPTON. Implementation details of this integration are deferred

to Appendix B.2. We now evaluate the speedups yielded by KRYPTON for OBE for different deep

CNNs and datasets. We then drill into the contributions of each of our optimization techniques.

Datasets. We use 3 diverse real-world image datasets: OCT, Chest X-Ray, and ImageNet.

OCT has about 84,000 optical coherence tomography retinal images with 4 classes: CNV, DME,

DRUSEN, and NORMAL; CNV (choroidal neovascularization), DME (diabetic macular edema),

and DRUSEN are varieties of diabetic retinopathy. Chest X-Ray has about 6,000 X-ray images

with three classes: VIRAL, BACTERIAL, and NORMAL; VIRAL and BACTERIAL are varieties

of pneumonia. Both OCT and Chest X-Ray are from a recent radiology study that applied deep

CNNs to detect the respective diseases [160]. ImageNet is a benchmark dataset in computer

128

R
un

tim
e

(s
)

5.4X

34.5X 2.1X
14.8X

8.0X
5.4X

13.8X 2.1X
4.9X

3.7X
5.4X

2.1X19.9X 8.5X

4.7X

1.5X 1.5X 1.5X

R
un

tim
e

(s
)

3.9X
16.0X

1.6X
6.2X

4.5X
3.9X

8.6X 1.6X 3.1X

2.3X

3.9X
1.6X11.2X 4.4X

2.6X

0.7X 0.7X 0.7X

Figure 6.10: End-to-end runtimes of KRYPTON and baselines on all 3 datasets, 3 CNNs, and
both GPU and CPU.

vision [246]; we use a sample of 1,000 images with 200 classes.

Workloads. We use 3 diverse ImageNet-trained deep CNNs: VGG16 [260], ResNet18 [136],

and Inception3 [267], obtained from [23]. They complement each other in terms of model size,

architectural complexity, computational cost, and our predicted theoretical speedups (Figure 6.3).

For OCT and Chest X-Ray, the 3 CNNs were fine-tuned by retraining their final Fully-Connected

layers as per standard practice. The details of fine-tuning are not relevant for the rest of our

discussion; so, we present further details in the Appendix B.5. The OBE heatmaps are plotted

using Python Matplotlib’s imshow method using the jet r color scheme; we set the maximum

threshold to min(1,1.25p) and minimum to 0.75p, where p is predicted class probability on

a given image. All images are resized to the input size required by the CNNs (224× 224 for

VGG16 and ResNet18; 299×299 for Inception3); no additional pre-processing was done. The

GPU-based experiments used a batch size of 128; for CPUs, the batch size was 16. All CPU-based

experiments were executed with a thread parallelism of 8. All of our datasets, experimental

scripts, and the KRYPTON codebase will be made publicly available on our project webpage.

Experimental Setup. We use a machine with 32 GB RAM, Intel i7-6700 3.40GHz CPU,

and NVIDIA Titan X (Pascal) GPU with 12 GB memory. The machine runs Ubuntu 16.04 with

129

PyTorch version 0.4.0, CUDA version 9.0, and cuDNN version 7.1.2. All reported runtimes are

the average of 3 runs, with 95% confidence intervals shown.

6.5.1 End-to- End Runtimes

We focus on the most common OBE scenario of producing the whole heatmap; G is

automatically created (“non-interactive” mode). We use an occlusion patch of size 16 and stride

of 4. We compare two variants of KRYPTON: KRYPTON-Exact uses only incremental inference

(Section 6.3), while KRYPTON-Approximate uses our approximate inference optimizations

too (Section 6.4). The main baseline is Naive, the current dominant practice of performing

full inference for OBE with just only batching. We have another baseline on GPU: Naive

Inc. Inference-Exact, which is a direct implementation of Algorithm 6 in PyTorch/Python without

using our GPU-optimized CUDA kernel (Section 6.3.4). Note that Naive Inc. Inference-Exact is

not relevant on CPU.

We set the adaptive drill-down parameters based on the semantics of each dataset’s

prediction task (Section 6.4.3). For OCT, since the region of interest is likely to be small, we set

rdrill−down = 0.1 and target = 5. For Chest X-Ray, the region of interest can be large; so, we set

rdrill−down = 0.4 and target = 2. For ImageNet, which is in between, we use the KRYPTON default

of rdrill−down = 0.25 and thittarget = 3. Throughout, τ is auto-tuned with a target SSIM of 0.9

(Section 6.4.3). Figure 6.10 presents the results. Visual examples of the heatmaps produced are

provided in the Appendix B.7.

Overall, we see KRYPTON offers significant speedups across the board on both GPU and

CPU, with the highest speedups seen by KRYPTON-Approximate on OCT with VGG16: 16X on

GPU and 34.5X on CPU. The highest speedups of KRYPTON-Exact are also on VGG16: 3.9X

on GPU and 5.4X on CPU. The speedups of KRYPTON-Exact are identical across datasets for a

given CNN, since it does not depend on the image semantics, unlike KRYPTON-Approximate

due to its parameters. KRYPTON-Approximate sees the highest speedups on OCT because our

130

auto-tuning yielded the lowest rdrill−down, highest target speedup, and lowest τ on that dataset.

The speedups are lower with ResNet18 and Inception3 than VGG16 due to their architec-

tural properties (kernel filter dimensions, stride, etc.) that make the projective field grow faster.

Moreover, Inception3 has a complex DAG architecture with more branches and depth-wise con-

catenation, which limits GPU throughput for incremental inference. In fact, KRYPTON-Exact on

GPU shows a minor slow-down (0.7X) with Inception3. But KRYPTON-Approximate still offers

speedups on GPU with Inception3 (up to 4.5X). We also see that ResNet18 and VGG16 almost

near their theoretical speedups (Figure 6.3) but Inception3 does not. Note that the theoretical

speedup definition only counts FLOPs and does not account for memory stalls.

Finally, the speedups are higher on CPU than GPU; this is because CPU suffers less from

memory stalls during incremental inferences. But the absolute runtimes are much lower on GPU

as expected. Overall, KRYPTON reduces OBE runtimes substantially for multiple datasets and

deep CNNs. We also ran an experiment in the “interactive” mode by reducing |G|. As expected,

speedups go down with |G| due to the reduction in amortization benefits. These additional results

are presented in the Appendix B.1.

6.5.2 Ablation Study

We now analyze the contributions of our 3 optimizations individually. We compare the

speedups of KRYPTON over Naive (batched inference) on both CPU and GPU, termed Empirical-

CPU and Empirical-GPU respectively, against the theoretical speedups (explained in Sections 6.3

and 6.4).

Only Incremental Inference. We vary the patch size and set the stride to 4. Figure 6.11

shows the results. As expected, the speedups go down as the patch size increases. Empirical-GPU

Naive yields no speedups because it does not use our GPU-optimized kernel, while Empirical-

GPU does. But Empirical-CPU is closer to theoretical speedup and almost matches it on ResNet18.

Thus, there is still some room for improvement to improve the efficiency of incremental inference

131

4 8 16 32

2

4

6

8

Sp
ee

du
p

VGG16

4 8 16 32

0.5

1.0

1.5

2.0

ResNet18

4 8 16 32

0.5

1.0

1.5

2.0

Inception3

Theoretical Empirical-GPU Empirical-CPU Empirical-GPU Naive
Patch size

Figure 6.11: Speedups with only the incremental inference optimization (occlusion patch stride
S = 4).

1.00.80.60.4
4

6

8

10

Sp
ee

du
p

VGG16

1.00.80.60.4

2

4

6

8
ResNet18

1.00.80.60.4

2

4

6

8

Inception3

Theoretical Empirical-GPU Empirical-CPU
Projective field threshold ()

Figure 6.12: Speedups with incremental inference combined with only projective field thresh-
olding.

in both environments.

Projective Field Thresholding. We vary τ from 1.0 (no approximation) to 0.4. Adaptive

drill-down is disabled but note that this optimization builds on top of our incremental inference.

The occlusion patch size is 16 and stride is 4. Figure 6.12 shows the results. The speedups

go up steadily as τ drops for all 3 CNNs. Once again, Empirical-CPU nears the theoretical

speedups on ResNet18, but the gap between Empirical-GPU and Empirical-CPU remains due to

the disproportionate impact of memory stalls on GPU. Overall, this approximation offers some

speedups in both environments, but has a higher impact on CPU than GPU.

Adaptive Drill-Down. Finally we study the effects of adaptive drill-down (again, on

top of incremental inference) and disable projective field thresholding. The occlusion patch

size is 16. Stage two stride is S2 = 4. First, we vary rdrill−down, while fixing stage one stride

(S1 = 16). Figure 6.13 (a) shows the results. Next, we vary S1, while fixing rdrill−down = 0.25.

132

(a)

(b)

Figure 6.13: Speedups with incremental inference combined with adaptive drill-down. For (a),
we set S1 = 16. For (b), we set rdrill down = 0.25).

Figure 6.13 (b) shows the results. As expected, the speedups go up as rdrill−down goes down or S1

goes up, since fewer re-inference queries arise in both cases. Empirical-CPU almost matches the

theoretical speedups across the board; in fact, even Empirical-GPU almost matches theoretical

speedups on Inception3. Empirical-GPU flattens out at high S1, since the number of re-inference

queries drops, thus resulting in diminishing returns for the benefits of batched execution on

GPU. Overall, this optimization has a major impact on speeding up OBE for all CNNs in both

environments.

Memory Overhead. We compare our batched incremental inference against full re-

inference on GPU. Our approach actually reduces memory footprint by 58%. We explain this

result further in Appendix B.6.

6.5.3 Summary and Discussion

Overall, our experiments show that KRYPTON can substantially accelerate OBE, with up

to 16X speedups on GPU and 34.5X speedups on CPU. The benefits of our optimizations depend

133

on the CNN’s architectural properties. Our approximate inference optimizations also depend on

the dataset’s properties due to their tunable parameters, which KRYPTON can tune automatically.

Finally, KRYPTON sees higher speedups on CPU than GPU but the runtimes are much lower

on GPU. Overall, our optimizations in KRYPTON help reduce waiting times for OBE users by

improving utilization of existing resources rather than forcing users to buy more resources.

6.6 Conclusion

Deep CNNs are gaining widespread adoption for image prediction tasks but their internal

workings are unintuitive for most users. Thus, occlusion-based explanations (OBE) have become

a popular mechanism for non-technical users to understand CNN predictions. But OBE is highly

compute-intensive due to the large number of CNN re-inference requests produced. In this work,

we formalize OBE from a data management standpoint and introduce several query optimization-

inspired techniques to speed up OBE. Our techniques span exact incremental inference and

multi-query optimization for CNN inference, as well as CNN-specific and human perception-

aware approximate inference. Overall, our ideas yield even over an order of magnitude speedups

for OBE in both CPU and GPU environments.

Chapter 6 contains material from “Incremental and Approximate Inference for Faster

Occlusion-based Deep CNN Explanations” by Supun Nakandala, Arun Kumar, and Yannis Pa-

pakonstantinou, which appears in Proceedings of 2019 ACM SIGMOD International Conference

on Management of Data. The dissertation author was the primary investigator and author of this

paper.

134

Chapter 7

Extensions of KRYPTON

7.1 Extension: Interactive Diagnosis of CNN Predictions us-

ing KRYPTON

7.1.1 Introduction

In this work, we develop a system for interactive diagnosis of CNN predictions using

occlusion-based explanations (OBE). Our system internally uses the KRYPTON engine to acceler-

ate OBE using incremental and approximate inference techniques. Users can now also select a

subregion of the image to run OBE using a cropping tool to exploit their intuitions about what

regions might be more important. We also provide runtime estimations for the OBE workload. A

short video of our system can be found here: https://youtu.be/1OWddbd4n6Y.

7.1.2 User Interface

The user interface is developed as a web application running in the browser. Figure 7.1

shows an image of the user interface. To run the OBE workload on an image users need to load

the image from the file picker option. The image will be then displayed on the left-hand side

135

Drop-down for
selecting the CNN

model

Options for
enabling/disabling

system optimizations

Generated
sensitivity heat map

Predicted class
label

Predicted probability
color bar

Input image file
picker

Input image

Stride Selection
Drop-down

Patch Size Selection
Drop-down

OBE Workload
Submit/Reset

buttons

Estimated and
Actual Runtimes

Estimate: 6.41 s Actual: 6.22 s

Figure 7.1: KRYPTON user interface. Users can load an input image, select a CNN model, and
interactively diagnose the prediction by occluding parts of the full image or part of the image
using the cropping tool. KRYPTON generates a sensitivity heatmap (right image) and iteratively
refines it as the user progresses. NB: This figure is best viewed in color, as is standard in the
visual computing literature.

panel of the interface. After loading the image, users have three options to choose from to run

OBE: Naive, KRYPTON-Exact, and KRYPTON-Approximate. The Naive approach performs full

CNN inference. KRYPTON-Exact performs our incremental CNN inference optimization, and

KRYPTON-Approximate performs both our incremental and approximate optimizations.

Users can then select the occlusion patch size, stride, and the CNN model using the

corresponding drop-down menus as shown in Figure 7.1. We allow the user to pick from 4

different patch sizes (4×4, 8×8, 16×16, 32×32) and 4 different stride values (2, 4, 8, 16).

Currently, we support three different CNN models (VGG16, ResNet18, Inception3). After

picking the above configuration values, the user can then initiate the OBE workload by clicking

the “Submit” button. The system will also display an estimate for the runtime of the workload.

After the workload is completed, the system will overlay the sensitivity heatmap on the original

image and display it on the right-hand side panel. We also show the predicted class label (e.g.,

lion) and the actual workload execution time. On the heatmap, red color regions correspond to low

predicted probabilities for the selected label (e.g., lion) and the blue color regions correspond to

136

ResNet18 VGG16

Number of occlusion positions Number of occlusion positions

E
st

im
at

e
tim

e(
s)

Figure 7.2: Runtime estimation using linear regression cost model (occlusion patch size = 16
and execution mode is exact).

high predicted probabilities for the selected label. So the red color regions are the most sensitive

regions for the predicted class label. The color bar for the heatmap is also shown in the interface.

Instead of considering occlusion patch positions over the entire image, users can also

focus on a selected small region. Considering all occlusion patch positions can be wasteful if

the significant objects in an image are localized into a small region. For example, consider the

image shown in Figure 7.1. It contains an image of a lion on a wilderness background. The main

object in this image is the lion which occupies only a small region of the entire image. A user

who wants to diagnose the prediction for this image can start the diagnosis by selecting a smaller

region, which contains only the face and the body of the lion by cropping that region. This will

execute faster than the full image. If the user is not satisfied with the produced heatmap, she can

iteratively refine the selected region. The cropping of an image can be done simply by dragging

on the image in the interface to select a rectangular selection area.

7.1.3 OBE Runtime Estimation

To make the UI more user-friendly, we provide runtime estimations for the OBE workload

based on the configurations selected by the user. Showing the estimated runtime for the OBE

workload will enable the user to make an informed decision when picking the OBE configurations

137

to trade-off the quality of the heatmap and the available time budget. The runtime of a single

OBE workload depends on the width and height of the selected image region, the stride value,

occlusion patch size, selected CNN model, and the execution mode (i.e. exact vs approximate).

When we control for the occlusion patch size, CNN model, and the execution mode, the runtime

of the workload is directly proportional to the number of different occlusion patch positions. We

ran several offline experiments with different configurations and recorded the runtimes. These

runtimes are then used to fit a linear regression cost model for each patch size, CNN model,

and execution mode combination and are then used to predict the runtime for new configuration

instances. Figure 7.2 shows the cost models generated for ResNet18 and VGG16 for a patch size

of 16 with the exact execution mode.

7.2 Extension: Accelerating OBE for Arbitrary CNNs

In this work, we extend KRYPTON so that it can accelerate OBE for arbitrary PyTorch

CNNs. To achieve this, we develop a high-level abstraction called KryptonGraph and automate

the generation and execution of it. For a given CNN, KryptonGraph handles the incremental

CNN inference of that CNN by using PyTorch. The high-level process for KryptonGraph

generation and execution is shown in Figure 7.3 and works as follows:

1. Given a CNN model f , we use the utilities available in PyTorch to trace the structure of the

CNN by providing a sample image as input. Since all CNNs are static in nature (i.e., the

order of operator execution is not dependent on data), the structure obtained by tracing is

guaranteed to be correct. The trace output is then exported to ONNX format [42], which is

a convenient representation format for subsequent analysis.

2. Dropout [263] operators in the CNN model are simply ignored as they do not have any

effect on CNN inference.

138

PyTorch
Model

FC

Dropout

Pool

FC

Conv

Trace CNN
Structure

Prune
Dropout

FC

Pool

FC

Conv

KryptonGrap
h Generation

FC

Pool

FC

Conv

Fully
Mat.

KryptonGraph

BII

BII

Materialize
Intermediate

Features

FC

Pool

FC

Conv

Fully
Mat.

BII

BII

Image

FC

Pool

FC

Conv

Fully
Mat.

BII

BII

BII
Inputs

KryptonGraph KryptonGraph

Run
OBE

(1) (2) (3) (4) (5)

Fully
Mat. BIIFull materialization

operation
BatchedIncrementalInf
erence Operator

Intermediate Features KryptonOp

FC Fully-connected layer

KryptonGraph Generation KryptonGraph Execution

Figure 7.3: KryptonGraph generation and execution process. For brevity, only a subgraph of a
linear CNN is shown. The same method also applies to arbitrary DAG like CNNs.

3. We then traverse the exported CNN model in topological order and create the corresponding

KryptonGraph. For each operator T in the original CNN f , there will be a corresponding

KryptonOP in the KryptonGraph that implements the BatchedIncrementalInference

(Algorithm 6) for local context operators. Each KryptonOp also has a reference to the

original CNN operator T , which will be used in the BatchedIncrementalInference

method or directly invoked for global context operators that do not support incremental

inference (e.g., fully-connected). Under the hood, KryptonOP is relying on the PyTorch

framework for the actual execution of the corresponding CNN operator. The first global

context operator that succeeds a local context operator will first fully materialize the

updated input before invoking the full inference operator. Since all CNNs are created using

a small number of low-level operators (e.g., convolution, pooling, and fully-connected),

by implementing all corresponding types of KryptonOps, we are able to support arbitrary

139

PyTorch CNNs as input.

4. The generated KryptonGraph is then used for performing CNN inference for OBE. Given

an input image I:img we first materialize all intermediate outputs corresponding to incre-

mental inference operators using one full inference.

5. We then prepare occluded images (I ′(x,y):img) for all positions in G. For batches of I ′(x,y):img as

the input, we invoke the KryptonGraph in topological order and calculate the corresponding

entries of heatmap M.

Chapter 7 Section 7.1 contains material from “Demonstration of Krypton: Optimized

CNN Inference for Occlusion-based Deep CNN Explanations” by Allen Ordookhanians, Xin Lin,

Supun Nakandala, and Arun Kumar, which appears in Proceedings of VLDB Endowment Volume

12, Issue 12, August 2019. The dissertation authors contribution was in the conceptualization of

the system and advising the junior students through the system implementation.

Chapter 7 Section 7.2 contains material from “Incremental and Approximate Computa-

tions for Accelerating Deep CNN Inference” by Supun Nakandala, Kabir Nagrecha, Arun Kumar,

and Yannis Papakonstantinou, which appears in ACM Transactions on Database Systems Journal

Volume 45, Issue 4, December 2020. The dissertation author was the primary investigator and

author of this paper.

140

Chapter 8

VISTA: Query Optimizations for Deep

CNN Feature Transfer

8.1 Introduction

In this chapter, we dive deeper into our techniques for optimizing deep convolutional

neural network (CNN) feature transfer workloads. CNNs [180, 124] are a special type of DL

model family optimized for image data and there is growing interest in using CNNs to exploit

images in analytics applications that have hitherto relied mainly on structured data. But analytics

systems today have a dichotomy: dataflow systems (e.g., Spark [289]) are popular for structured

data [201, 5], while DL systems (e.g., TensorFlow [54]) are needed for CNNs. This dichotomy

means the systems issues of workloads that combine both forms of data are surprisingly ill-

understood.

Example (Based on [199]). Consider a data scientist, Alice, at an online fashion retailer

building a product recommender system (see Figure 8.1). She uses structured features (e.g., price,

brand, user clicks, etc.) to build an ML model (e.g., logistic regression, multi-layer perceptron, or

decision tree) to predict product ratings. She then has a hunch that including product images can

141

Convolutional+Pooling+ReLU Layers Fully Connected Layers Output

Low-level Features Mid-level Features High-level Features

Input

Image features from a specified layer

Structured Features Multimodal Feature Set
Concatenate

(A) CNN Inference

Brand Tags Price Brand Tags Price Image Features

Downstream ML Model(B) CNN Feature Transfer for Multimodal Analytics

Figure 8.1: (A) Simplified illustration of a typical deep CNN and its hierarchy of learned feature
layers(based on [290]). (B) Illustration of the CNN feature transfer workflow for multimodal
analytics.

raise ML accuracy. So, she uses a pre-trained deep CNN (e.g., ResNet50 [136]) on the images to

extract a feature layer: a vector representation of an image produced by the CNN. Deep CNNs

produce a series of feature layers; each layer automatically captures a different level of abstraction

from low-level patterns to high-level abstract shapes [124, 180], as Figure 8.1(A) illustrates. Alice

concatenates her chosen feature layer with the structured features and trains her “downstream”

model. Figure 8.1(B) illustrates this workflow. She then tries a few other feature layers instead to

check if the downstream model’s accuracy increases.

Importance of Feature Transfer. Feature transfer is a form of “transfer learning” that

mitigates two key pains of training deep CNNs from scratch [226, 4, 25]: the number of labeled

images needed is lower, often by an order of magnitude [25, 287], and the time and resource

costs of training are lower, even by two orders of magnitude [4, 25]. Overall, feature transfer

is now popular in many domains, including recommender systems [199], visual search [153]

142

Capabilities PD DL

Structured data querying

and custom transformations ✔

Automated distributed file

and memory management
✔

Classical ML models ✔

Arbitrary artificial neural

network architectures
✔

Seamless integration with

hardware accelerators
✔

(A) Parallel Dataflow (PD) vs
Deep Learning (DL) Systems

(B) Current Manual Approach to Feature Transfer

PD System

Raw Data

Image Features

Downstream

Model

Training,

Evaluation

DL System

CNN Inference to get L5
(3.a)

CNN, L5

(1) Transform

(3.b) Load Image Features

(3.c) Downstream accuracy for L5

(2) Export

Images

(C) Our Approach with VISTA

VISTA

PD

System

DL

System

CNN x {L5,L6,L7}

(D) Efficiency-Reliability Tradeoff

E
ff

ic
ie

n
c
y

Reliability

Eager

Staged

Lazy

Structured Features

Layer Acc.

L5 93%

L6 95%

L7 91%

Layer Acc.

L5 93%

L6 ?

L7 ?

Repeat Steps 3.a—3.c

for layers L6 and L7

(w/o disk-spills)

(w/ disk-spills)

Capabilities PD DL

Structured data querying

and custom transformations ✔

Automated distributed file

and memory management
✔

Classical ML models ✔

Arbitrary artificial neural

network architectures
✔

Seamless integration with

hardware accelerators
✔

(A) Parallel Dataflow (PD) vs
Deep Learning (DL) Systems

(B) Current Manual Approach to Feature Transfer

PD System

Raw Data

Image Features

Downstream

Model

Training,

Evaluation

DL System

CNN Inference to get L5
(3.a)

CNN, L5

(1) Transform

(3.b) Load Image Features

(3.c) Downstream accuracy for L5

(2) Export

Images

(C) Our Approach with VISTA

VISTA

PD

System

DL

System

CNN x {L5,L6,L7}

(D) Efficiency-Reliability Tradeoff

E
ff

ic
ie

n
c
y

Reliability

Eager

Staged

Lazy

Structured Features

Layer Acc.

L5 93%

L6 95%

L7 91%

Layer Acc.

L5 93%

L6 ?

L7 ?

Repeat Steps 3.a—3.c

for layers L6 and L7

(w/o disk-spills)

(w/ disk-spills)

Capabilities PD DL

Structured data querying

and custom transformations ✔

Automated distributed file

and memory management
✔

Classical ML models ✔

Arbitrary artificial neural

network architectures
✔

Seamless integration with

hardware accelerators
✔

(A) Parallel Dataflow (PD) vs
Deep Learning (DL) Systems

(B) Current Manual Approach to Feature Transfer

PD System

Raw Data

Image Features

Downstream

Model

Training,

Evaluation

DL System

CNN Inference to get L5
(3.a)

CNN, L5

(1) Transform

(3.b) Load Image Features

(3.c) Downstream accuracy for L5

(2) Export

Images

(C) Our Approach with VISTA

VISTA

PD

System

DL

System

CNN x {L5,L6,L7}

(D) Efficiency-Reliability Tradeoff

E
ff

ic
ie

n
c
y

Reliability

Eager

Staged

Lazy

Structured Features

Layer Acc.

L5 93%

L6 95%

L7 91%

Layer Acc.

L5 93%

L6 ?

L7 ?

Repeat Steps 3.a—3.c

for layers L6 and L7

(w/o disk-spills)

(w/ disk-spills)

Figure 8.2: (A) Comparing the analytics-related capabilities of parallel dataflow (PD) systems
and deep learning (DL) systems. (B) Current manual approach of executing feature transfer
at scale straddling PD and DL systems. The steps in the manual workflow are numbered.
Step 3 (a-b-c) is repeated for every feature layer of interest. (C) The “declarative” approach
in VISTA. (D) Tradeoffs of alternative execution plans on efficiency (runtimes) and reliability
(crash-proneness).

(product images), healthcare (tissue images) [114], nutrition science (food images) [17], and

computational advertising (ad images).

Bottleneck: Trying Multiple Layers. Recent work in ML showed that it is critical to

try multiple layers for feature transfer because different layers yield different accuracies and it is

impossible to tell upfront which layer will be best [110, 287, 66, 25]. But trying multiple layers

becomes a bottleneck for data scientists running large-scale ML on a cluster because it can slow

down their analysis, e.g., from an hour to several hours (Section 8.4), and/or raise resource costs.

143

8.1.1 Current Approach and Systems Issues

The common approach to feature transfer at scale is a tedious manual process straddling

DL systems and parallel dataflow (PD) systems. These systems present a dichotomy, as Fig-

ure 8.2(A) shows. PD systems support queries and manage distributed memory for structured data

but do not support DL natively. DL systems support complex CNNs and hardware accelerators

but need manual partitioning of files and memory for distributed execution. Moreover, data

scientists often prefer decision tree-based ML models on structured data [10]; thus, a DL system

alone is too limiting.

Figure 8.2(B) illustrates the manual process. Suppose Alice tries layer 5 (L5) to layer 7

(L7) (say) from a given CNN. She first runs CNN inference in DL system (e.g., TensorFlow) to

materialize L5 for all images in her dataset. She loads this large data file with image features into

PD system (e.g., Spark), joins it with the structured data, and trains a downstream multimodal ML

model (e.g., using MLlib [201] or TensorFlow). She repeats this for L6 and then for L7. Apart

from being tedious, this process faces two key systems issues:

(1) Inefficiency. Extracting a higher layer (say, L6) requires a superset of the infer-

ence computations needed for a lower layer (say, L5). So, the manual process may have high

computational redundancy, which wastes runtime.

(2) Crash-proneness. One might ask: why not write out all layers in one go to save

time? Alas, CNN feature layers can be very large, e.g., one of ResNet50’s layers is 784KB but

the image is only 14KB [136]. So, 10GB of data blows up to 560GB for just one layer! Forcing

ML users to handle such large intermediate data files on in-memory PD systems can easily cause

workload crashes due to exhausting available system memory. Alternatively, writing these feature

files to disk and reading iteratively will incur significant overheads due to costly disk reads/writes,

thus reducing efficiency further.

144

8.1.2 Our Proposed Approach

We resolve the above issues by elevating scalable feature transfer to a “declarative” level

and automatically optimizing its execution. We want to retain the benefits of both PD and DL

systems without reinventing their current capabilities (Figure 8.2(A)). Thus, we build a new

data system we call VISTA on top of PD and DL systems, as Figure 8.2(C) illustrates. To make

practical adoption easier, we believe it is crucial to not modify the code of the underlying PD and

DL systems; this also lets us leverage future improvements to those systems. VISTA is based on

three design decisions: (1) Declarativity to simplify specification, (2) Execution Optimization to

reduce runtimes, and (3) Automated Memory and System Configuration to avoid memory-related

workload crashes.

(1) Declarativity. VISTA lets users specify what CNNs and layers to try, but not how

to run them. It invokes the DL system to run CNN inference, loads and joins image features

with structured data, and runs downstream training on the PD system. Since VISTA, not the user,

handles how layers are materialized, it can optimize execution in non-trivial ways.

(2) Execution Optimization. We characterize the memory use behavior of this workload

in-depth, including key workload crash scenarios. This helps us bridge PD and DL systems, since

PD systems do not understand CNNs and DL systems do not understand joins or caching. We

compare alternative execution plans with different efficiency–reliability tradeoffs, as Figure 8.2(D)

shows. The “Lazy” plan simply automates the manual process. It is reliable due to its low memory

footprint, but it has high computational redundancy. At the other end, “Eager” materializes all

layers of interest in one go (Section 8.3). It avoids redundancy but is prone to memory-related

crashes if the intermediate data does not fit in memory. Alternatively, enabling disk spills for

the Eager plan will avoid crashes but will be inefficient due to costly disk reads/writes. We then

present a new plan used in VISTA that offers the best of both worlds: “Staged” execution; it

interleaves the DL and PD systems’ operations by enabling partial CNN inference.

145

(3) Automated Memory and System Configuration. Finally, we explain how key

system tuning knobs affect this workload: apportioning memory for caching data, CNNs, and

feature layers; data partitioning; and physical join operator. Using our insights, we build an

end-to-end automated optimizer in VISTA to configure both the PD and DL systems to run this

workload efficiently and reliably.

Implementation and Evaluation. We prototype VISTA on top of two PD systems, Spark

and Ignite [72], with TensorFlow as the DL system. Our API is in Python. We perform an

extensive empirical evaluation of VISTA using 2 real-world multimodal datasets and 3 deep

CNNs. VISTA avoids many crash scenarios and reduces total runtimes by 58% to 92% compared

to existing baseline approaches.

Our approach is inspired by the long line of work on multi-query optimization in

RDBMSs [250]. But our execution plans and optimizer have no counterparts in prior work

because they treat CNNs as black-box user-defined functions that they do not rewrite. In contrast,

VISTA treats CNNs as first-class operations, understands their memory footprints, rewrites their

inference, and optimizes this workload in a principled and holistic manner.

