
Learning Over Joins

by

Arun Kumar

A dissertation submitted in partial fulfillment of
the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2016

Date of final oral examination: 07/21/2016

The dissertation is approved by the following members of the Final Oral Committee:
Jeffrey Naughton, Professor Emeritus, Computer Sciences, UW-Madison; Google
Jignesh M. Patel, Professor, Computer Sciences, UW-Madison
C. David Page Jr., Professor, Biostatistics and Medical Informatics, UW-Madison
Christopher Ré, Assistant Professor, Computer Science, Stanford University
Stephen J. Wright, Professor, Computer Sciences, UW-Madison
Xiaojin Zhu, Associate Professor, Computer Sciences, UW-Madison

© Copyright by Arun Kumar 2016
All Rights Reserved

i

acknowledgments

No amount of words can fully express my infinite gratitude to my co-advisors, Jeff
Naughton and Jignesh Patel. This dissertation would not have been possible without
their unwavering support for my crazy ideas to explore topics that were outside of their
core interests. Jeff’s incredible research wisdom and uncanny ability to understand his stu-
dents’ situations have helped me innumerable times, as have Jignesh’s infectious go-getter
spirit and remarkable grasp on grounding research with practical relevance. These are all
attributes that I hope to emulate in my career. I think the most rewarding gift an advisor
can give their student is the freedom to pursue their interests and collaborations, while
staying closely engaged by giving honest advice and critical feedback. I am very fortunate
that Jeff and Jignesh trusted me enough to give me this gift.

I am deeply grateful to Chris Ré for getting me started in data management research as
a part of his research group. His patience and confidence in me early on were instrumental
in getting me to continue in research. His outstanding ability to weave elegant theoretical
insights with solid systems work across multiple areas is a skill that I hope to emulate.

I thank Steve Wright and Jerry Zhu for their collaborations and for serving on my
committee. Their deep insights about optimization and machine learning, their patience
in explaining new concepts to me, and their honest feedback on my ideas were crucial
for this research. I thank David Page for serving on my committee and for his insightful
feedback on my talks.

I am also deeply grateful to David DeWitt and the Microsoft Jim Gray Systems Lab
for funding my dissertation research and for giving me access to Microsoft’s resources
without any strings attached. I thank David and the other members of the Lab for their
continual feedback on my papers and talks, which is an integral part of the remarkable
close-knit community environment of the Lab. I thank Robert McCann from Microsoft
for our periodic insightful discussions on research and practice, for his feedback on my
papers, and for helping to set up a productive research collaboration with Microsoft.

I was fortunate to be able to mentor a great set of students as part of my dissertation
research: Lingjiao Chen, Zhiwei Fan, Mona Jalal, Fengan Li, Boqun Yan, and Fujie Zhan. It
is a rewarding experience to work with such bright students and watch them mature as
researchers. This is a key reason for me to want to continue in academic research. I am
thankful to Jeff and Jignesh for giving me the opportunity to advise these students.

I am thankful to all of my other co-authors and research collaborators throughout
my graduate school life. An incomplete list includes Mike Cafarella, Joe Hellerstein, Ben
Recht, Aaron Feng, Pradap Konda, Feng Niu, and Ce Zhang. I am grateful to my friends,

ii

Bruhathi Sundarmurthy, Wentao Wu, and the other students of the Database Group, for
their continual feedback on my ideas, papers and talks.

Finally, I am indebted beyond measure to my family, especially my father, Kumar, my
brother, Balaji, and my sister-in-law, Indira, for their love, support, and advice throughout
my graduate school life, especially during the tough times. I am grateful to my other
close friends, who were always there to support and help me. An incomplete list includes
Levent, Thanu, and Vijay. Last but definitely not the least, I am grateful to my wonderful
fiancé, Wade, for his love and support during the crucial final stages of my dissertation
research and my job search. I look forward to an exciting journey with him as I move
forward to a career in academia.

Overall, I am deeply fortunate to have had, and continue to have, such a great set of
mentors and such a wonderful set of loved ones. I will never forget the support of all of
these people with my dissertation research and I know I can count on them in any of my
future endeavors too.

Most of this dissertation research was funded by a grant from the Microsoft Jim Gray
Systems Lab. All views expressed in this work are that of the authors and do not necessarily
reflect any views of Microsoft.

iii

abstract

Advanced analytics using machine learning (ML) is increasingly critical for a wide variety
of data-driven applications that underpin the modern world. Many real-world datasets
have multiple tables with key-foreign key relationships, but most ML toolkits force data
scientists to join them into a single table before using ML. This process of “learning
after joins” introduces redundancy in the data, which results in storage and runtime
inefficiencies, as well as data maintenance headaches for data scientists. To mitigate these
issues, this dissertation introduces the paradigm of “learning over joins,” which includes
two orthogonal techniques: avoiding joins physically and avoiding joins logically. The former
shows how to push ML computations through joins to the base tables, which improves
runtime performance without affecting ML accuracy. The latter shows that in many cases,
it is possible, somewhat surprisingly, to ignore entire base tables without affecting ML
accuracy significantly. Overall, our techniques help improve the usability and runtime
performance of ML over multi-table datasets, sometimes by orders of magnitude, without
degrading accuracy significantly. Our work forces one to rethink a prevalent practice in
advanced analytics and opens up new connections between data management systems,
database dependency theory, and machine learning.

iv

contents

Abstract iii

Contents iv

List of Figures vi

List of Tables x

1 Introduction 1
1.1 Example 1
1.2 Technical Contributions 3
1.3 Summary and Impact 5

2 Preliminaries 7
2.1 Problem Setup and Notation 7
2.2 Background for Orion 8
2.3 Background for Hamlet 9

3 Orion: Avoiding Joins Physically 12
3.1 Learning Over Joins 15
3.2 Factorized Learning 19
3.3 Experiments 26
3.4 Conclusion: Avoiding Joins Physically 35

4 Extensions and Generalization of Orion 37
4.1 Extension: Probabilistic Classifiers Over Joins and Santoku 37
4.2 Extension: Other Optimization Methods Over Joins 42
4.3 Extension: Clustering Algorithms Over Joins 44
4.4 Generalization: Linear Algebra Over Joins 46

5 Hamlet: Avoiding Joins Logically 50
5.1 Effects of KFK Joins on ML 53
5.2 Predicting a priori if it is Safe to Avoid a KFK Join 60
5.3 Experiments on Real Data 69
5.4 Conclusion: Avoiding Joins Logically 79

6 Related Work 81

v

6.1 Related Work for Orion 81
6.2 Related Work for Orion Extensions and Generalization 82
6.3 Related Work for Hamlet 83

7 Conclusion and Future Work 85

References 88

A Appendix: Orion 95
A.1 Proofs 95
A.2 Additional Runtime Plots 97
A.3 More Cost Models and Approaches 99
A.4 Comparing Gradient Methods 102

B Appendix: Hamlet 104
B.1 Proofs 104
B.2 More Simulation Results 106
B.3 Output Feature Sets 111

vi

list of figures

1.1 Example scenario for ML over multi-table data. 2

3.1 Learning over a join: (A) Schema and logical workflow. Feature vectors from S
(e.g., Customers) and R (e.g., Employers) are concatenated and used for BGD.
The loss (F) and gradient (∇F) for BGD can be computed together during a
pass over the data. Approaches compared: Materialize (M), Stream (S), Stream-
Reuse (SR), and Factorized Learning (FL). High-level qualitative comparison of
storage-runtime trade-offs and CPU-I/O cost trade-offs for runtimes of the four
approaches. S is assumed to be larger than R, and the plots are not to scale. (B)
When the hash table on R does not fit in buffer memory, S, SR, and M require
extra storage space for temporary tables or partitions. But, SR could be faster
than FL due to lower I/O costs. (C) When the hash table on R fits in buffer
memory, but S does not, SR becomes similar to S and neither need extra storage
space, but both could be slower than FL. (D) When all data fit comfortably in
buffer memory, none of the approaches need extra storage space, and M could
be faster than FL. 13

3.2 Redundancy ratio against the two dimension ratios (for dS = 20). (A) Fix dRdS
and vary nS

nR
. (B) Fix nSnR and vary dR

dS
. 18

3.3 Logical workflow of factorized learning, consisting of three steps as numbered.
HR and HS are logical intermediate relations. PartialIP refers to the partial
inner products from R. SumScaledIP refers to the grouped sums of the scalar
output of G() applied to the full inner products on the concatenated feature
vectors. Here, γSUM denotes a SUM aggregation and γSUM(RID) denotes a SUM
aggregation with a GROUP BY on RID. 20

3.4 Analytical cost model-based plots for varying the buffer memory (m). (A) Total
time. (B) I/O time (with 100MB/s I/O rate). (C) CPU time (with 2.5GHz clock).
The values fixed are nS = 108 (in short, 1E8), nR = 1E7, dS = 40, dR = 60, and
Iters = 20. Note that the x axes are in logscale. 27

3.5 Implementation-based performance against each of (1) tuple ratio (nSnR), (2)
feature ratio (dRdS), and (3) number of iterations (Iters) – separated column-wise
– for the (A) RSM, (B) RMM, and (C) RLM memory region – separated row-wise.
SR is skipped for RMM and RLM since its runtime is very similar to S. The
other parameters are fixed as per Table 3.3. 29

vii

3.6 Analytical cost model-based plots of performance against each of (A) nSnR , (B)
dR
dS

, and (C) Iters for the RSM region. The other parameters are fixed as per
Table 3.3. 30

3.7 Analytical plots for when m is insufficient for FL. We assume m = 4GB, and
plot the runtime against each of nS, dR, Iters, and nR, while fixing the others.
Wherever they are fixed, we set (nS,nR,dS,dR, Iters) = (1E9, 2E8, 2, 6, 20). . . 33

3.8 Parallelism with Hive. (A) Speedup against cluster size (number of worker
nodes) for (nS,nR,dS,dR, Iters) = (15E8, 5E6, 40, 120, 20). Each approach is
compared to itself, e.g., FL on 24 nodes is 3.5x faster than FL on 8 nodes. The
runtimes on 24 nodes were 7.4h for S, 9.5h for FL, and 23.5h for M. (B) Scaleup
as both the cluster and dataset sizes are scaled. The inputs are the same as for
(A) for 8 nodes, while nS is scaled. Thus, the size of T varies from 0.6TB to 1.8TB. 34

4.1 Illustration of Factorized Learning for Naive Bayes. (A) The base tables Customers
(the “entity table” as defined in Kumar et al. [2015c]) and Employers (an “at-
tribute table” as defined in Kumar et al. [2015c]). The target feature is Churn
in Customers. (B) The denormalized table Temp. Naive Bayes computations
using Temp have redundancy, as shown here for the conditional probability
calculations for State and Size. (C) FL avoids computational redundancy by
pre-counting references, which are stored in CustRefs, and by decomposing
(“factorizing”) the sums using StateRefs and SizeRefs. 37

4.2 Screenshots of Santoku: (A) The GUI to load the datasets, specify the database
dependencies, and train ML models. (B) Results of training a single model. (C)
Results of feature exploration comparing multiple feature vectors. (D) An R
script that performs these tasks programmatically from an R console using the
Santoku API. 40

4.3 High-level architecture. Users interact with Santoku either using the GUI or
R scripts. Santoku optimizes the computations using factorized learning and
invokes an underlying R execution engine. 40

4.4 Results on real datasets for K-Means. The approaches compared are – M: Mate-
rialize (use the denormalized dataset), F: Factorized clustering, FRC: Factorized
clustering with recoding (improves F), NC: Naive LZW compression, and OC:
Optimized compression (improves NC). 46

4.5 Performance on real datasets for (A) Linear Regression, (B) Logistic Regression,
(C) K-Means, and (D) GNMF. E, M, Y, W, L, B, and F correspond to the Expedia,
Movies, Yelp, Walmart, LastFM, Books, and Flights dataset respectively. The
number of iterations/centroids/topics is 20/5/5. 49

viii

5.1 Illustrating the relationship between the decision rules to tell which joins are
“safe to avoid.” . 51

5.2 Relationship between hypothesis spaces. 58
5.3 Simulation results for the scenario in which only a single Xr ∈ XR is part of

the true distribution, which has P(Y = 0|Xr = 0) = P(Y = 1|Xr = 1) = p. For
these results, we set p = 0.1 (varying this probability did not change the overall
trends). (A) Vary nS, while fixing (dS,dR, |DFK|) = (2, 4, 40). (B) Vary |DFK|

(= nR), while fixing (nS,dS,dR) = (1000, 4, 4). 63
5.4 When q∗R = |DX∗r |� |DFK|, the ROR is high. When q∗R ≈ |DFK|, the ROR is low.

The TR rule cannot distinguish between these two scenarios. 67
5.5 Scatter plots based on all the results of the simulation experiments referred to

by Figure 5.3. (A) Increase in test error caused by avoiding the join (denoted
“∆Test error”) against ROR. (B) ∆Test error against tuple ratio. (C) ROR against
inverse square root of tuple ratio. 67

5.6 End-to-end results on real data: Error after feature selection. 72
5.7 End-to-end results on real data: Runtime of feature selection. 74
5.8 Robustness: Holdout test errors after Forward Selection (FS) and Backward

Selection (BS). The “plan” chosen by JoinOpt is highlighted, e.g., NoJoins on
Walmart. 75

5.9 Sensitivity: We set ρ = 2.5 and τ = 20. An attribute table is deemed “okay to
avoid” if the increase in error was within 0.001 with either Forward Selection
(FS) and Backward Selection (BS). 75

A.1 Implementation-based performance against each of (1) tuple ratio (nSnR), (2)
feature ratio (dRdS), and (3) number of iterations (Iters) – separated column-wise
– for (A) RMM, and (B) RLM – separated row-wise. SR is skipped since its
runtime is very similar to S. The other parameters are fixed as per Table 3.3. . 97

A.2 Analytical plots of runtime against each of (1) nSnR , (2) dRdS , and (3) Iters, for both
the (A) RMM, and (B) RLM memory regions. The other parameters are fixed
as per Table 3.3. 97

A.3 Analytical plots for the case when |S| < |R| but nS > nR. We plot the runtime
against each of m, nS, dR, Iters, and nR, while fixing the others. Wherever
they are fixed, we set (m,nS,nR,dS,dR, Iters) = (24GB, 1E8, 1E7, 6, 100, 20). . . 98

A.4 Analytical plots for the case when nS 6 nR (mostly). We plot the runtime
against each of m, nS, dR, Iters, and nR, while fixing the others. Wherever
they are fixed, we set (m,nS,nR,dS,dR, Iters) = (24GB, 2E7, 5E7, 6, 9, 20). . . . 99

ix

A.5 Comparing gradient methods: Batch Gradient Descent (BGD), Conjugate Gra-
dient (CGD), and Limited Memory BFGS (LBFGS) with 5 gradients saved. The
parameters are nS = 1E5, nR = 1E4, dS = 40, and dR = 60. (A) Loss after each
iteration. (B) Loss after each pass over the data; extra passes needed for line
search to tune α. 103

B.1 Remaining simulation results for the same scenario as Figure 5.3. (A) Vary
dR, while fixing (nS,dS, |DFK|,p) = (1000, 4, 100, 0.1). (B) Vary dS, while fixing
(nS,dR, |DFK|,p) = (1000, 4, 40, 0.1). (C) Varyp, while fixing (nS,dS,dR, |DFK|) =
(1000, 4, 4, 200). 107

B.2 Simulation results for the scenario in which all of XS and XR are part of the
true distribution. (A) Vary nS, while fixing (dS,dR, |DFK|) = (4, 4, 40). (B)
Vary |DFK|, while fixing (nS,dS,dR) = (1000, 4, 4). (C) Vary dR, while fixing
(nS,dS, |DFK|) = (1000, 4, 100). (D) Vary dS, while fixing (nS,dR, |DFK|) =

(1000, 4, 40). 108
B.3 Scatter plots based on all the results of the simulation experiments referred to

by Figure B.2. (A) Increase in test error caused by avoiding the join (denoted
“∆Test error”) against ROR. (B) ∆Test error against tuple ratio. (C) ROR against
inverse square root of tuple ratio. 109

B.4 Simulation results for the scenario in which only XS and FK are part of the
true distribution. (A) Vary nS, while fixing (dS,dR, |DFK|) = (2, 4, 40). (B)
Vary |DFK|, while fixing (nS,dS,dR) = (1000, 2, 4). (C) Vary dR, while fixing
(nS,dS, |DFK|) = (1000, 2, 100). (D) Vary dS, while fixing (nS,dR, |DFK|) =

(1000, 4, 40). 110
B.5 Effects of foreign key skew for the scenario referred to by Figure 5.3. (A) Benign

skew: P(FK) has a Zipfian distribution. We fix (nS,nR,dS,dR) = (1000, 40, 4, 4),
while for (A2), the Zipf skew parameter is set to 2. (B) Malign skew: P(FK)
has a needle-and-thread distribution. We fix (nS,nR,dS,dR) = (1000, 40, 4, 4),
while for (A2), the needle probability parameter is set to 0.5. 111

x

list of tables

2.1 GLMs and their functions. 8

3.1 Notation for objects and parameters used in the cost models. I/O costs are
counted in number of pages; dividing by the disk throughput yields the esti-
mated runtimes. NB: As a simplifying assumption, we use an 8B representation
for all values: IDs, target, and features. Categorical features are assumed be
have been converted to numeric ones [Hastie et al., 2003]. 15

3.2 Notation for the CPU cost model. The approximate default values for CPU
cycles for each unit of the cost model were estimated empirically on the machine
on which the experiments were run. Dividing by the CPU clock frequency
yields the estimated runtimes. For G and Fe, we assume LR. LSR and LSVM
are slightly faster. 16

3.3 Parameters used for the single-node setting in Figure 3.5. NB: xEy ≡ x× 10y. 28
3.4 Discrete prediction accuracy of cost model. 31
3.5 Standard R2 scores for predicting runtimes. 31
3.6 Mean / median percentage error for predicting runtimes. 31
3.7 I/O costs (in 1000s of 1 MB pages) for multi-table joins. Set 1 has k = 5, i.e., 5

attribute tables, while Set 2 has k = 10. We set nS = 2E8 and dS = 10, while ni
and di (i > 0) range from 1E7 to 6E7 and 35 to 120 respectively. We setm = 4GB. 34

4.1 Operators and functions of linear algebra (using R notation) handled in this
project over a normalized matrix T . The parameter X or x is a scalar for Element-
wise Scalar Ops, a (dS + dR)× dx matrix for Left Multiplication, an nx × nS
matrix for Right Multiplication, and an ns× (dS+dR) matrix for Element-wise
Matrix Ops. All the operators except Element-wise Matrix Ops are factorizable
in general. 48

5.1 Notation used in this chapter. 64
5.2 Dataset statistics. #Y is the number of target classes. k is the number of attribute

tables. k ′ is the number of foreign keys with closed domains. 69
5.3 Holdout test errors of JoinOpt and JoinAllNoFK, which drops all foreign keys

a priori. FS is Forward Selection. BS is Backward Selection. 76
5.4 Effects of row sampling on join avoidance. 77
5.5 Holdout test errors for logistic regression with regularization for the same setup

as Figure 5.6. 78

1

1 Introduction

Advanced analytics using machine learning (ML) is critical for a wide variety of data-
driven applications ranging from insurance and healthcare to recommendation systems
and Web search [Gartner; SAS, b]. This has led to a growing interest in both the data
management industry and academia to more closely integrate ML and data processing
systems [Oracle; Ghoting et al., 2011; Hellerstein et al., 2012; Kumar et al., 2013]. However,
almost all ML toolkits assume that the input to an ML algorithm is a single table even
though many real-world datasets are stored as multiple tables connected by key-foreign key
(KFK) dependencies. Thus, data scientists are forced to perform key-foreign key joins to
gather features from all base tables and materialize the join output as a single table, which is
then input to their ML toolkit. This strategy of “learning after joins” introduces redundancy
avoided by database normalization, which could lead to extra storage requirements, poorer
end-to-end runtime performance, and data maintenance headaches for data scientists due
to data duplication [Ramakrishnan and Gehrke, 2003]. This could even become a “show-
stopper” issue for advanced analytics: from conversations with a major Web company,
we learned that the joins to materialize the single table before an ML task brought down
their shared cluster due to the blow up in the data size! Furthermore, the increase in the
number of tables and features might make it harder for data scientists to explore the data,
especially during feature selection, which is almost always performed in conjunction with
learning [Guyon et al., 2006; Zhang et al., 2014].

The thesis of this dissertation is that for a wide variety of ML algorithms, it is often possible to
mitigate the above issues by “learning over joins” instead, which involves two novel and orthogonal
techniques: (1) “avoiding joins physically,” in which ML computations are pushed down through
joins, and (2) “avoiding joins logically,” in which entire base tables can be, somewhat surprisingly,
ignored outright. Using a combination of new algorithms, system design, theoretical anal-
ysis, and empirical analysis, this dissertation shows how these two techniques can help
improve the usability and runtime performance of ML over multi-table data, sometimes
by orders of magnitude, without degrading ML accuracy significantly.

1.1 Example

We start with a detailed real-world example of our problem and introduce relevant ter-
minology from both the ML and database literatures. Figure 1.1 depicts this example

2

CID Churn Gender Age … EmployerID ZipCode

1 Yes Female 33 … MSFT 53706

2 No Male 51 … GOOG 94035

3 Yes Male 23 GOOG 53703

4 Yes Other 46 … APPL 95119

5 No Female 27 … MSFT 98052

… … … … … … …

Customers
EmployerID State Revenue …

APPL CA 234b …

GOOG CA 66b …

… … … …

Employers

ZipCode NumAccid. NumThefts …

53703 84 12 …

98052 392 43 …

… … … …

Areas

Figure 1.1: Example scenario for ML over multi-table data.

pictorially. An ML task that is ubiquitous in applications such as insurance, retail, and
telecommunications is predicting customer churn. Churn is the process of a customer leav-
ing a company and moving to its competitor. Companies want to prevent churn because
it affects their bottomline. As part of their preventive strategy, they use ML classification
models to predict which customers are likely to churn so that they could offer them in-
centives to stay. This involves using a training dataset of past customers that have churned
or stayed. Let the schema for this dataset be as follows: Customers(CustomerID, Churn,
Gender, Age, . . . , EmployerID, ZipCode). The attributes of the customer are the fea-
tures for an ML classification model such as Logistic Regression or Naive Bayes [Mitchell,
1997]. Churn is the target for the ML model, also called the class label. EmployerID is the
ID of the customer’s employer and it is a foreign key that refers to a separate table with
details about companies and other organizations. Its schema is: Employers(EmployerID,
State, Revenue, . . .). Similarly, ZipCode is another foreign key that refers to a separate
table with details about the areas where customers live, e.g., accident and crime statistics.
Its schema is: Areas(ZipCode, NumAccidents, NumThefts, . . .). Note that EmployerID
(resp. ZipCode) is the primary key (in short, key) of Employers (resp. Areas), i.e., it uniquely
identifies each tuple (record) in that table.

Given such multi-table data, data scientists almost always compute the relational join of
all tables – Customers ./ Employers ./ Areas – before ML to obtain more features for their
ML model as part of their feature engineering. They might have a hunch that the features of
the customers’ employers and/or areas might help in predicting customer churn; perhaps
customers employed by large corporations and living in low-crime areas might be less
likely to churn. The join output is materialized, i.e., a single table containing features from

3

all tables is created. The joins are typically performed in a data processing system such as
an RDBMS, Hive/Hadoop, or Spark, or in in-memory toolkits such as R (using the “merge”
function) [R]. The materialized table is used as the input to train an ML model.

More Examples ML over KFK joins of multi-table datasets is not specific to insurance or
retail or telecommunications; it arises in practically every data-driven application with
structured data. We provide a few more real-world examples from other domains.

• Recommendation Systems. Predict the rating of a movie/product by a user using a
table with past ratings joined with tables about users and movies/products.

• Hospitality. Predict the ranking of a hotel in a search listing using a table with past
search listings joined with tables about hotels and search events.

• Web Security. Predict the duration of a sign-in event using a table with past sign-in
information joined with tables about webpages and user accounts.

• Bioinformatics. Predict if a gene is responsive to a chemical using a table with
gene-chemical interaction information joined with tables about genes and chemicals.

1.2 Technical Contributions

This dissertation introduces the paradigm of “learning over joins” by asking a seemingly
simple but fundamental question: Do we really “need” the KFK joins before ML? As we
will show, this question has several interesting facets, and answering them opens up
new connections between data management systems, database dependency theory, and
machine learning. We split our technical contributions into three parts.

Orion: Avoiding Joins Physically In this project, we interpret the question posed above
as follows: Is it possible to “physically” avoid performing the KFK joins before ML? The mo-
tivation is simple: RDBMS optimizers have long pushed relational operators such as
selections and aggregates down through joins to the base tables to physically avoid joins
and potentially improve performance [Ramakrishnan and Gehrke, 2003; Yan and Larson,
1995; Chaudhuri and Shim, 1994]. Surprisingly, this idea had not been explored for ML
algorithms. This project is the first work to fill this critical research gap. In our customer
churn example (Figure 1.1), this means that we can learn on Customers, Employers, and
Areas directly instead of joining them. We focus on a large class of ML models known as
Generalized Linear Models (GLMs), solved using an optimization algorithm known as
Batch Gradient Descent (BGD). GLMs include such popular ML models as logistic and lin-
ear regression, while BGD is similar to many other optimization methods. Systematically

4

eliminating the redundancy caused by joins in both I/O and computations, we devise
several approaches to learn over joins, including factorized learning, which decomposes
BGD computations and pushes them down through the joins to the base tables. Factorized
learning avoids redundancy in both I/O and computations, and it does not affect accuracy.
But it introduces non-trivial performance trade-offs, which we analyze in depth using cost
models. Using extensive analytical and empirical studies on the PostgreSQL RDBMS, we
establish that factorized learning is often the fastest approach to learn over joins, and that
our cost model accurately predicts the corner cases where it may not be the fastest. We also
extend all our approaches to handle multiple joins as well as to distributed data processing
systems. This project is the subject of Chapter 3 and is joint work with Jeffrey Naughton
and Jignesh Patel. A paper on this work appeared in the ACM SIGMOD conference in
2015 [Kumar et al., 2015c].

Extensions and Generalization of Orion Having introduced factorized learning for
GLMs, we ask: Is factorized learning extensible to other ML models, and if so, is there a way
to extend it generically? In joint work with several BS and MS students at UW-Madison –
Lingjiao Chen, Zhiwei Fan, Mona Jalal, Fengan Li, Boqun Yan, and Fujie Zhan – as well
as with Jeffrey Naughton, Jignesh Patel, and Stephen Wright, we show that factorized
learning is extensible to several other classes of ML models. First, we extend it to proba-
bilistic classifiers such as Naive Bayes and Decision Trees and build the Santoku system
that provides implementations of factorized learning (and factorized “scoring”) in R. This
work was presented as a demonstration in the VLDB conference in 2015 [Kumar et al.,
2015a]. Second, we extend factorized learning to two other popular optimization algo-
rithms for GLMs with data access patterns that are different from that of BGD: Stochastic
Gradient Descent (SGD) and Stochastic Coordinate Descent (SCD). Third, we extend it to three
popular clustering algorithms: K-Means, Hierarchical Agglomerative Clustering, and DB-
SCAN. We also introduce the approach of “compressed clustering” that extends a popular
compression scheme and integrates it with clustering algorithms in order to exploit the
redundancy introduced by joins even when the normalized input schema is not known.
Finally, we generalize factorized learning to arbitrary ML computations expressible in the
formal language of linear algebra. We introduce a framework of algebraic rewrite rules to
automatically transform ML computations over a matrix that is the output of joins into
computations over the normalized input matrices. A brief description of these projects is
the subject of Chapter 4. Papers on all of these projects are under submission.

Hamlet: Avoiding Joins Logically Not satisfied with avoiding joins physically, we rein-
terpret our original question in a more radical way: What if we avoid a KFK join “logically”

5

as well, i.e., ignore a table entirely? In our customer churn example, this means that perhaps
Employers and/or Areas is ignored entirely. At first glance, this question might seem
surprising. Dealing with fewer tables (and thus, fewer features) could make ML and
feature selection faster and potentially make analysis easier. But what about accuracy? Our
first insight is that a KFK dependency means that the foreign key encodes all “information”
about the features brought in by the join; formally, the latter features are redundant, which
motivates us to consider avoiding them and using the foreign key as a representative. But
experiments on real data (for classification) show that avoiding joins reduces accuracy
drastically in some cases. Thus, we dive deeper and perform a learning theoretical analysis
of the effects of avoiding KFK joins on the bias-variance trade-off of ML [Shalev-Shwartz
and Ben-David, 2014]. Our analysis shows that avoiding joins might not increase the bias
of the final model (after feature selection), but it might increase the variance and thus,
decrease the overall accuracy. We confirm our analysis with a comprehensive simulation
study. This is a new runtime-accuracy trade-off in ML and we would like to help data
scientists understand and exploit it easily. Thus, we devise decision rules to predict when
avoiding a join is unlikely to decrease accuracy significantly. We call this process “avoiding
joins safely.” Our desiderata for such rules are genericity, simplicity, speed, flexibility,
and conservatism. An empirical validation with real data shows that our rules work well
in practice: in some cases, we see speedups of over two orders of magnitude, while the
accuracy is similar. This project is the subject of Chapter 5 and is joint work with Jeffrey
Naughton, Jignesh Patel, and Xiaojin Zhu. A paper on this work appeared in the ACM
SIGMOD conference in 2016 [Kumar et al., 2016].

1.3 Summary and Impact

Almost all machine learning (ML) toolkits assume that the input dataset to an ML algorithm
is a single table but many real-world datasets are multi-table, connected by key-foreign
key (KFK) relationships. This forces data scientists to learn after joins, which causes
runtime and storage inefficiencies. This dissertation mitigates this issue by introducing the
paradigm of learning over joins, which consists of two orthogonal techniques: avoiding
joins physically and avoiding joins logically. The first technique shows how, for a wide
variety of ML models, ML computations can be pushed down through joins to the base
tables, which could lower runtimes but does not affect accuracy. The second technique
shows that in many cases, the tables brought in by KFK joins can be ignored outright to
lower runtimes even further but without lowering accuracy significantly. Our work fills
critical technical gaps in advanced analytics and opens up new connections between data
management and ML.

6

Throughout this dissertation research, we interacted with data scientists and software
engineers at various enterprise and Web companies to understand the state-of-the-art
practice and make it easier for them to adopt our ideas and systems. In particular, at the
time of writing this document, both of our techniques – avoiding joins physically and
logically – are being explored for use in production by LogicBlox for their retail customers
and by Microsoft for their internal usage. Data scientists at Facebook have informed us of
their use of avoiding joins logically in their recommendation tasks. Finally, IBM Research
Almaden have expressed interest in exploring the integration of our work on generalizing
factorized learning using linear algebra into SystemML [Ghoting et al., 2011].

7

2 Preliminaries

We now present the formal problem setup for learning over joins and introduce some
notation that will be used in the rest of this dissertation. We then provide some background
on the relevant ML and database concepts.

2.1 Problem Setup and Notation

We call the main table with the entities to model using ML as the entity table, denoted
S. There are k other tables called attribute tables, denoted Ri, for i = 1 to k (if k = 1,
we drop the subscript). The schema of Ri is Ri(RIDi, XRi), where RIDi is its key and
XRi is a vector (sequence) of features. We abuse the notation slightly to also treat X as a
set since the order among features in X is immaterial in our setting. The schema of S is
S(SID, Y, XS, FK1, . . . , FKk), where Y is the target for learning, XS is a vector of features, and
FKi is a foreign key that refers to Ri. In database parlance, this is known as a “star” schema.1

Let T denote the output of the projected equi-join: T← π(S ./FK1=RID1 R1/FKk=RIDk
Rk). In general, its schema is T(SID, Y, XS, XR1 , . . . , XRk). Herein lies a subtle but key
distinction: in the Hamlet project, we recognize that the foreign keys FKi need not just be
physical connectors between the tables but features themselves. Thus, the schema of T
could also be T(SID, Y, XS, FK1, . . . , FKk, XR1 , . . . , XRk). We will discuss this difference in
more detail in Chapter 5.

Example We use our running example of predicting customer churn (Figure 1.1). S is the
Customers table, R1 is the Employers table, R2 is the Areas table, Y is Churn, XS is {Age,
Gender, . . . }, FK1 is Customers.EmployerID, RID1 is Employers.EmployerID, and XR1 is
{State, Revenue, . . . }, FK2 is Customers.ZipCode, RID2 is Employers.EmployerID, and
XR1 is {NumAccidents, NumThefts, . . . }.