Overall, this work makes the following contributions:

• To the best of our knowledge, this is the first work on the systems principles of integrating

PD and DL systems to optimize scalable feature transfer from CNNs.

• We characterize the memory use behavior of this workload in-depth, explain the efficiency–

reliability tradeoffs of alternative execution plans, and present a new CNN-aware optimized

execution plan.

• We create an automated optimizer to configure the system and optimize its execution to

offer both high efficiency and high reliability.

• We prototype our ideas to build VISTA on top of a PD and DL system. We com-

146

pare VISTA against baseline approaches using multiple real-world datasets and deep CNNs.

Unlike the baselines, VISTA never crashes and is also faster by 58% to 92%.

Outline. Section 8.2 formalizes the dataflow of the feature transfer workload, explains

our assumptions, and provides an overview of VISTA. Section 8.3 dives into the systems tradeoffs

and presents our optimizer. Section 8.4 presents the experiments and we conclude in Section 8.5.

8.2 Preliminaries and Overview

We now formally describe our problem setting, explain our assumptions, and present an

overview of VISTA.

8.2.1 Definitions and Data Model

We start by defining some terms and notation to formalize the data model of partial CNN

inference. We will use these terms in the rest of this chapter.

Definition 8.2.1 A tensor is a multidimensional array of numbers. The shape of a d-dimensional

tensor t ∈ Rn1×n2×...nd is the d-tuple (n1, . . .nd).

A raw image is the (compressed) file representation of an image, e.g., JPEG. An image

tensor is the numerical tensor representation of the image. Gray-scale images have 2-dimensional

tensors; colored ones, 3-dimensional (with RGB pixel values). We now define some abstract data

types and functions that will be used to explain our techniques.

Definition 8.2.2 A TensorList is an indexed list of tensors of potentially different shapes.

Definition 8.2.3 A TensorOp is a function f that takes as input a tensor t of a fixed shape and

outputs a tensor t ′ = f (t) of potentially different, but also fixed, shape. A tensor t is said to be

shape-compatible with f iff its shape conforms to what f expects for its input.

147

Definition 8.2.4 A CNN is a TensorOp f that is represented as a composition of nl indexed

TensorOps, denoted f (·)≡ fnl(. . . f2(f1(·)) . . .), wherein each TensorOp fi is called a layer and

nl is the number of layers.1 We use f̂i to denote fi(. . . f2(f1(·)) . . .).

Definition 8.2.5 A FlattenOp is a TensorOp whose output is a vector; given a tensor t ∈

Rn1×n2×...nd , the output vector’s length is ∑
d
i=1 ni.

Definition 8.2.6 CNN inference. Given a CNN f and a shape-compatible image tensor t, CNN

inference is the process of computing f (t).

Definition 8.2.7 Partial CNN inference. Given a CNN f , layer indices i and j > i, and a tensor t

that is shape-compatible with layer fi, partial CNN inference i→ j is the process of computing

f j(. . . fi(t) . . .), denoted f̂i→ j.

All major CNN layers–convolutional, pooling, non-linearity, and fully connected–are just

TensorOps. The above definitions capture a crucial aspect of partial CNN inference: data flowing

through the layers produces a sequence of tensors.

8.2.2 Problem Statement and Assumptions

We are given two tables Tstr(ID,X) and Timg(ID, I), where ID is the primary key (identi-

fier), X ∈ Rds is the structured feature vector (with ds features, including label), and I are raw

images (say, as files on HDFS). We are also given a CNN f with nl layers, a set of layer indices

L ⊂ [nl] specific to f that are of interest for transfer learning, a downstream ML algorithm M

(e.g., logistic regression), a set of system resources R (number of cores, system memory, and

number of nodes). The feature transfer workload is to train M for each of the |L| feature vectors

obtained by concatenating X with the respective feature layers obtained by partial CNN inference;

we can state it more precisely as follows:
1We use sequential (chain) CNNs for simplicity of exposition; it is easy to extend our definitions to DAG-

structured CNNs such as DenseNet [145].

148

∀ l ∈ L : (8.1)

T ′img,l(ID,gl(f̂l(I))) ← Apply (gl ◦ f̂l) to Timg (8.2)

T ′l (ID,X ′l) ← Tstr ./ T ′img,l (8.3)

Train M on T ′l with X ′l ≡ [X ,gl(f̂l(I))] (8.4)

Step (2) runs partial CNN inference to materialize layer l and flattens it with gl , a shape-

compatible FlattenOp. Step (3) concatenates structured and image features using a key-key join.

Step (4) trains M on the concatenated feature vector. Pooling can be inserted before g to reduce

dimensionality for M [66]. The current approach (Figure 8.2(B)) runs the above queries as such,

i.e., materialize layers manually and independently as flat files and transfer them; we call this

execution plan Lazy. This plan is cumbersome, inefficient due to redundant CNN inference, and/or

is prone to workload crashes due to inadvertently mismanaged memory. Our goal is to resolve

these issues. Our approach is to elevate this workload to a declarative level, obviate manual

feature transfer, automatically reuse intermediate results, and optimize the system configuration

and execution for better reliability and efficiency.

We make a few simplifying assumptions for tractability in this first work on this problem.

First, we assume that f is from a roster of well-known CNNs. We currently support AlexNet [171],

VGG16 [260], and ResNet50 [136] due to their popularity in real feature transfer applications [199,

278]. Second, we support only one image per data record. We leave support for arbitrary CNNs

and multiple images per example to future work. Finally, we assume enough secondary storage is

available for disk spills and optimize the use of distributed memory; this is a standard assumption

in PD systems.

149

Interactions

Invokes

Flow of Data/Results

VISTA

Spark

HDFS

VISTA API

VISTA Optimizer Pre-Trained CNNs

TensorFlowMLlib DataFrames TensorFrames

Tstr Timg

Data, Model Configs Results, Trained Models

Figure 8.3: System architecture of the VISTA prototype on top of the Spark-TensorFlow
combine. The prototype on Ignite-TenforFlow is similar and skipped for brevity.

8.2.3 System Architecture and API

We prototype VISTA as a library on top of Spark-TF and Ignite-TF environments. Due to

space constraints, we explain the architecture of only the Spark-TF prototype; the Ignite-TF one

is similar.

VISTA has three components, as Figure 8.3 illustrates: (1) a “declarative” API, (2) a roster

of popular named deep CNNs with numbered feature layers, and (3) the VISTA optimizer. Our

Python API expects 4 major groups of inputs. First is the system environment (memory, number

of cores, and number of nodes). Second, a deep CNN f and the number of feature layers |L|

(starting from the top most layer) to explore. Third, the downstream ML routine M that handles

the downstream model’s evaluation, hyperparameter tuning, and model artifacts. Fourth, data

tables Tstr and Timg and statistics about the data.

Under the covers, VISTA invokes its optimizer to pick a fast and reliable set of choices

for the logical execution plan, system configuration parameters, and physical execution decisions.

After configuring Spark accordingly, VISTA runs within the Spark Driver process to control

the execution. VISTA injects UDFs to run (partial) CNN inference, i.e., f , f̂l , gl , and f̂i→ j

150

for the CNNs in its roster (currently, AlexNet, VGG16, and ResNet50). These UDFs specify

the computational graphs for TF and invoke Spark’s DataFrames and TensorFrames APIs with

appropriate inputs based on our optimizer’s decisions. Image and feature tensors are stored with

our custom TensorList datatype. Finally, VISTA invokes downstream ML model training on the

concatenated feature vector and obtains |L| trained downstream models. Overall, VISTA frees ML

users from manually writing TF code for CNN feature transfer, saving features as files, performing

joins, or tuning Spark for running this workload at scale.

8.3 Tradeoffs and Optimizer

We now characterize the abstract memory usage behavior of our workload in depth. We

then map our memory model to Spark and Ignite. Finally, we use these insights to explain

three dimensions of efficiency-reliability tradeoffs and apply our analyses to design the VISTA

optimizer.

8.3.1 Memory Use Characterization

It is important to understand and optimize the memory use behavior of the feature transfer

workload, since mismanaged memory can cause frustrating workload crashes and/or excessive

disk spills or cache misses that raise runtimes. Apportioning and managing distributed memory

carefully is a central concern for modern distributed data processing systems. Since our work

is not tied to any specific dataflow system, we create an abstract model of distributed memory

apportioning to help us explain the tradeoffs in a generic manner. These tradeoffs involve

apportioning memory between intermediate data, CNN/DL models and working memory for

UDFs. Such tradeoffs affect both reliability (avoiding crashes) and efficiency. We then highlight

interesting new properties of our workload that can cause unexpected crashes or inefficiency, if

not handled carefully.

151

Abstract Memory Model. In distributed memory-based dataflow systems, a worker’s

System Memory is split into two main regions: Reserved Memory for OS and other processes

and Workload Memory, which in turn is split into Execution Memory and Storage Memory.

Figure 8.4(A) illustrates the regions. Execution Memory is further split into User Memory and

Core Memory; for typical relational/SQL workloads, the former is used for UDF execution, while

the latter is used for query processing. Best practice guidelines recommend allotting most of

System Memory to Storage Memory, while having enough Execution Memory to reduce disk

spills or cache misses [8, 19, 20]. OS Reserved Memory is typically a few GBs. Our workload

requires rethinking memory apportioning due to interesting new issues caused by deep CNN

models, (partial) CNN inference, feature layers, and the downstream ML task.

(1) The guideline of using most of System Memory for Storage and Execution no longer

holds. In both Spark and Ignite, CNN inference in DL system (e.g., TF) uses System Memory

outside Storage and Execution regions. If a DL model is used as the downstream ML model, it

will also use memory outside of Storage and Execution regions. The memory footprint of DL

models is non-trivial. For parallel query execution in PD systems, each execution thread will

spawn its own DL model replica, multiplying the footprint.

(2) Many temporary objects are created when reading serialized DL models to initialize

the DL system, for buffers to read inputs, and to hold features created by CNN inference. All

these go under User Memory. The sizes of these objects depend on the number of examples in a

data partition, the CNN, and L. These sizes could vary dramatically and also be very high, e.g.,

layer fc6 of AlexNet has 4096 features but conv5 of ResNet has over 400,000 features! Such

complex memory footprint calculations will be tedious for ML users.

(3) The downstream ML routine (e.g., MLLib) also copies features produced by CNN

inference into its own representations. Thus, Storage Memory should accommodate such interme-

diate data copies. Finally, Core Memory must accommodate the temporary objects created for

join processing.

152

Mapping to Spark’s Memory Model. Spark allocates User, Core, and Storage Memory

regions of our abstract memory model from the JVM Heap Space. With default configurations,

Spark allocates 40% of the Heap Memory to User Memory region. The rest of the 60% is shared

between the Storage and Core Memory regions. The Storage Memory–Core Memory boundary

in Spark is not static. If needed, Core Memory automatically borrows from the Storage Memory

evicting data partitions to the disk. Conversely, if Spark needs to load more data to memory, it

borrows from Execution Memory. But there is a maximum threshold fraction of Storage Memory

(default 50%) that is immune to eviction.

Mapping to Ignite’s Memory Model. Ignite treats both User and Core Memory regions

as a single unified memory region and allocates the entire JVM Heap for it. This region is used

to store the in-memory objects generated by Ignite during query processing and UDF execution.

Storage Memory region of Ignite is allocated outside of JVM heap in the JVM native memory

space. Unlike Spark, Ignite’s in-memory Storage Memory region has a static size.

Memory-related Crash and Inefficiency Scenarios. The three issues explained above

give rise to various unexpected workload crash scenarios due to memory errors, as well as system

inefficiencies. Manually handling them could frustrate data scientists and impede their ML

exploration.

(1) DL Execution Memory blowups. Serialized file formats of CNNs and downstream ML

models often underestimate their in-memory footprints. Along with the replication by multiple

threads, DL Execution Memory can be easily exhausted. If such blowups are not accounted when

configuring the data processing system, and if they exceed available memory, the OS will kill the

application.

(2) Insufficient User Memory. All UDF execution threads share User Memory for the

CNNs, downstream ML models, and feature layer TensorList objects. If this region is too small

due to a small overall Workload Memory size or due to a large degree of parallelism, such objects

153

(A) Abstract Memory Model

OS Reserved
Memory User Memory

System Memory
Workload Memory

Core Memory Storage
Memory

DL Execution

Memory

(B) Spark Memory Model

OS Reserved
Memory User Memory

Spark Worker Memory

Core Memory
Storage
Memory

DL Execution
Memory

(C) Ignite Memory Model

OS Reserved
Memory User and Core Memory

System Memory
Ignite Worker Memory

Storage
Memory

DL Execution
Memory

JVM Heap Memory Moving Boundary

System Memory

Figure 8.4: (A) Our abstract model of distributed memory apportioning. (B,C) How our model
maps to Spark and Ignite.

might exceed available memory, leading to a crash with out-of-memory error.

(3) Very large data partitions. If a data partition is too big, the PD system needs a lot

of User and Core Execution Memory for query execution operations (e.g., for the join in our

workload and MapPartition-style UDFs in Spark). If Execution Memory consumption exceeds

the allocated maximum, it will cause the system to crash with out-of-memory error.

(4) Insufficient memory for Driver Program. All distributed data processing systems

require a Driver program that orchestrates the job among workers. In our case, the Driver reads

and creates a serialized version of the CNN and broadcasts it to the workers. For the downstream

ML model, the Driver may also have to collect partial results from workers (e.g., for collect() and

collectAsMap() in Spark). Without enough memory for these operations, the Driver will crash.

Overall, several execution and configuration considerations matter for reliability and

efficiency. Next, we delineate these systems tradeoffs precisely along three dimensions.

154

8.3.2 Three Dimensions of Tradeoffs

The dimensions we discuss are largely orthogonal to each other but they affect reliability

and efficiency collectively.

Logical Execution Plan Tradeoffs

Figure 8.5(A) illustrates the Lazy plan (Section 8.2.2). As mentioned earlier, it has high

computational redundancy; to see why, consider a popular deep CNN AlexNet with the last two

layers fc7 and fc8 used for feature transfer (L = {fc7, fc8}). This plan performs partial CNN

inference for fc7 (721 MFLOPS) independently of fc8 (725 MFLOPS), incurring 99% redundant

computations for fc8. An orthogonal issue is join placement: should the join really come after

inference? Usually, the total size of all feature layers in L will be larger than the size of raw

images in a compressed format such as JPEG. Thus, if the join is pulled below inference, as

shown in Figure 8.5(B), the shuffle costs of the join will go down. We call this slightly modified

plan Lazy-Reordered. But this plan still has computational redundancy. The only way to remove

redundancy is to break the independence of the |L| queries and fuse them.

Consider the Eager plan shown in Figure 8.5(C). It materializes all feature layers of L in

one go, which avoids redundancy because CNN inference is not repeated. Features are stored as a

TensorList in an intermediate table and joined with Tstr. M is then trained on each feature layer

(concatenated with X) projected from the TensorList. Eager-Reordered, shown in Figure 8.5(D),

is a variant with the join pulled down. Alas, both of these plans have high memory footprints,

since they materialize all of L at once. Depending on the memory apportioning (Section 8.3.1),

this could cause workload crashes or a lot of disk spills, which in turn raises runtimes.

To resolve the above issues, we create a logically new execution plan we call Staged

execution, shown in Figure 8.5(E). It splits partial CNN inference across the layers in L and

invokes M on branches of the inference path; so, it stages out the materialization of the feature

tensors. Staged offers the best of both worlds: it avoids computational redundancy, and it is

155

./

M

Timg

T 0
imgTstr

8l 2 L :

T

./

M

Timg

T 0
imgTstr

T

./

M

Timg

T 0
img

Tstr

8l 2 L :

T

{gl � f̂l}8l2L

gl � f̂l

gl � f̂l

⇡

M

⇡

. . . M

T

⇡

M

⇡

. . .

T 0
img

TimgTstr

./

{gl � f̂l}8l2L

TimgTstr

./

T 0
img

gl1 � f̂1!l1

T1

M

gl2 � f̂l1!l2 T2

M

. . .

M

glk � f̂lk�1!lk

Tk

(A) Lazy (B) Lazy-Reordered (C) Eager (D) Eager-Reordered (E) Staged

./

M

Timg

T 0
imgTstr

8l 2 L :

T

./

M

Timg

T 0
imgTstr

T

./

M

Timg

T 0
img

Tstr

8l 2 L :

T

{gl � f̂l}8l2L

gl � f̂l

gl � f̂l

⇡

M

⇡

. . . M

T

⇡

M

⇡

. . .

T 0
img

TimgTstr

./

{gl � f̂l}8l2L

TimgTstr

./

T 0
img

gl1 � f̂1!l1

T1

M

gl2 � f̂l1!l2 T2

M

. . .

M

glk � f̂lk�1!lk

Tk

(A) Lazy (B) Lazy-Reordered (C) Eager (D) Eager-Reordered (E) Staged

Figure 8.5: Alternative logical execution plans (let k = |L|). (A) Lazy, the de facto current
approach. (B) Reordering the join operator in Lazy. (C) Eager execution plan. (D) Reordering
the join operator in Eager. (E) Our new Staged execution plan.

reliable due to its lower memory footprints. Empirically, we find that Eager and Eager-Reordered

are seldom much faster than Staged due to a peculiarity of deep CNNs. The former can be faster

only if a CNN “quickly” (i.e., within a few layers and low FLOPs) converts the image to small

feature tensors. But such an architecture is unlikely to yield high accuracy, since it loses too much

information too soon [124]. Indeed, no popular deep CNN has such an architecture. Based on our

above analysis, we find that it suffices for VISTA to only use our new Staged plan (validated in

Section 8.4).

156

System Configuration Tradeoffs

Logical plans are generic and independent of the PD system. But as explained in Sec-

tion 8.3.1, three key system configuration parameters matter for reliability and efficiency: degree

of parallelism in a worker, data partition sizes, and memory apportioning. While the tuning of

such parameters is well understood for SQL and MapReduce [141, 58], we need to rethink them

due to the properties of CNNs and partial CNN inference.

Naively, one might choose the following settings that may work well for SQL workloads:

the degree of parallelism is the number of cores on a node; allocate few GBs for User and Core

Execution Memory; use most of the rest of memory for Storage Memory; use the default number

of partitions in the PD system. But for the feature transfer workload, these settings can cause

crashes or inefficiencies.

For example, a higher degree of parallelism increases the worker’s throughput but also

raises the CNN models’ footprint, which in turn requires reducing Execution and Storage Memory.

Reducing Storage Memory can cause more disk spills, especially for feature layers, and raise

runtimes. Worse still, User Memory might also become too low, which can cause crashes during

CNN inference. Lowering the degree of parallelism reduces the CNN models’ footprint and

allows Execution and Storage Memory to be higher, but too low a degree of parallelism means

workers will get underutilized.2 This in turn can raise runtimes, especially for the join and the

downstream training. Finally, too low a number of data partitions can cause crashes, while too

high a value leads to high overheads. Overall, we see multiple non-trivial systems tradeoffs that

are tied to the CNN and its feature layer sizes. It is unreasonable to expect ML users to handle

such tradeoffs manually. Thus, VISTA automates these decisions in a feature transfer-aware

manner.
2In our current prototypes, every TF invocation by a worker uses all cores regardless of how many cores are

assigned to that worker. But, one TF invocation per used core increases overall throughput and reduces runtimes.

157

Physical Execution Tradeoffs

Physical execution decisions are closer to the specifics of the underlying PD system. We

discuss the tradeoffs of two such decisions that are common in PD systems and then explain what

Spark and Ignite specifically offer.

First is the physical join operator used. The two main options for distributed joins are

shuffle-hash and broadcast. In shuffle-hash join, base tables are hashed on the join attribute and

partitioned into “shuffle blocks.” Each shuffle block is then sent to an assigned worker over the

network, with each worker producing a partition of the output table using a local sort-merge join

or hash join. In broadcast join, each worker gets a copy of the smaller table on which it builds a

local hash table before joining it with the outer table without any shuffles. If the smaller table fits

in memory, broadcast join is typically faster due to lower network and disk I/O costs.

Second is the persistence format for in-memory storage of intermediate data. Since feature

tensors can be much larger than raw images, this decision helps avoid/reduce disk spills or cache

misses. The two main options are deserialized format or compressed serialized format. While

the serialized format can reduce memory footprint and thus, reduce disk spills/cache misses, it

incurs additional computational overhead for translating between formats. To identify potential

disk spills/cache misses and determine which format to use, we estimate the size of intermediate

data tables |Ti| (for i ∈ L). VISTA can automatically estimate |Ti| because it knows the sizes of the

feature tensors in its CNN roster and understands the internal record format of the PD system.

Spark supports both shuffle-hash join and broadcast join implementations, as well as both

deserialized and compressed serialized in-memory storage formats. In Ignite, data is shuffled to

the corresponding worker node based on the partitioning attribute during data loading itself. Thus,

a key-key join can be performed using a local hash join, if we use the same data partitioning

function for both tables. Ignite stores intermediate in-memory data in a compressed binary format.

158

8.3.3 The Optimizer

We now explain how the VISTA optimizer navigates all the tradeoffs in a holistic and

automated way to improve both reliability and efficiency. Table 8.1 lists the notation used.

Optimizer Formalization and Simplification. Table 8.1(A) lists the inputs given by the

user. From these inputs, VISTA infers the sizes of the structured data table (|Tstr|), the images table

(|Timg), and all intermediate data tables (|Ti| for i ∈ L) shown in Figure 8.5(E). VISTA also looks

up the CNN’s serialized size | f |ser, runtime memory footprint | f |mem, and runtime GPU memory

footprint | f |mem gpu from its roster, in which we store these statistics. Then, VISTA calculates

the runtime memory footprint of the downstream model |M|mem based on the specified M and

the largest total number of features (based on L). For instance, for logistic regression, |M| is

proportional to the sum of structured features and the maximum number of CNN features for any

layer (max
l∈L
|gl(f̂l(I))|). Table 8.1(B) lists the variables whose values are set by the optimizer. We

define two quantities that capture peak intermediate data sizes to help our optimizer set memory

variables reliably:

ssingle = max
1≤i≤|L|

|Ti| (8.5)

sdouble = max
1≤i≤|L|−1

(|Ti|+ |Ti+1|)−|Tstr| (8.6)

The ideal objective is to minimize the overall runtime subject to memory constraints. As

explained in Section 8.3.2, there are two competing factors: cpu and memstorage. Raising cpu

increases parallelism, which could reduce runtimes. But it also raises the DL Execution Memory

needed, which forces memstorage to be reduced, thus increasing potential disk spills/cache misses

for Ti’s and raising runtimes. This tension is captured by the following objective function:

min
cpu,np,memstorage

τ+max(0, sdouble
nnodes

−memstorage)

cpu
(8.7)

159

Table 8.1: Notation for Section 8.3 and Algorithm 7.

Symbol Description

(A) Inputs given by user to VISTA

Tstr Structured features table

Timg Images table

f CNN model in our roster

L Set of feature layer indices of f to transfer

M Downstream ML routine

nnodes Number of worker nodes in cluster

memsys Total system memory available in a worker node

memGPU GPU memory if GPUs are available

cpusys Number of cores available in a worker node

(B) System variables/decisions set by VISTA Optimizer

memstorage Size of Storage Memory

memuser Size of User Memory

memdl DL Execution Memory

cpu Number of cores assigned to a worker

np Number of data partitions

join Physical join implementation (shuffle or
broadcast)

pers Persistence format (serialized or deserailized)

(C) Other fixed (but adjustable) system parameters

memos rsv Operating System Reserved Memory (default:
3 GB)

memcore Core Memory as per system specific best prac-
tice guidelines (e.g. Spark default: 2.4 GB)

pmax Maximum size of data partition (default:
100 MB)

bmax Maximum broadcast size (default: 100 MB)

cpumax Cap recommended for cpu (default: 8)

α Fudge factor for size blowup of binary feature
vectors as JVM objects (default: 2)

In the numerator, τ captures the total compute and communication costs, which are

effectively “constant” for this optimization. The second term captures disk spill costs for Ti’s.

The denominator captures the degree of parallelism. While this objective is ideal, it is impractical

160

and needlessly complicated for our purposes due to three reasons. (1) Estimating τ is tedious,

since it involves join costs, data loading costs, etc. (2) More importantly, we hit a point of

diminishing returns with cpu quickly, since CNN inference typically dominates total runtime and

DL systems like TF, anyway uses all cores regardless of cpu. That is, this workload’s speedup

against cpu will be quite sub-linear (confirmed by Figure 8.12(C)). Empirically, we find that

about 7 cores typically suffice; interestingly, a similar observation is made in Spark guidelines for

purely relational workloads [19, 21]. Thus, we cap cpu at cpumax = 8. (3) Given the cap on cpu,

we can just drop the term minimizing disk spill/cache miss costs, since sdouble will typically be

smaller than the total memory (even after accounting for the CNNs) due to the above cap.

Overall, our insights above yield a simpler objective that is still a reasonable surrogate for

minimizing runtimes:

max
cpu,np,memstorage

cpu (8.8)

The constraints for the optimization are as follows:

1≤ cpu≤min{cpusys,cpumax}−1 (8.9)

memuser =



(a) M is stored in PD User Memory:

max{| f |ser + cpu×α×dssingle/npe,

cpu×|M|mem}

(b) M is stored in DL Execution Memory:

| f |ser + cpu×α×dssingle/npe

(8.10)

161

memdl =



(a) M is stored in PD User Memory:

cpu×| f |mem

(b) M is stored in DL Execution Memory:

max{cpu×| f |mem,cpu×|M|mem}

(8.11)

memos rsv +memdl +memuser +memcore

+memstorage < memsys

(8.12)

np = z× cpu×nnodes, for some z ∈ Z+ (8.13)

dssingle/npe< pmax (8.14)

If GPUs are available:

cpu×max{| f |mem gpu, |M|mem gpu}< memGPU (8.15)

Equation 8.9 caps cpu and leaves a core for the OS. Equation 8.10 captures User Memory

for reading CNN models for invoking the DL system, copying materialized feature layers from the

DL system and memory needed for M–if M is stored in PD User Memory. As execution threads in

a single worker have access to shared memory, the serialized CNN model need not be replicated.

Equation 8.11 captures the maximum DL Execution Memory. cpu×| f |mem is the CNN inference

memory needed. If the downstream ML model is also a DL model, DL Execution Memory should

also account for holding M. Equation 8.12 constrains the total memory as per Figure 8.4. If

162

there are GPUs, maximum GPU memory footprint cpu×max{| f |mem gpu, |M|mem gpu} should be

bounded by available GPU memory memGPU as per Equation 8.15. Equation 8.13 requires np to

be a multiple of the number of worker processes to avoid skews, while Equation 8.14 bounds the

size of an intermediate data partition as per system guidelines [1].

Optimizer Algorithm. Given our above observations, the algorithm is simple: linear

search on cpu to satisfy all constraints.3 Algorithm 7 presents it formally. If the for loop completes

without returning, there is no feasible solution, i.e., System Memory is too small to satisfy some

constraints, say, Equation 8.12. In this case, VISTA notifies the user, and the user can provision

machines with more memory. Otherwise, we have the optimal solution. The other variables are

set based on the constraints. We set join to broadcast if the predefined maximum broadcast data

size constraint is satisfied; otherwise, we set it to shuffle. Finally, as per Section 8.3.2, pers is set

to serialized, if disk spills/cache misses are likely (based on the newly set memstorage). This is a

bit conservative, since not all pairs of intermediate tables might spill, but empirically, we find that

this conservatism does not affect runtimes significantly (more in Section 8.4). We leave more

complex optimization criteria to future work.

8.4 Experimental Evaluation

We empirically validate if VISTA is able to improve efficiency and reliability of feature

transfer workloads. We then drill into how it navigates the tradeoff space.

Datasets. We use two real-world public datasets: Foods [17] and Amazon [137]. Foods

has about 20,000 examples with 130 structured numeric features such as nutrition facts along

with their feature interactions and an image of each food item. The target represents if the food is

plant-based or not. Amazon is larger, with about 200,000 examples with structured features such

3we explain our algorithm for the CPU-only scenario with an MLLib downstream model. It is straightforward to
extend to the other settings.

163

Algorithm 7 The VISTA Optimizer Algorithm.
1: Inputs: see Table 8.1(A)
2: Outputs: see Table 8.1(B)
3: for x = min{cpusys,cpumax}−1 to 1 do
4: totalcores← x×nnodes
5: np← d ssingle

pmax×totalcorese× totalcores
6: memworker← memsys−memos rsv− x×| f |mem

7: memuser←max{| f |ser + x×α×dssingle/n′pe,x×|M|mem}
8: if memworker−memuser > memcore then
9: cpu← x

10: memstorage← memworker−memuser−memcore

11: join← shuffle
12: if |Tstr|< bmax then
13: join← broadcast
14: pers← deserialized
15: if memstorage < sdouble then
16: pers← serialized
17: return (memstorage,memuser,cpu,np, join,pers)
18: throw Exception(No feasible solution)

as price, title, and categories, as well as a product image. The target is the sales rank, which we

binarize as a popular product or not. We pre-processed title strings to get 100 numeric features

(an “embedding”) using Doc2Vec [176]. We convert the indicator vector of categories to 100

numeric features using PCA. All images are resized to 227×227 resolution, as needed by popular

CNNs. Overall, Foods is about 300 MB in size; Amazon is 3 GB. While these can fit on a single

node, multi-node parallelism helps reduce completion times for long running ML workloads; also

note that intermediate data sizes during feature transfer can be even 50x larger.

Workloads. We use three ImageNet-trained deep CNNs: AlexNet [171], VGG16 [260],

and ResNet50 [136], obtained from TF model zoo [11]. They complement each other in terms

of model size [83]. We select the following layers for feature transfer from each: conv5 to fc8

from AlexNet (|L|= 4); fc6 to fc8 from VGG (|L|= 3), and top 5 layers from ResNet (from its

last two layer blocks [136]). Following standard practices [287, 25], we apply max pooling on

convolutional feature layers to reduce their dimensionality before using them for M4.

4Filter width and stride for max pooling are set to reduce the feature tensor to a 2×2 grid of the same depth.

164

X X XXX X

X X XXX X

Figure 8.6: End-to-end reliability and efficiency. “×” means the workload crashed. Overall,
VISTA offers the best or near-best runtimes and never crashes, while the alternatives are much
slower or crash in some cases.

Experimental Setup. We use a cluster with 8 workers and 1 master in an OpenStack

instance on CloudLab, a free and flexible cloud for research [111]. Each node has 32 GB RAM,

Intel Xeon @ 2.00GHz CPU with 8 cores, and 300 GB Seagate Constellation ST91000640NS

HDDs. All nodes run Ubuntu 16.04. We use Spark v2.2.0 with TensorFrames v0.2.9, TensorFlow

v1.3.0, and Ignite v2.3.0. Spark runs in standalone mode. Each worker runs one Executor. HDFS

replication factor is three; input data is ingested to HDFS and read from there. Ignite is configured

with memory-only mode; each node runs one worker. All runtimes reported are the average of

three runs with 90% confidence intervals. We chose these systems due to their popularity but the

takeaways from our experiments are applicable to other DL systems (e.g., PyTorch [228]) and PD

systems (e.g., Greenplum [18]) as well.

165

(A) (B)

X X

Figure 8.7: (A) End-to-end reliability and efficiency on GPU. “×” is a workload crash. (B)
Comparing TFT+Beam vs. VISTA on Foods/CPU.

8.4.1 End-to-End Reliability and Efficiency

We compare VISTA with five baselines: three naive and two strong. Lazy-1 (1 CPU per

Executor), Lazy-5 (5 CPUs), and Lazy-7 (7 CPUs) capture the current dominant practice of layer

at a time execution (Section 8.2). Spark is configured based on best practices [8, 19] (29 GB JVM

heap, shuffle join, deserialized, and defaults for all other parameters, including np and memory

apportioning). Ignite is configured with a 4 GB JVM heap, 25 GB off-heap Storage Memory,

and np set to the default 1024. Lazy-5 with Pre-mat and Eager are strong baselines based on

our tradeoff analyses in Section 8.3.2. In Lazy-5 with Pre-mat, the lowest layer specified (e.g.,

conv5 for AlexNet) is materialized beforehand and used instead of raw images for all subsequent

CNN inference; Pre-mat is time spent on pre-materializing the lowest layer specified. Eager is an

alternative plan explained in Section 8.3.2; we use 5 CPUs per Executor. For Lazy-5 with Pre-mat

and Eager, we explicitly apportion CNN Inference memory, Storage Memory, User Memory, and

Core Memory to avoid workload crashes. Note that Lazy-5 with Pre-mat and Eager actually need

parts of our code from VISTA. As for M, we run logistic regression for 10 iterations. Figure 8.6

presents the results.

Overall, VISTA improves reliability and/or efficiency across the board. On Spark-TF,

Lazy-5 and Lazy-7 crash on both datasets for VGG16. On Ignite-TF, Lazy-7 crashes for all

CNNs on Amazon, while for ResNet50, Lazy-7 on Foods also crashes. These are due to memory

166

related crash scenarios explained in Section 8.3.1. On Ignite-TF, Eager on Amazon also crashes

for ResNet50 due to intermediate data exhausting the total available system memory. When

Eager does not crash and the intermediate data fits in memory, its efficiency is comparable to

VISTA, which validates our analysis in Section 8.3.2. However, when the size of the intermediate

data does not fit in memory, as with Amazon on Spark for ResNet50, Eager incurs significant

overheads due to costly disk spills. Lazy-5 with Pre-mat does not crash, but its runtimes are

comparable to Lazy-5 and mostly higher than VISTA. This is because the layers of AlexNet and

ResNet are much larger than the images, which raises data I/O and join costs.

More careful tuning could avoid the crashes with Lazy. But that forces ML users to waste

time wrestling with low-level systems issues–time they can now spend on further ML analysis.

Compared to Lazy-7, VISTA is 62%–72% faster; compared to Lazy-1, 58%–92%. These gains

arise because VISTA removes redundancy in partial CNN inference and reduces disk spills. Of

course, the exact gains depend on the CNN and L: if more of the higher layers are tried, the more

redundancy there is and the faster VISTA will be.

Experiments on a GPU. We ran GPU experiments on Spark-TensorFlow environment

using the Foods dataset. Experimental setup is a single node machine with 32 GB RAM, Intel

i7-6700 @ 3.40GHz CPU with 8 cores, 1 TB Seagate ST1000DM010-2EP1 SSD, and Nvidia

Titan X (Pascal) 12GB GPU. Figure 8.7 presents the results. In this setup Lazy-5 and Lazy-7

crash with VGG16. For ResNet50, Eager takes significantly more time to complete compared

to VISTA due to costly disk spills. Overall, the experimental results on both CPU and GPU

settings confirm the benefits of an automatic optimizer such as ours for improving reliability and

efficiency, which could reduce both user frustration and costs.

Comparing against TF Transform+Beam. TensorFlow Transform (TFT) [9] is a library

for pre-processing input data for TF. It can wrap CNN models as pre-processing functions and be

run on Apache Beam at scale to generate ML-ready features in TFRecord format. So, TFT is akin

167

to the role of TensorFrames in VISTA. We compare TFT+Beam against VISTA on Foods/ResNet50

with varying number of layers explored. For TFT+Beam, we first join the structured data with

images and then extract and write out features for all the layers in one go (similar to our Eager

plan). We then train a 3-layer MLP (each hidden layer has 1024 units) for 10 iterations using

distributed TF/Horovod. We use Apache Flink (v1.9.2) as the backend runtime for Beam. For

Flink, through trial and error, we chose a working configuration with a parallelism of 32, JVM

heap of 25GB, and User Memory fraction of 60% (default 30%). Increasing the parallelism,

reducing the heap size, and/or User Memory fraction resulted in various memory-related crashes.

For VISTA we use Spark backend and use TF/Horovod to train the same downstream MLP. Figure

8.7 (B) presents the results.

When exploring only the last layer, TFT+Beam is slightly faster than VISTA. However,

when exploring more layers, VISTA starts to clearly outperform TFT+Beam. This is because

extracting all the layers in one go puts significant memory pressure on Flink, causing costly disk

spills. VISTA’s staged materialization plan keeps the memory pressure to a minimum. The fact that

we had to manually figure out a working configuration for Flink to run this workload underscores

the importance of automatically tuning these parameters without any user intervention. It also

shows that the trade-offs discussed in Section 8.3.1 are generally applicable when integrating DL

and PD systems.

8.4.2 Accuracy

All approaches in Figure 8.6 (including VISTA) yield identical downstream models (and

thus, same accuracy) for a given CNN layer. For both Foods and a sample of Amazon (20,000

records) datasets we evaluate the downstream logistic regression model test F1 score with (1)

only using structured features, (2) structured features combined with “Histogram of Oriented

Gradients (HOG)” [103] based image features, and (3) structured features combined with CNN

based image features from different layers of AlexNet and ResNet. Figure 8.8 presents the results.

168

78
79
80
81
82
83
84
85
86
87

F1
-S

co
re

 (
%

)

(A) Foods with ResNet50

78
79
80
81
82
83
84
85
86
87

(B) Foods with AlexNet

str
uct

str
uct

+ HOG

str
uct

+ co
nv4_6

str
uct

+ co
nv5_1

str
uct

+ co
nv5_2

str
uct

+ co
nv5_3

str
uct

+ fc
_6

58
59
60
61
62
63
64
65
66

F1
-S

co
re

 (
%

)

(C) Amazon with ResNet50

str
uct

str
uct

+ HOG

str
uct

+ co
nv5

str
uct

+ fc
6

str
uct

+ fc
7

str
uct

+ fc
8

58
59
60
61
62
63
64
65
66

(D) Amazon with AlexNet

Figure 8.8: Test F1 scores for various sets of features for training a logistic regression model
with elastic net regularization with α = 0.5 and a regularization value of 0.01.

In all cases incorporating image features improves the classification accuracy, and CNN

features offer significantly higher lift in accuracy than traditional HOG features. We saw F1 score

lifts of 3% to 5% for the logistic regression model with feature transfer on test datasets (20% of

the data). As expected, the lift varies across CNNs and layers. For instance, on Foods, structured

features alone give 80.2% F1 score. Adding ResNet50’s conv-5-3 layer raises it to 85.4%, a large

lift in ML terms. But using the last layer fc-6 gives only 83.5%. Amazon exhibited similar trends.

These results reaffirm the need to try multiple layers and thus, the need for a system such as

VISTA to simplify and speed up this process. We also tried a decision tree as the downstream

ML model. For Foods it yielded a test F1 score of 88.5% and for Amazon an F1 score of 61.4%.

However, in both cases incorporating CNN features didn’t improve the accuracy significantly. We

believe this is because the depths of the conventional decision tree models are not large enough to

reap the benefits of CNN features. We leave the analysis on the suitability of different ML models

for CNN feature transfer for future work as it is orthogonal to our work.

169

Figure 8.9: Runtimes of logical execution plan alternatives for varying data scale and number
of feature layers explored.

8.4.3 Drill-Down Analysis of Tradeoffs

We now analyze how VISTA navigates the tradeoffs explained in Section 8.3 using

Spark-TF prototype of VISTA. We use the less resource-intensive Foods dataset but alter it

semi-synthetically for some experiments to study VISTA runtimes in new operating regimes.

In particular, when specified, vary the data scale by replicating records (say, “4X”) or varying

the number of structured features (with random values). For uniformity sake, unless specified

otherwise, we use all 8 workers, fix cpu to 4, and fix Core Memory to 60% of JVM heap. Other

parameters are set by Algorithm 7. The layers explored for each CNN are the same as before.

Logical Execution Plan Decisions. We compare four combinations: Eager or Staged

combined with inference After Join (AJ) or Before Join (BJ). We vary both |L| (dropping lower

layers) and data scale for AlexNet and ResNet. Figure 8.9 shows the results. The runtime

differences between all plans are insignificant for low data scales or low |L| on both CNNs.

But as |L| or the data scale goes up, both Eager plans get much slower, especially for ResNet

(Figure 8.9(2,4)); this is due to disk spills of large intermediate data. Across the board, AJ

170

Figure 8.10: Runtimes of physical plan choices for varying data scale and number of structured
features.

Optimizer Picked Values Optimizer Picked Values
AlexNet : 160
VGG16 : 160
ResNet50 : 224

Figure 8.11: Varying system configuration parameters. Logical and physical plan choices are
fixed to Staged/AJ and Shuffle/Deser..

plans are mostly comparable to their BJ counterparts but marginally faster at larger scales. The

takeaway is that these results validate our choice of using only Staged/AJ in VISTA, viz., Plan (E)

in Figure 8.5.

Physical Plan Decisions. We compare four combinations: Shuffle or Broadcast join

and Serialized (Ser.) or Deserialized (Deser.) persistence format. We vary both data scale and

number of structured features (|Xstr|) for both AlexNet and ResNet. The logical plan used is

Staged/AJ. Figure 8.10 shows the results. On ResNet, all four plans are almost indistinguishable

regardless of the data scale (Figure 8.10(2)), except at the 8X scale, when the Ser. plans slightly

171

outperform the Deser. plans. On AlexNet, the Broadcast plans slightly outperform the Shuffle

plans (Figure 8.10(1)). Figure 8.10(3) shows that this gap remains as |Xstr| increases but the

Broadcast plans crash eventually. On ResNet, however, Figure 8.10(4) shows that both Ser. plans

are slightly faster than their Deser. counterparts but the Broadcast plans still crash eventually. The

takeaway is that no one combination is always dominant, validating the utility of an automated

optimizer like ours to make these decisions.

Optimizer Correctness. We vary cpu and np while explicitly apportioning the memory

regions based on the chosen cpu value. We pick Staged/ AJ/Shuffle/Deser. as the logical-physical

plan combination. Figures 8.11(A,B) show the results for all CNNs. As explained in Section 8.3.3,

the runtime decreases with cpu for all CNNs, but VGG eventually crashes (beyond 4 cores) due

to the blowup in CNN Inference Memory. The runtime decrease with cpu is sub-linear though.

To drill into this issue, we plot the speedup against cpu on 1 node for data scale 0.25X (to avoid

disk spills). Figure 8.12(C) shows the results: the speedups plateau at 4 cores. As mentioned in

Section 8.3.3, this is as expected, since CNN inference dominates total runtimes and TF always

uses all cores regardless of cpu. Overall, we can see that the VISTA optimizer (Algorithm 7) picks

either optimal or near-optimal cpu values; AlexNet: 7, VGG16: 4, and ResNet50: 7.

Figure 8.11(B) shows non-monotonic behaviors with np. At low np, Spark crashes due to

insufficient Core Memory for the join. As np goes up, runtimes go down, since Spark uses more

parallelism (up to 32 cores). Eventually, runtimes rise again due to Spark overheads for running

too many tasks. In fact, when np > 2000, Spark compresses task status messages, leading to high

overhead. The VISTA optimizer (Algorithm 7) sets np at 160, 160, and 224 for AlexNet, VGG,

and ResNet respectively, which yield close to the fastest runtimes. The takeaway is that these

settings involve non-trivial CNN-specific efficiency tradeoffs and thus, an automated optimizer

like ours can free ML users from such tedious tuning.

Scalability. We evaluate the scaleup (weak scaling) and speedup (strong scaling) of the

logical-physical plan combination of Staged/After Join/Shuffle/Deserialized for varying number

172

1 2 4 8

Scaleup Factor

0.6

0.8

1.0

1.2

1.4

(A) Scaleup

1 2 3 4 5 6 7 8

Number of Nodes

1

2

3

4

5

6

7

8
(B) Speedup

1 2 3 4 5 6 7 8

Number of CPUs

1

2

3

4

5

6

7

8
(C) Single node Speedup

AlexNet/1X/4L VGG16/1X/3L ResNet50/1X/5L

Figure 8.12: (A,B) Scaleup and speedup on cluster. (C) Speedup for varying cpu on one node
with 0.25x data. Logical and physical plan choices are fixed to Staged/AJ and Shuffle/Deser..

of worker nodes (and also data scale for scaleup). While CNN inference and M are embarassingly

parallel, data reads from HDFS and the join can bottleneck scalability. Figures 8.12 (A,B) show

the results. We see near-linear scaleup for all 3 CNNs. But Figure 8.12 (B) shows that the AlexNet

sees a markedly sub-linear speedup, while VGG and ResNet exhibit near-linear speedups. To

explain this gap, we drilled into the Spark logs and obtained the time breakdown for data reads

and CNN inference coupled with the first iteration of logistic regression for each layer. For all 3

CNNs, data reads exhibit sub-linear speedups due to the notorious “small files” problem of HDFS

with the images [22]. But for AlexNet in particular, even the second part is sub-linear, since

its absolute compute time is much lower than that of VGG or ResNet. Thus, Spark overheads

become non-trivial in AlexNet’s case.

Summary of Results. VISTA reduces runtimes (even up to 10x) and avoids memory-

related crashes by automatically handling the tradeoffs of logical execution plan, system con-

figuration, and physical plan. Our new Staged execution plan offers both high efficiency and

reliability. CNN-aware system configuration for memory apportioning, data partitioning, and

parallelism is critical. Broadcast join marginally outperforms shuffle join but crashes at larger

scales. Serialized disk spills are marginally faster than deserialized. Overall, VISTA automatically

optimizes such complex tradeoffs, freeing ML users to focus on their ML exploration.

173

8.5 Conclusion

The success of deep CNNs presents new opportunities for exploiting images and other

unstructured data in data-driven applications that have hitherto relied mainly on structured data.

But realizing the full potential of this integration requires data analytics systems to evolve and

elevate CNNs as first-class citizens for query processing, optimization, and system resource

management. We take a first step in this direction by integrating parallel dataflow and DL

systems to support and optimize a key emerging workload in this context: feature transfer

from deep CNNs. By enabling more declarative specification and by formalizing partial CNN

inference, VISTA automates much of the data management and systems-oriented complexity of

this workload and enables automated optimizations that improve system reliability and efficiency.

Chapter 8 contains material from “Vista: Optimized System for Declarative Feature

Transfer from Deep CNNs at Scale” by Supun Nakandala and Arun Kumar, which appears in

Proceedings of 2020 ACM SIGMOD International Conference on Management of Data. The

dissertation author was the primary investigator and author of this paper. The code for our system

is open source and is available on GitHub: https://github.com/AdaLabUCSD/Vista.

174

Chapter 9

NAUTILUS: Query Optimizations for DL

Model Adaptation

9.1 Introduction

In this chapter, we dive deeper into our techniques for optimizing DL model adaptation

workloads. DL model adaptation is an effective technique to mitigate the high training data

and computation requirements of DL model building workloads. With model adaptation, one

adapts the parameters of a pre-trained model instead of training a new model from scratch. Model

adaptation is a form of transfer learning. In this chapter, we refer to model adaptation workloads

simply as deep transfer learning (DTL) workloads.

Example Use Case: Consider a data scientist tasked to develop a named entity recognition

model to identify disease entities from clinical text. She is provided a large unlabeled clinical

text dataset. For this task, she decides to adopt the DTL paradigm. She downloads a pre-trained

model (e.g., BERT [109]) from a model hub [284], removes the last few layers in the model, and

adds a few new layers on top of it. She also freezes most of the pre-trained layers and trains only

the new layers and the final few layers of the pre-trained model. She explores several freezing

175

schemes and training hyperparameter values (e.g., learning rates) to find the model with the best

accuracy.

DTL leverages the fact that most of the features learned by a DL model when trained on a

large dataset like Wikipedia are general enough to be reused in other similar settings. While both

pre-trained and newly added layer parameters can be trained, one can freeze the parameters from

most pre-trained layers as they are generic enough to be directly reused [245, 181, 229, 109].

This approach also reduces the chances of model overfitting [245, 200] and the compute costs

as computations needed to update the frozen layers can be avoided. However, different freezing

schemes and training hyperparameters can lead to different model accuracies. Hence, model

selection is unavoidable for DTL. Overall, DTL significantly reduces the labeled data requirements

(e.g., from millions to few thousand).

Even though DTL significantly reduces the large training data requirement, it does not

eliminate it. Often, practitioners create training datasets by manually labeling the data. We also

observed that in many domain applications, data labeling is seldom a one-off process [65, 73,

205, 254]. Practitioners often update the training dataset intermittently by labeling new data and

evaluate the model accuracy to ensure that they have labeled a sufficient amount of data to train a

model that meets their target accuracy.

Example Use Case (Continued): To create the labeled dataset for training, our data

scientist adopts the active learning paradigm (AL) [205, 254]. AL operates in cycles. Each cycle,

she labels a new batch of data and trains the model on all the labeled data up to that cycle. The

model trained in the current cycle is used to sample the most informative data for the next cycle

using some sampling technique (e.g., uncertainty, diversity [254]). Figure 9.1 (A, B) presents an

illustration of her workflow.

AL is an emerging paradigm that focuses on reducing data labeling efforts and it too

requires periodic model selection. However, AL is not the only paradigm that requires periodic

176

Trainable Layer Frozen Layer

MAT OPT

MAT OPT: Our Materialization Optimization

FUSION OPT: Our Model Fusion Optimization

Current

Practice

Active Learning

Sampler

Human

Labeler

(A) Active Learning

Unlabeled Pool

of Data

Sample a Batch of
Most Informative

Data Points

Labeled Batch of Data

Repeat for Several

Cycles Model Selection

(B) Transfer Learning

Labeled
Training

Data

…

Optimized Model Selection

(C) Our Approach for Optimized
Model Selection

…

Materialized

 Layer Outputs

Fused
Model

Fused

Model

Labeled
Training

Data

(D) Contrasting Current Practice and Our Optimizations

Co
m

p.
 R

ed
un

da
nc

ie
s

(better)

MAT OPT

Max Storage Budget

Current

Practice

MAT + FUSION
OPT

Max Memory Budget

Runtime Memory FootprintStorage Footprint

Best Model Co
m

p.
 R

ed
un

da
nc

ie
s

+
Tr

ai
ni

ng
 O

ve
rh

ea
ds

(better)

Trainable Layer Frozen Layer

MAT OPT

MAT OPT: Our Materialization Optimization

FUSION OPT: Our Model Fusion Optimization

Current

Practice

Active Learning

Sampler

Human

Labeler

(A) Active Learning

Unlabeled Pool

of Data

Sample a Batch of
Most Informative

Data Points

Labeled Batch of Data

Repeat for Several

Cycles Model Selection

(B) Transfer Learning

Labeled
Training

Data

…

Optimized Model Selection

(C) Our Approach for Optimized
Model Selection

…

Materialized

 Layer Outputs

Fused
Model

Fused

Model

Labeled
Training

Data

(D) Contrasting Current Practice and Our Optimizations

Co
m

p.
 R

ed
un

da
nc

ie
s

(better)

MAT OPT

Max Storage Budget

Current

Practice

MAT + FUSION
OPT

Max Memory Budget

Runtime Memory FootprintStorage Footprint

Best Model Co
m

p.
 R

ed
un

da
nc

ie
s

+
Tr

ai
ni

ng
 O

ve
rh

ea
ds

(better)

Figure 9.1: (A) Human labeler labels batches of most informative data. (B) A pre-trained model
is adapted for a target task. (C) Our approach for optimized DTL model selection performs
materialization and model fusion optimizations. (D) Contrasting the current practice and our
approach on different trade-off spaces.

model selection during data labeling. For example, other popular data labeling approaches–

such as simple manual annotation, crowd workers (e.g., SageMaker Ground Truth [253]), and

programmatic supervision [238]–may also require periodic model selection to evaluate the benefit

of labeling more data on model accuracy.

177

9.1.1 Current Practice and Inefficiencies

Today, one executes the DTL workload by training a DL model with frozen layers as it is

and repeats the process for all model selection cycles [97, 205]. This leads to incurring redundant

computations in frozen layers as they are repeatedly invoked with the same inputs to generate the

same output. We identify three types of redundancies:

• Redundancies across training epochs: DL model training is iterative. Each iteration,

also called an epoch, reads the full dataset and feeds it through the layers. This leads to

redundant computations across training epochs.

• Redundancies across models: Practitioners have to perform model selection where they

explore several different layer freezing schemes and training hyperparameters (e.g., learning

rate, batch size). Thus, a model selection workload can contain models that share frozen

layers. Independently training them leads to redundant computations across models.

• Redundancies across model selection cycles: Model selection is repeated for every new

snapshot of training data. This leads to redundant computations across model selection

cycles.

Overall, these redundancies are problematic, at least for three main reasons. First, they

increase the model selection runtimes and impede human productivity. Human labelers may have

to wait longer until model selection completes to proceed to the next data labeling cycle. Second,

they lead to higher monetary costs, especially in pay-as-you-go environments in the cloud. Third,

they also lead to significantly higher energy consumption and associated environmental issues,

which are expected to further amplified by the wide adoption of DL in many domains [68].

178

9.1.2 Our Proposed Approach

In this work, we use a database-inspired lens to formalize, optimize, and accelerate the

DTL model selection in the presence of frozen layers. We reimagine DTL model selection as

a novel instance of multi-query optimization (MQO) [250] and perform two data management-

inspired optimizations:

• Materialization Optimization: We materialize intermediate layer outputs from a chosen

set of frozen layers on the first time they are computed and avoid repeated recomputations.

However, the size of the intermediate layer outputs can be orders of magnitude (even up to

100X) larger than the input data, and it may not be possible to materialize all frozen layers

due to storage constraints [126]. Even if it is possible to materialize all frozen layers, it may

be the case that some outputs can be computed faster using others instead of loading them.

Therefore, the challenge is to pick an optimal set of frozen layers that can reduce model

selection runtimes subject to a storage budget as shown in Figure 9.1 (D). This optimization

is an instance of view selection being combined with MQO to optimize DL workloads [96].

By doing so, we reduce all three types of computational redundancies.

• Model Fusion Optimization: Even after the materialization optimization, there can be

remaining frozen layers shared among models in the workload. Thus, we propose model

fusion optimization, which is inspired by pipelined multi-query execution in relational

query processing [104]. It builds on top of our materialization optimization and reduces

the redundant computations by fusing multiple models and eliminating frozen common

sub-expressions in the models. It also amortizes model training overheads and I/O over-

heads [203]. However, excessive model fusion can increase the runtime memory footprint

and cause workload crashes. The challenge is to pick an optimal set of models to be fused,

such that it reduces model selection runtimes subject to a runtime memory budget as shown

in Figure 9.1 (D).

179

Our optimization techniques are orthogonal to the data labeling scheme used. Thus, we

can support all kinds of data labeling schemes–such as active learning, simple manual labeling,

crowd workers, and programmatic supervision–in a unified manner.

We implement our techniques into a system we call NAUTILUS. It runs on top of the

popular DL libraries Keras and TensorFlow [54]. NAUTILUS is tailored to limited-resource

settings such as workstations and personal computers, which cover a vast majority of DTL use

cases [205]. NAUTILUS provides easy-to-use APIs to specify the DTL workload over evolving

training data and optimizes DTL model selection. We evaluate NAUTILUS empirically on five

workloads, including one from an influential NLP publication [109], on two benchmark ML

datasets: CoNLL [271] and Malaria [235]. NAUTILUS avoids many compute redundancies and

significantly reduces training and I/O overheads, enabling up to 5X reductions in model selection

runtimes. Thus, NAUTILUS significantly reduces system resource costs and also improves human

productivity (i.e., less waiting time between model selection cycles) for DTL workloads. Overall,

this work makes the following contributions:

• To the best of our knowledge, this is the first work to formalize and optimize deep transfer

learning (DTL) workloads over evolving training data from a data management standpoint.

• We reimagine iterative training of DL models with frozen layers as a new instance of MQO

and present a materialization optimization technique to reduce redundant computations of

DTL workloads.

• We present model fusion optimization, which builds on top of our materialization opti-

mization, to further reduce redundant computations and model training overheads of DTL

workloads.

• We implement our ideas into a data system called NAUTILUS and perform an extensive

empirical evaluation using 5 end-to-end workloads on two benchmark ML datasets. NAU-

180

Table 9.1: Notation used in Section 9.2

Symbol Description

M = (L,E) A DL model with L layers and E edges.
f (l) f (l) = True/False. Function indicating

layer l is frozen during model training.
m(l) m(l) = True/False. Function indicating

layer l is materializable.
φ Set of training hyperparameters.
Q Q = {(M1,φi), . . . ,(Mn,φn)}. Set of

model and training hyperparameter pairs.
D Labeled dataset. Dk corresponds to the

dataset snapshot at time k. Dtrain
k and

Dvalid
k are training and validation splits

of Dk, respectively.
g(M,φ,D) g(M,φ,D). Training function that takes

in a M, φ, and D. After training M using
φ on Dtrain, returns the model accuracy
on Dvalid.

∆L+,∆L− Added (∆L+) or removed (∆L−) layers.
∆E+,∆E− Added (∆E+) or removed (∆E−) edges.
∆D+

k New labeled data for the model selection
cycle k.

TILUS reduces DTL model selection runtimes by up to 80% in some cases.

Outline: Section 9.2 formalizes the workload. Section 9.3 provides an overview of NAU-

TILUS and implementation details. Section 9.4 dives into the system optimizations. Section 9.5

presents the experiments and we conclude in Section 9.6.

9.2 Preliminaries

We present the formal problem description. The notation used is explained in Table 9.1.

181

9.2.1 Definitions and Data Model

We start by defining some terms and notation to formalize the DTL workload. We will

use these terms in the rest of this chapter.

Definition 9.2.1 A layer is a function l that takes a list of input tensors t1, t2, . . . , tm (m≥ 1) of

fixed shape and outputs a tensor t ′ = l(t1, t2, . . . , tm) of potentially different, but fixed shape. A list

of tensors t1, t2, . . . , tm are said to be shape-compatible with l iff their shapes conform to what l

expects for its inputs.

Definition 9.2.2 A model M = (L,E) is a directed acyclic graph (DAG) of layers L = l1, . . . , ln

and edges E between the layers.

Definition 9.2.3 A layer l is frozen if its learnable parameters are not updated during training.

A layer with no learnable parameters is also frozen. f (l) is a function that indicates a layer l is

frozen or not.

Frozen layers incur redundant computations. However, a frozen layer that has a non-frozen

ancestor doesn’t incur redundant computations. Thus, we introduce the notion of a materializable

layer to identify layers that will contribute to redundant computations.

Definition 9.2.4 A layer l is materializable if it’s a model input layer (i.e., l ∈ I) or is a frozen

layer with all its parent layers being materializable. m(l) is a function that indicates a layer l is

materializable or not.

9.2.2 Workload Formalization

We are given a candidate set of model and training hyperparameter pairs Q= {(Mi,φi) : i∈

1 . . .n}. Each candidate model Mi is adapted from a source pre-trained model Msrc = (Lsrc,Esrc)

and its pre-trained layers are frozen according to some scheme. We assume that we have access to

182

a model training function that trains a candidate model Mi using hyperparameters φi on a training

split of Dtrain
k and returns validation accuracy on a validation split Dvalid

k . We represent this model

training function as g(Mi,φi,Dk). We then perform model selection to find the best candidate

model based on validation accuracy and repeat it whenever the dataset snapshot changes from Dk

to Dk+1. More precisely, we describe the workload as follows:

∀Dk ∈ {D0,D1, . . .} :

argmax
(Mi,φi)∈Q

g(Mi,φi,Dk) (9.1)

Mi =(Li,Ei)

Li = ∆L+∪ (Lsrc−∆L−), Ei = ∆E+∪ (Esrc−∆E−)
(9.2)

∆E+ ⊆ (∆L+×∆L+)∪ (Lsrc×∆L+)

∪ (∆L+×Lsrc)∪ (Lsrc×Lsrc)

(9.3)

Dk+1 = Dk∪∆D+
k (9.4)

Equation 9.1 captures the model selection step. Equation 9.2 captures the structure of

a candidate model Mi, which is obtained by adding a new set of layers ∆L+ and edges ∆E+

to Msrc and removing a set of existing layers ∆L−(⊂ Lsrc) and edges ∆E−(⊆ Esrc) from Msrc,

while ensuring the DAG structure and the shape compatibility of all layer inputs. Equation 9.3

captures the structure of ∆E+, which has four different types of edges based on the originating

and terminating layer type. Finally, Equation 9.4 captures how the next labeled data snapshot

183

(A) (B) (C) (D)

MiMs

Source model layers

Newly added target

model layers

Frozen source layers

Removed source
layers

Newly added target
model edges
Removed source
model edges

(l ∈ Ls and f(l) = True) (ΔE+)

(ΔE−)(ΔL−)(ΔL+)

(Ls)

Mi Mi

Figure 9.2: Model adaptation schemes. (A) Source model MS. (B) Feature transfer. (C)
Fine-tuning. (D) Adapter training.

Dk+1 is obtained by adding a new set of labeled data records ∆D+
k to the current snapshot Dk.

9.2.3 Popular Model Adaptation Schemes

We found three model adaptation schemes that are popular among practitioners: features

transfer, adapter training, and fine-tuning. They can be treated as special cases of our general

workload formalization that impose specific structural properties on the newly added edges ∆E+

and the layer freezing scheme.

• Feature Transfer: In this scheme, one freezes all layers in Lsrc (i.e., f (l) = True, ∀l ∈ Lsrc)

and restricts ∆E+ to only contain edges between newly added layers or edges from a source

model layer to a newly added layer (i.e., ∆E+ ⊆ (∆L+×∆L+)∪ (Lsrc×∆L+)). Common

practice is to add new layers on top of the penultimate layer, any other top-level layer, or a

collection of top-level layers in Msrc [109]. The structure of an example Mi that uses the

feature transfer scheme is shown in Figure 9.2 (B).