1The key-foreign key dependencies in the star schema ensure that the distinctness of the entities in S are
preserved after the joins, which is necessary from a statistical correctness perspective [Hastie et al., 2003].
Otherwise, the same entity might end up with multiple examples – a scenario that requires more complex ML
models known as statistical relational learning [Getoor and Taskar, 2007]. We leave this to future work.

8

Logistic Regression (LR)

Least-Squares Regression
(LSR), Lasso, and Ridge

Linear Support Vector
Machine (LSVM)

log(1 + e–ab)
1 + eab

–a

(a – b)2 2(b – a)

max{0, 1 – ab} –aδab<1

ML Technique Fe (a, b)
(For Loss)

G (a, b)
(For Gradient)

Table 2.1: GLMs and their functions.

2.2 Background for Orion

We provide a brief introduction to GLMs and BGD. For a deeper description, we refer the
reader to Hastie et al. [2003], Mitchell [1997], and Nocedal and Wright [2006].

Generalized Linear Models (GLMs) Consider a dataset of n examples, each of which
includes a d-dimensional numeric feature vector, xi, and a numeric target, yi (i = 1 to
n). For regression, yi ∈ R, while for (binary) classification, yi ∈ {−1, 1}. Loosely, GLMs
assume that the data points can be separated into its target classes (for classification), or
approximated (for regression), by a hyperplane. The idea is to compute such a hyperplane
w ∈ Rd by defining an optimization problem using the given dataset. We are given a
linearly-separable objective function that computes the loss of a given model w ∈ Rd on
the data: F(w) =

∑n
i=1 Fe(yi, wTxi). The goal of an ML algorithm is to minimize the loss

function, i.e., find a vector w∗ ∈ Rd, s.t., w∗ = arg minw F(w). Table 2.1 lists examples of
some popular GLM techniques and their respective loss functions. The loss functions of
GLMs are convex (bowl-shaped), which means any local minimum is a global minimum,
and standard gradient descent algorithms can be used to solve them.2

Batch Gradient Descent (BGD) BGD is a simple algorithm to solve GLMs using iterative
numerical optimization. BGD initializes the model w to some w0, computes the gradient
∇F(w) on the given dataset, and updates the model as w ← w − α∇F(w), where α > 0
is the stepsize parameter. The method is outlined in Algorithm 1. Like F, the gradient is
also linearly separable: ∇F(w) =

∑n
i=1G(yi, wTxi)xi. Since the gradient is the direction

of steepest ascent of F, BGD is also known as the method of steepest descent [Nocedal and
Wright, 2006]. Table 2.1 also lists the gradient functions of the GLMs. We shall use F and
F(w) interchangeably.

2Typically, a convex penalty term called a regularizer is added to the loss to constrain ‖w‖1 or ‖w‖2
2 [Hastie

et al., 2003].

9

Algorithm 1 Batch Gradient Descent (BGD)
Inputs: {xi,yi}ni=1 (Data), w0 (Initial model)

1: k← 0, rprev ← null, rcurr ← null, gk ← null
2: while (Stop (k, rprev, rcurr, gk) = False) do
3: rprev ← rcurr
4: (gk, rcurr)← (∇Fk+1, Fk+1) . 1 pass over data
5: wk+1 ← wk − αkgk . Pick αk by line search
6: k← k+ 1
7: end while

BGD updates the model repeatedly, i.e., over many iterations (or epochs), each of which
requires (at least) one pass over the data. The loss value typically drops over iterations.
The algorithm is typically stopped after a pre-defined number of iterations, or when it
converges (e.g., the drop in the loss value across iterations, or the norm of the gradient,
falls below a given threshold). The stepsize parameter (α) is typically tuned using a line
search method that potentially computes the loss many times in a manner similar to step
4 [Nocedal and Wright, 2006].

On large data, it is likely that computing F and∇F dominates the runtime of BGD [Das
et al., 2010; Feng et al., 2012]. Fortunately, both F and ∇F can be computed scalably in a
manner similar to distributive aggregates like SUM in SQL. Thus, it is easy to implement
BGD using the abstraction of a user-defined aggregate function (UDAF) that is available
in almost all RDBMSs [Feng et al., 2012; Gray et al., 1997]. However, unlike SUM, BGD
performs a “multi-column” or vector aggregation, since all feature values of an example
are needed to compute its contribution to the gradient. For simplicity of exposition, we
assume that feature vectors are instead stored as arrays in a single column.

2.3 Background for Hamlet

Feature Selection Feature selection methods are almost always used along with an ML
classifier to help improve accuracy [Guyon et al., 2006]. While our work is orthogonal to
feature selection methods, we briefly discuss a few popular ones for concreteness sake.
At a high level, there are three types of feature selection methods: wrappers, filters, and
embedded methods [Kohavi and John, 1997; Guyon et al., 2006].

A wrapper uses the classifier as a black box to heuristically search for a more accurate
subset. Sequential greedy search is a popular wrapper; it has two variants: forward selection
and backward selection. Given a feature set X, forward (resp. backward) selection computes
the error of an ML model for different subsets of X of increasing (resp. decreasing) size
starting with the empty set (resp. full set X) by adding (resp. eliminating) one feature at

10

a time. The error can be the holdout validation error or the k-fold cross-validation error.
For our purposes, the simpler holdout validation method described in Hastie et al. [2003]
suffices: the labeled data is split 50%:25%:25% with the first part used for training, the
second part used for the validation error during greedy search, and the last part used for
the holdout test error, which is the final indicator of the chosen subset’s accuracy.

Filters apply a specified scoring function to each feature F ∈ X using the labeled data
but independent of any classifier. The top-k features are then chosen, with k picked either
manually or tuned automatically using the validation error for a given classifier (we use
the latter). Popular scoring functions include mutual information I(F; Y) and information
gain ratio IGR(F; Y). Intuitively, I(F; Y) tells us how much the knowledge of F reduces the
entropy of Y, while IGR(F; Y) normalizes it by the feature’s entropy. The formal definition
is as follows.

Definition 2.1. Mutual information. Given two random variables A and B with domains DA
and DB, their mutual information is I(A;B) = H(B) −H(B|A), where H(B) is the entropy of
B. Thus, we have:

I(A;B) =
∑
a∈DA

∑
b∈DB

P(a,b)log P(a,b)
P(a)P(b)

Embedded methods are “wired” in to the classifier. A common example is L1 or L2
norm regularization for linear and logistic regression. These methods perform implicit
feature selection by modifying the regression coefficients directly instead of searching
for subsets, e.g., L1 norm makes some coefficients vanish, which is akin to dropping the
corresponding features [Hastie et al., 2003].

Naive Bayes Probabilistic classifiers assume that data examples arise from some hidden
“true” joint probability distribution P∗(Y, X), where Y is a random variable that represents
the target (class label), and X represents the feature vector (with |X| = d features). Let DY
denote the domain of Y, and similarly, DF,∀F ∈ X. Learning (training) simply becomes
computing an estimate P of P∗ (or an approximation of it). Given a new example with
X = x, the classifier can be used to predict the target using the maximum a posteriori (MAP)
estimate: argmaxc∈DY

P(Y = c|X = x). Using Bayes Rule, we can rewrite P(Y|X) as follows:

P(Y|X) =
P(X|Y)P(Y)
P(X)

=
P(X, Y)
P(X)

(2.1)

In general, P(X) is ignored and substituted with a normalizing constant. P(X, Y) is
estimated by counting the frequencies of all combinations of feature values and class
labels in the labeled dataset. Since the number of probabilities to estimate in P(Y, X)

11

grows exponentially in d, the Naive Bayes model mitigates that issue by assuming that the
features in X are conditionally independent, given Y [Pearl, 1988; Mitchell, 1997]. Thus,
P(X, Y) is assumed to factorize as follows:

P(X, Y) = P(Y)P(X|Y) ≈ P(Y)ΠF∈XP(F|Y) (2.2)

Thus, Naive Bayes needs to estimate onlyO(d) probabilities, viz., P(Y), and P(F|Y),∀F ∈
X. Some (F, Y) combinations might not occur in the training data. To avoid assigning them
zero probability, Laplacian smoothing is performed by introducing a “dummy” extra count
of 1 for all F values when computing P(F|Y) [Mitchell, 1997].

Prediction with Naive Bayes requires looking up the conditional probabilities for
a given feature vector and multiplying them to compute the MAP estimate. To avoid
numerical underflows, real implementations add logarithms of probabilities instead.

12

3 Orion: Avoiding Joins Physically

In this chapter, we dive deeper into our technique of avoiding joins physically. Recall that
learning after joins imposes an artificial barrier between the ML-based analysis and the base
tables, resulting in several practical issues. First, the join output table might be much larger
than the base table, which causes unnecessary overheads for storage and performance as
well as waste of time performing extra computations on data with redundancy. Second, as
the base tables evolve, maintaining the materialized output of the join could become an
overhead. Finally, data scientists often perform exploratory analysis of different subsets
of features and data [Zhang et al., 2014; Konda et al., 2013]. Materializing temporary
tables after joins for learning on each subset could slow the data scientist and inhibit
exploration [Anderson et al., 2013]. Learning over joins (physically), i.e., pushing ML
computations through joins to the base tables, mitigates such drawbacks.

From a technical perspective, the issues caused by the redundancy present in denormal-
ized datasets are well known in the context of traditional relational data management [Ra-
makrishnan and Gehrke, 2003]. But the implications of this type of redundancy in the
context of ML are much less well understood. Thus, an important challenge to be ad-
dressed is if it is possible to devise approaches that learn over joins and avoid introducing
such redundancy without sacrificing either the model accuracy, learning efficiency, or
scalability compared to the currently standard approach of learning after joins.

As a first step, in this project, we show that, for a large generic class of ML models
called Generalized Linear Models (GLMs), it is possible to learn over joins and avoid
redundancy without sacrificing accuracy and scalability, while actually improving perfor-
mance. Furthermore, all our approaches to learn GLMs over joins are simple and easy to
implement using existing RDBMS abstractions, which makes them more easily deployable
than approaches that require deep changes to the code of an RDBMS. We focus on GLMs
because they include many popular classification and regression techniques [Hastie et al.,
2003; Mitchell, 1997]. We use standard gradient methods to learn GLMs: Batch Gradient
Descent (BGD), Conjugate Gradient (CGD), and (L)BFGS [Nocedal and Wright, 2006]. For
clarity of exposition, we use only BGD, but our results are also applicable to these other
gradient methods. BGD is a numerical optimization algorithm that minimizes an objective
function by performing multiple passes (iterations) over the data. More information about
GLMs and BGD is provided in Chapter 2.

13

I/O Cost

C
P

U
 C

os
t

SR

M

FL

Storage

R
un

tim
e

SR

S
M

FL

S

I/O Cost

C
P

U
 C

os
t

SR

M
FL

S

Storage

R
un

tim
e SR

M
FL

S

B D

C
P

U
 C

os
t

Storage

R
un

tim
e

SR
S

FL

C

M
SR S

I/O Cost

M
S (SID, Y, X

S
, FK)

R (RID, X
R
)

SR

Δ

Δ R.RID = S.FKX ≡ [X
S
 X

R
]

T

Update
ModelCompute

Gradient
and Loss w

∆

(F, F)

Join (and
Project)

A

T (SID, Y,

X)

BGD

Figure 3.1: Learning over a join: (A) Schema and logical workflow. Feature vectors from
S (e.g., Customers) and R (e.g., Employers) are concatenated and used for BGD. The loss
(F) and gradient (∇F) for BGD can be computed together during a pass over the data.
Approaches compared: Materialize (M), Stream (S), Stream-Reuse (SR), and Factorized
Learning (FL). High-level qualitative comparison of storage-runtime trade-offs and CPU-
I/O cost trade-offs for runtimes of the four approaches. S is assumed to be larger than R,
and the plots are not to scale. (B) When the hash table on R does not fit in buffer memory, S,
SR, and M require extra storage space for temporary tables or partitions. But, SR could be
faster than FL due to lower I/O costs. (C) When the hash table on R fits in buffer memory,
but S does not, SR becomes similar to S and neither need extra storage space, but both
could be slower than FL. (D) When all data fit comfortably in buffer memory, none of the
approaches need extra storage space, and M could be faster than FL.

Figure 3.1(A) gives a high-level overview of our problem using a two-table join. We
first focus in-depth on a two-table join and generalize to multi-table joins in the end. In
our customer churn example, this is the join of Customers with, say, Employers. We call
the approach of materializing T before BGD as Materialize. We focus on the hybrid hash
algorithm for the join operation [Shapiro, 1986]. We assume that R is smaller in size than S
and estimate the I/O and CPU costs of all our approaches in a manner similar to Shapiro
[1986]. We propose three alternative approaches to run BGD over a join in a single-node
RDBMS setting: Stream, Stream-Reuse and Factorized Learning. Each approach avoids some
forms of redundancy. Stream avoids writing T and could save on I/O. Stream-Reuse also
exploits the fact that BGD is iterative and avoids repartitioning of the base relations
after the first iteration. But neither approach avoids redundancy in the computations for
BGD. Thus, we design the Factorized Learning (in short, Factorize) approach that avoids
computational redundancy as well. Factorize achieves this by interleaving the computations
and I/O of the join operation and BGD. None of our approaches compromise on model
accuracy. Furthermore, they are all easy to implement in an RDBMS using the abstraction
of user-defined aggregate functions (UDAFs), which provides scalability and ease of
deployment [Gray et al., 1997; Feng et al., 2012].

The performance picture, however, is more complex. Figures 3.1(B-D) give a high-level
qualitative overview of the trade-off space for all our approaches in terms of the storage
space needed and the runtimes (split into I/O and CPU costs). Both our analytical and

14

experimental results show that Factorize is often the fastest approach, but which approach
is the fastest depends on a combination of factors such as buffer memory, input table
dimensions, and number of iterations. Thus, a cost model such as ours is required to select
the fastest approach for a given instance of our problem. Furthermore, we identify that
Factorize might face a scalability bottleneck, since it maintains an aggregation state whose
size is linear in the number of tuples in R. We propose three extensions to mitigate this
bottleneck and find that none of them dominate the others in terms of runtime, which
again necessitates our cost model.

We extend all our approaches to multi-table joins, specifically, the case in which S has
multiple foreign keys. Such a scenario arises in applications such as recommendation
systems in which a table of ratings refers to both the user and product tables [Rendle, 2013].
We show that optimally extending Factorize to multi-table joins involves solving a problem
that is NP-Hard. We propose a simple, but effective, greedy heuristic to tackle this problem.
Finally, we extend all our approaches to the shared-nothing parallel setting and implement
them on Hive. We find near-linear speedups and scaleups for all our approaches.
In summary, this project makes the following contributions:

• To the best of our knowledge, this is the first project to study the problem of learning
over joins of large tables without materializing the join output. Focusing on GLMs
solved using BGD, we explain the trade-off space in terms of I/O and CPU costs and
propose alternative approaches to learn over joins.

• We propose the Factorize approach that pushes BGD computations through a join,
while being amenable to a simple implementation in existing RDBMSs.

• We compare the performance of all our approaches both analytically and empirically
using implementations on PostgreSQL. Our results show that Factorize is often, but
not always, the fastest approach. A combination of factors such as the buffer memory,
the dimensions of the input tables, and the number of BGD iterations determines
which approach is the fastest. We also validate the accuracy of our analytical models.

• We extend all our approaches to multi-table joins. We also demonstrate how to
parallelize them using implementations on Hive.

Outline In Section 3.1, we explain our cost model and simple approaches to learn over
joins. In Section 3.2, we present our new approach of Factorized Learning and its extensions.
In Section 3.3, we discuss our experimental setup and results.

15

Symbol Meaning

R Attribute table

S Entity table

T Join result table

nR Number of rows in R

nS Number of rows in S

dR Number of features in R

dS Number of features in S (includes Y)

p Page size in bytes (1MB used)

m Allocated buffer memory (pages)

f Hash table fudge factor (1.4 used)

|R| Number of R pages

|S| Number of S pages

|T| Number of T pages

Iters Number of iterations of BGD (≥ 1)

()p
8nR(1+dR)

()p
8nS(2+dS)

()p
8nS(1+dS+dR)

Table 3.1: Notation for objects and parameters used in the cost models. I/O costs are
counted in number of pages; dividing by the disk throughput yields the estimated runtimes.
NB: As a simplifying assumption, we use an 8B representation for all values: IDs, target, and
features. Categorical features are assumed be have been converted to numeric ones [Hastie
et al., 2003].