• Fine-Tuning: This scheme is similar to feature transfer but there is at least one pre-

184

trained layer l in the adapted model that is unfrozen (i.e., f (l) = False). Parameters of all

such layers along with the parameters of the newly added layers ∆L+ are learned during

training [109]. While one can unfreeze all layers in Msrc, researchers have shown that

freezing most of the lower-level layers in Msrc and fine-tuning only the top few layers

can achieve similar results to fine-tuning all layers [181]. This also avoids the risk of

pre-trained information in Msrc getting overwritten due to overfitting, which can easily

happen in transfer learning settings with limited training data [245, 200]. The structure of

an example Mi which uses the fine-tuning scheme is shown in Figure 9.2 (C).

• Adapter Training: In this scheme, one freezes most of the layers in Lsrc, but not necessarily

all (i.e., f (l) = True, ∃l ∈ Lsrc). However, ∆E+ can be more general with having edges

between newly added layers, edges going from source model layers to newly added layers,

and also edges going from newly added layers to source model layers (i.e., E+∩ (L+×

Lsrc) 6= φ). The common practice is to add small bottleneck layers called adapters between

the layers of Msrc [239, 230, 143]. While one can add adapters to all layers in Msrc,

researchers have shown that adding adapters only to the top-level layers can be as effective

as adding adapters to all the layers [244]. The structure of an example Mi which uses the

adapter training scheme is shown in Figure 9.2 (D).

Model Selection for Popular Approaches: Model selection is unavoidable for any DL

model training as one has to tune the training hyperparameters like batch size, regularization,

learning rate, and number of training epochs. In addition to the above common training hyper-

parameters, popular transfer learning schemes also need additional architectural tuning. For

example, feature transfer needs exploring features from several layers or layer combinations.

Fine-tuning needs exploring different layer freezing schemes (e.g., up to which layer to freeze?).

Adapter training also needs exploring different adapters and adapter placement schemes (e.g.,

to which layers to add adapters?). It has been shown that all these schemes can be equally

185

Nautilus

Profiler Optimizer MaterializerTrainer

API

DL Training Framework

GridSearch(…) .fit(train_data, val_data)

materialize

intermediate

outputs

invoke model

 selection

invoke model

profiling

generate optimized
model train plan

profile

info

optimized

model train

plan

Figure 9.3: High-level architecture of NAUTILUS and the interactions between system compo-
nents. fit(...) method is called for every model selection cycle.

competitive for a wide variety of transfer learning tasks [229, 245]. Thus, practitioners need to

explore multiple schemes before picking the best one.

9.3 System Overview

We implement NAUTILUS on top of TensorFlow and Keras libraries. NAUTILUS optimizes

DTL model selection. It has 5 main components: API, Profiler, Optimizer, Materializer, and

Trainer. Figure 9.3 presents the architecture of NAUTILUS. Next, we provide details on NAU-

TILUS’s components.

• API: NAUTILUS’s API is inspired by libraries like Scikit-Learn and Keras. Users create a

model selection object by specifying a parameter search space and a user-defined model

initialization function. The model initialization function encapsulates the logic to interpret

the search parameter values. It takes in an instance of parameter values φi and returns a

Keras model ready to be trained. Thus, NAUTILUS can support both architectural tuning

parameters (e.g., which layers to add, prune, or freeze) and training hyperparameters

(e.g., learning rate) in a unified manner. Users can also override the default system config

186

values used by the optimizer. These include storage and runtime memory budget, expected

maximum number of training records, disk throughput, and compute throughput values.

Users initiate model selection by calling the fit(...) method and passing a batch of training

and validation data. It is called for every model selection cycle.

• Profiler: When a user initializes a workload, NAUTILUS internally invokes its Profiler. Pro-

filer invokes the user-defined model initialization function to initialize all models, profiles

them, and finally stores the initialized model checkpoints on disk. Model checkpoints are

artifacts consisting of model architecture, weights, and the optimizer. They capture all the

details that the DL framework needs to train the model. For profiling, it uses the features

available in TensorFlow. The profiling information includes shapes of all intermediate

output tensors and the forward-pass layer compute costs in FLOPs.

• Optimizer: The optimizer takes in the profiling information and system configuration

values and generates an optimized model training plan. The optimized plan combines both

our materialization and model fusion optimizations. Due to the model fusion optimization,

an optimized plan can correspond to more than one model in the original model selection

workload. It then generates the model checkpoints for the optimized model training plan

by reading the original model checkpoints and stores the new model checkpoints on disk.

It also creates a model checkpoint that is used to generate the outputs of the chosen

materialized layers. We discuss system optimizations in more detail in Section 9.4.

• Materializer: When a user initiates a model selection step by passing a new batch of

labeled data, the API calls the Materializer to update both the labeled dataset and outputs

of chosen materialized layers. The Materializer reads the output materialization model

checkpoint, generates the intermediate outputs, and stores them on disk. One could also

store the outputs in DRAM. However, their size can be significant (e.g., 10s of GBs) and

187

can exhaust DRAM. Also, DL models are often compute-intensive, and I/O overheads can

be mitigated by prefetching. Thus, if there is excess DRAM available, we rely on the OS

disk cache to cache the intermediate outputs.

• Trainer: The Trainer trains the models on the labeled training dataset according to the

optimizer-generated training plan and saves the trained model parameters on disk. It extends

the model training feature in Keras to support training a model with multiple optimizers

with each optimizer operating on a separate trainable branch of a model. This feature is

needed for our model fusion optimization, which we discuss in more detail in Section 9.4.3.

Finally, the Trainer returns the model that has the best validation accuracy back to the user.

In the current version, the Trainer supports single-node model training with or without

GPU support. If multiple GPUs are available, the Trainer can also train models in data-

parallel manner. We have focused on supporting DL models that fit in single-node/device

memory during training (i.e., DRAM for CPU training and GPU’s memory for GPU

training) as many practical DTL applications operate in low-resource settings. Furthermore,

the runtime memory usage of DL models is significantly reduced by pre-trained layer

freezing, making most DTL models trainable on single-node/device memory. We discuss

more details about runtime memory usage in Section 9.4.3.

9.4 System Optimizations

We first introduce the notion of multi-model graph, the core data structure used by our

optimizations. We then dive into more details of our optimizations. We conclude the section by

characterizing the attainable theoretical speedups. Table 9.2 presents the additional notation used

in this section.

188

Table 9.2: Additional Notation used in Section 9.4

Symbol Description

I, O Input (I) and output (O) layers in
model M.

U , V Materializable (U) and materialized
(V) layers in model M.

Bdisk, Bmem Disk storage budget (Bdisk) and run-
time memory budget (Bmem).

Mopt Optimal reuse plan model for M.
ccomp(l),cload(l) Functions for estimating the compu-

tation cost and data load cost of layer
l.

sdisk(l),smem(l) Functions for estimating the storage
usage and runtime memory usage of
layer l.

C(M) Training cost of model M.
smem(M) Peak memory usage for training

model M.
q(l,M) q(l,M) = is a function indicating

the layer l is pruned, present and
computed, or present and loaded
(i.e., l ∈ I) in M.

r Expected maximum training data
records.

9.4.1 Multi-Model Graph

We create an information graph composed of all candidate models in a model selection

workload, which we call a multi-model graph. It is inspired by the AND view graph in relational

multi-query optimization [133]. But we adapt it to the DL model selection context by leveraging

the properties of DL models and training. Next, we define some helper terms and formalize the

multi-model graph.

Definition 9.4.1 An expression for a layer l in a model M is a DAG of layers with model input

layers I as sources and l as the sink.

Definition 9.4.2 An expression is a materializable expression, iff the sink layer of the corre-

189

sponding DAG is materializable.

Definition 9.4.3 Two layers li and l j are said to be identical, i.e., li ≡ l j, if both of them are of

same type, have identical configuration values, and identical trainable parameter values. Two

expressions ei and e j are said to be identical, i.e., ei ≡ e j, if both of them have the same DAG

structure and all corresponding layer pairs are identical.

Definition 9.4.4 A model M =(L,E) is called a multi-model graph for the models M1,M2, . . . ,Mn,

iff for every output layer of every Mi, there is an expression in M that is identical to the expression

of Mi’s corresponding output layer.

Constructing the Multi-Model Graph: For a model selection workload with a set of models

M1,M2, . . . ,Mn, we construct the multi-model graph M by merging all the materializable identical

sub-expressions in them. If layer l in model Mi is materializable (i.e., l ∈Ui), the corresponding

layer l in the multi-model M is also materializable (i.e., l ∈ U), and vice-versa. Only the

materializable layers in the multi-model need to be considered for materialization (i.e., V ⊆U).

We use 4 metrics to capture the runtime and layer output characteristics of all layers in M. They

can be obtained by profiling the original models in the workload. We represent these values

normalized for a single training record. They include:

• ccomp(l), which captures the layer computation cost in terms of floating-point operations

(FLOPS). It includes both the forward- and backward-pass computation costs. The forward

cost can be directly obtained from the profiling information. However, profiling information

provided by DL frameworks often does not include backward-pass cost. Hence, as per the

standard practice [128, 62], we use the forward cost to estimate the backward cost. For

a trainable (i.e., not frozen) layer, we set it to thrice the number of forward-pass FLOPs

to account for forward-pass, input gradient, and parameter gradient computations. For a

frozen but not materializable layer, we set it to twice the number of forward-pass FLOPs to

190

account for both forward and input gradient computations. For a materializable layer, we

set it to the forward-pass FLOPs as there is no back-propagation happening.

• sdisk(l), which captures the layer output size on disk in Bytes. We estimate it using the

output tensor dimensions and data type.

• cload(l), which captures the layer output loading cost from disk in terms of missed

compute FLOPs. We calculate it by first estimating the disk read time and multiplying it

by the FLOPs throughput of the system. We ignore the data transfer time from DRAM to

GPU memory as disk load time dominates the total time. Both compute throughput and

disk read speed affect cload(l). We use pre-configured values for them, which match the

characteristics of the available hardware.

• smem(l), which captures the layer output size in memory in Bytes. We estimate it using

the output tensor dimensions and data type, similar to the on-disk output size. However, for

a composite layer that consists of several basic layers (e.g., a transformer layer composed of

several dense, addition, and layer normalization layers [274]), we estimate it by summing

the size of all child layer output tensors. We treat composite layers differently to account

for all the intermediate output tensors that the backward-pass may need. We explain this in

more detail in Section 9.4.3.

9.4.2 Materialization Optimization

We formally present our materialization optimization problem and present a mixed-integer

linear programming-based solution.

191

Materialization Optimization Problem

Our goal is to find an optimal set of intermediate layer outputs to materialize subject

to a storage constraint. Given a set of such layers, we rewrite the model graphs to reuse these

intermediate outputs during training. We assume that the model selection workload is fixed and

repeated for all model selection cycles. Thus, we focus on materialization optimization for a

single model selection cycle. Intermediate layer materialization incurs compute and I/O costs.

However, it is amortized by the iterative DL model training costs, which get further amplified

by multiple candidate models and multiple model selection cycles. Therefore, we ignore the

computation and I/O costs for materializing the chosen layers and optimize for minimizing the

total model training time. We estimate the storage footprint using a pre-configured maximum

number of records r and reuse the obtained optimal materialization plan for all model selection

cycles until the training dataset size reaches that limit. We explain how we relax the max training

records constraint in Section 9.4.2.

Let M = (L,E) be the multi-model graph for the set of models {Mi = (Li,Ei) : ∀i ∈

1, . . . ,n}. U is the set of materializable layers in M and V is the optimal set of materialized layers

(V ⊆U). Ii and Oi are the input and output layers of Mi, respectively. C(M) is a function that

estimates the training cost of model M (for one input record in FLOPs) and q(l,M) is a function

that indicates the presence of layer l in model M. We first introduce the notion of an optimal

reuse plan model that captures how we should rewrite a model graph to reuse the materialized

layer outputs in V and then explain how we find V .

Definition 9.4.5 Mopt
i is called the optimal reuse plan model for Mi, iff

1. It has the same output layers as Mi (i.e., Oopt
i = Oi).

2. Every layer l in Mopt
i is also in Mi (i.e., Lopt

i ⊆ Li).

3. For every layer l in Mopt
i , parents of l in Mopt

i are same as its parents in Mi; or l is in V

(i.e., l ∈V).

192

Materialized layer

Different valid reuse plan model options

Materializable layer Trainable layer

Original Model

Figure 9.4: Valid reuse plan model options for a model with materializable layers.

4. Has the lowest training cost C(Mopt
i) out of all such candidates.

Training Mopt
i is equivalent to training Mi as both perform logically equivalent operations.

Mopt
i can be obtained from Mi = (Li,Ei) by taking one of the following three actions for every

layer l ∈ Li: (1) pruning i.e., q(l,Mopt
i) = pruned, (2) retaining and computing i.e., q(l,Mopt

i) =

computed, and (3) retaining and loading as an input i.e., q(l,Mopt
i) = loaded. Figure 9.4 shows

an example model graph and several valid reuse plan models. We estimate the training cost of an

optimal reuse plan model C(Mopt
i) by summing all layer compute costs and input loading costs as

follows:

C(Mmathitopt
i) = ∑

l∈Li

1{q(l,Mopt
i) = computed} · ccomp(l)

+1{q(l,Mopt
i) = loaded} · cload(l)

(9.5)

Equation 9.5 makes the simplifying assumption that layer computations and input loadings

do not overlap during training. However, DL model training operates in pipelined fashion on

mini-batches of training data, and it may be possible to hide some of the data load costs by

pre-fetching the data. Nevertheless, our formulation provides a reasonable upper bound for the

total model training cost that is sufficient for our purpose.

193

With the optimal reuse plan model Mopt
i and its training cost C(Mopt

i) defined, the materi-

alization optimization problem can be formally expressed as follows:

argmin
V,Mopt

i ∀i∈{1,...,n}

n

∑
i=1

C(Mopt
i) · r ·epochs(φi) (9.6)

subject to:

∑
l∈V

s(l) · r ≤ Bdisk (9.7)

Equation 9.6 minimizes the total model training time. The model training time of a single

model Mi is estimated by multiplying the training cost of the corresponding optimal reuse plan

model Mopt
i , the maximum number of training records r, and the number of training epochs

epochs(φi). epochs(φi) is a training hyperparameter provided by the user. Equation 9.7 ensures

that the materialized layer outputs do not exhaust the disk storage budget Bdisk.

Mixed Integer Linear Programming Formulation

We present a mixed-integer linear programming (MILP) formulation of the materialization

optimization problem. To our knowledge, this is the first time an MILP formulation is used for

materialization optimization in a DL systems context, although it has been previously used in

other data management contexts [96]. Applying MILP techniques to this problem is possible

because of our multi-model graph formalization, which we generate by leveraging the DAG

nature and the presence of frozen layers in DL model graphs.

Let li, j be the jth layer of ith model Mi = (Li,Ei) in the multi-model M. uk is the kth layer

of the set of materializable layers U in M. We introduce three sets of binary indicator variables X ,

Y , and Z as follows:

194

for all i ∈ {1, . . . ,n}, j ∈ {1, . . . , |Li|}, k ∈ {1, . . . , |U |}

(a) Xi, j = 1{q(l j,M
opt
i) 6= pruned}

(b) Yi, j = 1{q(l j,M
opt
i) = computed}

(c) Zk = 1{uk ∈V}

(9.8)

Xi, j indicates whether the jth layer of Mi is present in Mopt
i . Yi, j indicates whether the jth

layer of Mi is computed in Mopt
i . Xi, j and Yi, j collectively determine q(li, j,M

opt
i). Zk indicates

whether the materializable layer uk of M is materialized. With these indicator variables defined,

the MILP-based approach for the materialization optimization problem can be expressed as

follows:

argmin
X ,Y,Z

∑
∀ i, j

(
Xi, j · cload(li, j)

+Yi, j · (ccomp(li, j)− cload(li, j))
)
· r ·epochs(φi)

(9.9)

subject to:

(a) li, j ∈ O =⇒ Xi, j ≥ 1, ∀i, j

(b) Xi, j−Yi, j ≥ 0, ∀i, j

(c) ∑
li,k∈ parents(li, j)

Xi,k−Yi, j ≥ 0, ∀i, j

(d) uk ≡ li, j =⇒ Xi, j−Yi, j ≤ Zk, ∀i, j,k

(e) ∑
uk∈U

Zk · sdisk(uk) · r ≤ Bdisk

(9.10)

Equation 9.9 is equivalent to the optimization objective presented in Equation 9.6. Equa-

tion 9.10 (a) ensures that output layers of all models are not pruned and avoids the trivial solution

195

where all layers are pruned. Equation 9.10 (b) ensures a computed layer is not pruned and

Equation 9.10 (c) ensures parents of a computed layer are also not pruned. Equation 9.10 (d)

ensures that only the materialized layers are loaded from the disk and Equation 9.10 (e) ensures

that the cumulative size of the materialized layers does not exhaust the storage budget, which is

equivalent to Equation 9.7.

Given the above, a straightforward approach to optimization is to use an MILP solver

like Gurobi [134]. Z indicates the materialized layers and X and Y can be used to construct

the optimal reuse plan models. If disk storage budget is not a critical resource, Z may contain

materialized layers that do not get used in reuse plan models. Such layers can be discarded using

a post-processing step. It can be shown that the above materialization optimization problem is

NP-hard using a reduction from the known NP-hard Knapsack problem [286, 166]. However, we

found that an MILP solver-based approach finds the optimal solution within a short execution

time (e.g., few 10s of seconds) at the scale of practical DTL model selection workload sizes. We

provide more details on MILP execution time in Section 9.5.3.

Incremental Feature Materialization

For a new batch of labeled data, we materialize it and also incrementally update the

outputs of the chosen materialized layers. We repeat this until the pre-configured maximum

number of training records r is reached. When we reach the maximum number of training records,

we use an exponential backoff scheme with a factor of 2 to update r (i,e., r← 2× r). We then

rerun the materialization optimization to find a new set of materialized layers and materialize

them. Overall, our exponential backoff scheme to update r provides a good balance between

materialization overheads and storage wastage.

196

Algorithm 8 : FUSEMODELS(Q,Bmem,V)

1: Q′ = {(Mi,M
opt
i ,φi)| ∀i ∈ [1, . . . , |Q|]}

2: while there are not-considered fusible model pairs in Q′ do
3: P = {(i, j)|all not-considered fusible model pair indices}
4: Mi, j←multi-model for Mi and M j,∀(i, j) ∈ P
5: Mopt

i, j ←optimal reuse plan model for Mi, j, ∀(i, j) ∈ P
6: ci, j←C(Mopt

i)+C(Mopt
j)−C(Mopt

i, j),∀(i, j) ∈ P
7: i∗, j∗← argmax

(i, j)∈P
ci, j, such that smem(M

opt
i, j)≤ Bmem

8: Q′← Q′∪{(Mi∗, j∗,M
opt
i∗, j∗,φi∗ ∪φ j∗)}

9: Q′← Q′ \{(Mi∗,M
opt
i∗ ,φi∗),(M j∗,M

opt
j∗ ,φ j∗)}

10: return {(Mi,φi)| ∀i ∈ 1, . . . , |Q′|}

9.4.3 Model Fusion Optimization

In model fusion, we partition the set of models into groups such that the fused models

corresponding to the partitions reduce the redundant computations with the highest margin while

ensuring the runtime memory budget Bmem is not exhausted. We first explain our approach for

finding such a partitioning. We then explain how to adapt the optimal reuse plan model for the

fused model setting and also explain how we estimate fused model memory footprint.

Partitioning the Set of Models

We leverage the pipelining nature of the mini-batch SGD training method to train a fused

model, which operates on one mini-batch at a time. We also ensure that all models in a partition

have the same training batch size. Otherwise, they cannot be fused during training. Given such

a partition, we create the multi-model for the partition and find the optimal reuse plan model.

Multi-model creation will fuse only the materializable layers that do not require any training.

Therefore, the training optimizer for the fused model’s reuse plan model can be represented as

the set of optimizers from the source models where each optimizer operates on the corresponding

trainable branch.

However, finding the optimal partitioning requires considering all candidate partitions

197

Materializable

layer

Trainable

layer

Backward-pass

 layer

Forward-pass
Backward-pass

1

2

3

4
5

6

7

8

9
10

11

12 13

(B)

l2

l3
l4
l5

l6

l7 l8

loss

l′�6
l′�4
l′�5

l′�8 l′�7

2 1 1
3 1 1 1
4 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1 1 1
7 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1
12 1 1 1 1 1
13 1 1 1 1

To
po

lo
gi

ca
l t

ra
ve

rs
al

or

de
r

(C) l2 l3 l4 l5 l6 l7 l8 l′�6 l′�4 l′�5 l′�8 l′�7
Layer names

loss
(A)

l1 l2 l3
l4

l5
l6

l7 l8l1 l2

l7 l8

l2
l3

l4

l5
l6

Materialized

layer

Materializable

layer

Trainable

layer

Backward-pass

 layer

Forward-pass
Backward-pass

1

2

3

4
5

6

7

8

9
10

11

12 13

(B)

l2

l3
l4
l5

l6

l7 l8

loss

l′�6
l′�4
l′�5

l′�8 l′�7

2 1 1
3 1 1 1
4 1 1 1 1
5 1 1 1 1 1
6 1 1 1 1 1 1
7 1 1 1 1 1 1 1
8 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1
10 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1 1
12 1 1 1 1 1
13 1 1 1 1

To
po

lo
gi

ca
l t

ra
ve

rs
al

or

de
r

(C) l2 l3 l4 l5 l6 l7 l8 l′�6 l′�4 l′�5 l′�8 l′�7
Layer names

loss
(A)

l1 l2 l3
l4

l5
l6

l7 l8l1 l2

l7 l8

l2
l3

l4

l5
l6

Materialized

layer

Figure 9.5: (A) A candidate partition containing two source models and the corresponding
optimal reuse-plan model. (B) Augmenting reuse plan model with nodes to represent the
backward-pass of training. (C) Topological traversal-based live tensor analysis for the model
graph shown in (B).

(i.e., all possible model groupings), which is exponential in the number of models in the model

selection workload. Furthermore, the training cost (C(Mopt)) and the peak runtime memory usage

(smem(Mopt)) of the optimal reuse plan model for each partition’s multi-model is not available in

constant time. Thus, we use a greedy heuristic that only considers pair of models to be fused at a

time. The high-level approach is presented in the FuseModels procedure of Algorithm 8.

FuseModels takes in a set of model and training hyperparameter pairs Q, runtime mem-

ory budget Bmem, set of materialized layers V , and returns a set of fused model and training

hyperparameter pairs. For every model Mi in Q, we first find the optimal reuse plan model Mopt
i

that reuses materialized intermediate layers in V and create a new set Q′ containing (Mi, Mopt
i , φi)

198

triples. P is the set of all possible model pairs wherein both models have the same training batch

size. For every candidate model pair indices (i, j) in P, we create the multi-model Mi, j and find

the optimal reuse plan model Mopt
i, j . We explain how we find the optimal reuse plan model Mopt

i, j

given V in Section 9.4.3. We also estimate the runtime memory usage smem(M
opt
i, j) and ensure that

it does not exceed the runtime memory budget Bmem. Details on how we estimate smem(M
opt
i, j) are

provided in Section 9.4.3. From the fusible model pairs, we pick the pair that will result in the

highest cost reduction. We add the fused model back to Q′ and remove the source models Mi and

M j from Q′. The training hyperparameters for a fused model are derived by combining source

hyperparameters φi and φ j. We repeat this process until there are no more fusible models.

Optimal Plan Given a Set of Materialized Layers

The optimal reuse plan model Mopt
i, j for a fused model Mi, j that reuses materialized layers

V can be found by adapting the MILP presented in Section 9.4.2. The main difference here is

that the set of materialized layers is already determined. Thus, we no longer need the indicator

variable Z (Equation 9.8 (c)) and also remove the constraints (d) and (e) in Equation 9.10. We use

{Mi, j} as the set of input models. In this case, the multi-model M corresponding to the set of input

models will be the same as the input model Mi, j. After the optimization, Mopt
i, j can be obtained

from the resulting indicator variable values X and Y . While most MILP problems are NP-hard, it

has been shown that the resulting MILP problem can be solved in PTIME via a reduction to the

MAX-FLOW problem [286].

Estimating Peak Runtime Memory Usage

Estimating the peak runtime memory usage of training a DL model is a challenging task

as it depends on various factors including both workload- and system-specific. One could estimate

peak runtime memory usage of a model by actually running the model and observing the memory

usage. However, our model fusion optimization evaluates many model candidates, which is in the

199

order of O(n3) where n is the number of source models. Estimating memory usage at runtime

would require creating checkpoints for many potential fused models and running them, which

could add massive overheads. Thus, we decided to use an analytical model to estimate peak

runtime memory usage. We found that our analytical model is accurate enough to avoid any

out-of-memory workload crashes at runtime.

We identity three main types of memory usage that dominate the overall usage: (1)

memory to store the parameter tensors, (2) workspace memory for performing layer operations,

and (3) memory to store the layer outputs needed for back-propagation. We calculate the first

type by using the dimensions and data types of the parameter tensors. The second type depends

on the DL system. We rely on the user to set a value for this (e.g., 1GB). The third type depends

on both the model architecture and the DL system and it often dominates the overall memory

usage. Next, we discuss more details on how we estimate it.

The backward-pass of DL training needs access to the layer output tensors generated

during the forward-pass. For example, the backward-pass operation of linear algebra-based layers

such as Dense and Convolutional layers need access to the forward-pass layer input to calculate the

parameter gradient. Some non-linear transformation layers like ReLU need access to layer output

to calculate the input gradient. And some other non-linear transformation layers like MaxPooling

need access to both layer input and output to calculate the input gradient. Thus, the DL system

will accumulate layer output tensors during the forward-pass and gradually release them during

the backward-pass. However, the exact order by which output tensors are accumulated and

released is determined by the specific order by which layer operations are performed and also on

how aggressively memory is allocated and deallocated by the DL system. Popular DL frameworks

like TensorFlow and PyTorch execute operations in a topological order [269, 234].

We estimate the memory needed for storing layer output tensors by performing a topolog-

ical traversal-based live tensor analysis. We augment the optimal reuse plan of the fused model

by adding nodes needed to represent the backward-pass. We also add a node to represent the loss

200

computation and add edges between every output layer and the new loss node. This loss node

is responsible for calculating the loss for all trainable model branches using the corresponding

optimizer. It also ensures that our fused model adheres to the two-phase (i.e., forward and

backward) training template supported by DL systems. For every non-materializable layer li, we

add a node l′i to represent the backward-pass computation of that layer. We set smem(l′i) to be

same as smem(li). We treat all backward-pass computations uniformly and add edge dependencies

as follows:

• Output from the forward-pass layer by adding (li, l′i) edge.

• Input(s) to the forward-pass layer by adding {(lp, l′i) : ∀lp ∈ parent(li)} edges.

• Backward-pass output gradient(s) from the child layers by adding {(l′s, l′i) : ∀ls ∈ child(li)}

edges.

Figure 9.5 (A) presents an example candidate partition containing two source models from

the model selection workload and the corresponding reuse plan model. The reuse plan model is

obtained by performing both our materialization and model fusion optimizations. Notice that each

model’s trainable layers are in a separate branch. We then augment the reuse plan model with

nodes and edge dependencies needed to represent the backward-pass as shown in Figure 9.5 (B).

To estimate peak runtime memory for storing layer outputs, we perform a topological traversal

over the created graph structure while keeping track of the live output tensors. The output tensor

size of layer l for a single training record is given by smem(l). The order by which each node is

visited during the topological traversal is denoted in the figure. Figure 9.5 (C) presents the live

tensor analysis. When processing a node, we assume all its inputs and output tensors are live. We

release a tensor if it is not needed for the current or future nodes. For example, as highlighted in

Figure 9.5 (B), when processing the loss node, the l1 output tensor is not live as it is not used by

any node that is yet to be visited.

201

Notice that there might be more than one possible topological order and as a result, the

order used by our analysis may differ from the order used by the training framework. However,

for any topological traversal order, we can claim that the maximum number of live tensors is only

one more than the number of live tensors needed when processing the loss node. This is because

the loss node acts as a barrier needing the entire forward-pass to be completed before starting the

backward-pass. Overall, we found that our approach can provide reasonable memory usage upper

bounds that are sufficient for our model fusion optimization.

9.4.4 Theoretical Speedups

We define the theoretical speedup as the ratio between the total training cost of all model

layers and the total training cost of only the non-materializable (i.e., m(l) = False) model layers,

as per Equation 9.11. It assumes complete avoidance of computational redundancies without

accounting for data movement overheads. It will be equivalent to the speedup achieved by our

materialization optimization in the hypothetical case of zero load cost and a disk storage budget

to materialize all materializable layers.

∑
|Q|
i=1 ∑l∈Li ccomp(l) ·epochs(φi)

∑
|Q|
i=1 ∑l∈Li 1[m(l) = False] · ccomp(l) ·epochs(φi)

(9.11)

9.5 Experimental Evaluation

We now present an extensive empirical evaluation seeking to answer the following ques-

tions. (1) How does NAUTILUS compare with current practice and other baselines on runtimes,

accuracy, and resource utilization? (2) How much NAUTILUS’s optimizations contribute to the

overall runtime reductions?

Datasets: We use two benchmark datasets: CoNLL-2003 [271] and Malaria [235].

202

CoNLL-2003 is a text dataset and the prediction task is named entity recognition. Malaria is

an image dataset and the prediction task is identifying Malaria from blood cell images. For

CoNLL-2003 and Malaria, we have unlabeled data pools of sizes 10,000 and 8,000 records,

respectively.

Workloads: We run 5 end-to-end workloads covering feature transfer, fine-tuning, and

adapter training. Table 9.3 summarizes the transfer learning and the model selection configuration

values of the workloads. Feature transfer workloads (FTR-*) use BERT-base as the source model.

FTR-1 explores 6 feature transfer strategies that are same as the ones reported in [109]. FTR-2 and

FTR-1 explore 4 and 1 transfer strategies, respectively. The fine-tuning workload FTU uses the

popular computer vision model ResNet-50 [136] and we vary the number of fine-tuned residual

layer blocks from the top. The adapter training workload ATR also uses the BERT-base model.

We use Houlsby [143] type adapters and vary the number of layers with adapters from the top.

For FTR-* workloads we add a new transformer layer on top of the extracted features. For all

workloads, we add a new Softmax classification layer on top of the last hidden layer. FTR-* and

ATR workloads use the CoNLL-2003 dataset; FTU workload uses the Malaria dataset.