3.1 Learning Over Joins

We now discuss alternative approaches to run BGD over a table that is logically the output
of a key-foreign key join. Specifically, we contrast the current approach of materializing T
and using it for BGD against our new approaches that avoid materializing T and instead,
use R and S directly.

Assumptions and Cost Model

For the rest of this chapter, we focus only on the data-intensive computation in step 4 of
the BGD algorithm (Algorithm 1) presented in Chapter 2, viz., the computation of (∇F,
F) at each iteration. The data-agnostic computations of updating w are identical across
all approaches proposed here, and typically take only a few seconds.1 Tables 3.1 and 3.2

1CGD and (L)BFGS differ from BGD only in these data-agnostic computations, which are easily imple-
mented in, say, Python, or R [Das et al., 2010]. If a line search is used to tune α, we need to compute only F,
but largely the same trade-offs apply.

16

Symbol Meaning
Default Value
(CPU Cycles)

hash Hash a key 100

comp Compare two keys 10

copy Copy a double 1

add Add two doubles 10

mult Multiply two doubles 10

funcG Compute G(a, b) 150

funcF Compute Fe(a, b) 200

Table 3.2: Notation for the CPU cost model. The approximate default values for CPU
cycles for each unit of the cost model were estimated empirically on the machine on which
the experiments were run. Dividing by the CPU clock frequency yields the estimated
runtimes. For G and Fe, we assume LR. LSR and LSVM are slightly faster.

summarize our notation for the objects and parameters. We focus on the classical hybrid
hash join algorithm (considering other join algorithms is part of future work), which
requires (m− 1) >

√
df|R|e [Shapiro, 1986]. We also focus primarily on the case nS > nR

and |S| > |R|. We discuss the cases nS 6 nR or |S| < |R| in the appendix.

BGD After a Join: Materialize (M)

Materialize (M) is the current popular approach for handling ML over normalized datasets.
Essentially, we write a new table and use it for BGD.

1. Apply hybrid hash join to obtain and write T.
2. Read T to compute (∇F, F) for each iteration.

Following the style of the discussion of the hybrid hash join algorithm in Shapiro [1986],
we now introduce some notation. The number of partitions of R is B = ddf|R|e−(m−2)

(m−2)−1 e.
Partition sizes are |R0| = b (m−2)−B

f c, and |Ri| = d |R|−|R0|
B e(1 6 i 6 B), with the ratio

q =
|R0|
|R|

, where R0 is the first partition and Ri are the other partitions as per the hybrid
hash join algorithm [Shapiro, 1986]. We provide the detailed I/O and CPU costs of
Materialize here. The costs of the other approaches in this section can be derived from
these and for the sake of better readability, we present their costs in the appendix.

I/O Cost If (m− 1) 6 df|R|e, we partition the tables:

(|R|+|S|) //First read

17

+ 2.(|R|+|S|).(1-q) //Write, read temp partitions
+ |T| //Write output
+ |T| //Read for first iteration
+ (Iters-1).|T| //Remaining iterations
- min{|T|,[(m-2)-f|Ri|]} //Cache T for iter 1
- min{|T|,(m-1)}.(Iters-1) //MRU for rest

If (m− 1) > df|R|e, we need not partition the tables:

(|R|+|S|)
+ (Iters+1).|T|
- min{|T|,[(m-2)-f|R|]}
- min{|T|,(m-1)}.(Iters-1)

CPU Cost

(nR+nS).hash //Partition R and S
+ nR.(1+dR).copy //Construct hash on R
+ nR.(1+dR).(1-q).copy //R output partitions
+ nS.(2+dS).(1-q).copy //S output partitions
+ (nR+nS).(1-q).hash //Hash on R and S partitions
+ nS.comp.f //Probe for all of S
+ nS.(1+dS+dR).copy //T output partitions
+ Iters.[//Compute gradient and loss

nS.d.(mult+add) //w.xi for all i
+ nS.(funcG+funcF) //Apply G and F_e
+ nS.d.(mult+add) //Scale and add
+ nS.add //Add for total loss
]

BGD Over a Join: Stream (S)

This approach performs the join lazily for each iteration.

1. Apply hybrid hash join to obtain T, but instead of writing T, compute (∇F, F) on the
fly.

2. Repeat step 1 for each iteration.

The I/O cost of Stream is simply the cost of the hybrid hash join multiplied by the number
of iterations. Its CPU cost is a combination of the join and BGD.

18

0 2 4 6 8 10
0

2

4

6

8

10

100

10

1

0.1

0 20 40 60 80 100
0

2

4

6

8

10

nS/nR =

100

10

1

0.1

Feature Ratio (dR/dS)

R
ed

un
da

nc
y

R
at

io

R
ed

un
da

nc
y

R
at

io

Tuple Ratio (nS/nR)

100

10

1

0.1

dR/dS =

10

5

1

0.1

A B

Figure 3.2: Redundancy ratio against the two dimension ratios (for dS = 20). (A) Fix dRdS
and vary nS

nR
. (B) Fix nSnR and vary dR

dS
.

Discussion of Trade-offs The I/O and storage trade-offs between Materialize and Stream
(Figure 3.1(B)) arise because it is likely that many tuples of S join with a single tuple of
R (e.g., many customers might have the same employer). Thus, |T| is usually larger than
|S|+ |R|. Obviously, the gap depends upon the dataset sizes. More precisely, we define the
redundancy ratio (r) as the ratio of the size of T to that of S and R:

r =
nS(1 + dS + dR)

nS(2 + dS) + nR(1 + dR)
=

nS
nR

(1 + dR
dS

+ 1
dS

)

nS
nR

(1 + 2
dS

) + dR
dS

+ 1
dS

This ratio is useful because it gives us an idea of the factor of speedups that are
potentially possible by learning over joins. Since it depends on the dimensions of the
inputs, we plot the redundancy ratio for different values of the tuple ratio (nSnR) and (inverse)
feature ratio (dRdS), while fixing dS. Figure 3.2 presents the plots. Typically, both dimension
ratios are > 1, which mostly yields r > 1. But when the tuple ratio is < 1, r < 1 (see
Figure 3.2(A)). This is because the join here becomes selective (when nS < nR). However,
when the tuple ratio > 1, we see that r increases with the tuple ratio. It converges to
1+dR

dS
+ 1
dS

1+ 2
dS

≈ 1 + dR
dS

. Similarly, as shown in Figure 3.2(B), the redundancy ratio increases

with the feature ratio, and converges to the tuple ratio nS
nR

.

An Improvement: Stream-Reuse (SR)

We now present a simple modification to Stream – the Stream-Reuse approach – that can
significantly improve performance.

1. Apply hybrid hash join to obtain T, but instead of writing T, run the first iteration of
BGD on the fly.

19

2. Maintain the temporary partitions of S and R on disk.
3. For the remaining iterations, reuse the partitions of S and and R for the hybrid hash

join, similar to step 1.

The I/O cost of Stream-Reuse gets rid of the rewriting (and rereading) of partitions at
every iteration, but the CPU cost is reduced only slightly. Stream-Reuse makes the join
“iteration-aware” – we need to divide the implementation of the hybrid hash join in to two
steps so as to reuse the partitions across iterations. An easier way to implement (without
changing the RDBMS code) is to manually handle pre-partitioning at the logical query
layer after consulting the optimizer about the number of partitions. Although the latter is a
minor approximation to SR, the difference in performance (estimated using our analytical
cost models) is mostly negligible.

3.2 Factorized Learning

We now present a new technique that interleaves the I/O and CPU processing of the join
and BGD. The basic idea is to avoid the redundancy introduced by the join by decomposing
the computations of both F and∇F and “pushing them down through the join.” We call our
technique factorized learning (Factorize, or FL for short), borrowing the terminology from
“factorized” databases [Bakibayev et al., 2013]. An overview of the logical computations in
FL is presented in Figure 3.3.

The key insight in FL is as follows: given a feature vector x ∈ T, wTx = wTSxS + wTRxR.
Since the join duplicates xR from R when constructing T, the main goal of FL is to avoid
redundant inner product computations as well as I/O over those feature vectors from R.
FL achieves this goal with the following three steps (numbered in Figure 3.3).

1. Compute and save the partial inner products wTRxR for each tuple in R in a new table
HR under the PartialIP column (part 1 in Figure 3.3).

2. Recall that F and ∇F are computed together and that ∇F ≡ [∇FS ∇FR]. This step
computes F and∇FS together. Essentially, we join HR and S on RID, complete the
computation of the full inner products on the fly, and follow that up by applying both
Fe() andG() on each example. By aggregating both these quantities as it performs the
join, FL completes the computation of F =

∑
Fe(y, wTx) and∇FS =

∑
G(y, wTx)xS.

Simultaneously, FL also performs a GROUP BY on RID and sums upG(y, wTx), which
is saved in a new table HS under the SumScaledIP column (part 2 in Figure 3.3).

3. Compute∇FR =
∑
G(y, wTx)xR by joining HS with R on RID and scaling the partial

feature vectors xR with SumScaledIP (part 3 in Figure 3.3).

20

S

R

Δ

Δ
w

HR

γSUM

∆(FS, F)

γSUM(RID)

HS R

Δ

Δ

γSUM

∆ FR
Logical Schemas:

R(RID, XR)

S(SID, Y, XS, FK)

HR(RID, PartialIP)

HS(RID, SumScaledIP)

1

2

3

Figure 3.3: Logical workflow of factorized learning, consisting of three steps as numbered.
HR and HS are logical intermediate relations. PartialIP refers to the partial inner products
from R. SumScaledIP refers to the grouped sums of the scalar output of G() applied to
the full inner products on the concatenated feature vectors. Here, γSUM denotes a SUM
aggregation and γSUM(RID) denotes a SUM aggregation with a GROUP BY on RID.

Example Consider logistic regression (LR). In step 2, as the full inner product wTx is
computed by joining HR and S, FL computes log(1 + exp(−ywTx)) and adds it into F.
Immediately, FL also computes −y

1+exp(ywT x) = g (say), and adds it into SumScaledIP for
that RID. It also computes gxS and adds it into∇FS.

Overall, FL computes (∇F, F) without any redundancy in the computations. FL reduces
the CPU cost of floating point operations for computing inner products from O(nS(dS +

dR)) toO(nSdS+nRdR). The reduction roughly equals the redundancy ratio (Section 3.3).
Once (∇F, F) is computed, w is updated and the whole process is repeated for the next
iteration of BGD. Note that to compute only F, step 3 of FL can be skipped. FL gives the
same results as Materialize and Stream. We provide the proof in the appendix.

Proposition 3.2.1. The output (∇F, F) of FL is identical to the output (∇F, F) of both Materialize
and Stream.2

While it is straightforward to translate the logical plan shown in Figure 3.3 into SQL
queries, we implement it using a slightly different scheme. Our goal is to take advantage
of some physical properties of this problem that will help us improve performance by
avoiding some table management overheads imposed by the RDBMS. Basically, since
HR and HS are both small 2-column tables keyed by RID, we maintain them together

2The proof assumes exact arithmetic. Finite-precision arithmetic may introduce minor errors. We leave a
numerical analysis of FL to future work.

21

in a simple in-memory associative array H with the bucket for each RID being a pair of
double precision numbers (for PartialIP and SumScaledIP). Thus, we perform random
reads and writes on H and replace both the joins (from parts 2 and 3 in Figure 3.3) with
aggregation queries with user-defined aggregation functions (UDAFs) that perform simple
scans over the base tables. Overall, our implementation of FL works as follows, with each
step corresponding to its respective part in Figure 3.3:

1. Read R, hash on RID and construct H in memory with partial inner products
(wTRxR) saved in PartialIP. It can be expressed as the following SQL query: SELECT
UDAF1(R.RID,R.xR,wR) FROM R.

2. Read S, probe into H using the condition FK = RID, complete the inner products by
adding PartialIP from H with partial inner products on each tuple (wTSxS), update
F in the aggregation state by adding into it (essentially, a SUM), update ∇FS in the
aggregation state by adding into it (a SUM over vectors), and add the value of G(wTx)
into SumScaledIP. Essentially, this is a SUM with a GROUP BY on RID. As a query:
SELECT UDAF2(S.FK,S.y,S.xS,wS) FROM S.

3. Read R, probe into H using RID, compute partial gradients on each example, and
update ∇FR in memory. Essentially, this is a SUM over vectors. As a query: SELECT
UDAF3(R.RID,R.xR) FROM R.

4. Repeat steps 1-3 for each remaining iteration.

I/O Cost

Iters.[
(|R|+|S|+|R|) //Read for each iter

- min{|R|,(m-1)-|H|}] //Cache R for second pass
- (Iters - 1).[

min{|R|,(m-1)-|H|} //Cache R for next iter
+ min{|S|,max{0,(m-1)-|H|-|R|}}] //Cache S too

CPU Cost

Iters.[
nR.hash //Hash R for stats

+ nR.dR.(mult+add) //Partial w.xi for col 1
+ nR.copy //Update column 1 of H
+ nS.(hash+comp.f) //Probe for all of S
+ nS.(dS-1).(mult+add) //Partial w.xi for col 2

22

+ nS.(add+funcG+funcF) //Full w.xi and functions
+ nS.(dS-1).(mult+add) //Partial scale and add
+ nS.add //Add for total loss
+ (nS-nR).add //Compute column 2 of H
+ nR.copy //Update column 2 of H
+ nR.(hash+comp.f) //Probe for all of R
+ nR.dR.(mult+add) //Partial scale and add
]

The above costs present an interesting insight into FL. While it avoids computational
redundancy in computing (∇F, F), FL performs extra computations to manage H. Thus,
FL introduces a non-obvious computational trade-off. Similarly, FL requires an extra scan
of R per iteration, which introduces a non-obvious I/O trade-off. As we will show later in
Section 5, these trade-offs determine which approach will be fastest on a given instance of
the problem.

As an implementation detail, we found that, while it is easy to manage H as an associa-
tive array, the caching of R for the second pass is not straightforward to implement. This
is because the pages of R might be evicted when S is read, unless we manually keep them
in memory. We found that the performance benefit due to this is usually under 10% and
thus, we ignore it. But if an RDBMS offers an easy way to “pin” pages of a table to buffer
memory, we can use it in FL.

Finally, we note that FL requires H to be maintained in buffer memory, which requires
m− 1 > |H|. But note that |H| = df.nR.(1+2).8

p e, which is only O(nR). Thus, in many cases,
H will probably easily fit in buffer memory. Nevertheless, to handle cases in which H does
not fit in buffer memory, we present a few extensions to FL.

Scaling FL along nR

We explore three extensions to FL to mitigate its scalability bottleneck: FLSQL, FLSQL+,
and FL-Partition (FLP).

FLSQL

FLSQL applies the traditional approach of optimizing SQL aggregates (e.g., SUM) over joins
using logical query rewriting [Yan and Larson, 1995; Chaudhuri and Shim, 1994]. Instead
of maintaining H in memory, it directly converts the logical plan of Figure 3.3 into SQL
queries by managing HR and HS as separate tables:

1. Read R, and write HR with partial inner products.

23

2. Join HR and S and aggregate (SUM) the result to compute (∇FS,F).
3. Join HR and S and write HS after a GROUP BY on RID. HS contains sums of scaled

inner products.
4. Join HS and R and aggregate (SUM) the result to compute∇FR.
5. Repeat steps 1-4 for each remaining iteration.

Note that both HR and HS are of size O(nR). Also, note that we have to read S twice –
once for computing an aggregate and the other for creating a new table.

FLSQL+

FLSQL+ uses the observation that since nS � nR typically (and perhaps dS < dR), it
might be faster to write a wider table in step 2 of FLSQL instead of reading S twice:

1. Read R, and write HR with partial inner products.
2. Join HR and S and write HS+ after a GROUP BY on RID. HS+ contains both sums of

scaled inner products and partial gradient vectors.
3. Join HS+ and R and aggregate (SUM) the result to compute F and∇F.
4. Repeat steps 1-3 for each iteration..

Note that HR is of size O(nR) but HS+ is of size O(nRdS), since it includes the partial
gradients too. Thus, whether this is faster or not depends on the dataset dimensions.