For all workloads, we generate the labeled dataset iteratively. For each cycle, we label 500

records with a 400/100 train/validation split, perform model selection on all labeled data up to that

point, and repeat the process for 10 cycles. We simulate the human labeler by programmatically

releasing the labels.

Experimental Setup: We use a machine with 32 GB RAM, Intel i7 3.40GHz CPU, 1TB

SSD, and NVIDIA Titan X GPU with 12 GB memory. It runs Ubuntu 18.04 with TensorFlow

version 2.4, CUDA version 11.0, and cuDNN version 7.5. For our optimizer, we set the disk

read throughput to 500 MB/s and the compute throughput to 6 TFLOP/s, which is 50% of the

theoretical FLOPS rate of the Titan X GPU. These hardware settings are configurable by the user.

We report average of 3 runtimes with 95% confidence intervals.

203

Table 9.3: Model selection configurations of workloads.

Workload
Tuning Parameters

Models
Transfer Learning Approach Batch Size Learning Rate Epochs

FTR-1 Feature Transfer from:
{embedding, second last hid-
den, last hidden, sum last 4
hidden, concat last 4 hidden,
sum all hidden}

{16, 32} {5,3,2} ×10−5 {5} 36

FTR-2 Feature Transfer from:
{second last hidden, last hidden,
sum last 4 hidden, concat last 4
hidden}

{16, 32} {5,3,2} ×10−5 {5} 24

FTR-3 Feature Transfer from:
{concat last 4 hidden}

{16, 32} {5,3,2} ×10−5 {5, 10} 12

ATR Adapter Training for: {last
hidden, last 2 hidden, last 3 hid-
den, last 4 hidden}

{16, 32} {5,3,2} ×10−5 {5} 24

FTU Fine-tuning : {last 3 hidden,
last 6 hidden, last 9 hidden, last
12 hidden}

{16, 32} {5,3,2} ×10−5 {5} 24

9.5.1 End-to-End Runtimes

Model Selection Time: We first evaluate the total model selection time for 4 different

approaches. This enables us to isolate NAUTILUS’s ability to reduce DTL model selection

runtimes, which is independent of the data labeling approach and the labeling time. The four

approaches that we evaluate are Current Practice, MAT-ALL, NAUTILUS, and FLOPs Optimal.

Current Practice is the naive baseline, which trains unmodified models independently and repeats

the process for all cycles. It incurs the highest level of redundancies. MAT-ALL is a strong

baseline that materializes all materializable layers and uses them during training, irrespective of

whether it is efficient to compute them rather than loading them. Note that MAT-ALL needs parts

of our code from NAUTILUS. NAUTILUS is our optimizer-picked plan, which performs both our

materialization and model fusion optimizations. We execute it with a disk storage budget (Bdisk)

of 25 GBs and a runtime memory budget (Bmem) of 10 GBs. FLOPs Optimal is calculated by

dividing the Current Practice time by the theoretical speedup. Figure 9.6 presents the results.

204

2.
5X

4.
1X

4.
1X 2.
7X

5.
2X

4.
6X 2.

2X
4.
2X

4.
0X

2.
2X

3.
2X

3.
2X

1.
7X

2.
8X

2.
9X

Workload
initialization

time

5.
1X 5.
6X 5.
8X 5.
8X 5.
9X

3.
9X 3.
2X 2.

4X

1.
9X

1.
5X

(A) All Workloads (B) FTR-2 (C) FTR-2
M

od
el

 S
el

ec
tio

n
Ti

m
e

(m
in

)

2.
5X

4.
1X

4.
1X 2.
7X

5.
2X

4.
6X 2.

2X
4.
2X

4.
0X

2.
2X

3.
2X

3.
2X

1.
7X

2.
8X

2.
9X

Workload
initialization

time

5.
1X 5.
6X 5.
8X 5.
8X 5.
9X

3.
9X 3.
2X 2.

4X

1.
9X

1.
5X

(A) All Workloads (B) FTR-2 (C) FTR-2

M
od

el
 S

el
ec

tio
n

Ti
m

e
(m

in
)

Figure 9.6: (A) Total model selection time. (B) Model selection time breakdown by model
selection cycle for FTR-2 (only the odd numbered model selection cycles are shown due to
space constraints). (C) Total time for FTR-2 including data labeling time.

NAUTILUS offers significant speedups with the highest speedup of 5.2X seen on FTR-2.

The highest speedup for MAT-ALL is also for FTR-2, which is 2.7X. In all cases, NAUTILUS out-

performs the MAT-ALL baseline. In the worst case, MAT-ALL is 48% slower than NAUTILUS for

the FTR-2 workload. MAT-ALL is slower than NAUTILUS because it incurs higher IO overheads

due to reading all layers, even though the machine used has fast SSDs. NAUTILUS selectively

loads some layers only as needed and recomputes the remaining to reduce the overall runtimes.

One can also allocate more DRAM memory, materialize all layers in DRAM for MAT-ALL, and

access with a small load cost. But this will be resource-inefficient and will likely cost more for a

user due to Pareto tradeoffs. In contrast, NAUTILUS pushes the cost versus performance Pareto

frontier to achieve higher efficiency at lower resource costs. We performed a cost estimation

for executing the FTR-1 workload with 10,000 records using the Google cloud computing cost

calculator [125] and found that NAUTILUS can reduce the workload cost by 76% (0.97 $/hr for

205

MAT-ALL vs. 0.55 $/hr for NAUTILUS). NAUTILUS will incur less cost mainly because it will

incur less DRAM cost.

In all cases, NAUTILUS achieves slightly better or competitive runtimes to the FLOPs Op-

timal runtime. This is because NAUTILUS significantly amortizes the training and I/O overheads,

which are not accounted for in the FLOPS reduction-based theoretical speedup calculation. Also,

NAUTILUS’s speedups vary based on the characteristics of the workload. For example, speedups

are generally higher for FTR-* workloads compared to ATR or FTU, as the latter workloads

have more trainable layers. Also, absolute runtimes are lower for the FTU compared to other

workloads, as the former uses a less compute-intensive model. Overall, NAUTILUS reduces DTL

model selection runtimes substantially for all workloads.

Model Selection Time Breakdown: Figure 9.6 (B) presents the model selection time

breakdown by model selection cycle. Current Practice and NAUTILUS take 2.7 and 4.4 minutes

to initialize the workload, respectively. By drilling into the workload initialization time, we

found that NAUTILUS spends 63% of time creating the original model checkpoints, which is

also performed by the Current Practice. Additionally, NAUTILUS spends 12% time profiling

the original models, 3% time generating the optimized plan, and 21% time generating model

checkpoints for the optimized plan. NAUTILUS’s speedups are slightly lower in the early cycles

compared to the later ones. This is because the later cycles have more training data, and the effect

of fixed overheads is less pronounced in them. If there are no reuse opportunities, NAUTILUS will

incur a one-time cost for model profiling and running the optimizer, which is less than 1% of the

total workload runtime of Current Practice.

Total Workload Time: Finally, we evaluate the total workload time for the FTR-2

workload for different data labeling runtime values. The CoNLL-2003 dataset used for the FTR-2

workload has 20 words per record on average. Hence, we vary the labeling time per data record

between 0.5 seconds and 8 seconds. The 0.5 seconds case can be considered as a multi-labeler

scenario (e.g., cloud labelers); 8 seconds scenario can be considered as a single-labeler scenario.

206

(A) (B)

Figure 9.7: FTR-2 learning curves with (A) zero and (B) 4 seconds/label data labeling cost
values.

For the 0.5 seconds scenario, NAUTILUS achieves a speedup of 3.9X compared to the Current

Practice. For the 8 seconds scenario, NAUTILUS’s speedup reduces to 1.5X, as higher data

labeling time dominates the overall workload time.

9.5.2 Accuracy

Both Current Practice and NAUTILUS perform logically equivalent SGD training. Thus,

they both should achieve the same statistical efficiency. To validate this, we plot the best model’s

validation accuracy against the elapsed model selection time for the FTR-2 workload. Figure 9.7

(A) presents the results. We see that both approaches achieve very similar validation accuracies

after every model selection cycle. However, NAUTILUS achieves them 5X faster. We repeat the

experiment with a data labeling time of 4 seconds/label and plot the best validation accuracy

against elapsed total time as shown in Figure 9.7 (B). In this case, NAUTILUS is 2X faster.

9.5.3 Drill-Down Analysis

Contribution of Our Optimizations: We run the end-to-end workloads using NAU-

TILUS but disable either the materialization (MAT OPT) or the model fusion (FUSE OPT)

optimization. Figure 9.8 presents the results. For all cases except ATR, running Nautilus w/o

207

Figure 9.8: Model selection time with and without MAT and FUSE optimizations.

Figure 9.9: Model selection time for different number of models with and without MAT
and FUSE optimizations.

FUSE OPT causes more slowdown than running w/o MAT OPT. The highest slowdown for NAU-

TILUS w/o FUSE OPT is for FTR-1, which is 54.7%; for w/o MAT OPT, it is for FTR-3, which

is 31.2%. For FTU, NAUTILUS’s runtime does not change w/o MAT OPT. This is because

ResNet-50 is a less compute-intensive model and NAUTILUS computes all materializable layers

instead of loading them. In 4 out of 5 end-to-end experiments, FUSE OPT contributes more than

the MAT OPT. But combining both optimizations achieves even lower runtimes. The benefits of

each optimization vary based on workload and hardware characteristics.

We also run an experiment where we vary the number of models in the model selection

workload. For this, we use FTR-2 and fix the feature transfer strategy to the concatenation of the

last four layers, fix the batch size to 16, and vary the number of explored learning rates. Figure 9.9

presents the results. When the number of models is less than or equal to 2, running NAUTILUS w/o

MAT OPT causes more slowdown than running it w/o FUSE OPT. However, when the number of

208

(A) MAT OPT (B) FUSE OPT
Equivalent to

Current Practice

Equivalent to Current

 Practice

Figure 9.10: FTR-2 model selection time using (A) MAT OPT vs. storage budget and (B) FUSE
OPT vs. memory budget.

models increases, running w/o FUSE OPT causes more slowdown. With more models, FUSE

OPT has more opportunities to avoid redundant computations and amortize training and I/O

overheads. Also, with only 1 model, FUSE OPT doesn’t give any benefits as there are no

opportunities for model fusion.

Finally, we run FTR-2 by only using MAT OPT or FUSE OPT, and vary the disk storage

budget Bdisk and runtime memory budget Bmem, respectively. Running MAT OPT with a Bdisk of

0 GBs is equivalent to the Current Practice. Running FUSE OPT with a Bmem of 2 GBs is also

equivalent to the Current Practice as it does not fuse any models. For FUSE OPT we also ensure

that the training process does not consume more than the allocated Bmem from the available GPU

memory. Thus, this experiment also shows that our memory estimation approach is capable of

avoiding workload crashes due to out-of-memory errors. As Bdisk is increased, MAT OPT runtime

decreases and plateaus after 7.5 GBs where it achieves 2.6X speedup compared to the Current

Practice. As the Bmem is increased, FUSE OPT runtime also decreases and plateaus after 8 GBs

where it achieves a 4.0X speedup. NAUTILUS combines the benefits of both optimizations and

achieves the lowest runtimes.

System Resources Utilization: We evaluate the GPU utilization and cumulative disk

reads/writes for executing the FTR-2. Figure 9.11 presents the results. NAUTILUS yields a higher

average GPU utilization of 66% compared to the 57% of Current Practice. It also performs 4.3X

209

(A) Current Practice (B) Nautilus

Figure 9.11: Average GPU utilization and cumulative disk reads and writes for executing the
FTR-2.

fewer disk writes and 11.8X fewer disk reads. This is because Current Practice checkpoints

the entire original model after every model training, which is around 400-500MBs. But most

of the parameters in them are frozen parameters and do not need repeated checkpointing. In

contrast, NAUTILUS checkpoints modified model graphs with most frozen parameters pruned.

Writing less amount of data also helps with better page caching for the reads.

9.6 Conclusion

DTL model adaptation, where one adapts a pre-trained model for a new target task,

is a crucial paradigm for democratizing deep learning. Yet, the current practice of executing

DTL workloads faces significant resource inefficiency and usability issues. In this work, we

formalize the DTL workload from a data management standpoint and enable two multi-query

optimization-inspired optimizations: materialization optimization and model fusion optimization.

Our optimizations leverage the physical characteristics of the DTL model adaptation workloads

to optimize them. We implement our optimizations in a data system we call NAUTILUS. NAU-

TILUS reduces DTL model selection runtimes by even up to 80% and significantly improves

usability and resource usage.

210

Chapter 9 contains material from “Nautilus: An Optimized System for Deep Transfer

Learning over Evolving Training Datasets” by Supun Nakandala and Arun Kumar, which will

appear in Proceedings of 2022 ACM SIGMOD International Conference on Management of Data.

The dissertation author was the primary investigator and author of this paper. The code for our

system is open source and is available on GitHub: https://github.com/AdaLabUCSD/Nautilus.

211

Chapter 10

Related Work

10.1 Related Work for CEREBRO

Systems for Model Selection: Google Vizier [122], Ray Tune [192], SparkDL [21],

Dask-Hyperband [249], and Spark-Hyperopt [51] are systems for model selection. Vizier, Ray,

and Dask-Hyperband are pure task-parallel systems that implement some AutoML procedures.

SparkDL and Spark-Hyperopt use Spark for execution but distribute configs in a task-parallel

manner with full data replication. CEREBRO offers higher overall resource efficiency compared

to pure task- or pure data-parallel approaches.

AutoML Procedures: AutoML procedures such as Hyperband [186] and PBT [149] are

orthogonal to our work and exist at a higher abstraction level. They fit a common template of per-

epoch scheduling in CEREBRO. While ASHA [185] does not fit this template, CEREBRO can still

emulate it well and offer similar accuracy. Bayesian optimization is a class of AutoML procedures,

some of which have a high degree of parallelism for searching configs (e.g., Hyperopt [70]);

CEREBRO supports such procedures. Some others run a sequential search, leading to a low degree

of parallelism (e.g., [165, 69]); these may not be a fit for CEREBRO.

Distributed SGD Systems: There is much prior work on data-parallel distributed SGD,

212

including centralized fine-grained (e.g., [222, 297, 152, 146]) and decentralized fine-grained

(e.g., [281, 191, 222]). These are all complementary to our work because they train one model

at a time, while we focus on parallel model selection. As we showed, such approaches have

higher communication complexity and thus, higher runtimes than MOP in our setting. Also, since

CEREBRO performs logically sequential SGD, it ensures theoretically best convergence efficiency.

CROSSBOW [167] proposes a new variant of model averaging for single-server multi-GPU

setting. But it is also complementary to our work, since it also trains one model at a time. Overall,

our work breaks the dichotomy between data- and task-parallel approaches, thus offering better

overall resource efficiency.

Hybrid Parallelism in ML Systems: MOP is inspired by the classical idea of process

migration in OS multiprocessing [64]. We bring that notion to the data-partitioned cluster setting.

This generic idea has been used before in limited contexts in ML systems [172, 74]. The closest

to our work is [90], which proposes a scheme for training many homogeneous CNNs on a

homogeneous GPU cluster. They propose a ring topology to migrate models, resembling a

restricted form of MOP. But their strong homogeneity assumptions can cause stalls in general

model selection workloads, e.g., due to heterogeneous neural architectures and/or machines. In

contrast, we approach this problem from first principles and formalize it as an instance of open

shop scheduling. This powerful abstraction lets CEREBRO support arbitrary deep nets and data

types, as well as heterogeneous neural architectures and machines. It also enables CEREBRO to

support replication, fault tolerance, elasticity, and arbitrary AutoML procedures, unlike prior

work. SystemML also supports a hybrid of task- and data-parallelism for better plan generation

for linear algebra-based classical ML on top of MapReduce [75]. CEREBRO is complementary

due to its focus on deep nets and SGD’s data access pattern, not linear algebra-based classical

ML. Finally, a recent benchmark study suggested that communication bottlenecks inherent in

pure data-parallelism imply hybrid parallelism is crucial for scalable ML systems [270]. Our

work validates that suggestion for deep learning workloads.

213

Multi-Query and Other System Optimizations: MOP is also inspired by multi-query

optimization (MQO) [250]. A recent line of work in the database literature studies MQO for

deep learning, including staging and sharing work in CNN transfer learning [210] and batched

incremental view maintenance for CNN inference [211, 223, 212]. CEREBRO furthers this

research direction. All these MQO techniques are complementary and can be used together.

Several works optimize the internals of deep net or SGD systems, including communication-

computation pipelining [216], new compilation techniques [151], model batching [217], and

execution on compressed data [184]. They are complementary to CEREBRO, since they optimize

lower-level issues. MOP’s generality enables CEREBRO to be hybridized with such ideas.

Scheduling: Gandiva [285], Tiresias [129], and SLAQ [292] are cluster scheduling

frameworks for deep learning. They focus on lower-level primitives such as resource allocation

and intra-server locality for reducing mean job completion times. CEREBRO is complementary as

it exists at a higher abstraction level and focuses on model selection throughput. How compute

hardware is allocated is outside our scope. There is a long line of work on job scheduling in

the operations research and systems literatures [142, 81, 121]. Our goal is not to create new

scheduling algorithms but to apply known techniques to a new ML systems setting.

10.2 Related Work for HUMMINGBIRD

PyTorch [228], TensorFlow [54], MXNet [28], CNTK [27] are DNN frameworks that

provide easy-to-use (tensor-based) APIs for authoring DNN models, and heterogeneous hardware

support for both training and inference. Beyond these popular frameworks, inference runtimes

such as ONNX [15], nGraph [31], TVM [93], and TensorRT [35] provide optimizations and

efficient execution targets, specifically for inference. To prove the versatility of our approach,

we have tested HUMMINGBIRD with both PyTorch and TVM. HUMMINGBIRD uses a two-level,

logical-physical optimization approach. First, logical optimizations are applied based on the

214

operators composing the pipeline. Afterwards, physical operator implementations are selected

based on model statistics, and physical rewrites, which are externally implemented by the DL

system, are executed (e.g., algebraic rewrites, operator fusion). Willump [170] uses a similar two-

level optimization strategy, although it targets Weld [225] as its low level runtime and therefore

it cannot natively support inference on hardware accelerators. Conversely, HUMMINGBIRD

casts ML pipelines into tensor computations and takes advantage of DL inference systems to

ease the deployment on target environments. Other optimizers for predictive pipelines, such

as Pretzel [182], only target logical optimizations. We have integrated HUMMINGBIRD into

Raven [157] as part of our bigger vision for optimizing ML prediction pipelines.

10.3 Related Work for KRYPTON

Methods for Explaining CNN Predictions: Perturbation-based and gradient-based are

the two main kinds of methods. Perturbation-based methods observe the output of the CNN by

modifying regions of the input image [290, 296, 242]. OBE belongs to this category. Gradient-

based methods generate a sensitivity heatmap by computing the partial derivatives of model

outputs with respect to every input pixel [259, 251, 266]. The recently proposed “Integrated

Gradients” (IGD) method belongs into this category [266]. Empirically, we found that OBE

produces higher quality heatmaps with better localized regions of interest compared to IGD,

while being competitive on runtime. In practice, however, OBE is usually the method of choice

for domain scientific users, especially in radiology [256, 202], since it is easy to understand for

non-technical users and typically produces high-quality and well-localized heatmaps.

Faster CNN Inference: EVA2 [82] is a custom software-hardware integrated stack for

exploiting temporal redundancy in video frames. While one can map OBE to a video, EVA2 will

still perform motion estimation computations on whole frames and not exploit spatial redundancy

across frames as our batched IVM does. Since our optimizations are at the logical level, they are

215

also applicable to any compute hardware. CBinfer performs change-based approximate CNN

inference to accelerate real-time object recognition on video [85]. Similarly, NoScope accelerates

object classification on video streams using model cascades [156]. Our focus is on accelerating the

OBE workload for images, not video streams. Our IVM and approximate inference optimizations

exploit the semantic properties of OBE, not general object recognition. Both of these tools are

orthogonal to our focus.

Query Optimization: Our work is inspired by the long line of work on relational

IVM [96, 132, 183], but ours is the first work to use the IVM lens for OBE with CNNs. Our novel

algebraic IVM framework is closely tied to the dataflow of CNN layers, which transform tensors

in non-trivial ways. Our work is related to the IVM framework for linear algebra in [219]. They

focus on bulk matrix operators and incremental addition of rows. We do not deal with bulk matrix

operators or addition of rows but more fine-grained CNN inference computations and in-place

updates to image pixels due to occlusions. Also related is the IVM framework for distributed

multi-dimensional array database queries in [295]. An interesting connection is that CNN layers

with local spatial context can be viewed as a variant of spatial array join-aggregate queries. But

our work enables end-to-end IVM for entire CNNs, not just one-off spatial queries involving data

materialization and loading. Our focus is on popular deep learning systems, not array databases.

Finally, we also introduce novel CNN-specific and human perception-aware optimizations to

accelerate OBE.

Our work is also inspired by relational MQO [250, 178], but our focus is CNN inference,

not relational queries. To the best of our knowledge, ours is the first work to combine MQO

with IVM, at least in the context of CNN inference. Our approximate inference optimizations

are inspired by approximate query processing (AQP) techniques [120]. But unlike statistical

approximations of aggregations over relations, our techniques are novel CNN-specific and human

perception-aware heuristics tailored to accelerating OBE.

216

10.4 Related Work for VISTA

Multimodal Analytics: Transfer learning is used for other kinds of multimodal analytics

too, e.g., image captioning [158]. Our focus is on integrating images with structured data. A

related but orthogonal line of work is “multimodal learning” in which deep neural networks are

trained from scratch on images [218, 264]; this incurs high costs for resources and labeled data,

which feature transfer mitigates.

Multimedia Systems: The multimedia and database systems communities have studied

“content-based” image retrieval, video retrieval, and similar queries over multimedia data [55, 155].

But they typically used non-CNN features such as SIFT and HOG [103, 195] not learned

or hierarchical CNN features, although there is a resurgence of interest in CBIR with CNN

features [277, 288]. Such systems are orthogonal to our work, since we focus on CNN feature

transfer, not retrieval queries on multimedia data. One could integrate VISTA with multimedia

databases.

Query Optimization: Our work is inspired by a long line of work on optimizing queries

with UDFs, multi-query optimization (MQO), and self-tuning DBMSs. For instance, [140, 89, 26]

studied the problem of optimizing complex relational queries with UDF-based predicates. Unlike

such works on queries with UDFs in the WHERE clause, our work can be viewed as optimizing

UDFs expressed in the SELECT clause for materializing CNN feature layers. VISTA is the first

system to bring the general idea of MQO to complex CNN feature transfer workloads, which has

been studied extensively for SQL queries [250]. We do so by formalizing partial CNN inference

operations as first-class citizens for query processing. In doing so, our work expands a recent line

of work on materialization optimizations for feature selection in linear models [168, 291] and

integrating ML with relational joins [174, 91, 248, 175]. Finally, our work also expands the work

in database systems on optimizing memory usage based on data access patterns of queries [98].

But ours is the first work to study this issue in depth for CNN feature transfer queries.

217

System Auto-tuning: There is much prior work on auto-tuning the configuration of

RDBMSs, Hadoop/MapReduce, and Spark for relational workloads (e.g., [141, 58]). Our work is

inspired by these works but ours is the first to focus on the CNN feature transfer workload. We

explain the new efficiency and reliability issues caused by CNNs and feature layers and apply our

insights for CNN-aware auto-tuning in our setting that straddles PD and DL systems.

10.5 Related Work for NAUTILUS

Materialization Optimizations: Our work is inspired by the long line of work on reusing

intermediates to optimize ML workloads [168, 291, 262, 273, 286, 231, 210, 194], but ours

is the first to apply it to optimize DTL over evolving training data. Prior work in VISTA

system [210] also uses feature materialization to optimize DL feature transfer-based multi-

modal analytics. However, it supports only linear DL model graphs and features extracted

from only one layer at a time. Also, VISTA’s focus is on training classical ML models (e.g.,

linear regression) on the extracted features from a fixed dataset and not DTL over evolving data.

NAUTILUS generalizes VISTA in 3 dimensions. It supports 1) DAG structured DL model graphs

with arbitrary feature compositions, 2) evolving labeled datasets, and 3) all 3 popular transfer

learning paradigms. Intermediate feature materialization is also used in AUTOFREEZE [194] to

optimize the fine-tuning of a single BERT [109] model. NAUTILUS supports arbitrary DL models,

all popular transfer learning paradigms, and also model selection.

NAUTILUS’s cost model-based materialization optimization extends the optimal reuse

plan formulation in HELIX system [286]. Specifically, we represent models in a DTL model

selection workload using an optimizable graph structure called multi-model graph and jointly

solve the materialized intermediate output selection and the reuse plan generation in a single

MILP formulation.

Joint Model Training Optimizations: NAUTILUS’s model fusion is a form of common

218

sub-expression elimination (CSE). CSE is also used in several other systems to eliminate redun-

dant data pre-processing steps [217, 193, 293, 130]. NAUTILUS extends this to also eliminate

redundancies in materializable layers. However, existing systems require the user to select the

set of models to fuse [217, 293], adopt a trial-and-error approach [193] to find the set of models,

or trains each source model in a separate GPU [130]. NAUTILUS uses profiling information to

estimate fused model memory footprint and automatically picks an optimal set of models to fuse.

DL Model Selection: Several systems have been proposed to optimize DL model selec-

tion [215, 122, 192, 258, 51, 294, 190]. However, the focus of all these systems is on utilizing

the parallelism available in a cluster to scale the DL model selection. In contrast, the focus

of NAUTILUS is on DL model selection in low-resource settings such as workstations or PCs.

Also, NAUTILUS focuses on the human-in-the-loop setting with iteratively generated labeled data.

NAUTILUS supports two popular model selection procedures: grid and random search,

which cover an overwhelming majority of model selection applications [78]. However, there are

other more complex model selection procedures proposed in the literature [186, 185, 70, 149, 209].

We leave adding support for them to future work.

Other DL System Optimizations: Various other techniques can be also used to optimize

DTL. They include operator fusion [93, 52], hybrid parallel execution [151], layer batching [217,

293, 193], model compression [135], and model distilling [247]. They are complementary to the

optimizations performed by NAUTILUS since they mainly optimize lower-level operator execution.

There also exist systems that support training larger than GPU memory models [240, 177, 94].

They are complementary to our work and can be combined with NAUTILUS to train or fuse larger

models.

NAUTILUS’s runtime memory estimation operates at a higher level that is independent of

the exact memory allocation/deallocation behavior of the underlying DL system. However, one

can also try to mimic the exact behavior and obtain improved memory usage estimates as in [119].

Nevertheless, our approach provides reasonable upper-bounds sufficient for our requirement.

219

Chapter 11

Conclusion and Future Work

In this dissertation, we take a first step in filling an important research gap in DL systems

architecture: the lack of a query optimization layer. We show that by fundamentally reimagining

DL workloads as data processing workloads, we can develop novel query optimization-inspired

techniques to optimize DL workloads. Our techniques take inspiration from classical query opti-

mization ideas such as query rewriting, multi-query optimization, materialization optimizations,

incremental view maintenance, etc., and leverage the semantic, logical, and physical character-

istics of DL workloads to optimize them. We show that by doing so, we can enable significant

efficiency improvements and resource savings (sometimes even over 10X) for a variety of popular

and important DL workloads covering three popular DL workload types: 1) model building, 2)

model inference, and 3) transfer learning. Our work makes interesting new connections between

classical query optimization techniques and DL systems and also takes an important step towards

the goal of democratizing deep learning.

11.1 Future Work Related to CEREBRO

Model parallelism: In CEREBRO, we focused on DL models that fit in a single GPU

memory. However, DL model sizes have grown at a faster rate than GPU memory sizes, and

220

some models no longer fit in single GPU memory [119]. One way to tackle this limitation is

to partition a DL model across multiple GPUs and communicate updates between GPUs. This

approach is called model parallelism. It has poor scalability with runtime speedups being quite

sub-linear [151]. However, such large model training workloads are also not free from the need

for model selection. Thus, model hopper parallelism style ideas can be combined with model

parallelism to improve the system and resource efficiency of large model training workloads.

Model batching: At the other extreme of the model sizes, small DL models are also

common (e.g., for IoT). Small DL models substantially under-utilize GPU capacity. Batching

small models for training on the GPU can raise resource efficiency. While there is some recent

work in this space, they modify the internals of the DL frameworks [217]. We believe multi-

query optimization-inspired new approaches that intelligently batch DL models at the neural

computation graph level can have broader adoption and impact.

More high-level APIs: In CEREBRO, we focussed on supporting basic model selection

APIs, which can support hyperparameter tuning and architecture tuning. But as DL adoption

grows, newer applications will emerge and new design patterns for model-building will appear.

For example model building workloads for time-series or graph data have non-traditional data

access patterns and manipulations to run SGD, e.g., configuring and chunking time windows in

time series or retrieving features of a node’s neighbors in a graph. These patterns may be twists on

prior model selection patterns and/or contain new forms of sub-tasks that overlap in data and/or

computation. It would be interesting future work to explore how the general API template we

laid out for CEREBRO can be extended to support these workloads.

11.2 Future Work Related to HUMMINGBIRD

Tensors as an abstraction for general data processing: In project HUMMINGBIRD, we

translated classical ML inference pipelines into tensor programs and leveraged DL compilers to

221

seamlessly execute them over heterogeneous hardware (e.g., CPUs, GPUs, ASICs). A natural

question to ask is what other data processing workloads can be translated to tensor programs to

benefit from the investments in DL systems. We believe graph processing and relational operators,

two use cases very different from DL, in high demand, are two candidates that complement

quite well with DL workloads. Much work is needed in understanding how to translate graph

processing and relational operator algorithms into tensor computations [169].

Support for sparse tensor operations: We found that current support for sparse tensor

operations in DL systems is primitive and not well optimized. Thus we restricted the set of target

tensor operators supported in HUMMINGBIRD only to dense operations. However, these dense

operations can incur non-trivial overheads due to the redundancies introduced in the translation

process. As DL systems mature and improve the support for sparse tensor operations [164], it

would be interesting future work to explore how sparse tensor operations can be leveraged to

further improve the benefits of HUMMINGBIRD.

11.3 Future Work Related to KRYPTON

IVM-friendly CNNs: In KRYPTON, we use IVM-based incremental inference as a post-

hoc optimization to accelerate CNN inference. Going further, “IVM-friendliness” can be baked

into the very model selection process that crafts the CNN architecture so that the model is both

accurate and amenable to fast explanations [208].

Other CNN workloads: Our IVM framework for propagating incremental changes

through the layers of a CNN is highly general and can be used to support arbitrary workloads

which require re-inference in the presence of incremental input changes. Thus, we believe our

techniques may have applicability in several other CNN workloads, including object detection,

image segmentation, and even video analytics [85, 82, 212].