FL-Partition (FLP)

The basic idea behind FLP is simple – pre-partition R and S so that the smaller associative
arrays can fit in memory:

1. Partition R and S on RID (resp. FK) into {Ri} and {Si} so that each Hi corresponding
to Ri fits in memory.

2. For each pair Ri and Si, apply FL to obtain partial (∇F, F)i. Add the results from all
partitions to obtain full (∇F, F).

3. Repeat steps 1-2 for each remaining iteration, reusing the partitions of R and S,
similar to Stream-Reuse.

Note that we could even partition S and R into more than necessary partitions to ensure
that Ri is cached for the second pass, thus improving the performance slightly. All the
above extensions preserve the correctness guarantee of FL. We provide the proof in the
appendix.

24

Proposition 3.2.2. The output (∇F, F) of FLP, FLSQL, and FLSQL+ are all identical to the output
(∇F, F) of FL.

Extensions

We explain how we can extend our approaches to multi-table joins. We then briefly discuss
how we can extend our approaches to a shared-nothing parallel setting.

Multi-table Joins

Multi-table key-foreign key joins do arise in some applications of ML. For example, in a
movie recommendation system such as Netflix, ratings of movies by users (e.g., 1-5 stars)
are typically stored in a table that has foreign key references to two tables – one with user
details, and another with movie details. Thus, there is one entity table and many attribute
tables. Considering other schema scenarios is part of future work. Extending Materialize
and Stream (and Stream-Reuse) to multi-table joins is trivial, since data processing systems
such as RDBMSs and Hive already support and optimize multi-table joins [Selinger et al.,
1979; Apache, a].

Extending FL is also straightforward, provided we have enough memory to store the
associative arrays of all attribute relations simultaneously for step 2. But we face a technical
challenge when the memory is insufficient. One solution is to adapt the FLP strategy, but
partitioning all input relations might be an overkill. Instead, it is possible to improve
performance by formulating a standard discrete optimization problem to determine the
subset of input relations to partition so that the overall runtime is minimized.

Formally, we are given k attribute tables Ri(RIDi, Xi), i = 1 to k, and the entity table
S(SID, Y, XS, FK1, . . . , FKk), with k foreign keys. Our approach reads each Ri, converts
it to its associative array HRi (step 1 of FL), and then applies a simplified GRACE hash
join [Shapiro, 1986] recursively on the right-deep join tree with S as the outer table.3 We
havem <

∑k
i=1 |HRi|, and thus, we need to partition S and some (or all) of {HRi}. Let si

(a positive integer) be the number of partitions of HRi (so, S has Πki=1si partitions). We
now make three observations. First, minimizing the total cost of partitioning is equivalent
to maximizing the total savings from not partitioning. Second, the cost of partitioning
Ri, viz., 2|Ri|, is independent of si, provided the page size p is large enough to perform
mostly sequential writes (note that si 6 |Ri|). Thus, it only matters if si = 1 or not. Define
a binary variable xi as xi = 1, if si = 1, and xi = 0, if si > 1. Finally, we allocate at least

3Hybrid hash requires a more complex analysis and we leave it for future work. But note that GRACE
and hybrid hash have similar performance in low memory settings [Shapiro, 1986].

25

one page of memory for each Ri to process each partition of S (this needsm > k, which is
typically not an issue). We now formally state the problem (FL-MULTJOIN) as follows:

max
k∑
i=1

xi|Ri|, s.t.
k∑
i=1

xi(|HRi|− 1) 6 m− 1 − k

Basically, we count the I/Os saved for those Ri that do not need to be partitioned, since
HRi fits entirely in memory. We prove the following result:

Theorem 3.1. FL-MULTJOIN is NP-Hard in l, where l = |{i|m− k > |HRi| > 1}| 6 k.

Essentially, this result means that FL-MULTJOIN is trivial if either none of HRi fit
in memory individually or all fit simultaneously, but is harder if a few (not all) can fit
simultaneously. Our proof provides a reduction from the classical 0/1 knapsack prob-
lem [Garey and Johnson, 1990]. We present the proof in the appendix. We adopt a standard
O(klog(k)) time greedy heuristic for the knapsack problem to solve FL-MULTJOIN ap-
proximately [Dantzig, 1957]. Essentially, we sort the list of attribute tables on |Ri|

(|HRi|−1) ,
and pick the associative arrays to fit in memory in decreasing order of that ratio until we
run out of memory. We leave more sophisticated heuristics to future work.

Shared-nothing Parallelism

It is trivial to parallelize Materialize and Stream (and Stream-Reuse), since most parallel
data processing systems such as parallel RDBMSs and Hive already provide parallel joins.
The only requirement is that the aggregations needed for BGD need to be algebraic [Gray
et al., 1997]. But since both F and∇F are just sums across tuples, they are indeed algebraic.
Hence, by implementing them using the parallel user-defined aggregate function abstrac-
tion provided by Hive [Apache, a] (and most parallel RDBMSs), we can directly leverage
existing parallelism infrastructure [Feng et al., 2012].

FL needs a bit more attention. All three of its steps can also be implemented using
parallel UDAFs, but merging independent copies of H requires reinserting the individual
entries rather than just summing them up. Also, since H isO(nR) in size, we might exceed
available memory when multiple aggregation states are merged. While this issue might
be resolved in Hadoop automatically by spilling to disk, a faster alternative might be to
employ the FLP strategy – by using the degree of parallelism and available memory on
each node, we pre-partition the inputs and process each partition in parallel separately. Of
course, another alternative is to employ FLSQL or FLSQL+, and leave it to Hive to manage
the intermediate tables that correspond to H in FL. While these strategies might be slightly

26

slower than FLP, they are much easier to implement. We leave a detailed comparison of
alternatives that take communication costs into consideration to future work.

3.3 Experiments

We present empirical and analytical results comparing the performance all our approaches
to learn over joins against Materialize. Our goal in this section is three-fold: (1) Get a
high-level picture of the trade-off space using our analytical cost models. (2) Drill down
deeper into the relative performance of various approaches using our implementations and
also validate the accuracy of our cost models. (3) Evaluate the efficiency and effectiveness
of each of our extensions.

Data Unfortunately, publicly-available large real (labeled) datasets for ML tasks are
rare [Agarwal et al., 2014]. And to the best of our knowledge, there is no publicly-available
large real database with the key-foreign key relationship we study. Nevertheless, since
this work focuses on performance at scale, synthetic datasets are a reasonable option,
and we use this approach. The ranges of dimensions for our datasets are modeled on
the real datasets that we found in practice. Our synthesizer samples examples based
on a random class boundary (for binary classification with LR) and adds some random
noise. The codes for our synthesizer and all our implementations are available on GitHub:
https://github.com/arunkk09/orion.

High-level Performance Picture

We compare the end-to-end performance of all approaches in a single-node RDBMS setting.
Using our analytical cost models, we vary the buffer memory and plot the I/O, CPU, and
total runtimes of all approaches to get a high-level picture of the trade-off space. Figure 3.4
presents the results.

The plots show interesting high-level differences in the behavior of all the approaches.
To help explain their behavior, we classify memory into three major regions: the hash table
on R does not fit in memory (we call this the relative-small-memory, or RSM region), the
hash table on R does fit in memory but S does not (relative-medium-memory, or RMM), and
when all tables comfortably fit in memory (relative-large-memory, or RLM). These three
regions roughly correspond to the three parts of the curve for S in Figure 3.4. Factorize (FL)
seems the fastest in all three regions for this particular set of parameter values. At RSM,
Stream (S) is slower than Materialize (M) due to repeated repartitioning. Stream-Reuse
(SR), which avoids repartitioning, is faster, and is comparable to FL. But at RMM, we see a

https://github.com/arunkk09/orion

27

 1E3 1E4 1E5 1E6
0E0

2E3

4E3

6E3

1E3 1E4 1E5 1E6
0E0

1E4

2E4

3E4

4E4

1E3 1E4 1E5 1E6
0E0

1E4

2E4

3E4

4E4

Buffer Memory (MB)

Buffer Memory (MB)Buffer Memory (MB)

To
ta

l t
im

e
(s

)

C
P

U
 ti

m
e

(s
)

I/
O

 t
im

e
(s

)

M
S
SR
FL

A

B C

RSM RMM RLM

Figure 3.4: Analytical cost model-based plots for varying the buffer memory (m). (A)
Total time. (B) I/O time (with 100MB/s I/O rate). (C) CPU time (with 2.5GHz clock). The
values fixed are nS = 108 (in short, 1E8), nR = 1E7, dS = 40, dR = 60, and Iters = 20. Note
that the x axes are in logscale.

crossover and S is faster than M since M needs to read a larger table. Since no partitioning
is needed, SR is comparable to S, while FL is slightly faster. At RLM, we see another
crossover and M becomes slightly faster than S (and SR) again, while FL is even faster.
This is because the CPU costs dominate at RLM and M has lower CPU costs than S (and
SR). The I/O-CPU breakdown shows that the overall trends mirror the I/O costs at RSM
and RMM but mirrors the CPU costs at RLM. Figure 3.4(C) shows that FL has a lower CPU
cost by a factor that roughly equals the redundancy ratio (≈ 2.1). But as expected, the
difference is slightly lower since FL performs extra computations to manage an associative
array.

Performance Drill Down

Staying with the single-node RDBMS setting, we now drill down deeper into each memory
region and study the effect of the major dataset and algorithm parameters using our
implementations. For each memory region, we vary each of three major parameters – tuple
ratio (nSnR), feature ratio (dRdS), and number of BGD iterations (Iters) – one at a time, while
fixing all the others. We use a decaying stepsize (α) rather than a line search for simplicity
of exposition. Thus, Iters is also the actual number of passes over the dataset [Nocedal

28

Parameter Varied

nS for nS / nR dR for dR / dS Iters

RSM
nR = 5E7, dS = 40

dR = 60, Iters = 20

nS = 5E8, nR = 5E7

dS = 40, Iters = 20

nS = 5E8, nR = 5E7

dS = 40, dR = 60

RMM
nR = 1E7, dS = 40

dR = 60, Iters = 20

nS = 1E8, nR = 1E7

dS = 40, Iters = 20

nS = 1E8, nR = 1E7

dS = 40, dR = 60

RLM
nR = 5E6, dS = 6

dR = 9, Iters = 20

nS = 5E7, nR = 5E6

dS = 6, Iters = 20

nS = 5E7, nR = 5E6

dS = 6, dR = 9

Memory
Region

Table 3.3: Parameters used for the single-node setting in Figure 3.5. NB: xEy ≡ x× 10y.

and Wright, 2006; Feng et al., 2012]. Finally, we assess whether our cost models are
able to accurately predict the observed performance trends and discuss some practical
implications.

Experimental Setup All four approaches were prototyped on top of PostgreSQL (9.2.1)
using UDAFs written in C and control code written in Python. The experiments were
run on machines with Intel Xeon X5650 2.67GHz CPUs, 24GB RAM, 1TB disk, and Linux
2.6.18-194.3.1.el5. The dataset sizes are chosen to fit each memory region’s criteria.

Results

The implementation-based runtimes, speedup ratios, and redundancy ratios for RSM are
plotted in Figure 3.5(A). The corresponding parameter values chosen (for those parameters
that are not varied) are presented in Table 3.3. We present the corresponding speedup
ratios for RMM in Figure 3.5(B) and for RLM in Figure 3.5(C). For the sake of readability,
we skip the runtime plots for RMM and RLM here and present them in the appendix
instead.

• RSM: The plots in Figure 3.5(A) show that S is the slowest in most cases, followed
by the state-of-the-art approach, M. SR is significantly faster than M, while FL is
the fastest. This trend is seen across a wide range of values for all 3 parameters –
tuple ratio, feature ratio, and number of iterations. All the approaches seem to scale
almost linearly with each parameter. Figure 3.5(A1a) shows a small region where
SR is slower than M. This arises because the cost of partitioning both R and S is
slightly more than the cost of materializing T at low tuple ratios. In many cases, the
performance of SR is comparable to FL, even though the latter performs an extra
read of R to compute ∇F. The speedup plots show that the speedup of FL over M is

29

 0 4 8 12 16
0

1

2

3

4

Tuple Ratio

R
at

io

0 1 2 3 4 5
0

1

2

3

4

R
at

io

0 10 20 30 40
0

2

4

6

8

R
at

io

Number of Iterations

0 4 8 12 16
0E0

1E5

2E5

3E5

To
ta

l R
un

tim
e

(s
)

Tuple Ratio
0 10 20 30 40

0E0

1E5

2E5

3E5

4E5

5E5

To
ta

l R
un

tim
e

(s
)

Number of Iterations
0 1 2 3 4 5

0E0

1E5

2E5

3E5

4E5

5E5

To
ta

l R
un

tim
e

(s
)

Feature Ratio

Feature Ratio

M

S

SR

FL

A3a

A3bA2bA1b

A1a A2a

Redund.

M/FL

M/S

M/SR

(A) RSM: Runtimes and speedups against M and redundancy ratios.

0 4 8 12 16
0

1

2

3

4

Tuple Ratio
0 1 2 3 4 5

0

1

2

3

4

R
at

io

Feature Ratio
0 10 20 30 40

0

1

2

3

4

5

6

Number of Iterations

R
at

io

R
at

io

B1 B2 B3
Redund.

M/FL

M/S

M/SR

(B) RMM: Speedups against M and redundancy ratios.

0 4 8 12 16
0

0.5

1

1.5

2

R
at

io

0 1 2 3 4 5
0

1

2

3

4

R
at

io

Feature Ratio
0 10 20 30 40

0

1

2

3

R
at

io

Number of Iterations

C1 C2 C3

Redund.

M/FL

M/S

M/SR

Tuple Ratio

(C) RLM: Speedups against M and redundancy ratios.

Figure 3.5: Implementation-based performance against each of (1) tuple ratio (nSnR), (2)
feature ratio (dRdS), and (3) number of iterations (Iters) – separated column-wise – for the
(A) RSM, (B) RMM, and (C) RLM memory region – separated row-wise. SR is skipped for
RMM and RLM since its runtime is very similar to S. The other parameters are fixed as per
Table 3.3.

mostly higher than the redundancy ratio (r) – this is because the cost of materializing
T is ignored by r. Figure 3.5(A3b) confirms this reason as it shows the speedup
dropping with iterations, since the cost of materialization gets amortized. In contrast,
the speedups of SR over M are mostly lower than r.

• RMM: The plots in Figure 3.5(B) show that S could become faster than M, as predicted
by Figure 3.4. SR (skipped here for brevity) is roughly as fast as S, since no partitioning
occurs. FL is the fastest in most cases, but interestingly, Figure 3.5(B2) shows that the
speedup of FL over M is lower than the redundancy ratio for larger feature ratios.

30

0 10 20 30 40

0E0

1E5

2E5

3E5

4E5

Number of Iterations

To
ta

l R
un

tim
e

(s
)

0 1 2 3 4 5
0E0

1E5

2E5

3E5

0 4 8 12 16
0E0

1E5

2E5

3E5

To
ta

l R
un

tim
e

(s
)

Tuple Ratio

To
ta

l R
un

tim
e

(s
)

Feature Ratio

M
S
SR
FL

A B C

Figure 3.6: Analytical cost model-based plots of performance against each of (A) nSnR , (B)
dR
dS

, and (C) Iters for the RSM region. The other parameters are fixed as per Table 3.3.

This is because |R| increases and FL reads it twice, which means its relative runtime
increases faster than the redundancy ratio.

• RLM: The plots in Figure 3.5(C) show that M is faster than S again. Interestingly,
the speedup of FL over M is smaller than r in most cases. In fact, Figures 3.5(C1,C2)
show that M is faster than FL at low dimension ratios (but slower at higher ratios).
Figure 3.5(C3) shows that the amortization of materialization cost could pay off for
large values of Iters. The lower speedup of FL occurs because all the data fit in
memory and the runtime depends mainly on the CPU costs. Thus, the relative cost
of managing H in FL for each iteration (note that M needs to write T only once)
against the cost of BGD’s computations for each iteration determines the relative
performance. This is also why S (and SR) are much slower than M. Since the CPU
cost of BGD increases with the dimension ratios, FL, which reduces the computations
for BGD, is faster than M at higher values of both ratios.