Explainability beyond OBE and CNNs: Even though we focused on OBE workloads

222

in this work, we believe incremental inference-based techniques can have broader applicability

across a variety of other feature perturbation-based explainability methods such as LIME [242] and

SHAP [196]. Extending explanation support for other data modalities such as time-series [212]

and graph data is also an interesting future direction.

11.4 Future Work Related to VISTA

Deep integration between PD and DL systems: VISTA currently supports one image

per data example and a roster of popular CNNs. Nothing in Vista makes it difficult to relax these

assumptions. For instance, supporting arbitrary CNNs requires static analysis of TF computational

graphs. It would be interesting future work to extend VISTA to relax these assumptions.

Feature transfer from other types of neural models: Apart from image analytics,

natural language processing (NLP) is another domain where feature transfer from pre-trained

models has proven to be useful [245]. BERT [109] is one such popular pre-trained NLP model.

Similar to CNNs, in order to pick the best layer, one has to explore multiple layer outputs. Also,

aggregating features from multiple layers using concatenation or element-wise addition is also

common. Thus, a feature layer in BERT depends on multiple input layers. VISTA can be extended

to support such feature transfer workloads by generalizing our staged materialization plan to

support arbitrary DAG architectures.

11.5 Future Work Related to NAUTILUS

Advanced model selection methods: In NAUTILUS, we assume that the model selection

workload specification is fixed and is repeated for all model selection cycles. While this approach

can support both grid and random search-based model selection, which covers an overwhelming

majority of practical and research DTL workloads, it would be interesting future work to add

223

support for more complex model selection methods (e.g., ASHA [185], Hyperband [186]).

Advanced layer freezing schemes: We also assume that the layer freezing scheme used

for adapting the source model is also fixed throughout the entire model training. However,

few dynamic layer freezing schemes have also been proposed in the literature [144, 115, 99].

Techniques in NAUTILUS can be extended to support such dynamic layer freezing schemes.

224

Appendix A

Appendix: CEREBRO

A.1 CEREBRO API Usage Example

In this Section, we present a detailed example on how the CEREBRO API can be used to

perform the ImageNet model selection workload explained in Section 3.6.

Before invoking the model selection workload users have to first register workers and

data. This can be done as per the API methods shown in Figure A.1, A.2 and A.3.

Figure A.1: Registering Workers.

Next, users need to define the initial set of training configurations as shown in Figure A.4.

Users also need to define three functions: input f n, model f n, and train f n. input f n

225

Figure A.2: Registering Dataset.

Figure A.3: Registering Partitions.

as shown in Figure A.5, takes in the file path of a partition, performs pre-processing, and returns

in-memory data objects. Inside the input f n users are free to use their preferred libraries and

tools provided they are already installed on the worker machines. These in-memory data objects

are then cached in the worker’s memory for later usage.

After the data is read into the worker’s memory, CEREBRO then launches the model

selection workload. This is done by launching training units on worker machines. For this

CEREBRO first invokes the user defined model f n. As shown in Figure A.6, it takes in the

226

Figure A.4: Initial Training Configurations.

Figure A.5: User-defined input function.

training configuration as input and initializes the model architecture and training optimizer based

on the configuration parameters. Users are free to use their preferred tool for defining the model

architecture and the optimizer. After invoking the model f n, CEREBRO injects a checkpoint

restore operation to restore the model and optimizer state from the previous checkpointed state.

After restoring the state of the model and the optimizer, CEREBRO then invokes the user

provided train f n to perform one sub-epoch of training. As shown in Figure A.7, it takes in

the data, model, optimizer, and training configuration as input and returns convergence metrics.

Training abstractions used by different deep learning tools are different and this function abstracts

it out from the CEREBRO system. After the train f n is complete the state of the model and the

optimizer is checkpointed again.

227

Figure A.6: User-defined model function.

Figure A.7: Train function.

For evaluating the models, we assume the evaluation dataset is also partitioned and

perform the same process. We mark the model parameters as non-trainable before passing it to

the train f n. After a single epoch of training and evaluation is done, CEREBRO aggregates the

convergence metrics from all training units from the same configuration to derive the epoch-level

convergence metrics. Convergence metrics are stored in a configuration state object which keeps

228

track of the training process of each training configuration. At the end of an epoch, configuration

state objects are passed to the automl mthd implementation for evaluation. It returns a set of

configurations that needs to be stopped and/or the set of new configurations to start. For example

in the case of performing Grid Search for 10 epochs, the automl mthd will simply check whether

an initial configuration has been trained for 10 epochs, and if so it will mark it for stopping.

A.2 CNN Compute Costs

Table A.1 lists the computational costs of the CNNs used for the simulation experiment in

Section 3.5.4, which compares different scheduling methods. These costs were obtained from a

publicly available benchmark1.

A.3 Straggler Issue in Celery

One potential issue that could impact task-parallel systems’ performance is load balancing.

Given the large variance of runtimes for deep-nets training, the scheduling generated by Celery

could lead to severe straggler issues that impairs the end-to-end runtime of the whole workload.

On the other hand, CEREBRO suffers far less from this problem because it operates on a finer

granularity; our tasks are chunked into sub-epochs and hence it is less likely for long-running

stragglers to appear.

We take the Criteo tests showed in Section 3.6.1 as example. Without any prior or domain

knowledge, it is impossible to know the runtime of each task before-hand and therefore Celery

could schedule a plan like Figure A.8. The execution suffers from the straggler config#0 and

needs 27.4 hrs to run.

However, if with a proper estimation/profiling of the runtimes/workloads, it is possible to

fix this straggler issue with a carefully curated schedule as showed in Figure A.9. This schedule
1https://github.com/albanie/convnet-burden

229

Table A.1: Computation costs of the CNNs used for the simulation experiment comparing
different scheduling methods.

Model FLOPs

AlexNet 727 MFLOPs
CaffeNet 724 MFLOPs
SqueezeNet1-0 837 MFLOPs
SqueezeNet1-1 360 MFLOPs
VGG-f 727 MFLOPs
VGG-m 2 GFLOPs
VGG-s 3 GFLOPs
VGG-m-2048 2 GFLOPs
VGG-m-1024 2 GFLOPs
VGG-m-128 2 GFLOPs
VGG-vd-16-atrous 16 GFLOPs
VGG-vd-16 16 GFLOPs
VGG-vd-19 20 GFLOPs
GoogleNet 2 GFLOPs
ResNet18 2 GFLOPs
ResNet34 4 GFLOPs
ResNet50 4 GFLOPs
ResNet101 8 GFLOPs
ResNet152 11 GFLOPs
ResNext-50-32x4d 4 GFLOPs
ResNext-101-32x4d 8 GFLOPs
ResNext-101-64x4d 16 GFLOPs
Inception-V3 6 GFLOPs
SE-ResNet-50 4 GFLOPs
SE-ResNet-101 8 GFLOPs
SE-ResNet-152 11 GFLOPs
SE-ResNeXt-50-32x4d 4 GFLOPs
SE-ResNeXt-101-32x4d 8 GFLOPs
SENet 21 GFLOPs
SE-BN-Inception 2 GFLOPs
DenseNet121 3 GFLOPs
DenseNet161 8 GFLOPs
DenseNet169 3 GFLOPs
DenseNet201 4 GFLOPs
MobileNet 579 MFLOPs

230

0 5 10 15 20 25

worker#7

worker#6

worker#5

worker#4

worker#3

worker#2

worker#1

worker#0

time/hrs

config#0

config#1

config#2

config#3

config#4

config#5

config#6

config#7

config#8

config#9

config#10config#11

config#12

config#13

config#14

config#15

Figure A.8: An unbalanced work schedule generated by Celery for Criteo tests.

drastically reduces the runtime to 19.7 hrs.

In Section 3.6.1, we decided to show the runtime with the best-possible scheduling for

Celery, as we do not wish to unfairly punish the adversarial systems, and load balancing/runtime

estimation of deep learning workloads are out of the scope of this work. We believe these

decisions can ultimately help the reader focus on the benefits and advantages of our system.

A.4 AutoML Procedures

A.4.1 Experiments with HyperBand

We compare CEREBRO and Celery for executing Hyperband [186]; a popular AutoML

search procedure. We use ImageNet, GPU cluster, and PyTorch. Training configs are randomly

sampled from the grid shown in Table 3.6. For CEREBRO each data partition is only available on

one worker; for Celery the dataset is fully replicated.

Hyperband combines random search with early stopping. It starts with a fixed set of

model configs and trains them for a given number of epochs in the first “rung.” After completion,

231

0 5 10 15 20

worker#7

worker#6

worker#5

worker#4

worker#3

worker#2

worker#1

worker#0

time/hrs

config#0

config#1

config#2

config#3

config#4

config#5

config#6

config#7 config#8

config#9

config#10

config#11

config#12

config#13

config#14

config#15

Figure A.9: Best possible work schedule with Celery for Criteo tests.

it picks a subset of the best models and promotes them to the next rung; this is repeated several

times until a max epoch budget is hit. We run an experiment with a max resource budget (R) of 25

epochs and a downsampling rate (η) of 3, two parameters from the Hyperband paper. Figure A.10

compares the learning curves of the configs run by Hyperband on CEREBRO and Celery.

We see that CEREBRO and Celery have almost indistinguishable convergence behaviors,

validating our claim that MOP benefits from SGD’s robustness to random data ordering. As

Figure A.11 shows, both systems have similar completion times (42.1hr for Celery; 43.5hr for

CEREBRO). Some configs finish sooner on Celery than their counterparts on CEREBRO. This is

because CEREBRO’s per-epoch scheduling template enforces all configs to be scheduled for the

same epoch. But in Celery, configs in their last rung can finish earlier without waiting for other

configs.

A.4.2 Experiments with ASHA

ASHA combines random search with early stopping. It starts with a set of model configs

and trains them for a fixed number of epochs in the first “rung.” After a training config finishes its

232

Epoch

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

) (A) Hyperband on Cerebro (B) Hyperband on Celery

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

)

Epoch

Figure A.10: Hyperband learning curves by epochs.

Time (Hours) Time (Hours)

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

) (A) Hyperband on Cerebro (B) Hyperband on Celery

To
p-

5
Va

lid
at

io
n

Er
ro

r (
%

)

Figure A.11: Hyperband learning curves by time.

current rung, it is assigned to a pool of completed configs for that rung. ASHA will then pick a

promising config from this pool based on a selection fraction (η) and promote it to the next rung

for training. If the selection fraction is already exhausted, a new config will be created and trained

for the first rung. A model can be promoted between rungs until it is trained for a maximum

number of rungs/epochs. This process is continued until the allocated time budget for model

selection workload is reached.

ASHA’s decisions on configs are dependent on the wallclock completion order of configs

across task-parallel workers. Thus, it is impossible to exactly replicate a run of ASHA on task-

parallelism in CEREBRO. However, we can indeed emulate ASHA on CEREBRO without making

any changes to CEREBRO. We run an experiment using ASHA with a max resource budget (R) of

9 epochs, a selection fraction (η) of 3, and a time limit of 24hr.

In the given time limit, ASHA on CEREBRO (resp. Celery) explored 83 (resp. 67) configs.

233

Number of Epochs

N
um

be
r o

f c
on

fig
ur

at
io

ns

(A) (B)

Fr
ac

tio
n

of
 to

ta
l c

on
fig

s
(%

)

Number of Epochs
Figure A.12: Number of configs vs. the amount of epochs they were run for by. (A) Count of
configs and (B) Fraction of total config count.

To
p-

5
va

lid
at

io
n

er
ro

r (
%

)

Time (hours)

Figure A.13: Best validation error for each rung of ASHA.

Figure 3.13 shows all learning curves. Though the individual configs are not comparable across

the two systems, the best errors achieved are close (31.9% on CEREBRO ; 33.2% on Celery).

A serendipity is that ASHA-on-CEREBRO seems to perform slightly better than the regular

task-parallel version in the ASHA! We believe this is because the epoch-level synchronization

in CEREBRO actually helps ASHA pick and promote better configs due to its knowledge of a

larger set of configs. Regular ASHA gains this knowledge spread over time, which makes it prone

to more wrong promotions. Figure A.12 confirms our intuition: ASHA-on-CEREBRO explores

more configs in the lower rungs than regular ASHA. Also, as Figure A.13 shows, ASHA-on-

CEREBRO reaches lower errors for all rungs sooner than regular ASHA. We leave a more rigorous

234

Runtime (hours)

1 2 3 4 5
Epoch

6 7 8 9 100

0 2 4 6 8 10 12 14 16 18

Figure A.14: Gantt chart corresponding to the schedule produced by CEREBRO for the ImageNet
workload. Each color corresponds to a different training configuration. Best viewed in color.

statistical analysis of this apparent superiority of ASHA-on-CEREBRO over regular ASHA to

future work.

A.5 Gantt Chart

Figure A.14 presents the Gantt chart corresponding to the scheduler produced by CERE-

BRO for the ImageNet workload. Each color bar corresponds to a different training configuration

(16 in total).

235

16 64 256 1024 4096
0

2

4

6
Sp

ee
du

p
VGG16

16 64 256 1024 4096

0.5

1.0

1.5

2.0

ResNet18

16 64 256 1024 4096

0.5

1.0

1.5

2.0

Inception3

Theoretical Empirical-GPU Empirical-CPU
|G|

Figure B.1: Interactive mode execution of incremental inference with Gs of different sizes

Appendix B

Appendix: KRYPTON

B.1 Interactive Mode Execution

We evaluate interactive-mode incremental inference execution (no approximate inference

optimizations) with Gs of different sizes. Similar to non-interactive mode experiments presented

in Section 6.5, all experiments are run in batched mode with a batch size of 16 for CPU based

experiments and a batch size 128 for GPU based experiments. If the size of G (formally |G|) or

the remainder of G is smaller than the batch size, that value is used as the batch size (e.g. |G|= 16

results in a batch size of 16). Figure B.1 presents the final results.

236

FFI
PyTorch

Python

GPU Memory

cuDNN Library

Custom Kernel Interface
C

Custom Kernel Impl.
Cuda

InvokesFlow of Data

1

2

3

4

5

6

0: Invoke incremental inference.

1: Initialize the input tensors, kernel weights and output buffer

in the GPU memory.

2: Invoke the Custom Kernel Interface (written in C) using

Python foreign function interface (FFI) support. Pass memory

references of input tensors, kernel weights and output buffer.

3: Forward the call to the Custom Kernel Implementation

(written in CUDA).

4: Parallely copy the memory regions from the input tensor to

an intermediate memory buffer.

5: Invoke the CNN transformation using cuDNN.

6: cuDNN reads the input from intermediate buffer and writes

the transformed output to the output buffer.

7: Read the output to the main memory or pass reference as

the input to the next transformation.

7

Krypton
Python

0

Figure B.2: Custom GPU Kernel integration architecture

B.2 Integration into PyTorch

For the CPU environment we implemented KRYPTON purely on top of the PyTorch

toolkit using it’s tensor slicing and stitching capabilities as per Algorithm 6. However, for the

GPU environment such iterative memory copying operations introduce high overheads as the

many GPU cores now have to idle wait for the slow memory copy operations. To overcome this

we extended PyTorch by adding a custom GPU kernel which optimizes the input preparation

for incremental inference by invoking parallel memory copy operations. This custom kernel

is integrated to PyTorch using Python foreign function interface (FFI). Python FFI integrates

with the Custom Kernel Interface layer which then invokes the Custom Memory Copy Kernel

Implementation. The high-level architecture of the Custom Kernel integration is shown in

Figure B.2.

237

Input

Filter
Positions

Output

Input

Filter
Positions

Output

(a) (b)

(c) (d)

Figure B.3: Illustration of special cases for which actual output size will be smaller than the
value given by Equation (6.13). (a) and (b) show cases where the filter stride is equal to the filter
size. (c) and (d) show situations where the position of the modified patch affecting the size of
the output patch.

B.3 Special Cases for Incremental Inference

There are special cases under which the output patch size can be smaller than the values

calculated in Section 6.3.2. Consider the simplified 1-D case shown in Figure B.3 (a), where

the filter stride1 (3) is the same as the filter size (3). In this case, the size of the output update

patch is one less than the value calculated by Equation (6.14). But this is not the case for the

situation shown Figure B.3 (b), which has the same input patch size but placed at a different

location. Another case arises when the modified patch is placed at the edge of the input, as shown

in Figure B.3 (c). In this case, it is impossible for the filter to move freely through all positions,

since it hits the input boundary. However, it is not the case for the modified patch shown in Figure

B.3 (d). In KRYPTON, we do not treat these cases separately but rather use the values calculated

by Equation (6.14) for the width dimension (similarly for the height dimension), since they act as

an upper bound. In the case of a smaller output patch, KRYPTON reads and updates a slightly

bigger patch to preserve uniformity. This also requires updating the starting coordinates of the

patch, as shown in Equation (B.1). This sort of uniform treatment is required for performing

1Note that stride is typically less than or equal to filter size.

238

batched inference operations, which gives significant speedups compared to per-image inference.

If xO
P + W O

P >WO :

xO
P =WO−W O

P ;xI
P =WI −W I

P ;xR
P =WI −W R

P

(B.1)

B.4 Effective Projective Field Size

We formalize the effective projective field growth for the one dimensional scenario with n

convolution layers (assuming certain conditions). This proof is motivated by a similar proof in

[197] which characterizes the effective growth rate of the receptive field in a CNN.

The input is u(t) where

u(t) =


1, t = 0

0, t 6= 0
(B.2)

and t = 0,1,−1,2,−2, ... indexes the input pixels.

Each layer has the same kernel v(t) of size k. The kernel signal can be formally defined as

v(t) =
k−1

∑
m=0

w(m)δ(t−m) (B.3)

where w(m) is the weight for the mth pixel in the kernel. Without loosing generality, we can

assume the weights are normalized, i.e. ∑m w(w) = 1. The output signal of the nth layer o(t) is

simply o = u∗v∗ ...∗v, convolving u with n such vs. To compute the convolution, we can use the

239

Discrete Time Fourier Transform to convert the signals into the Fourier domain, and obtain

U(ω) =
∞

∑
t=−∞

u(t)e− jωt = 1, V (ω)

=
∞

∑
t=−∞

v(t)e− jωt =
k−1

∑
m=0

w(m)e− jωt
(B.4)

Applying the convolution theorem, we have the Fourier transform of o is

F (o) = F (u∗ v∗ ...∗ v)(ω) =U(ω).V (ω)n

=

(
k−1

∑
m=0

w(m)e− jωt

)n (B.5)

With inverse Fourier transform

o(t) =
1

2π

∫
π

−π

(k−1

∑
m=0

w(m)e− jωt
)n

e jωtdω (B.6)

The space domain signal o(t) is given by the coefficients of e− jωt . These coefficients turn

out to be well studied in the combinatorics literature [112]. It can be shown that if ∑m w(m) = 1

and w(m)≥ 0 ∀ m , then

o(t) = p(Sn = t)

where Sn =
n

∑
i=1

Xi and p(Xi = m) = w(m)
(B.7)

From the central limit theorem, as n→ ∞,
√

n(1
nSn−E[X]) ∼ N (0,Var[X]) and Sn ∼

N (nE[X]),nVar[X]). As o(t) = p(Sn = t), o(t) also has a Gaussian shape with

E[Sn] = n
k−1

∑
m=0

mw(m) (B.8)

Var[Sn] = n

(
k−1

∑
m=0

m2w(m)−
(k−1

∑
m=0

mw(m)
)2
)

(B.9)

240

Table B.1: Train-validation-test split size for each dataset.

Train Validation Test
OCT 50,382 16,853 16, 857

Chest X-Ray 3,463 1,237 1,156

This indicates that o(t) decays from the center of the projective field squared exponentially

according to the Gaussian distribution. As the rate of decay is related to the variance of the

Gaussian and assuming the size of the effective projective field is one standard deviation, the size

can be expressed as

√
Var[Sn] =

√
nVar[Xi] = O(

√
n) (B.10)

On the other hand stacking more convolution layers would grow the theoretical projective

field linearly. But the effective projective field size is shrinking at a rate of O(1/
√

n).

B.5 Fine-tuning CNNs

For OCT and Chest X-Ray, the 3 ImageNet-trained CNNs are fine-tuned by retraining

the final Fully-Connected layer. We use a train-validation-test split of 60-20-20 and the exact

numbers for each dataset are shown in Table B.1. Cross-entropy loss with L2 regularization

is used as the loss function and Adam [162] is used as the optimizer. We tune learning rate

η ∈ [10−2,10−4,10−6] and regularization parameter λ ∈ [10−2,10−4,10−6] using the validation

set and train for 25 epochs. Table B.2 shows the final train and test accuracies.

B.6 Memory Overhead of IVM

We evaluate the memory overhead of IVM approach, with no projective field thresholding

(τ = 1.0) and a projective field thresholding value of τ = 0.6, compared to the full CNN inference.

241

Table B.2: Train and test accuracies after fine-tuning.

Model
Accuracy(%) Hyperparams.

Train Test η λ

OCT
VGG16 79 82 10−4 10−4

ResNet18 79 82 10−2 10−4

Inception3 71 81 10−2 10−6

Chest X-Ray
VGG16 75 76 10−4 10−4

ResNet18 78 76 10−4 10−6

Inception3 74 76 10−4 10−2

VGG16 ResNet18 Inception3
0

20

40

60

80

100

Pe
ak

 M
em

or
y

Us
ag

e
(%

) Full Inference Inc. Inference (= 1.0) Inc. Inference (= 0.6)

Figure B.4: Peak GPU memory usage when performing CNN inference on a batch of 128
images.

For this we record the peak GPU memory utilization while the CNN models perform inference

on image batches of size 128. We found that incremental inference approach can enable up to

58% lower memory overhead (see Figure B.4). Krypton materializes a single copy of all CNN

layers corresponding to the unmodified image and reuses it across a batch of occluded images

with IVM. For IVM the size of required memory buffers are much smaller than the full inference

as only the updated patches need to be propagated.

B.7 Visual Examples

Figure B.5 presents occlusion heat maps for a sample image from each dataset with (a)

incremental inference for different projective field threshold values and (b) incremental inference

with adaptive drill-down for different projective field threshold values. The predicted class label

242

Figure B.5: Occlusion heat maps for sample images (CNN model = VGG16, occlusion patch
size = 16, patch color = black, occlusion patch stride (S or S2) = 4. For OCT rdrill down = 0.1
and target = 5. For Chest X-Ray rdrill down = 0.4 and target = 2. For ImageNet rdrill down = 0.25
and target = 3). For a projective field threshold value of 0.3 we see significant degradation of
heat map quality due to the significant information loss from truncation.

for OCT, Chest X-Ray, and ImageNet are DME, VIRAL, and OBOE respectively.

243

OCT/DME

Chest X-Ray/VIRAL

ImageNet/OBOE

Integrated Gradients
(50 steps)

OBE

Krypton Krypton
Approximate(a) (b)

Figure B.6: Comparison of integrated gradients method against OBE. (a) Heat maps generated
by integrated gradients method with a step size of 50. The three color channel gradients of a
pixels at the same point are aggregated using L2 norm

B.8 Integrated Gradients Method

We evaluate the runtime and visual quality of the generated heat maps for integrated

gradients (IGD) [266] and OBE methods on three representative images from our datasets (see

Figure B.6). In general, OBE can better localize relevant regions from the input images. IGD

method requires tuning a hyper-parameter called steps which determines the number steps to be

used in the gradient integration approximation. Increasing steps improves both the runtime and

heat map quality of the IGD method. For performing OBE we used the same hyper-parameters

that were used in Section 6.5.1.

244

Appendix C

Appendix: VISTA

C.1 Estimating Intermediate Data Sizes

We explain the size estimations in the context of Spark. Ignite also uses an internal format

similar to the Spark. Spark’s internal binary record format is called “Tungsten record format,”

shown in Figure C.2. Fixed size fields (e.g., float) use 8 B. Variable size fields (e.g., arrays) have

an 8 B header with 4 B for the offset and 4 B for the length of the data payload. The data payload

is stored at the end of the record. An extra bit tracks null values.

VISTA estimates the size of intermediate tables Tl ∀l ∈ L in Figure 8.5(E) based on its

knowledge of the CNN. For simplicity, assume ID is a long integer and all features are single

precision floats. Let |X | denote the number of features in X . |Tstr| and |Timg| are straightforward

to calculate, since they are the base tables. For |Ti| with feature layer l = L[i], we have:

|Ti|= α1× (8+8+4×|gl(f̂l(I))|)+ |Tstr| (C.1)

Equation C.1 assumes deserialized format; serialized (and compressed) data will be

smaller. But these estimates suffice as safe upper bounds.

Figure C.3 shows the estimated and actual sizes. We see that the estimates are accurate for

245

Figure C.1: VISTA API and sample usage showing values for the input parameters and invoca-
tion.

the deserialized in-memory data with a reasonable safety margin. Interestingly, Eager is not that

much larger than Staged for AlexNet. This is because among its four layers explored the 4th layer

from the top is disproportionately large while for the other two layer sizes are more comparable.

Serialized is smaller than deserialized as Spark compresses the data. Interestingly, AlexNet

feature layers seem more compressible; we verified that its features had many zero values. On

average, AlexNet features had only 13.0% non-zero values while VGG16’s and ResNet50’s had

36.1% and 35.7%, respectively.

C.2 Pre Materializing a Base Layer

Often data scientists are interested in exploring few of the top most layers. Hence a base

layer can pre-materialized before hand for later use of exploring other layers. This can save

computations and thereby reduce the runtime of the CNN feature transfer workload.

However, the CNN feature layer sizes (especially for conv layers) are generally larger

246

(1234, [1.03, 3.2, ..., 9.2], [4.21, 8.34, ..., 3.23])

Primary Key (PK)
Structured Features Image Features

0X0 1234(8B) (4B) (4B) (4B) (4B)

Null Tracking Bitmap

Fixed length PK

Offset to the Variable Length Structured Features

Offset to the Variable Length Image Features

Length of Variable Length Fields

[1.03, 3.2, ..., 9.2] [4.21, 8.34, ..., 3.23]

Figure C.2: Spark’s internal record storage format.

AaT Staged
0

1

2

3

4

5

S
iz

e
 (

G
B

)

AlexNet/1X

AaT Staged
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

VGG16/1X

AaT Staged
0

10

20

30

40

50
ResNet50/1X

Estimate Deserialized Serialized

Figure C.3: Size of largest intermediate table.

Table C.1: Sizes of pre-materialized feature layers for the Foods dataset (size of raw images is
0.26 GB).

Materialized Layer Size (GB)
(layer index starts from the last layer)
1st 2nd 4th 5th

AlexNet 0.08 0.14 0.72

VGG16 0.08 0.20 1.19

ResNet50 0.08 2.65 3.45 11.51

than the compressed image formats such as JPEG (see Table C.1). This not only increases

the secondary storage requirements but also increases the IO cost of the CNN feature transfer

workload both when initially reading data from the disk and during join time when shuffling data

over the network.

We perform a set of experiments using the Spark-TF system to explore the effect of

pre-materializing a base layer (1, 2, 4, and 5th layers from top). For evaluating the ML model for

247

4L 2L 1L
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
u
n
 T

im
e
(m

in
)

(A) AlexNet

4L 2L 1L
0

1

2

3

4

5

6

7

8

9
(B) VGG16

5L 4L 2L 1L
0

1

2

3

4

5

6
(C) ResNet50

Materialization Without Pre-Materialization With Pre-Materialization

Figure C.4: Runtimes comparison for using pre-materialized features from a base layer

the base layer no CNN inference is required. But for the other layers partial CNN inference is

performed starting from the base layer using the Staged/After Join/Deserialized/Shuffle logical-

physical plan combination. Experimental set up is same as in Section 8.4.3.

For AlexNet and VGG16 when materializing 4th, 2nd , and 1st layers from the top, the

materialization time increases as evaluating higher layer requires more computations (see Fig-

ure. C.4 (A) and (B)). However, for ResNet50 there is a sudden drop from the materialization

time of 5th layer features to the materialization time of 4th layer features. This can be attributed to

the high disk IO overhead of writing out 5th layer image features which are ∼3 times larger than

that of 4th layer (see Figure. C.4 (C)). Therefore, for ResNet50 starting from a pre-materialized

feature layer, instead of raw images, may or may not decrease the overall CNN feature transfer

workload runtime.

C.3 Runtime Breakdown

We drill-down into the time breakdowns of the workloads on Spark-TF environment and

explore where the bottlenecks occur. In the downstream logistic regression (LR) model, the time

spent for training the model on features from a specific layer is dominated by the runtime of

the first iteration. In the first iteration partial CNN inference has to be performed starting either

from raw images or from the image features from the layer below and the later iterations will be

operating on top of the already materialized features. Input read time is dominated by reading

248

1 2 3 4 5 6 7 8

Number of Nodes

1

2

3

4

5

6

7

8

(C) ResNet50

1 2 3 4 5 6 7 8

Number of Nodes

1

2

3

4

5

6

7

8
S
p
e
e
d
u
p

(A) AlexNet

1 2 3 4 5 6 7 8

Number of Nodes

1

2

3

4

5

6

7

8

(B) VGG16

CNN inference + LR first iteration Reading images

Figure C.5: Drill-down analysis of Speedup Curves.

Table C.2: Runtime breakdown for the image data read time and 1st iteration of the logistic
regression model (Layer indices starts from the top and runtimes are in minutes).

ResNet50/5L AlexNet/4L VGG16/3L
Number of nodes Number of nodes Number of nodes

1 2 4 8 1 2 4 8 1 2 4 8

L
ay

er

5 19.0 9.5 4.5 2.3
4 3.8 1.8 0.9 0.4 3.7 2.1 1.2 0.7
3 2.7 1.3 0.7 0.4 2.4 1.3 0.7 0.5 43.0 22.0 11.0 5.4
2 2.6 1.3 0.6 0.3 1.1 0.6 0.3 0.2 1.0 0.5 0.3 0.2
1 1.8 0.9 0.4 0.2 0.3 0.2 0.1 0.1 0.3 0.2 0.1 0.1
total 29.9 14.8 7.1 3.6 7.5 4.2 2.3 1.5 44.3 22.7 11.4 5.7

Read images 3.7 2.0 1.1 0.7 3.9 2.1 1.2 0.8 4.6 2.5 1.4 0.9

images as there are lot of small files compared to the one big structured data file [22]. Table C.2

summarizes the time breakdown for the CNN feature transfer workload. It can be seen that most

of the time is spent on performing the CNN inference and LR 1st iteration on the first layer (e.g

5th layer from top for ResNet50) where the CNN inference has to be performed starting from raw

images.