Cost Model Accuracy

Our main goal for our analytical models was to understand the fine-grained behavior
of each approach and to enable us to quickly explore the relative performance trends
for different parameter settings. Thus, we now verify if our models predicted the trends
correctly. Figure 3.6 presents the performance results predicted by our cost models for the
RSM region. A comparison of the respective plots of Figure 3.5(A) with Figure 3.6 shows
that the runtime trends of each approach are largely predicted correctly, irrespective of
what parameter is varied. As predicted by our models, crossovers occur between M and S
at low Iters, between M and SR at low tuple ratios, and between M and FL at low tuple
ratios. We found similar trends for RMM and RLM as well but for the sake of readability,
we present their plots in the appendix.

Since no single approach dominates all others, we also verify if our cost model can
predict the fastest approach correctly. Table 3.4 presents the discrete prediction accuracy,

31

Experiment RSM RMM RLM

Tuple Ratio 75% 75% 100% 83%

Feature Ratio 100% 100% 100% 100%

Iterations 100% 100% 100% 100%

92% 92% 100% 95%

Table 3.4: Discrete prediction accuracy of cost model.

Approach RSM RMM RLM

Materialize 0.65 0.23 0.65

Stream 0.55 0.88 -1.2

Stream-Reuse 0.27 – –

Factorize 0.77 0.77 0.67

Table 3.5: Standard R2 scores for predicting runtimes.

Approach RSM RMM RLM

Materialize 33% / 30% 33% / 23% 31% / 29%

Stream 33% / 30% 20% / 16% 73% / 75%

Stream-Reuse 42% / 37% – –

Factorize 22% / 14% 26% / 19% 25% / 26%

Table 3.6: Mean / median percentage error for predicting runtimes.

i.e., how often our cost model predicted the fastest approach correctly for each experiment
and memory region corresponding to the results of Figure 3.5. This quantity matters
because a typical cost-based optimizer uses a cost model only to predict the fastest approach.
Table 3.5 presents the standard R2 score for predicting the absolute runtimes. We split
them by approach and memory region because the models are different for each. Similarly,
Table 3.6 presents the mean and median percentage error in the predictions.

We find that, overall, our cost model correctly predicts the fastest approach in 95% of
the cases shown in Figure 3.5. The accuracy of the predicted runtimes, however, varies
across approaches and memory regions. For example, the standard R2 score for FL on
RMM is 0.77, while that for SR on RSM is 0.27. Similarly the median percentage error
for FL on RSM is 14%, while that for S on RLM is 73%. We think it is interesting future
work to improve the absolute accuracy of our cost model, say, by making our models more
fine-grained and by performing a more careful calibration.

32

Discussion

We briefly discuss a few practical aspects of our proposed approaches.

Application in a System Recent systems such as Columbus [Zhang et al., 2014; Konda
et al., 2013] and MLBase [Kraska et al., 2013] provide a high-level language that includes
both relational and ML operations. Such systems optimize the execution of logical ML
computations by choosing among alternative physical plans using cost models. While
we leave it to future work, we think it is possible to apply our ideas for learning over
joins by integrating our cost models with their optimizers. An alternative way is to create
hybrid approaches, say, like the hybrid of SR and FL that we present in the appendix. The
disadvantage is that it is more complex to implement. It is also not clear if it is possible to
create a “super-hybrid” that combines FL with both SR and M. We leave a detailed study
of hybrid approaches to future work.

Convergence The number of iterations (Iters) parameter might be unknown a priori if
we use a convergence criterion for BGD such as the relative decrease in loss. To the best
of our knowledge, there is no proven technique to predict the number of iterations for a
given accuracy criterion for any gradient method. While Figures 3.5(A3b,B3,C3) show that
FL is faster irrespective of Iters, crossovers might occur for other parameter values. In
cases where crossovers are possible, we think a “dynamic” optimizer that tracks the costs
of many approaches might be able switch to a faster approach after a particular iteration.

Summary

Our results with both implementations and cost models show that Factorize can be signifi-
cantly faster than the state-of-the-art Materialize, but is not always the fastest. Stream is
often, but not always, faster than Materialize, while Stream-Reuse is faster than Stream
and sometimes comparable to Factorize. A combination of the buffer memory, dataset
dimensions, and the number of BGD iterations affects which approach is the fastest. Our
cost models largely predict the trends correctly and achieve high accuracy in predicting
the fastest approach. Thus, they could be used by an optimizer to handle learning over
joins.

Evaluation of Extensions

We now focus on evaluating the efficiency and effectiveness of each of our extensions:
scaling FL to large values of nR, multi-table joins for FL, and shared-nothing parallelism.

33

 0 10 20 30 40
0E0

2E4

4E4

6E4

8E4

0 1 2 3 4 5
0E0

1E4

2E4

3E4

4E4

2 2.5 3 3.5 4 4.5 5
0.0E0

2.5E4

5.0E4

7.5E4

1.0E5

To
ta

l R
un

tim
e

(s
)

To
ta

l R
un

tim
e

(s
)

Feature Ratio Number of Iterations

nR (in 100 millions)
0 4 8 12 16

0.0E0

2.5E4

5.0E4

7.5E4

1.0E5

To
ta

l R
un

tim
e

(s
)

Tuple Ratio

To
ta

l R
un

tim
e

(s
)

M
SR
FLSQL
FLSQL+
FLP

A B

C D

Figure 3.7: Analytical plots for when m is insufficient for FL. We assume m = 4GB, and
plot the runtime against each of nS, dR, Iters, and nR, while fixing the others. Wherever
they are fixed, we set (nS,nR,dS,dR, Iters) = (1E9, 2E8, 2, 6, 20).

Scaling FL along nR

Using our analytical cost models, we now compare the performance of our three extensions
to FL when H cannot fit in memory. Note that |H| ≈ 34nR bytes, which implies that for
m = 24GB, FL can scale up to nR ≈ 750E6. Attribute tables seldom have so many tuples
(unlike entity tables). Hence, we use a smaller value ofm = 4GB. We also vary nR for this
comparison. Figure 3.7 presents the results.

The first observation is that FLSQL is the slowest in most cases, while FLSQL+ is slightly
faster. But, as suspected, there is a crossover between these two at low tuple ratios. More
surprisingly, FLP and SR have similar performance across a wide range of all parameters
(within this low memory setting), with SR being slightly faster at high feature ratios, while
M becomes faster at low feature ratios.

Multi-table Joins for FL

We compare three alternative approaches to solve FL-MULTJOIN using our analytical cost
model: Partition-All (PA), a baseline heuristic that partitions all Ri in O(k) time, Optimal
(OP), which solves the problem exactly in O(2k) time, and the O(klog(k)) time greedy

34

Set I/O Cost M
FL

PA GH OP

1
Partitioning 1,384 171 31 28

Iters = 10 4,745 2,098 1,959 1,955

2
Partitioning 3,039 338 164 145

Iters = 10 10,239 3,941 3,766 3,748

Table 3.7: I/O costs (in 1000s of 1 MB pages) for multi-table joins. Set 1 has k = 5, i.e., 5
attribute tables, while Set 2 has k = 10. We set nS = 2E8 and dS = 10, while ni and di
(i > 0) range from 1E7 to 6E7 and 35 to 120 respectively. We setm = 4GB.

M

S

FL

Ideal

8 16 24
1

2

3

4

5

S
pe

ed
up

 R
at

io

A

1 2 3
0

0.25

0.5

0.75

1

1.25

S
ca

le
up

 R
at

io
B

Scaleup FactorCluster Size

Figure 3.8: Parallelism with Hive. (A) Speedup against cluster size (number of worker
nodes) for (nS,nR,dS,dR, Iters) = (15E8, 5E6, 40, 120, 20). Each approach is compared to
itself, e.g., FL on 24 nodes is 3.5x faster than FL on 8 nodes. The runtimes on 24 nodes
were 7.4h for S, 9.5h for FL, and 23.5h for M. (B) Scaleup as both the cluster and dataset
sizes are scaled. The inputs are the same as for (A) for 8 nodes, while nS is scaled. Thus,
the size of T varies from 0.6TB to 1.8TB.

heuristic (GH). We perform this experiment for two different sets of inputs: one with k = 5
and the other with k = 10, with a range of different sizes for all the tables. We report the
I/O costs for the plan output by each approach. Table 3.7 presents the results.

For Set 1 (k = 5), PA has a partitioning cost that is nearly 6 times that of OP. But GH
is only about 12% higher than OP, and both GH and OP partition only one of the five
attribute tables. As expected, PA closes the gap on total cost as we start running iterations
for BGD. At Iters = 10, PA has only 7% higher cost than OP, whereas M is 140% higher. A
similar trend is seen for Set 2, with the major difference being that the contribution of the
partitioning cost to the total cost becomes higher for both GH and OP, since they partition
six out of the ten attribute tables.

35

Shared-nothing Parallelism

We compare our Hive implementations of M, S, and FL.4 Our goal is to verify if similar
runtime trade-offs as for the RDBMS setting apply here and also measure the speedups
and scaleups. The setup is a 25-node Hadoop cluster, where each node has two 2.1GHz
Intel Xeon processors, 88GB RAM, 2.4TB disk space, and runs Windows Server 2012. The
datasets synthesized are written to HDFS with a replication factor of three.5 Figure 3.8
presents the results.

Figure 3.8(A) shows that all three approaches achieve near-linear speedups. The
speedups of S and FL are slightly super-linear primarily because more of the data fits in
the aggregate memory of a larger cluster, which makes an iterative algorithm such as BGD
faster. Interestingly, S is comparable to FL on 8 nodes (S takes 33.5h, and FL, 33.8h), and is
faster than FL on 24 nodes (7.4h for S, and 9.5h for FL). Using the Hive query plans and
logs, we found that FL spends more time (16%) on Hive startup overheads than S (7%),
since it needs more MapReduce jobs. Nevertheless, both S and FL are significantly faster
than M, which takes 76.7h on 8 nodes and 23.5h on 24 nodes. We also verified that FL could
be faster than S on different inputs. For example, for (nS,nR,dS,dR) = (1E9, 100, 20, 2000)
on 8 nodes, FL is 4.2x faster than S. Thus, while the exact crossover points are different,
the runtime trade-offs are similar to the RDBMS setting in that FL dominates M and S
as the redundancy ratio increases. Of course, the runtimes could be better on a different
system, and a more complex cost model that includes communication and startup costs
might be able to predict the trends. We consider this as an interesting avenue for future
work. Figure 3.8(B) shows that all approaches achieve near-linear scaleups. Overall, we see
that similar runtime trade-offs as for the RDBMS setting apply, and that our approaches
achieve near-linear speedups and scaleups.

3.4 Conclusion: Avoiding Joins Physically

Key-foreign key joins are often required prior to applying ML on multi-table datasets.
The state-of-the-art approach of materializing the join output before learning introduces
redundancy avoided by normalization, which could result in poor end-to-end performance
in addition to storage and maintenance overheads. In this work, we study the problem
of learning over joins in order to avoid such redundancy. Focusing on generalized linear

4Due to engineering issues in how we can use Hive’s APIs, we use FLSQL+ instead of FLP for FL in some
cases.

5Although the aggregate RAM was slightly more than the raw data size, not all of the data fit in memory.
This is due to implementation overheads in Hive and Hadoop that resulted in Hive using an aggregate of
1.2TB for a replicated hash table created by its broadcast hash join implementation.

36

models solved using batch gradient descent, we propose several alternative approaches to
learn over joins that are also easy to implement over existing data processing systems. We
introduce a new approach named factorized learning that pushes the ML computations
through joins and avoids redundancy in both I/O and computations without affecting ML
accuracy. Using analytical cost models and real implementations on PostgreSQL, we show
that factorized learning is often substantially faster than the alternatives, but is not always
the fastest, necessitating a cost-based approach. We also extend all our approaches to
multi-table joins as well as a shared-nothing parallel setting such as Hive. This work opens
up a new problem space for studying the interplay between ML and relational operations,
especially joins, in the context of feature engineering.

Most of the content of this chapter is from our paper titled “Learning Generalized
Linear Models Over Normalized Data” that appeared in the ACM SIGMOD 2015 con-
ference. The code for our system is open source and is available on GitHub: https:
//github.com/arunkk09/orion.

A sum of sums is the same sum,
Factorizing avoids repeating some.

So, learn after joins no more,
Do learn over joins herefore!

https://github.com/arunkk09/orion
https://github.com/arunkk09/orion

37

4 Extensions and Generalization of Orion

In this chapter, we extend the idea of avoiding joins physically, specifically the technique of
factorized learning to several other classes of popular ML models: probabilistic classifiers,
GLMs with non-batch optimization methods, and clustering algorithms. We also generalize
it using linear algebra. These are natural follow-on projects to Project Orion in which we
introduced the idea of learning over joins for GLMs with BGD. These projects establish
the wide applicability and generality of our idea.

4.1 Extension: Probabilistic Classifiers Over Joins and Santoku

In this project, we extend the idea of factorized learning (FL) to probabilistic classifiers
such as Naive Bayes, Tree-Augmented Naive Bayes, and Decision Trees. We also introduce
the technique of factorized scoring (FS), which “factorizes” the computations of scoring, i.e.,
computing the accuracy of a learned ML model on a test set. We build a toolkit named
Santoku that provides implementations of factorized learning and scoring for probabilistic
classifiers and logistic regression to make it easier for data scientists to adopt our ideas in
practice. We now explain briefly how factorized learning works for Naive Bayes with an
example.

EID State Size …

1 WI L

2 WI S

3 CA L

CID Churn Sex EID …

1 Y M 1

2 N F 1

3 N M 1

4 N F 1

5 Y M 2

6 N M 2

7 N F 2

8 Y F 2

9 Y F 3

10 Y M 3

11 Y M 3

12 N F 3

Employers Customers

Customers.EID
refers to
Employers.EID

Temp ← 𝜋(𝐂𝐮𝐬𝐭𝐨𝐦𝐞𝐫𝐬
 ⋈𝐄𝐈𝐃=𝐄𝐈𝐃 𝐄𝐦𝐩𝐥𝐨𝐲𝐞𝐫𝐬)

CID Churn Sex EID State Size …

1 Y M 1 WI L

2 N F 1 WI L

3 N M 1 WI L

4 N F 1 WI L

5 Y M 2 WI S

6 N M 2 WI S

7 N F 2 WI S

8 Y F 2 WI S

9 Y F 3 CA L

10 Y M 3 CA L

11 Y M 3 CA L

12 N F 3 CA L

Temp

#(Churn=N) = 1+1+1+1+1+1 = 6

P(State=WI | Churn=N)

=
#(State=WI,Churn=N)

#(Churn=N)

=
|*t∈Temp|t.State=WI^t.Churn=N+|

6

=
1+1+1+1+1

6
 =

5

6

 P(Size=L | Churn=N)

=
#(Size=L,Churn=N)

#(Churn=N)

=
|*t∈Temp|t.Size=L^t.Churn=N+|

6

=
1+1+1+1

6
 =

4

6

FL avoids redundancy by pre-counting references and factorizing the sums: Naive Bayes computations
with redundancy:

Churn EID Count

Y 1 1

Y 2 2

Y 3 3

N 1 3

N 2 2

N 3 1

CustRefs

State EIDs

WI {1,2}

CA {3}

StateRefs

Size EIDs

L {1,3}

S {3}

SizeRefs

P(State=WI | Churn=N)

=
#(State=WI,Churn=N)

#(Churn=N)

=
 CustRefs,Churn=N^EID=e-e∈StateRefs,WI-.EIDs

6

=
3+2

6
 =

5

6

P(Size=L | Churn=N)

=
#(Size=L,Churn=N)

#(Churn=N)

=
 CustRefs,Churn=N^EID=e-e∈SizeRefs,L-.EIDs

6

=
3+1

6
 =

4

6

 A B C

5 terms

4 terms

2 terms

2 terms

Figure 4.1: Illustration of Factorized Learning for Naive Bayes. (A) The base tables
Customers (the “entity table” as defined in Kumar et al. [2015c]) and Employers (an “at-
tribute table” as defined in Kumar et al. [2015c]). The target feature is Churn in Customers.
(B) The denormalized table Temp. Naive Bayes computations using Temp have redundancy,
as shown here for the conditional probability calculations for State and Size. (C) FL avoids
computational redundancy by pre-counting references, which are stored in CustRefs, and
by decomposing (“factorizing”) the sums using StateRefs and SizeRefs.

38

Figure 4.1(A) shows a simple instance of our customer churn example. The output
of the join, Temp, has redundancy in the features from Employers, e.g., values of State
and Size get repeated more often. This results in redundancy in the computations for
Naive Bayes when it counts occurrences to estimate the conditional probabilities for those
features. Figure 4.1(B) illustrates the additions needed for both State=WI and Size=L when
operating over Temp. In contrast, FL avoids redundant computations by pre-computing the
number of foreign key references, and by factoring them into the counting. Figure 4.1(C)
illustrates the reference counts that are temporarily stored in CustRefs, which is obtained,
in SQL terms, using a GROUP BY on Churn and EID along with a COUNT. The list of EID
values for State=WI (and Size=L) are also obtained. Thus, we can reduce the sums for
those features into smaller sums, viz., 2 terms instead of 5 for State=WI, and 2 instead
of 4 for Size=L. Usually, the learned ML models are also “scored,” i.e., their prediction
accuracy is validated with a set of test examples. For Naive Bayes, this requires us to
compute the maximum a posteriori (MAP) estimate on a given test feature vector x as fol-
lows: argmaxy∈DY

P(Y = y)ΠF∈XP(F = x(F)|Y = y) [Mitchell, 1997]. Essentially, scoring
involves a multiplication of conditional probabilities. Thus, we can exploit the redundancy
in scoring as well, not just learning, by factorizing the computations on a test set and
pushing them through the joins. We call this technique factorized scoring, and we use it in
Santoku when the models need to be validated.

In addition to providing a library of implementations of FL and FS, Santoku handles
the following three tasks. We explain each task in a bit more detail.

1. Determining if FL/FS would be faster on a given input using cost models.
2. Allowing the user to specify functional dependencies (FDs) on a given single (denor-

malized) table and using the FDs to make it possible to apply FL/FS.
3. Helping data scientists compare feature subsets from different tables to apply our

idea of avoiding joins logically (explained in Chapter 5).

While FL avoids redundant computations, it performs extra work for “book-keeping.”
As we showed in Project Orion, this means that FL could be slower than using the denor-
malized dataset for some inputs depending on various parameters of the data, system,
and ML model [Kumar et al., 2015c]. It will be helpful for analysts if a system could
automatically decide which tables to join and which to apply FL on in order to optimize the
performance of the ML model over normalized data. Santoku provides such an optimization
capability by using a simple cost model and a cost-based optimizer.

A closely related scenario is learning over a table with functional dependencies (FDs)
between features. For example, we can view T as having the following FD: FK→ XR. This

39

FD is a result of the key-foreign key join.1 In general, there could be many such FDs in
a denormalized table. From speaking to analysts at various companies, we learned that
they ignore such FDs altogether because their ML toolkits cannot handle them. While
they may not use the database terminology (FD), analysts recognize that such “functional
relationships” can exist among features. One can use the FDs to normalize the single
table, and then apply FL to different degrees. But once again, these approaches could be
slower than using the single table on some inputs. Santoku enables analysts to integrate
such FD-based functional relationships into some popular ML models and automatically optimizes
performance.

Finally, we consider the important related task of feature selection. It is often a tedious
exploratory process in which analysts evaluate smaller feature vectors for their ML model
to help improve accuracy, interpretability, etc. [Anderson et al., 2013; Konda et al., 2013].
Ignoring FD-based functional relationships could mean ignoring potentially valuable
information about what features are “useful.” Santoku helps analysts exploit FD-based
functional relationships for feature selection purposes. Santoku provides a “feature exploration”
option that automatically constructs and evaluates smaller feature vectors by dropping
different combinations of sides of FDs. In our customer churn example, one can drop
EmployerID (perhaps an uninterpretable identifier), or other features from Employers, or
both. While this may not “solve” feature selection fully, it provides valuable automatic
insights using FDs that could help analysts with feature selection.

Santoku is designed as an open-source library usable in R, which is a powerful and
popular environment for statistical computing. R provides easy access to a large repository
of ML codes. 2 By open-sourcing our API and code, we hope to encourage contributions
from the R community that extend Santoku to more ML models. Many data management
companies such as EMC, Oracle, and SAP have also released products that scale R scripts
transparently to larger-than-memory data. We implement Santoku fully in the R language,
which enables us to exploit such R-based analytics systems to provide scalability automati-
cally. For users that do not want to write R scripts, Santoku also provides an easy-to-use
GUI, as illustrated in Figure 4.2.

System architecture

We now discuss the system architecture of Santoku, presented in Figure 4.3, and explain
how it fits into a standard advanced analytics ecosystem.

1Key-foreign key dependencies are not FDs, but we can view them as such with some obvious assumptions.
2http://cran.r-project.org/

http://cran.r-project.org/

40

B

C D A

Figure 4.2: Screenshots of Santoku: (A) The GUI to load the datasets, specify the database
dependencies, and train ML models. (B) Results of training a single model. (C) Results
of feature exploration comparing multiple feature vectors. (D) An R script that performs
these tasks programmatically from an R console using the Santoku API.

 Console

Santoku
Optimization

Engine

 Execution
Engine

In-Memory R

Oracle R
Enterprise

SparkR

…

Factorized ML
Models

Feature
Manager

Cost-based
Optimizer

GUI

Figure 4.3: High-level architecture. Users interact with Santoku either using the GUI or R
scripts. Santoku optimizes the computations using factorized learning and invokes an
underlying R execution engine.

Front-end Santoku provides custom front-ends for two kinds of data scientists – those
who prefer a graphical user interface (GUI), and those who prefer to write R scripts. The
GUI is intuitive and has three major portions (Figure 4.2(A)). The first portion deals with
the data: data scientists can specify either a multi-table (normalized) input or a single-table
(denormalized) input. For normalized inputs, the data scientist specifies the base tables
and the “join columns,” i.e., the features on which the tables are joined (the foreign keys
and primary keys in database parlance) using menus. For denormalized inputs, the data
scientist specifies the single table and any “functional relationships” among the features

41

(the left and right sides of FDs in database parlance) using menus. The second portion deals
with the ML model: they choose a model and its parameters, and can either train a single
model or perform feature exploration, possibly with validation. The third portion displays
the results: a summary of the execution for training (Figure 4.2(B)), and plots comparing
several feature vectors for feature exploration (Figure 4.2(C)). Interestingly, we were able
to implement Santoku’s GUI in R itself using its graphics and visualization libraries. The
GUI is rendered in a browser, which makes it portable. Santoku also provides an intuitive
API that can be used in R scripts (Figure 4.2(D)). This enables analysts to exploit Santoku’s
factorized ML models programmatically. The operations on Santoku’s GUI also invoke
this API internally.

Santoku Optimization Engine The core part of Santoku is its optimization engine,
which has three components. The first component is a library of R codes that implement
factorized learning and scoring for a set of popular ML techniques – Naive Bayes, Tree-
Augmented Naive Bayes (TAN), feature ranking, and decision trees Mitchell [1997] as well
as logistic regression using BGD Kumar et al. [2015c]. We adapted the implementations of
these models from standard R packages on CRAN. We expect to add more as our system
matures. The second component is the feature manager. It manipulates the feature vectors
of the datasets. It handles three major tasks: normalization of single tables using FDs,
denormalization by joining multiple tables, and constructing the alternative feature vectors
for feature exploration. The third component is a cost-based optimizer that uses a cost
model to determine whether or not to use factorized learning and scoring on a given input
(given by the analyst, or constructed internally as part of feature exploration). The cost
model is calibrated based on the R execution engine.

Back-end Since Santoku is implemented in R, it simply “piggybacks” on existing R exe-
cution engines, with the standard in-memory R perhaps being the most popular. Several
commercial and open-source systems scale R to different data platforms, e.g., Oracle R
Enterprise operates over an RDBMS (and Hive), while SparkR operates over the Spark
distributed engine. Such systems enable Santoku to automatically scale to large datasets.

Santoku is joint work with a BS student, Boqun Yan, and an MS student, Mona Jalal,
along with Jeff Naughton and Jignesh Patel. My contribution was in the conceptualization
of the system, parts of the implementation, and advising the other students through
the rest of the implementation. Most of the content of this section is from our paper
titled “Demonstration of Santoku: Optimizing Machine Learning over Normalized Data”
that appeared in the demonstration track of the VLDB conference in 2015 [Kumar et al.,

42

2015a]. All of our code and the real datasets used in this project are available on GitHub:
https://github.com/arunkk09/santoku.

4.2 Extension: Other Optimization Methods Over Joins

In Project Orion, we focused on GLMs solved using the optimization method known
as Batch Gradient Descent (BGD). In practice, on large datasets, BGD often takes more
iterations to converge than stochastic optimization methods such as Stochastic Gradient
Descent (SGD) and Stochastic Coordinate Descent (SCD) [Nocedal and Wright, 2006]. SGD
is increasingly popular for ML over large datasets [Feng et al., 2012; Lin and Kolcz, 2012],
while SCD is also popular if the features are dense [Friedman et al., 2010]. Thus, in this
project, we study if the idea of learning over joins is extensible to GLMs solved using SGD
and SCD. If so, we would like to understand how the trade-off space for SGD and SCD
over joins differs from that of BGD over joins.

The first observation is that the data access patterns of SGD and SCD are significantly
different from that of BGD and we explain their data access patterns briefly next. Focusing
on the materialized scenario with a single table T, BGD performs one sequential scan of T
per iteration to compute the gradient, which is akin to a SUM aggregation in SQL. BGD then
updates the model w and moves to the next iteration. In contrast, SGD updates the model
after each example in T by approximating the full gradient with the gradient computed on
a single example at a time. Typically, SGD samples the data examples with replacement
but practical implementations on large datasets use sampling without replacement. This
requires a shuffle of the dataset, typically implemented using a sort in data processing
systems such as RDBMSs, e.g., using an ORDER BY RANDOM() in PostgreSQL [Feng et al.,
2012]. Thus, at each iteration, SGD shuffles T and performs a sequential scan. SCD, on the
other hand, updates w one co-efficient (coordinate) at a time. That is, SCD computes the
portion of the gradient along one feature at a time, while fixing all the other co-efficients.
SCD then cycles through all the features iteratively. Thus, SCD has a column-wise access
pattern in contrast to BGD’s (and SGD’s) row-wise access pattern. SCD typically needs to
visit the coordinates in random order at each iteration. Next, we explain in brief about
how we can learn GLMs using SGD over joins, followed by SCD over joins.

SGD Over Joins We start by noting a key distinction between BGD and SGD over the
materialized table T: BGD has computational redundancy because XR values are repeated.
However, SGD has no computational redundancy because w changes after each example.
Thus, the only advantage of learning over joins with SGD is in reducing the cost of data
access, e.g., I/O. The approach we consider is similar to Stream for BGD over joins: perform

https://github.com/arunkk09/santoku

43

the join lazily by building a hash table over the inner table R, and do a sequential pass
over the table S (after shuffling it). For each tuple in S, we look up into the hash table over
R and obtain the entire feature vector. However, this approach faces a subtle issue when
the hash table over R does not fit in buffer memory. The regular hash join would end up
splitting both S and R into chunks based on the FK (= RID). This hash partitioning means
that the ordering of the examples in S after the shuffle would get scrambled. Thus, the
final w obtained after a pass will deviate from what we would get with the materialized
approach. This is a new runtime-accuracy trade-off for SGD over joins. In this project,
we explore this trade-off in depth by studying the effects of the relaxed ordering on the
convergence of SGD. We implement our approaches on PostgreSQL by combining Project
Orion and Feng et al. [2012]. Using both synthetic and real datasets, we find empirically
that as long as we shuffle the examples within each chunk of S, SGD still converges in
roughly the same number of iterations. This means SGD over joins could still provide
significant runtime benefits over SGD after joins. One complicating issue that could slow
convergence is if all the examples in a chunk have the same class label, SGD takes slower
to converge; this is similar to the CA-TX issue noticed in Feng et al. [2012]. Empirically, we
find that this is made up for by the runtime savings per iteration. Ongoing work includes
more experiments with real and synthetic datasets, a more formal understanding the
effects of relaxed ordering on SGD convergence, and experiments with Mini-batch SGD,
which is a hybrid of SGD and BGD.

SCD Over Joins Unlike SGD, SCD over T has both computational and I/O redundancy.
However, the redundancy arises only when a feature (column) from R is accessed. Owing
to the column-wise access pattern of SCD, we consider implementing it in a column store.
We assume that each column of T fits in buffer memory (but not necessarily the whole
table). We consider both a Stream-style approach and a Factorize-style approach. First,
we obtain a tuple-tuple physical mapping based on FK and RID. Given a tuple from S,
this FK-RIDmapping directly tells us which tuple in R to look up. The Stream approach
uses this mapping to reconstruct the denormalized column for each feature in R for every
iteration, i.e., it performs the join lazily. Thus, it saves I/O redundancy but it still has
computational redundancy. The Factorize approach, however, avoids performing the join
even lazily. Instead, it constructs an associative array to pre-compute the contribution to the
gradient for each tuple in R and then performs a GROUP BY-style aggregate on the FK-RID
mapping to scale and add the entries in the associative array. Thus, similar to the Factorize
technique for BGD, this approach for SCD avoids computational redundancy as well.

44

Empirically, using synthetic datasets and a file-base implementation3 of all approaches,
we find that when T does not fit in memory, both Stream and Factorize provide significant
runtime savings. But when T does fit in memory, Stream becomes slower, similar to the
result for BGD in Project Orion. Interestingly, the runtimes of Factorize are comparable to
that of Materialize in this setting. In fact, in some cases, Materialize is slightly faster than
Factorize for SCD for the same dataset wherein Materialize was slower than Factorize for
BGD. This is because the savings in the computations are relatively less significant for SCD
compared to BGD. This underscores the importance of the cost model. Of course, Factorize
offers non-runtime advantages too, e.g., lower storage and easier maintenance. Ongoing
work includes more experiments with real and synthetic datasets and experiments with
Block Coordinate Descent, which is a hybrid of SCD and BGD.

This project is joint work with three BS students, Boqun Yan, Zhiwei Fan, and Fujie
Zhan, along with Jeff Naughton, Jignesh Patel, and Steve Wright. Papers on this project
are under preparation. My contribution was in the conceptualization of this project and
advising the other students throughout the algorithmic and experimental details.

4.3 Extension: Clustering Algorithms Over Joins

In this project, we extend our idea of learning over joins to clustering algorithms, some of
which have significantly different data access patterns than GLMs. Clustering is a popular
approach to unsupervised ML in which the data examples do not need to be labeled.
Clustering algorithms have diverse applications ranging from bioinformatics and medical
imaging to recommendation systems and social network analysis [Aggarwal and Reddy,
2013]. However, going one step further, we also consider one limitation of factorized
learning in this project: factorized learning needs prior knowledge of the normalized
schema, i.e., the database dependencies. From conversations with data scientists at various
enterprise and Web companies, we learned that in practice, data scientists sometimes
use the denormalized data directly because ML toolkits do not typically track database
dependencies, which could limit the practical applicability of factorized learning.

This project aims to mitigate the above issues by taking a first principles approach to
optimizing popular clustering algorithms over denormalized data. We ask: How should we
exploit the redundancy in denormalized data to optimize clustering algorithms without modifying
the output clusters? For the sake of tractability, we focus on three popular and representative
clustering algorithms that differ substantially in their complexity and data access pattern:

3We tried implementing our ideas in the popular column store RDBMS MonetDB first. But we were not
able to get its extensibility mechanisms to add user-defined functions for SCD to work.

45

K-Means, Hierarchical Agglomerative Clustering (HAC), and DBSCAN. We refer the
interested reader to Aggarwal and Reddy [2013] for more details about these algorithms.
We introduce two alternative approaches to optimize these clustering algorithms over
denormalized data: factorized clustering and compressed clustering. We explain each of
these approaches in brief next.

Factorized Clustering Assuming that the normalized schema is available (or is cheap to
obtain), we show that it is possible to push the three clustering algorithms down through
joins and factorize them. However, the algorithms differ in the precise techniques needed to
factorize them and we explain the trade-offs involved. At a high-level, factorizing K-Means
involves staging the computations of the distances between data points and centroids,
while factorizing HAC involves staging the computations of distances between every pair
of data points. However, factorized learning for DBSCAN works in a “lazy” fashion in
which computations are factorized incrementally. We also present some modifications to
our factorized clustering algorithms to improve performance.