We also separately analyze the speedup behavior for the input image reading and the sum

of CNN inference and LR 1st iteration times (see Figure C.5). When we separate out the sum of

CNN inference and LR 1st iteration times, we see slightly super linear speedups for ResNet50,

249

near linear speedups for VGG16, and slightly better sub-linear speedups for AlexNet.

250

Bibliography

[1] Adaptive Execution in Spark. https://issues.apache.org/jira/browse/
SPARK-9850. Accessed March 31, 2020.

[2] AI Device for Detecting Diabetic Retinopathy Earns Swift FDA Approval. https://www.
aao.org/headline/first-ai-screen-diabetic-retinopathy-approved-by-f.
Accessed September 31, 2018.

[3] Basic Operations in a Convolutional Neural Network - CSE@IIT Delhi. http://www.
cse.iitd.ernet.in/˜rijurekha/lectures/lecture-2.pptx. Accessed September
31, 2018.

[4] Benchmarks for Popular CNN Models. https://github.com/jcjohnson/
cnn-benchmarks. Accessed March 31, 2020.

[5] Big Data Analytics Market Survey Summary. https:
//www.forbes.com/sites/louiscolumbus/2017/12/24/
53-of-companies-are-adopting-big-data-analytics/#4b513fce39a1. Ac-
cessed March 31, 2020.

[6] Cafee Model Zoo. https://github.com/BVLC/caffe/wiki/Model-Zoo. Accessed
September 31, 2018.

[7] Cerebras Chip. https://www.wired.com/story/
power-ai-startup-built-really-big-chip/.

[8] Distribution of Executors, Cores and Memory for a Spark Application run-
ning in Yarn. https://spoddutur.github.io/spark-notes/distribution_of_
executors_cores_and_memory_for_spark_application. Accessed March 31, 2020.

[9] Get Started with TensorFlow Transform. https://www.tensorflow.org/tfx/
transform/get_started. Accessed March 31, 2020.

[10] Kaggle Survey: The State of Data Science and ML. https://www.kaggle.com/
surveys/2017. Accessed March 31, 2020.

251

[11] Models and Examples Built with TensorFlow. https://github.com/tensorflow/
models. Accessed September 31, 2018.

[12] Nautilus: An Optimized System for Deep Transfer Learning over Evolving Training
Datasets - [Technical Report]. https://adalabucsd.github.io/papers/TR_2022_
Nautilus.pdf. Accessed March 1, 2022.

[13] Nvidia RAPIDS. https://developer.nvidia.com/rapids.

[14] ONNX ML. https://github.com/onnx/onnx/blob/master/docs/Operators-ml.
md.

[15] ONNX Runtime. https://github.com/microsoft/onnxruntime.

[16] ONNX Supported Frameworks and Backends. https://onnx.ai/supported-tools.
html.

[17] Open Food Facts Dataset. https://world.openfoodfacts.org/. Accessed March 31,
2020.

[18] Parallel Postgres for Enterprise Analytics at Scale. https://pivotal.io/
pivotal-greenplum. Accesses January 31, 2018.

[19] Spark Best Practices. http://blog.cloudera.com/blog/2015/03/
how-to-tune-your-apache-spark-jobs-part-2/. Accessed March 31, 2020.

[20] Spark Memory Management. https://0x0fff.com/spark-memory-management/. Ac-
cessed March 31, 2020.

[21] SparkDL: Deep Learning Pipelines for Apache Spark. https://github.com/
databricks/spark-deep-learning. Accessed March 31, 2020.

[22] The Small Files Problem of HDFS. http://blog.cloudera.com/blog/2009/02/
the-small-files-problem/. Accessed March 31, 2020.

[23] Torch Vison Models. https://github.com/pytorch/vision/tree/master/
torchvision/models. Accessed September 31, 2018.

[24] TorchScript Documentation. https://pytorch.org/docs/stable/jit.html.

[25] Transfer Learning with CNNs for Visual Recognition. http://cs231n.github.io/
transfer-learning/. Accessed March 31, 2020.

[26] Efficient Evaluation of Queries with Mining Predicates. In Proceedings of the 18th
International Conference on Data Engineering, ICDE ’02, pages 529–. IEEE Computer
Society, 2002.

[27] CNTK. https://docs.microsoft.com/en-us/cognitive-toolkit/, 2018.

252

[28] MXNet. https://mxnet.apache.org/, 2018.

[29] ESG Technical Validation: Dell EMC Ready Solutions for AI: Deep Learning with Intel.
https://tinyurl.com/2p94kcrd, 2019.

[30] Graphcore IPU. https://www.graphcore.ai/, 2019.

[31] nGraph. https://www.ngraph.ai/, 2019.

[32] ONNX-ML vs Sklearn Benchmark. https://github.com/xadupre/scikit-learn_
benchmarks, 2019.

[33] ONNXMLTools. https://github.com/onnx/onnxmltools, 2019.

[34] RAPIDS Forest Inference Library. https://medium.com/rapids-ai/
rapids-forest-inference-library-prediction-at-100-million-rows
-per-second-19558890bc35, 2019.

[35] Tensor-RT. https://developer.nvidia.com/tensorrt, 2019.

[36] Broadcasting Semantic. https://www.tensorflow.org/xla/broadcasting, 2020.

[37] Gradient Boosting Algorithm Benchmark. https://github.com/NVIDIA/gbm-bench,
2020.

[38] Hummingbird’s Github Repository. https://github.com/microsoft/hummingbird,
2020.

[39] Iris Dataset. https://scikit-learn.org/stable/auto_examples/datasets/plot_
iris_dataset.html, 2020.

[40] Memory Profiler for Python. https://github.com/pythonprofilers/memory_
profiler, 2020.

[41] Nomao Dataset. https://www.openml.org/d/1486, 2020.

[42] ONNX. https://github.com/onnx/onnx/blob/master/docs/Operators.md, 2020.

[43] ONNX Portable Format. https://www.infoworld.com/article/3223401/
onnx-makes-machine-learning-models-portable-shareable.html, 2020.

[44] OpenML-CC18 Benchmark. https://www.openml.org/s/99, 2020.

[45] RAPIDS cuML. https://github.com/rapidsai/cuml, 2020.

[46] Sambanova: Massive Models for Everyone. https://sambanova.ai/, 2020.

[47] skl2onnx Converter. https://github.com/onnx/sklearn-onnx/, 2020.

253

[48] Tensorflow JS. https://www.tensorflow.org/js, 2020.

[49] The Status of Sparse Operations in Pytorch. https://github.com/pytorch/pytorch/
issues/9674, 2020.

[50] Script for Tensorflow Model Averaging, Accessed January 31, 2020. https:
//github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/
avg_checkpoints.py.

[51] Scaling Out Search with Apache Spark, Accessed January 31, 2021.

[52] XLA: Optimizing Compiler for Machine Learning : TensorFlow, Accessed January 31,
2021.

[53] Cerebro Documentation, Accessed July 5, 2020. https://adalabucsd.github.io/
cerebro-system/.

[54] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,
Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gordon Murray, Benoit Steiner,
Paul A. Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang
Zheng. TensorFlow: A System for Large-Scale Machine Learning. In Kimberly Keeton
and Timothy Roscoe, editors, 12th USENIX Symposium on Operating Systems Design and
Implementation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, pages 265–283.
USENIX Association, 2016.

[55] Donald A Adjeroh and Kingsley C Nwosu. Multimedia Database Management–
Requirements and Issues. IEEE Multimedia, pages 24–33, 1997.

[56] Ashvin Agrawal, Rony Chatterjee, Carlo Curino, Avrilia Floratou, Neha Gowdal, Matteo
Interlandi, Alekh Jindal, Kostantinos Karanasos, Subru Krishnan, Brian Kroth, Jyoti
Leeka, Kwanghyun Park, Hiren Patel, Olga Poppe, Fotis Psallidas, Raghu Ramakrishnan,
Abhishek Roy, Karla Saur, Rathijit Sen, Markus Weimer, Travis Wright, and Yiwen Zhu.
Cloudy with high chance of DBMS: A 10-year prediction for Enterprise-Grade ML. arXiv
e-prints, page arXiv:1909.00084, Aug 2019.

[57] Zeeshan Ahmed, Saeed Amizadeh, Mikhail Bilenko, Rogan Carr, Wei-Sheng Chin, Yael
Dekel, Xavier Dupré, Vadim Eksarevskiy, Senja Filipi, Tom Finley, Abhishek Goswami,
Monte Hoover, Scott Inglis, Matteo Interlandi, Najeeb Kazmi, Gleb Krivosheev, Pete
Luferenko, Ivan Matantsev, Sergiy Matusevych, Shahab Moradi, Gani Nazirov, Justin
Ormont, Gal Oshri, Artidoro Pagnoni, Jignesh Parmar, Prabhat Roy, Mohammad Zeeshan
Siddiqui, Markus Weimer, Shauheen Zahirazami, and Yiwen Zhu. Machine Learning at
Microsoft with ML.NET. In Ankur Teredesai, Vipin Kumar, Ying Li, Rómer Rosales,
Evimaria Terzi, and George Karypis, editors, Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD 2019, Anchorage,
AK, USA, August 4-8, 2019, pages 2448–2458. ACM, 2019.

254

[58] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. Automatic
Database Management System Tuning Through Large-scale Machine Learning. In Semih
Salihoglu, Wenchao Zhou, Rada Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings
of the 2017 ACM International Conference on Management of Data, SIGMOD Conference
2017, Chicago, IL, USA, May 14-19, 2017, pages 1009–1024. ACM, 2017.

[59] Samuel Albanie. Euclidean Distance Matrix Trick. Retrieved from Visual Geometry Group,
University of Oxford, 2019.

[60] Samuel Albanie. Memory Consumption and FLOP Count Estimates for Convnets, Ac-
cessed January 31, 2020. https://github.com/albanie/convnet-burden.

[61] Amazon. The Total Cost of Ownership (TCO) of Amazon Sagemaker. https://pages.
awscloud.com/rs/112-TZM-766/images/Amazon_SageMaker_TCO_uf.pdf, 2020.

[62] Dario Amodei and Danny Hernandez. AI and Compute, Accessed January 31, 2021.
https://openai.com/blog/ai-and-compute.

[63] Farhad Arbabzadah, Grégoire Montavon, Klaus-Robert Müller, and Wojciech Samek.
Identifying Individual Facial Expressions by Deconstructing a Neural Network. In Bodo
Rosenhahn and Bjoern Andres, editors, Pattern Recognition - 38th German Conference,
GCPR 2016, Hannover, Germany, September 12-15, 2016, Proceedings, volume 9796 of
Lecture Notes in Computer Science, pages 344–354. Springer, 2016.

[64] Remzi H Arpaci-Dusseau and Andrea C Arpaci-Dusseau. Operating Systems: Three Easy
Pieces. Arpaci-Dusseau Books LLC, 2018.

[65] AWS. Automate Data Labeling, Accessed January 31, 2021.

[66] Hossein Azizpour, Ali Sharif Razavian, Josephine Sullivan, Atsuto Maki, and Stefan
Carlsson. Factors of Transferability for a Generic ConvNet Representation. IEEE Trans.
Pattern Anal. Mach. Intell., 38(9):1790–1802, 2016.

[67] Denis Baylor, Eric Breck, Heng-Tze Cheng, Noah Fiedel, Chuan Yu Foo, Zakaria Haque,
Salem Haykal, Mustafa Ispir, Vihan Jain, Levent Koc, Chiu Yuen Koo, Lukasz Lew,
Clemens Mewald, Akshay Naresh Modi, Neoklis Polyzotis, Sukriti Ramesh, Sudip Roy,
Steven Euijong Whang, Martin Wicke, Jarek Wilkiewicz, Xin Zhang, and Martin Zinkevich.
Tfx: A tensorflow-based production-scale machine learning platform. In Proceedings
of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 17, page 13871395, New York, NY, USA, 2017. Association for Computing
Machinery.

[68] Emily M. Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell.
On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? In
Madeleine Clare Elish, William Isaac, and Richard S. Zemel, editors, FAccT ’21: 2021
ACM Conference on Fairness, Accountability, and Transparency, Virtual Event / Toronto,
Canada, March 3-10, 2021, pages 610–623. ACM, 2021.

255

[69] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl. Algorithms for Hyper-
Parameter Optimization. In Advances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Systems 2011, pages 2546–2554,
2011.

[70] James Bergstra, Daniel Yamins, and David D. Cox. Making a Science of Model Search:
Hyperparameter Optimization in Hundreds of Dimensions for Vision Architectures. In
Proceedings of the 30th International Conference on Machine Learning, ICML 2013,
Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR Workshop and Conference
Proceedings, pages 115–123. JMLR.org, 2013.

[71] Dimitri P. Bertsekas. A New Class of Incremental Gradient Methods for Least Squares
Problems. Society for Industrial and Applied Mathematics Journal on Optimization,
7(4):913–926, April 1997.

[72] Shamim Bhuiyan, Michael Zheludkov, and Timur Isachenko. High Performance In-
Memory Computing with Apache Ignite. Lulu. com, 2017.

[73] Benjamin Biering. Getting Started with AI: How Much Data Do You Need?, Accessed
January 31, 2021.

[74] Matthias Boehm, Arun Kumar, and Jun Yang. Data Management in Machine Learning
Systems. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2019.

[75] Matthias Boehm, Shirish Tatikonda, Berthold Reinwald, Prithviraj Sen, Yuanyuan Tian,
Douglas R. Burdick, and Shivakumar Vaithyanathan. Hybrid Parallelization Strategies for
Large-Scale Machine Learning in SystemML. PVLDB, 7(7):553–564, 2014.

[76] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney
von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik
Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S.
Chen, Kathleen Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa
Doumbouya, Esin Durmus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-
Fei, Chelsea Finn, Trevor Gale, Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby
Grossman, Neel Guha, Tatsunori Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho,
Jenny Hong, Kyle Hsu, Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha
Kalluri, Siddharth Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei
Koh, Mark S. Krass, Ranjay Krishna, and Rohith Kuditipudi. On the Opportunities and
Risks of Foundation Models. CoRR, abs/2108.07258, 2021.

[77] Léon Bottou. Curiously Fast Convergence of some Stochastic Gradient Descent Algorithms.
Unpublished open problem offered to the attendance of the Symposium on Learning and
Data Science 2009 conference, 2009.

[78] Xavier Bouthillier and Gaël Varoquaux. Survey of Machine-Learning Experimental Meth-
ods at NeurIPS2019 and ICLR2020. PhD thesis, Inria Saclay Ile de France, 2020.

256

[79] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[80] Andrew Brock, Theodore Lim, James Millar Ritchie, and Nicholas J Weston. Freeze-
out: Accelerate training by progressively freezing layers. In NIPS 2017 Workshop on
Optimization: 10th NIPS Workshop on Optimization for Machine Learning, 2017.

[81] Peter Brucker. Scheduling Algorithms. Springer-Verlag, 3rd edition, 2001.

[82] Mark Buckler, Philip Bedoukian, Suren Jayasuriya, and Adrian Sampson. EVA2: Exploit-
ing Temporal Redundancy in Live Computer Vision. In Murali Annavaram, Timothy Mark
Pinkston, and Babak Falsafi, editors, 45th ACM/IEEE Annual International Symposium on
Computer Architecture, ISCA 2018, Los Angeles, CA, USA, June 1-6, 2018, pages 533–546.
IEEE Computer Society, 2018.

[83] Alfredo Canziani, Adam Paszke, and Eugenio Culurciello. An Analysis of Deep Neural
Network Models for Practical Applications. CoRR, abs/1605.07678, 2016.

[84] Jordan A Carlson, John Bellettiere, Jacqueline Kerr, Jo Salmon, Anna Timperio, Si-
mone JJM Verswijveren, and Nicola D Ridgers. Day-level Sedentary Pattern Estimates
Derived from Hip-worn Accelerometer Cut-points in 8–12-year-olds: Do they Reflect
Postural Transitions? Journal of Sports Sciences, 37(16):1899–1909, 2019.

[85] Lukas Cavigelli, Philippe Degen, and Luca Benini. Cbinfer: Change-based Inference for
Convolutional Neural Networks on Video Data. In Proceedings of the 11th International
Conference on Distributed Smart Cameras, pages 1–8. ACM, 2017.

[86] Stefano Ceri and Jennifer Widom. Deriving Production Rules for Incremental View
Maintenance. 1991.

[87] Chengliang Chai and Guoliang Li. Human-in-the-loop Techniques in Machine Learning.
Data Engineering, 37:16, 2020.

[88] Surajit Chaudhuri. An Overview of Query Optimization in Relational Systems. In
Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pages 34–43, 1998.

[89] Surajit Chaudhuri and Kyuseok Shim. Optimization of Queries with User-defined Predi-
cates. ACM Trans. Database Syst., 24(2):177–228, June 1999.

[90] Chun-Fu (Richard) Chen, Gwo Giun (Chris) Lee, Yinglong Xia, W. Sabrina Lin, Toyotaro
Suzumura, and Ching-Yung Lin. Efficient Multi-training Framework of Image Deep
Learning on GPU Cluster. In 2015 IEEE International Symposium on Multimedia, ISM
2015, pages 489–494. IEEE Computer Society, 2015.

[91] Lingjiao Chen, Arun Kumar, Jeffrey F. Naughton, and Jignesh M. Patel. Towards Linear
Algebra over Normalized Data. PVLDB, 10(11):1214–1225, 2017.

257

[92] Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In
Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, KDD ’16, pages 785–794, New York, NY, USA, 2016. ACM.

[93] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan Cowan,
Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, Carlos Guestrin, and Arvind Krishna-
murthy. TVM: An Automated End-to-end Optimizing Compiler for Deep Learning. In
Proceedings of the 12th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’18, pages 579–594, Berkeley, CA, USA, 2018. USENIX Association.

[94] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training Deep Nets with
Sublinear Memory Cost. CoRR, abs/1604.06174, 2016.

[95] Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan
Catanzaro, and Evan Shelhamer. cudnn: Efficient Primitives for Deep Learning. arXiv
preprint arXiv:1410.0759, 2014.

[96] Rada Chirkova and Jun Yang. Materialized Views. Foundations and Trends R© in Databases,
4(4):295–405, 2012.

[97] Franois Chollet. Transfer Learning & Fine-tuning, Accessed January 31, 2021.

[98] Hong-Tai Chou and David J DeWitt. An Evaluation of Buffer Management Strategies for
Relational Database Systems. Algorithmica, 1(1-4):311–336, 1986.

[99] Alexandra Chronopoulou, Christos Baziotis, and Alexandros Potamianos. An Embarrass-
ingly Simple Approach for Transfer Learning from Pretrained Language Models. arXiv
preprint arXiv:1902.10547, 2019.

[100] Daniel Crankshaw, Gur-Eyal Sela, Corey Zumar, Xiangxi Mo, Joseph E. Gonzalez, Ion
Stoica, and Alexey Tumanov. InferLine: ML Inference Pipeline Composition Framework.
CoRR, abs/1812.01776, 2018.

[101] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J. Franklin, Joseph E. Gonzalez, and
Ion Stoica. Clipper: A Low-Latency Online Prediction Serving System. 2017.

[102] CriteoLabs. Kaggle Contest Dataset Is Now Available for Academic Use!, Accessed
January 31, 2020. https://ailab.criteo.com/category/dataset.

[103] Navneet Dalal and Bill Triggs. Histograms of Oriented Gradients for Human Detection.
In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05) - Volume 1 - Volume 01, CVPR ’05, pages 886–893. IEEE
Computer Society, 2005.

[104] Nilesh N. Dalvi, Sumit K. Sanghai, Prasan Roy, and S. Sudarshan. Pipelining in Multi-
Query Optimization. In Peter Buneman, editor, Proceedings of the Twentieth ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems, May 21-23, 2001, Santa
Barbara, California, USA. ACM, 2001.

258

[105] Manoranjan Dash and Huan Liu. Feature Selection for Classification. Intelligent Data
Analysis, 1(3):131–156, 1997.

[106] Databricks. Resource-efficient Deep Learning Model Selection on Apache Spark, Accessed
May 30, 2020. https://bit.ly/3esN3JT.

[107] Saskia EJ de Vries, Stephen A Baccus, and Markus Meister. The Projective Field of a
Retinal Amacrine Cell. Journal of Neuroscience, 31(23):8595–8604, 2011.

[108] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A
Large-scale Hierarchical Image Database. In 2009 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2009), pages 248–255. IEEE Computer
Society, 2009.

[109] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational
Linguistics.

[110] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,
and Trevor Darrell. DeCAF: A Deep Convolutional Activation Feature for Generic
Visual Recognition. In Proceedings of the 31th International Conference on Machine
Learning, ICML 2014, Beijing, China, 21-26 June 2014, volume 32 of JMLR Workshop
and Conference Proceedings, pages 647–655. JMLR.org, 2014.

[111] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric
Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella, Kuangching
Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. The Design and Operation of CloudLab. In
Proceedings of the USENIX Annual Technical Conference (ATC), pages 1–14, July 2019.

[112] Steffen Eger. Restricted Weighted Integer Compositions and Extended Binomial Coeffi-
cients. J. Integer Seq, 16(13.1):3, 2013.

[113] Katherine Ellis, Jacqueline Kerr, Suneeta Godbole, John Staudenmayer, and Gert Lanckriet.
Hip and Wrist Accelerometer Algorithms for Free-living Behavior Classification. Medicine
and science in sports and exercise, 48(5):933, 2016.

[114] Andre Esteva, Brett Kuprel, Roberto A Novoa, Justin Ko, Susan M Swetter, Helen M Blau,
and Sebastian Thrun. Dermatologist-level Classification of Skin Cancer with Deep Neural
Networks. Nature, 542(7639):115–118, 2017.

[115] Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, and Sune Lehmann. Using
Millions of Emoji Occurrences to Learn Any-domain Representations for Detecting Senti-
ment, Emotion and Sarcasm. In Proceedings of the 2017 Conference on Empirical Methods

259

in Natural Language Processing, pages 1615–1625, Copenhagen, Denmark, September
2017. Association for Computational Linguistics.

[116] Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. Towards a Unified
Architecture for In-RDBMS Analytics. In Proceedings of the 2012 ACM SIGMOD Inter-
national Conference on Management of Data, SIGMOD ’12, pages 325–336. Association
for Computing Machinery, 2012.

[117] Tibor Fiala. An Algorithm for the Open-shop Problem. Mathematics of Operations
Research, 8(1):100–109, 1983.

[118] FirmAI. Machine Learning and Data Science Applications in Industry. https://github.
com/firmai/industry-machine-learning.

[119] Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin, and
Mao Yang. Estimating GPU Memory Consumption of Deep Learning Models. In Prem
Devanbu, Myra B. Cohen, and Thomas Zimmermann, editors, ESEC/FSE ’20: 28th ACM
Joint European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, Virtual Event, USA, November 8-13, 2020, pages 1342–1352. ACM,
2020.

[120] Minos N Garofalakis and Phillip B Gibbons. Approximate Query Processing: Taming the
TeraBytes. In VLDB, pages 343–352, 2001.

[121] J. V. Gautam, H. B. Prajapati, V. K. Dabhi, and S. Chaudhary. A Survey on Job Scheduling
Algorithms in Big Data Processing. In 2015 IEEE International Conference on Electrical,
Computer and Communication Technologies (ICECCT), pages 1–11, 2015.

[122] Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and
D. Sculley. Google Vizier: A Service for Black-box Optimization. In Proceedings of the
23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’17, pages 1487–1495. Association for Computing Machinery, 2017.

[123] Teofilo Gonzalez and Sartaj Sahni. Open Shop Scheduling to Minimize Finish Time. J.
ACM, 23(4):665–679, October 1976.

[124] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT press, 2016.

[125] Google. Google Cloud Pricing Calculator, Accessed January 31, 2021.

[126] Google-Research. Huge Embedding Output File Issue #91, Accessed January 31, 2021.

[127] Mikael Anne Greenwood-Hickman, Supun Nakandala, Marta M Jankowska, Dori E
Rosenberg, Fatima Tuz-Zahra, John Bellettiere, Jordan A Carlson, Paul R Hibbing, Jingjing
Zou, and Andrea Z Lacroix. The CNN Hip Accelerometer Posture (CHAP) Method for
Classifying Sitting Patterns from Hip Accelerometers: A Validation Study. Medicine and
Science in Sports and Exercise, 53(11):2445, 2021.

260

[128] Roger Grosse. CSC321 Lecture 6: Backpropagation, Accessed January 31, 2021. http:
//www.cs.toronto.edu/˜rgrosse/courses/csc321_2017/slides/lec6.pdf.

[129] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeongjae Jeon, Junjie
Qian, Hongqiang Harry Liu, and Chuanxiong Guo. Tiresias: A GPU Cluster Manager for
Distributed Deep Learning. In 16th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 2019, pages 485–500. USENIX Association, 2019.

[130] Hui Guan, Laxmikant Kishor Mokadam, Xipeng Shen, Seung-Hwan Lim, and Robert M.
Patton. FLEET: Flexible Efficient Ensemble Training for Heterogeneous Deep Neural
Networks. In Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne Sze, editors,
Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin, TX, USA, March
2-4, 2020. mlsys.org, 2020.

[131] Antonio Gulli and Sujit Pal. Deep Learning with Keras. Packt Publishing Ltd, 2017.

[132] Ashish Gupta and Inderpal Singh Mumick. Maintenance of Materialized Views: Problems,
Techniques, and Applications. IEEE Data Eng. Bull., 18(2):3–18, 1995.

[133] Himanshu Gupta and Inderpal Singh Mumick. Selection of Views to Materialize in a Data
Warehouse. IEEE Trans. Knowl. Data Eng., 17(1):24–43, 2005.

[134] Gurobi. Gurobi Optimization, Accessed January 31, 2021. https://www.gurobi.com.

[135] Song Han, Huizi Mao, and William J Dally. Deep Compression: Compressing Deep
Neural Networks with Pruning, Trained Quantization and Huffman Coding. arXiv preprint
arXiv:1510.00149, 2015.

[136] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for
Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Computer
Society, 2016.

[137] Ruining He and Julian McAuley. Ups and Downs: Modeling the Visual Evolution of
Fashion Trends with One-Class Collaborative Filtering. In proceedings of the 25th inter-
national conference on world wide web, pages 507–517. International World Wide Web
Conferences Steering Committee, 2016.

[138] Yihui He, Xiangyu Zhang, and Jian Sun. Channel Pruning for Accelerating Very Deep
Neural Networks. In International Conference on Computer Vision (ICCV), volume 2,
2017.

[139] Joseph M. Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang, Eugene
Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun Li, and
Arun Kumar. The MADlib Analytics Library: Or MAD Skills, the SQL. PVLDB,
5(12):1700–1711, 2012.

261

[140] Joseph M. Hellerstein and Michael Stonebraker. Predicate Migration: Optimizing Queries
with Expensive Predicates. In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’93, pages 267–276. ACM, 1993.

[141] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong, Fatma Bil-
gen Cetin, and Shivnath Babu. Starfish: A Self-tuning System for Big Data Analytics. In
CIDR 2011, Fifth Biennial Conference on Innovative Data Systems Research, Asilomar,
CA, USA, January 9-12, 2011, Online Proceedings, pages 261–272. www.cidrdb.org, 2011.

[142] Willy Herroelen, Bert De Reyck, and Erik Demeulemeester. Resource-constrained Project
Scheduling: A Survey of Recent Developments. Computers & Operations Research,
25(4):279–302, 1998.

[143] Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Larous-
silhe, Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-Efficient Transfer
Learning for NLP. In International Conference on Machine Learning, pages 2790–2799,
2019.

[144] Jeremy Howard and Sebastian Ruder. Universal Language Model Fine-tuning for Text
Classification. arXiv preprint arXiv:1801.06146, 2018.

[145] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely
Connected Convolutional Networks. pages 4700–4708, 2017.

[146] Yuzhen Huang, Tatiana Jin, Yidi Wu, Zhenkun Cai, Xiao Yan, Fan Yang, Jinfeng Li,
Yuying Guo, and James Cheng. FlexPS: Flexible Parallelism Control in Parameter Server
Architecture. PVLDB, 11(5):566–579, 2018.

[147] Intel. Machine learning fpga. https://www.intel.com/content/www/us/en/
products/docs/storage/programmable/applications/machine-learning.html,
2020.

[148] Mohammad Tariqul Islam, Md Abdul Aowal, Ahmed Tahseen Minhaz, and Khalid Ashraf.
Abnormality Detection and Localization in Chest X-Rays using Deep Convolutional Neural
Networks. CoRR, abs/1705.09850, 2017.

[149] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue,
Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fer-
nando, and Koray Kavukcuoglu. Population Based Training of Neural Networks. CoRR,
abs/1711.09846, 2017.

[150] Matthias Jarke and Jurgen Koch. Query Optimization in Database Systems. ACM Comput-
ing Surveys (CsUR), 16(2):111–152, 1984.

[151] Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond Data and Model Parallelism for Deep
Neural Networks. In Proceedings of Machine Learning and Systems 2019, MLSys 2019.
mlsys.org, 2019.

262

[152] Jiawei Jiang, Bin Cui, Ce Zhang, and Lele Yu. Heterogeneity-Aware Distributed Parameter
Servers. In Proceedings of the 2017 ACM International Conference on Management of
Data, SIGMOD 17, pages 463–478. Association for Computing Machinery, 2017.

[153] Yushi Jing, David Liu, Dmitry Kislyuk, Andrew Zhai, Jiajing Xu, Jeff Donahue, and Sarah
Tavel. Visual Search at Pinterest. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1889–1898, 2015.

[154] Norman P. Jouppi, Cliff Young, Nishant Patil, David A. Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau,
Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland,
Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian
Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew,
Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris
Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore,
Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix,
Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt
Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia
Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and
Doe Hyun Yoon. In-Datacenter Performance Analysis of a Tensor Processing Unit. pages
1–12, 2017.

[155] Oya Kalipsiz. Multimedia Databases. In Information Visualization, 2000. Proceedings.
IEEE International Conference on, pages 111–115. IEEE, 2000.

[156] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. NoScope:
Optimizing Neural Network Queries Over Video at Scale. Proceedings of the VLDB
Endowment, 10(11):1586–1597, 2017.

[157] Konstantinos Karanasos, Matteo Interlandi, Fotis Psallidas, Rathijit Sen, Kwanghyun Park,
Ivan Popivanov, Doris Xin, Supun Nakandala, Subru Krishnan, Markus Weimer, Yuan Yu,
Raghu Ramakrishnan, and Carlo Curino. Extending Relational Query Processing with
ML Inference. In CIDR 2020, 10th Conference on Innovative Data Systems Research,
Amsterdam, The Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org,
2020.

[158] Andrej Karpathy and Li Fei-Fei. Deep Visual-Semantic Alignments for Generating Image
Descriptions. IEEE Trans. Pattern Anal. Mach. Intell., 39(4):664–676, April 2017.

[159] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. LightGBM: A Highly Efficient Gradient Boosting Decision Tree.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 3146–
3154. Curran Associates, Inc., 2017.

263

[160] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS Valentim, Huiying
Liang, Sally L Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, and Fangbing Yan.
Identifying Medical Diagnoses and Treatable Diseases by Image-based Deep Learning.
Cell, 172(5):1122–1131, 2018.

[161] Tae-Young Kim and Sung-Bae Cho. Predicting Residential Energy Consumption Using
CNN-LSTM Neural Networks. Energy, 182:72–81, 2019.

[162] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[163] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. CoRR,
abs/1412.6980, 2015.

[164] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David Lugato, and Saman Amarasinghe.
The Tensor Algebra Compiler. Proc. ACM Program. Lang., 1(OOPSLA):77:1–77:29,
October 2017.

[165] Aaron Klein, Stefan Falkner, Simon Bartels, Philipp Hennig, and Frank Hutter. Fast
Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets. In
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics,
AISTATS 2017, volume 54 of Proceedings of Machine Learning Research, pages 528–536.
PMLR, 2017.

[166] Jon Kleinberg and Eva Tardos. Algorithm Design. Pearson Education India, 2006.

[167] Alexandros Koliousis, Pijika Watcharapichat, Matthias Weidlich, Luo Mai, Paolo Costa,
and Peter Pietzuch. Crossbow: Scaling Deep Learning with Small Batch Sizes on Multi-
GPU Servers. PVLDB, 12(11):1399–1412, 2019.

[168] Pradap Konda, Arun Kumar, Christopher Ré, and Vaishnavi Sashikanth. Feature Selection
in Enterprise Analytics: A Demonstration using an R-based Data Analytics System.
PVLDB, 6(12):1306–1309, 2013.

[169] Dimitrios Koutsoukos, Supun Nakandala, Konstantinos Karanasos, Karla Saur, Gustavo
Alonso, and Matteo Interlandi. Tensors: An Abstraction for General Data Processing.
Proceedings of the VLDB Endowment, 14(10):1797–1804, 2021.

[170] Peter Kraft, Daniel Kang, Deepak Narayanan, Shoumik Palkar, Peter Bailis, and Matei
Zaharia. Willump: A Statistically-Aware End-to-end Optimizer for Machine Learning
Inference. arXiv e-prints, page arXiv:1906.01974, Jun 2019.

[171] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet Classification with
Deep Convolutional Neural Networks. In Peter L. Bartlett, Fernando C. N. Pereira,
Christopher J. C. Burges, Léon Bottou, and Kilian Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25: 26th Annual Conference on Neural Information

264

Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States, pages 1106–1114, 2012.

[172] Arun Kumar, Matthias Boehm, and Jun Yang. Data Management in Machine Learning:
Challenges, Techniques, and Systems. In Proceedings of the 2017 ACM International
Conference on Management of Data, SIGMOD ’17, pages 1717–1722. Association for
Computing Machinery, 2017.

[173] Arun Kumar, Robert McCann, Jeffrey Naughton, and Jignesh M. Patel. Model Selec-
tion Management Systems: the Next Frontier of Advanced Analytics. SIGMOD Rec.,
44(4):1722, May 2016.

[174] Arun Kumar, Jeffrey F. Naughton, and Jignesh M. Patel. Learning Generalized Linear
Models Over Normalized Data. In Timos K. Sellis, Susan B. Davidson, and Zachary G. Ives,
editors, Proceedings of the 2015 ACM SIGMOD International Conference on Management
of Data, Melbourne, Victoria, Australia, May 31 - June 4, 2015, pages 1969–1984. ACM,
2015.

[175] Andreas Kunft, Alexander Alexandrov, Asterios Katsifodimos, and Volker Markl. Bridging
the Gap: Towards Optimization Across Linear and Relational Algebra. In Foto N. Afrati,
Jacek Sroka, and Jan Hidders, editors, Proceedings of the 3rd ACM SIGMOD Workshop
on Algorithms and Systems for MapReduce and Beyond, BeyondMR@SIGMOD 2016, San
Francisco, CA, USA, July 1, 2016, page 1. ACM, 2016.

[176] Quoc Le and Tomas Mikolov. Distributed Representations of Sentences and Documents.
In Proceedings of the 31st International Conference on Machine Learning (ICML-14),
pages 1188–1196, 2014.

[177] Tung D. Le, Haruki Imai, Yasushi Negishi, and Kiyokuni Kawachiya. TFLMS: Large
Model Support in TensorFlow by Graph Rewriting. CoRR, abs/1807.02037, 2018.

[178] Wangchao Le, Anastasios Kementsietsidis, Songyun Duan, and Feifei Li. Scalable Multi-
Query Optimization for SPARQL. In Data Engineering (ICDE), 2012 IEEE 28th Interna-
tional Conference on, pages 666–677. IEEE, 2012.

[179] Yann LeCun. Deep Learning Hardware: Past, Present, and Future. In 2019 IEEE Interna-
tional Solid-State Circuits Conference-(ISSCC), pages 12–19. IEEE, 2019.

[180] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning. Nature,
521(7553):436–444, 2015.

[181] Jaejun Lee, Raphael Tang, and Jimmy Lin. What Would Elsa Do? Freezing Layers During
Transformer Fine-Tuning. arXiv preprint arXiv:1911.03090, 2019.

[182] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico Santambrogio,
Markus Weimer, and Matteo Interlandi. PRETZEL: Opening the Black Box of Ma-
chine Learning Prediction Serving Systems. In Andrea C. Arpaci-Dusseau and Geoff

265

Voelker, editors, 13th USENIX Symposium on Operating Systems Design and Implemen-
tation, OSDI 2018, Carlsbad, CA, USA, October 8-10, 2018, pages 611–626. USENIX
Association, 2018.

[183] Alon Y Levy, Alberto O Mendelzon, and Yehoshua Sagiv. Answering Queries Using
Views. In Proceedings of the Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, pages 95–104. ACM, 1995.

[184] Fengan Li, Lingjiao Chen, Yijing Zeng, Arun Kumar, Xi Wu, Jeffrey F. Naughton, and
Jignesh M. Patel. Tuple-Oriented Compression for Large-Scale Mini-Batch Stochastic
Gradient Descent. In Proceedings of the 2019 International Conference on Management
of Data, SIGMOD ’19, pages 1517–1534. Association for Computing Machinery, 2019.

[185] Liam Li, Kevin G. Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Jonathan Ben-tzur,
Moritz Hardt, Benjamin Recht, and Ameet Talwalkar. A System for Massively Parallel
Hyperparameter Tuning. In Inderjit S. Dhillon, Dimitris S. Papailiopoulos, and Vivienne
Sze, editors, Proceedings of Machine Learning and Systems 2020, MLSys 2020, Austin,
TX, USA, March 2-4, 2020. mlsys.org, 2020.

[186] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar.
Hyperband: A Novel Bandit-based Approach to Hyperparameter Optimization. J. Mach.
Learn. Res., 18:185:1–185:52, 2017.

[187] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling Distributed Machine
Learning with the Parameter Server. In 11th USENIX Symposium on Operating Systems
Design and Implementation, OSDI ’14, pages 583–598. USENIX Association, 2014.

[188] Ping Li. Robust Logitboost and adaptive base class (ABC) Logitboost. In In Proceedings
of the Twenty-Sixth Conference Annual Conference on Uncertainty in Artificial Intelligence
(UAI10).

[189] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam
Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. PyTorch
Distributed: Experiences on Accelerating Data Parallel Training. Proc. VLDB Endow.,
2020.

[190] Side Li and Arun Kumar. Towards an Optimized GROUP BY Abstraction for Large-Scale
Machine Learning. Proc. VLDB Endow., 14(11):2327–2340, 2021.

[191] Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous Decentralized Parallel
Stochastic Gradient Descent. In Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, volume 80 of Proceedings of Machine Learning Research,
pages 3049–3058. PMLR, 2018.

266

[192] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E. Gonzalez, and Ion
Stoica. Tune: A Research Platform for Distributed Model Selection and Training. CoRR,
abs/1807.05118, 2018.

[193] Rui Liu, Sanjan Krishnan, Aaron J Elmore, and Michael J Franklin. Understanding and
Optimizing Packed Neural Network Training for Hyper-Parameter Tuning. arXiv preprint
arXiv:2002.02885, 2020.

[194] Yuhan Liu, Saurabh Agarwal, and Shivaram Venkataraman. AutoFreeze: Automatically
Freezing Model Blocks to Accelerate Fine-tuning. CoRR, abs/2102.01386, 2021.

[195] David G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput.
Vision, 60(2):91–110, November 2004.

[196] Scott M Lundberg and Su-In Lee. A Unified Approach to Interpreting Model Predictions.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 4765–
4774. Curran Associates, Inc., 2017.

[197] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understanding the Effective Re-
ceptive Field in Deep Convolutional Neural Networks. In Advances in Neural Information
Processing Systems, pages 4898–4906, 2016.

[198] MADLib. User Documentation for Apache MADlib, Accessed May 30, 2020. https:
//bit.ly/3epbEyS.

[199] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-
based Recommendations on Styles and Substitutes. In Proceedings of the 38th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages
43–52, 2015.

[200] Michael McCloskey and Neal J Cohen. Catastrophic Interference in Connectionist Net-
works: The Sequential Learning Problem. In Psychology of Learning and Motivation,
volume 24, pages 109–165. Elsevier, 1989.

[201] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkataraman,
Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, and Sean Owen. Mllib: Machine
Learning in Apache Spark. The Journal of Machine Learning Research, 17(1):1235–1241,
2016.

[202] Tim Miller. Explanation in Artificial Intelligence: Insights from the Social Sciences. arXiv
preprint arXiv:1706.07269, 2017.

[203] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram. Analyz-
ing and Mitigating Data Stalls in DNN Training. Proceedings of the VLDB Endowment,
2021.

267

[204] Sharada Prasanna Mohanty, David P. Hughes, and Marcel Salathé. Using Deep Learning
for Image-Based Plant Disease Detection. CoRR, abs/1604.03169, 2016.

[205] Robert Monarch. Human-in-the-Loop Machine Learning. Active Learning and Annotation
for Human-centered AI. Manning Early Access Program (MEAP). Manning Publications,
2019.

[206] Bert Moons and Marian Verhelst. A 0.3–2.6 TOPS/W Precision-scalable Processor for
Real-time Large-scale ConvNets. In VLSI Circuits (VLSI-Circuits), 2016 IEEE Symposium
on, pages 1–2. IEEE, 2016.

[207] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric
Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan, and Ion Stoica. Ray:
A Distributed Framework for Emerging AI Applications. In 13th USENIX Symposium
on Operating Systems Design and Implementation, OSDI 2018, pages 561–577. USENIX
Association, 2018.

[208] Mohammad Motamedi, Felix Portillo, Mahya Saffarpour, Daniel Fong, and Soheil Ghiasi.
Resource-Scalable CNN Synthesis for IoT Applications. arXiv preprint arXiv:1901.00738,
2018.

[209] Kabir Nagrecha and Arun Kumar. Hydra: A System for Large Multi-Model Deep Learning.
arXiv preprint arXiv:2110.08633, 2021.

[210] Supun Nakandala and Arun Kumar. Vista: Optimized System for Declarative Feature
Transfer from Deep CNNs at Scale. In Proceedings of the 2020 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD ’20, pages 1685–1700. Association
for Computing Machinery, 2020.

[211] Supun Nakandala, Arun Kumar, and Yannis Papakonstantinou. Incremental and Approxi-
mate Inference for Faster Occlusion-Based Deep CNN Explanations. In Proceedings of the
2019 International Conference on Management of Data, SIGMOD ’19, pages 1589–1606.
Association for Computing Machinery, 2019.

[212] Supun Nakandala, Kabir Nagrecha, Arun Kumar, and Yannis Papakonstantinou. Incremen-
tal and Approximate Computations for Accelerating Deep CNN Inference. ACM Trans.
Database Syst., 0(ja), 2020.

[213] Supun Nakandala, Karla Saur, Gyeong-In Yu, Konstantinos Karanasos, Carlo Curino,
Markus Weimer, and Matteo Interlandi. A tensor compiler for unified machine learn-
ing prediction serving. In 14th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 20), pages 899–917. USENIX Association, November 2020.

[214] Supun Nakandala, Yuhao Zhang, and Arun Kumar. Cerebro: Efficient and Reproducible
Model Selection on Deep Learning Systems. In Proceedings of the 3rd International
Workshop on Data Management for End-to-End Machine Learning, pages 1–4, 2019.

268

[215] Supun Nakandala, Yuhao Zhang, and Arun Kumar. Cerebro: A Data System for Optimized
Deep Learning Model Selection. Proc. VLDB Endow., 13(12):2159–2173, July 2020.

[216] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur,
Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. PipeDream: Generalized
Pipeline Parallelism for DNN Training. In Proceedings of the 27th ACM Symposium
on Operating Systems Principles, SOSP ’19, pages 1–15. Association for Computing
Machinery, 2019.

[217] Deepak Narayanan, Keshav Santhanam, Amar Phanishayee, and Matei Zaharia. Accel-
erating Deep Learning Workloads through Efficient Multi-Model Execution. In NeurIPS
Workshop on Systems for Machine Learning, December 2018.

[218] Jiquan Ngiam, Aditya Khosla, Mingyu Kim, Juhan Nam, Honglak Lee, and Andrew Y Ng.
Multimodal Deep Learning. In ICML, 2011.

[219] Milos Nikolic, Mohammed ElSeidy, and Christoph Koch. LINVIEW: Incremental View
Maintenance for Complex Analytical Queries. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, pages 253–264. ACM, 2014.

[220] Shu Lih Oh, Eddie Y.K. Ng, Ru San Tan, and U. Rajendra Acharya. Automated Diagnosis
of Arrhythmia Using Combination of CNN and LSTM Techniques with Variable Length
Heart Beats. Computers in Biology and Medicine, 102:278–287, 2018.

[221] Tom O’Malley. Hyperparameter Tuning with Keras Tuner, Ac-
cessed January 31, 2020. https://blog.tensorflow.org/2020/01/
hyperparameter-tuning-with-keras-tuner.html?linkId=81371017.

[222] Beng Chin Ooi, Kian-Lee Tan, Sheng Wang, Wei Wang, Qingchao Cai, Gang Chen,
Jinyang Gao, Zhaojing Luo, Anthony K.H. Tung, Yuan Wang, Zhongle Xie, Meihui Zhang,
and Kaiping Zheng. SINGA: A Distributed Deep Learning Platform. In Proceedings of the
23rd ACM International Conference on Multimedia, MM ’15, pages 685–688. Association
for Computing Machinery, 2015.

[223] Allen Ordookhanians, Xin Li, Supun Nakandala, and Arun Kumar. Demonstration of Kryp-
ton: Optimized CNN Inference for Occlusion-Based Deep CNN Explanations. PVLDB,
12(12):1894–1897, 2019.

[224] Szilard Pafka. Big RAM is Eating Big Data
- Size of Datasets Used for Analytics, Accessed January 31, 2020. https://www.
kdnuggets.com/2015/11/big-ram-big-data-size-datasets.html.

[225] Shoumik Palkar, James J. Thomas, Deepak Narayanan, Pratiksha Thaker, Rahul Pala-
muttam, Parimarjan Negi, Anil Shanbhag, Malte Schwarzkopf, Holger Pirk, Saman P.
Amarasinghe, Samuel Madden, and Matei Zaharia. Evaluating End-to-End Optimization
for Data Analytics Applications in Weld. Proc. VLDB Endow., 11(9):1002–1015, 2018.

269

[226] Sinno Jialin Pan and Qiang Yang. A Survey on Transfer Learning. IEEE Transactions on
Knowledge and Data Engineering, 22(10):1345–1359, 2010.

[227] Yannis Papakonstantinou and Vasilis Vassalos. Query Rewriting for Semistructured Data.
ACM SIGMOD Record, 28(2):455–466, 1999.

[228] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
Differentiation in PyTorch. In NIPS-W, 2017.

[229] Matthew E Peters, Sebastian Ruder, and Noah A Smith. To Tune or Not to Tune? Adapting
Pretrained Representations to Diverse Tasks. In Proceedings of the 4th Workshop on
Representation Learning for NLP (RepL4NLP-2019), pages 7–14, 2019.

[230] Jonas Pfeiffer, Andreas Rücklé, Clifton Poth, Aishwarya Kamath, Ivan Vulic, Sebastian
Ruder, Kyunghyun Cho, and Iryna Gurevych. Adapterhub: A framework for adapting
transformers. In Qun Liu and David Schlangen, editors, Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language Processing: System Demonstrations,
EMNLP 2020 - Demos, Online, November 16-20, 2020, pages 46–54. Association for
Computational Linguistics, 2020.

[231] Arnab Phani, Benjamin Rath, and Matthias Boehm. LIMA: Fine-grained Lineage Tracing
and Reuse in Machine Learning Systems. SIGMOD, 2021.

[232] Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang, and Martin Zinkevich. Data
Lifecycle Challenges in Production Machine Learning: A Survey. SIGMOD Record,
47(2):17–28, 2018.

[233] Fotis Psallidas, Yiwen Zhu, Bojan Karlas, Matteo Interlandi, Avrilia Floratou, Konstantinos
Karanasos, Wentao Wu, Ce Zhang, Subru Krishnan, Carlo Curino, and Markus Weimer.
Data Science Through the Looking Glass and What We Found There. arXiv preprint
arXiv:1912.09536, 2019.

[234] PyTorch. The Topological Sorting Algorithm for Computation Graphs in PyTorch,
Accessed January 31, 2021. https://github.com/pytorch/pytorch/blob/v1.2.0/
caffe2/core/nomnigraph/include/nomnigraph/Graph/TopoSort.h\#L26.

[235] Sivaramakrishnan Rajaraman, Sameer K Antani, Mahdieh Poostchi, Kamolrat Silamut,
Md A Hossain, Richard J Maude, Stefan Jaeger, and George R Thoma. Pre-trained
Convolutional Neural Networks as Feature Extractors Toward Improved Malaria Parasite
Detection in Thin Blood Smear Images. PeerJ, 6:e4568, 2018.

[236] Karthik Ramachandra, Kwanghyun Park, K. Venkatesh Emani, Alan Halverson, César
Galindo-Legaria, and Conor Cunningham. Froid: Optimization of Imperative Programs in
a Relational Database. Proc. VLDB Endow., 11(4):432444, December 2017.

270

[237] Raghu Ramakrishnan and Johannes Gehrke. Database Management Systems (3. ed.).
McGraw-Hill, 2003.

[238] Alexander Ratner, Stephen H. Bach, Henry R. Ehrenberg, Jason Alan Fries, Sen Wu, and
Christopher Ré. Snorkel: Rapid Training Data Creation with Weak Supervision. Proc.
VLDB Endow., 11(3):269–282, 2017.

[239] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning Multiple Visual
Domains with Residual Adapters. In Advances in Neural Information Processing Systems,
pages 506–516, 2017.

[240] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan
Yang, Minjia Zhang, Dong Li, and Yuxiong He. ZeRO-Offload: Democratizing Billion-
Scale Model Training. CoRR, abs/2101.06840, 2021.

[241] Maryem Rhanoui, Mounia Mikram, Siham Yousfi, and Soukaina Barzali. A CNN-BiLSTM
Model for Document-level Sentiment Analysis. Machine Learning and Knowledge Extrac-
tion, 1(3):832–847, 2019.

[242] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why Should I Trust You?
Explaining the Predictions of any Classifier. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1135–1144,
2016.

[243] Dori Rosenberg, Rod Walker, Mikael Anne Greenwood-Hickman, John Bellettiere, Yunhua
Xiang, KatieRose Richmire, Michael Higgins, David Wing, Eric B Larson, and Paul K
Crane. Device-assessed Physical Activity and Sedentary Behavior in a Community-based
Cohort of Older Adults. BMC Public Health, 20(1):1–13, 2020.

[244] Andreas Rücklé, Gregor Geigle, Max Glockner, Tilman Beck, Jonas Pfeiffer, Nils Reimers,
and Iryna Gurevych. AdapterDrop: On the Efficiency of Adapters in Transformers. arXiv
preprint arXiv:2010.11918, 2020.

[245] Sebastian Ruder, Matthew E Peters, Swabha Swayamdipta, and Thomas Wolf. Transfer
Learning in Natural Language Processing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Tutorials,
pages 15–18, 2019.

[246] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, and Michael Bernstein. Imagenet
Large Scale Visual Recognition Challenge. International journal of computer vision,
115(3):211–252, 2015.

[247] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. DistilBERT, A Distilled
Version of BERT: Smaller, Faster, Cheaper and Lighter. arXiv preprint arXiv:1910.01108,
2019.

271

[248] Maximilian Schleich, Dan Olteanu, and Radu Ciucanu. Learning Linear Regression Models
over Factorized Joins. In Fatma Özcan, Georgia Koutrika, and Sam Madden, editors,
Proceedings of the 2016 International Conference on Management of Data, SIGMOD
Conference 2016, San Francisco, CA, USA, June 26 - July 01, 2016, pages 3–18. ACM,
2016.

[249] Scott Sievert, Tom Augspurger, and Matthew Rocklin. Better and Faster Hyperparameter
Optimization with Dask. In Proceedings of the 18th Python in Science Conference, pages
118–125, 2019.

[250] Timos K. Sellis. Multiple-query Optimization. ACM Trans. Database Syst., 13(1):23–52,
March 1988.

[251] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedantam,
Devi Parikh, and Dhruv Batra. Grad-CAM: Visual Explanations from Deep Networks via
Gradient-based Localization. In 2017 IEEE International Conference on Computer Vision
(ICCV), pages 618–626. IEEE, 2017.

[252] Alexander Sergeev and Mike Del Balso. Horovod: Fast and Easy Distributed Deep
Learning in TF. CoRR, abs/1802.05799, 2018.

[253] Amazon Web Services. SageMaker Ground Truth, Accessed January 31, 2021. https:
//aws.amazon.com/sagemaker/groundtruth/.

[254] Burr Settles. Active Learning Literature Survey. 2009.

[255] Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: from Theory
to Algorithms. Cambridge University Press, 2014.

[256] Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep Learning in Medical Image
Analysis. Annual review of biomedical engineering, 19:221–248, 2017.

[257] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and
Bryan Catanzaro. Megatron-LM: Training Multi-Billion Parameter Language Models
using Model Parallelism. arXiv preprint arXiv:1909.08053, 2019.

[258] Scott Sievert, Tom Augspurger, Matthew Rocklin, Chris Calloway, David Lippa, Dillon
Niederhut, and David Shupe. Better and Faster Hyperparameter Optimization with Dask.
In Proceedings of the 18th Python in Science Conference, pages 118–125, 2019.

[259] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep Inside Convolutional
Networks: Visualising Image Classification Models and Saliency Maps. arXiv preprint
arXiv:1312.6034, 2013.

[260] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks for Large-
Scale Image Recognition. arXiv preprint arXiv:1409.1556, 2014.

272

[261] Ask Solem and Celery-contributors. Celery: Distributed Task Queue, Accessed January
31, 2020. http://www.celeryproject.org/.

[262] Evan R. Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J. Franklin, and Benjamin
Recht. KeystoneML: Optimizing Pipelines for Large-Scale Advanced Analytics. In 33rd
IEEE International Conference on Data Engineering, ICDE 2017, San Diego, CA, USA,
April 19-22, 2017, pages 535–546. IEEE Computer Society, 2017.

[263] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The jJurnal
of Machine Learning Research, 15(1):1929–1958, 2014.

[264] Nitish Srivastava and Ruslan Salakhutdinov. Multimodal Learning with Deep Boltzmann
Machines. volume 15, pages 2949–2980. JMLR.org, January 2014.

[265] Hang Su and Haoyu Chen. Experiments on Parallel Training of Deep Neural Network
using Model Averaging. CoRR, abs/1507.01239, 2015.

[266] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic Attribution for Deep Net-
works. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 3319–3328, 2017.

[267] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going Deeper
with Convolutions. In IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2015, Boston, MA, USA, June 7-12, 2015, pages 1–9. IEEE Computer Society, 2015.

[268] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and Chunfang Liu.
A Survey on Deep Transfer Learning. In International conference on artificial neural
networks, pages 270–279. Springer, 2018.

[269] TensorFlow. The Topological Sorting Algorithm for Computation Graphs in TensorFlow,
Accessed January 31, 2021. https://github.com/tensorflow/tensorflow/blob/
master/tensorflow/core/grappler/utils/topological_sort.h.

[270] Anthony Thomas and Arun Kumar. A Comparative Evaluation of Systems for Scalable
Linear Algebra-Based Analytics. PVLDB, 11(13):2168–2182, 2018.

[271] Erik F. Tjong Kim Sang and Fien De Meulder. Introduction to the CoNLL-2003 Shared
Task: Language-Independent Named Entity Recognition. In Proceedings of the Seventh
Conference on Natural Language Learning at HLT-NAACL 2003, pages 142–147, 2003.

[272] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Volume II.
Computer Science Press, 1989.

273

[273] Manasi Vartak, Joana M. F. da Trindade, Samuel Madden, and Matei Zaharia. MISTIQUE:
A System to Store and Query Model Intermediates for Model Diagnosis. In Gautam
Das, Christopher M. Jermaine, and Philip A. Bernstein, editors, Proceedings of the 2018
International Conference on Management of Data, SIGMOD Conference 2018, Houston,
TX, USA, June 10-15, 2018, pages 1285–1300. ACM, 2018.

[274] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is All You Need. In Isabelle Guyon,
Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan,
and Roman Garnett, editors, Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December 4-9, 2017,
Long Beach, CA, USA, pages 5998–6008, 2017.

[275] VMware. Model Selection for Deep Neural Networks on Greenplum Database, Accessed
May 30, 2020. https://bit.ly/2AaQLc2.

[276] Paul Voigt and Axel Von dem Bussche. The EU General Data Protection Regulation
(GDPR), volume 18. Springer, 2017.

[277] Ji Wan, Dayong Wang, Steven Chu Hong Hoi, Pengcheng Wu, Jianke Zhu, Yongdong
Zhang, and Jintao Li. Deep Learning for Content-based Image Retrieval: A Comprehensive
Study. In Proceedings of the 22nd ACM international conference on Multimedia, pages
157–166, 2014.

[278] Yilun Wang and Michal Kosinski. Deep Neural Networks are More Accurate than Humans
at Detecting Sexual Orientation from Facial Images. Journal of Personality and Social
Psychology, 114(2):246, 2018.

[279] Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image Quality
Assessment: From Error Visibility to Structural Similarity. IEEE Trans. Image Process.,
13(4):600–612, 2004.

[280] Pete Warden. The Machine Learning Reproducibility Crisis, Ac-
cessed January 31, 2020. https://petewarden.com/2018/03/19/
the-machine-learning-reproducibility-crisis.

[281] Pijika Watcharapichat, Victoria Lopez Morales, Raul Castro Fernandez, and Peter Pietzuch.
Ako: Decentralised Deep Learning with Partial Gradient Exchange. In Proceedings of the
Seventh ACM Symposium on Cloud Computing, SoCC 16, pages 84–97. Association for
Computing Machinery, 2016.

[282] Sarah Webb. Deep Learning for Biology. Nature, 554(7690):555–558, 2018.

[283] Gerhard J. Woeginger. The Open Shop Scheduling Problem. In 35th Symposium on
Theoretical Aspects of Computer Science, STACS 2018, volume 96 of LIPIcs, pages
4:1–4:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

274

[284] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, An-
thony Moi, Pierric Cistac, Tim Rault, Rémi Louf, and Morgan Funtowicz. Huggingface’s
Transformers: State-of-the-art Natural Language Processing, 2019.

[285] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu, Nipun
Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu Zhang, Fan Yang,
and Lidong Zhou. Gandiva: Introspective Cluster Scheduling for Deep Learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation, OSDI 2018, pages
595–610. USENIX Association, 2018.

[286] Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, and Aditya Parameswaran.
HELIX: Holistic Optimization for Accelerating Iterative Machine Learning. Proc. VLDB
Endow., 12(4):446–460, December 2018.

[287] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How Transferable are
Features in Deep Neural Networks? In Zoubin Ghahramani, Max Welling, Corinna Cortes,
Neil D. Lawrence, and Kilian Q. Weinberger, editors, Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada, pages 3320–3328, 2014.

[288] Joe Yue-Hei Ng, Fan Yang, and Larry S Davis. Exploiting Local Features from Deep
Networks for Image Retrieval. In Proceedings of the IEEE conference on computer vision
and pattern recognition workshops, pages 53–61, 2015.

[289] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Murphy
McCauly, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. In Proceedings
of the 9th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2012, pages 15–28. USENIX Association, 2012.

[290] Matthew D Zeiler and Rob Fergus. Visualizing and Understanding Convolutional Networks.
In European Conference on Computer Vision, pages 818–833. Springer, 2014.

[291] Ce Zhang, Arun Kumar, and Christopher Ré. Materialization Optimizations for Feature
Selection Workloads. In Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu, editors,
International Conference on Management of Data, SIGMOD 2014, Snowbird, UT, USA,
June 22-27, 2014, pages 265–276. ACM, 2014.

[292] Haoyu Zhang, Logan Stafman, Andrew Or, and Michael J. Freedman. SLAQ: Quality-
Driven Scheduling for Distributed Machine Learning. In Proceedings of the 2017 Sym-
posium on Cloud Computing, SoCC ’17, pages 390–404. Association for Computing
Machinery, 2017.

[293] Quanlu Zhang, Zhenhua Han, Fan Yang, Yuge Zhang, Zhe Liu, Mao Yang, and Lidong
Zhou. Retiarii: A Deep Learning Exploratory-Training Framework. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20), pages 919–936,
2020.

275

[294] Yuhao Zhang, Frank Mcquillan, Nandish Jayaram, Nikhil Kak, Ekta Khanna, Orhan Kislal,
Domino Valdano, and Arun Kumar. Distributed Deep Learning on Data Systems: A
Comparative Analysis of Approaches. Proc. VLDB Endow., 14(10):1769–1782, 2021.

[295] Weijie Zhao, Florin Rusu, Bin Dong, Kesheng Wu, and Peter Nugent. Incremental View
Maintenance over Array Data. In Proceedings of the 2017 ACM International Conference
on Management of Data, pages 139–154. ACM, 2017.

[296] Luisa M. Zintgraf, Taco S. Cohen, Tameem Adel, and Max Welling. Visualizing Deep
Neural Network Decisions: Prediction Difference Analysis. CoRR, abs/1702.04595, 2017.

[297] Yongqiang Zou, Xing Jin, Yi Li, Zhimao Guo, Eryu Wang, and Bin Xiao. Mariana: Tencent
Deep Learning Platform and Its Applications. PVLDB, 7(13):1772–1777, 2014.

276