Compressed Clustering We also consider cases in which the normalized schema is either
not available or is too expensive to obtain. We consider applying compression to this case,
since compression has long been used by RDBMSs to reduce storage, while processing SQL
queries on compressed data has been shown to improve performance [Abadi et al., 2006;
Chen et al., 2001]. Surprisingly, our initial results with the popular Lempel-Ziv-Welch
(LZW) compression technique showed that it is often slower than directly clustering the
denormalized dataset. We found that the cause was that LZW “out of the box” uses
codes that are too short to capture the redundancy in feature vectors effectively. Thus, we
present new optimizations to LZW compression that exploit structural properties of the
redundancy present in denormalized datasets and that are tailored towards the row-wise
access pattern of the clustering algorithms. We also introduce a heuristic to prevent the
algorithm from creating too many short codes to avoid having to decode potentially non-
repeating features on the fly. We then integrate the three clustering algorithms with our
new compressed representation to avoid explicit decompression costs.

We perform an extensive empirical analysis with both synthetic and real datasets to
compare the current state-of-the-art approach of using the denormalized data (“materi-
alized” clustering) against both factorized and compressed clustering. The trends in the
results differ across the three clustering algorithms but overall, we observe that for a wide
range of data sizes, both factorized and compressed clustering significantly outperform
their respective materialized versions when the joins introduce redundancy. Compressed

46

Movies Expedia LastFM Yelp Walmart Books
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
o
ta

l
R

u
n
ti

m
e
 (

m
)

Kmeans Runtime

M

F

NC

FRC

OC

Figure 4.4: Results on real datasets for K-Means. The approaches compared are – M:
Materialize (use the denormalized dataset), F: Factorized clustering, FRC: Factorized
clustering with recoding (improves F), NC: Naive LZW compression, and OC: Optimized
compression (improves NC).

clustering often yields comparable performance to factorized clustering but it is sometimes
slower than factorized clustering. However, as the amount of “non-schematic” redundancy
in the data (the redundancy present even before joining) increases, we find that compressed
clustering becomes faster than factorized clustering. Figure 4.4 presents a snapshot of
the results for K-Means on the real datasets from Kumar et al. [2016] (Chapter 5). The
speed-up of factorized clustering over materialized clustering was up to 4.2x, while the
speed-up for compressed clustering was up to 2.8x. Overall, our experiments validate that
irrespective of whether the normalized schema is available or not, it is often possible to
significantly improve the performance of clustering algorithms over denormalized data.

This project is joint work with two MS students, Fengan Li and Lingjiao Chen, along
with Jeff Naughton and Jignesh Patel. It is under submission to a conference. My con-
tribution was in the conceptualization of this project and advising the other students
throughout the algorithmic and experimental details.

4.4 Generalization: Linear Algebra Over Joins

While factorized learning helps avoid redundancy in ML computations by pushing them
through joins, it requires a developer to manually rewrite the ML algorithm’s code, say,
in R (as we did in Project Santoku), or on top of a data processing system (as we did in
Project Orion). This raises an important question: Do we really need to manually reimplement

47

each ML algorithm in order to extend the benefits of factorized learning to other ML algorithms,
or is there a way to mitigate this development overhead? Suppose there is a formal language
that can represent many (if not all) ML algorithms. If we can “factorize” such a language
directly, then all the representable ML algorithms will be automatically factorized in one
go, which mitigates the above development overhead. Thus, our question now becomes:
Is there such a formal language?

We find our answer in the recent trend to provide more systems support for R. Several
projects focus on improving data processing in R [Sridharan and Patel, 2014] and integrating
R (or R-like languages) with data processing systems [Zhang et al., 2010; Ghoting et al.,
2011; Oracle; Apache, c]. The core of R is linear algebra, an elegant formal language to
express a wide variety of ML algorithms ranging from classification and regression to
clustering and feature extraction [Ghoting et al., 2011]. The ML code is written using
basic and derived operators in linear algebra, e.g., matrix-vector multiplication. Many
database vendors provide lower-level code to translate these operators into queries over an
RDBMS, Hive/Hadoop, or Spark. This dramatically reduces the development overhead
for implementing many ML algorithms. Alas, such systems still assume that the input
feature matrix is a single table. When the dataset is multi-table, analysts have to join and
materialize a single table for their linear algebra scripts.

In this project, we take a step towards factorizing linear algebra, i.e., pushing linear
algebra operators through joins. We extend linear algebra by introducing a new logical
data type, the normalized matrix, to represent normalized (multi-table) datasets. We then
devise an extensive framework of algebraic rewrite rules to convert key basic and derived
operators in linear algebra over a regular denormalized matrix into operations over the
normalized matrix, i.e., the pre-join input. For example, a matrix-vector multiplication
– common in ML algorithms – is rewritten into a set of operations over the normalized
matrix that yield the same output.

A key advantage of our framework is closure with respect to linear algebra, i.e., a linear
algebra script is rewritten only to a different linear algebra script. This could make it
easy to integrate our framework with R and R-based systems without needing to modify
their internals. For concreteness sake, we implement our framework in standard main-
memory R as a library although our framework is generic and applicable to any other
linear algebra system such as R-based analytics systems and Matlab. This enables us to
piggyback on any scalability, parallelism, or other performance-related improvements
made by such systems. Overall, our framework helps obviate the need for developers to
rewrite ML code from scratch to integrate factorized learning. To demonstrate our point,
we apply our framework to four popular and representative ML algorithms – logistic
regression for classification, least squares for regression, K-Means for clustering, and

48

Op Type Name Expression Output Type

Element-wise
Scalar Op

Arithmetic Op
(? = +,−, ∗, /) T ? x or x ? T

Normalized MatrixExponentiation T ˆx or xˆT
Scalar Function f
(e.g., log, exp, sin) f(T)

Aggregation

Row Summation rowSums(T) Column Vector
Column Summation colSums(T) Row Vector

Summation sum(T) Scalar

Multiplication

Left Multiplication T %*% X

Regular Matrix

Right Multiplication X %*% T
Crossproduct crossprod(T)

Double Multiplication T1 %*% T2
Element-wise
Matrix Op

Arithmetic Op
(? = +,−, ∗, /) X ? T or T ? X

Table 4.1: Operators and functions of linear algebra (using R notation) handled in this
project over a normalized matrix T . The parameter X or x is a scalar for Element-wise
Scalar Ops, a (dS + dR)× dx matrix for Left Multiplication, an nx × nS matrix for Right
Multiplication, and anns×(dS+dR)matrix for Element-wise Matrix Ops. All the operators
except Element-wise Matrix Ops are factorizable in general.

Gaussian non-negative matrix factorization (GNMF) for feature extraction – and show
how these algorithms are automatically factorized over normalized data.

From a technical perspective, we organize a large subset of linear algebra operators
that arise commonly in ML into four groups as shown in Table 4.1. Element-wise scalar
operators such as scalar-matrix multiplication are trivial to rewrite, while the rewrites for
aggregation operators are reminiscent of query optimization rules for SQL aggregates over
joins [Chaudhuri and Shim, 1994; Yan and Larson, 1995]. Matrix multiplication operators,
which are crucial for ML, require more complex rewrites and allow for alternative rewrites
with different runtime performance. We discuss the trade-offs involved and explain how
to pick a rewrite. Multiplication of two normalized matrices requires predicting the size of
an intermediate sparse matrix, which is reminiscent of the classical problem of cardinality
estimation. We provide a formal characterization of this operation and propose an effective
heuristic. Finally, element-wise matrix operators (e.g., matrix addition) do not usually
have redundancy, which means rewriting cannot improve the performance. Fortunately,
they seldom occur in popular ML algorithms [Mitchell, 1997].

In order to handle cases in which the input normalized matrix is transposed, we devise
new rewrite rules for the first three groups of operators. Interestingly, in most cases, it turns

49

E M Y W L B F
0

50

100
R

u
n

ti
m

e
 (

s
) 16.2x

26.5x 26.5x
7.7x 8.2x 3.7x 3.6x

Materialization

Factorization

A

E M Y W L B F
0

50

100
9.8x

21.4x

20.6x
6.3x 7.3x

3.3x 3.2xR
u

n
ti

m
e
 (

s
)

B

E M Y W L B F
0

50

100
3.6x

4.6x

4.9x 1.6x 2x 1.3x 1.6xR
u

n
ti

m
e
 (

s
)

C

E M Y W L B F
0

50

100 5x
6.8x

9x
2.4x 2.8x 1.2x 1.9xR

u
n

ti
m

e
 (

s
)

D

Figure 4.5: Performance on real datasets for (A) Linear Regression, (B) Logistic Regres-
sion, (C) K-Means, and (D) GNMF. E, M, Y, W, L, B, and F correspond to the Expedia,
Movies, Yelp, Walmart, LastFM, Books, and Flights dataset respectively. The number of
iterations/centroids/topics is 20/5/5.

out that rewrite rules can be easily adapted to transposed inputs due to the “push down”
properties of the transpose operator with respect to some other linear algebra operators.
However, when a normalized matrix is multiplied with a transposed normalized matrix,
multiple rewrites are possible and it is non-obvious which rewrite should be picked. This
issue is similar to the one faced when multiplying two normalized matrices. Finally, we
extend all our rules to multi-table joins rather than just a two-table join. Interestingly,
the rewrite rules for multi-table joins lead to an instance of the multiplication of two
normalized matrices.

We perform an extensive empirical analysis of our system with both synthetic and real
datasets. Across a wide range of data sizes, we find that our factorized operators and our
factorized versions of the ML algorithms are almost always significantly faster than their
corresponding materialized versions. To predict cases of slow-down, we devise simple but
effective heuristic decision rules. Finally, we evaluate the performance of the factorized
ML algorithms on seven real-world normalized datasets from Kumar et al. [2016] (Chapter
5). Figure 4.5 presents the results. Overall, the speed-ups ranged from 1.2x to 26.5x on the
real datasets. This shows that our framework not only lowers development overhead, but
that it can also yield significant runtime speed-ups.

This project is joint work with an MS student, Lingjiao Chen, along with Jeff Naughton
and Jignesh Patel. It is under submission to a conference. My contribution was in the
conceptualization of this project and advising the other student throughout the algorithmic
and experimental details.

50

5 Hamlet: Avoiding Joins Logically

In this chapter, we dive deeper into our technique of avoiding joins logically. Recall that
irrespective of whether joins are performed physically, all features from all base tables
are used for ML. Almost always, data scientists apply a feature selection method, either
explicitly or implicitly [Guyon et al., 2006], over this entire set of features in conjunction
with their chosen ML model. Feature selection helps improve ML accuracy and is widely
considered critical for ML-based analytics [Guyon et al., 2006; SAS, a; Zhang et al., 2014;
Konda et al., 2013]. While this process certainly “works,” it can be both painful and wasteful
because the increase in the number of features might make it harder for data scientists
to explore the data and also increases the runtime of ML and feature selection methods.
In some cases, the joins might also be expensive and introduce data redundancy, causing
even more efficiency issues, as shown by our work in Project Orion (Chapter 3).

In this project, we help mitigate the above issues by studying a rather radical idea:
What if we ignore a KFK join, i.e., a base table, entirely? In other words, is it possible to ignore
all “foreign” features (the features from the table referred to by the foreign key) in the
first place without significantly reducing ML accuracy? We call this process “avoiding
the join.” At first glance, this seems preposterous: how can we be confident that ignoring
some features is unlikely to reduce accuracy significantly without even running the feature
selection method over the data (which requires the join)? The key turns out to be a rather
simple observation: the KFK dependencies present in the schema enable us to avoid joins.
Simply put, in an information theoretic sense [Guyon et al., 2006], a foreign key encodes
“all information” about all the foreign features brought in by a KFK join, which allows us to
use it as a “representative” for the foreign features. Thus, this observation seems to make
things stunningly simple: ignore all KFK joins and use foreign keys as representatives of
foreign features!

Alas, the real world is not as simple as described above. Unfortunately, the information
theoretic perspective is not sufficiently perspicacious to fully answer our core question
of when it is “safe” to avoid a join, i.e., when ML accuracy is unlikely to be affected
significantly. The finite nature of training datasets in the real world makes it necessary to
analyze our problem using the standard ML notions of bias and variance [Shalev-Shwartz
and Ben-David, 2014]. This requires detailed, yet subtle, theoretical analysis (which we
perform) of the effects of KFK joins on ML. It turns out that foreign features, which are safe

51

Yes (It is actually safe to avoid the join)

No
(It is not safe to avoid the join)

Worst-case ROR
rule says Yes

Exact ROR
rule says

Yes

TR rule says Yes

A B

C D

Figure 5.1: Illustrating the relationship between the decision rules to tell which joins are
“safe to avoid.”

to ignore from an information theoretic perspective, could be indispensable when both
bias and variance are considered. This brings us back to square one with our conundrum:
given a KFK join, how to tell if it is safe to avoid or not?

Answering the above core question could yield at least four benefits:

1. It can help improve the performance of ML tasks without losing much accuracy.
2. In applications in which data scientists explore features by being in the loop [Ku-

mar et al., 2015b; Zhang et al., 2014], having fewer tables and features might make
exploration easier.

3. It might help reduce the costs of data acquisition in applications where new tables
(e.g., weather data) are purchased and joined with existing data. If we can show
that such joins might not really help accuracy, data scientists can reconsider such
purchases.

4. In some applications, data scientists have dozens of tables in the input and prefer to
join only a few “most helpful” tables (colloquially called source selection). Answering
our question might help data scientists assess which tables matter less for accuracy.

In this project, we show that it is possible to answer our core question by designing
practical heuristics that are motivated by our theoretical understanding. Thus, apart from
establishing new connections between joins and ML, our work can help make feature
selection over normalized data easier and faster. Indeed, the data management community
is increasingly recognizing the need for more of such formal and systems support to make
feature selection easier and faster [Anderson et al., 2013; Zhang et al., 2014; Ré et al., 2014;
Kumar et al., 2015b]. Ideally, we desire a decision rule that can help answer the question for
data scientists. Apart from being effective and concurring with our formal analysis, we
desire that any such rule be simple (making it easy for data scientists to understand and
implement), generic (not tied too closely to a specific ML model), flexible (tunable based on
what error is tolerable), and fast. These additional desiderata are motivated by practical
real-world systems-oriented concerns.

52

Figure 5.1 illustrates our situation in a rough but intuitive manner. The whole box is
the set of KFK joins that gather features. (Section 5.1 makes our assumptions precise.)
Box A is the set of joins that are “safe to avoid,” i.e., avoiding them is unlikely to blow
up the test error (Section 5.2 makes this precise), while box B is the rest. Our goal is to
characterize boxes A and B and develop a decision rule to tell if a given join belongs to box
A. We first perform a simulation study (using Naive Bayes as an example) to measure how
different properties of the base tables affect the test error. We apply our theoretical and
simulation results to devise an intuitive definition of box A and design a decision rule for
it that exploits a powerful ML notion called the VC dimension [Vapnik, 1995]. Applying
a standard theoretical result from ML, we define a heuristic quantity called the Risk Of
Representation (ROR) that intuitively captures the increased risk of the test error being
higher than the train error by avoiding the join. Using an appropriate threshold on the
ROR yields a decision rule that can tell if a join is “safe to avoid” or not; this is how boxes A
and B in Figure 5.1 are defined. Sadly, it is impossible in general to compute the ROR a priori,
i.e., without performing the very feature selection computations we are trying to avoid. To
resolve this quandary, we derive an upper bound on the ROR (we call it worst-case ROR)
that is computable a priori. It yields a more conservative decision rule, i.e., it might wrongly
predict that a join is not safe to avoid even though it actually is. Figure 5.1 illustrates this
relationship: box C is contained in box A. The intersection of box A with the complement
of box C is the set of missed opportunities for the worst-case ROR rule.

The worst-case ROR rule still requires us to inspect the foreign features (without having
to do the join, of course). This motivates us to design an even simpler rule that does not
even require us to look at the foreign features. We define a quantity we call the tuple ratio
(TR) that only depends on the number of training examples and the size of the foreign
key’s domain. The TR is a conservative simplification of the worst-case ROR. Thus, the
TR rule might miss even more opportunities for avoiding joins. Figure 5.1 illustrates this
relationship: box D is contained in box C.

In the rest of this chapter, we develop the precise theoretical machinery needed to
explain our problem, characterize the effects of KFK joins on ML, and explain how we
design our decision rules. Furthermore, since both of these rules are conservative, it is
important to know how they perform on real data. Thus, we perform an empirical analy-
sis with seven real-world datasets from diverse application domains: retail, hospitality,
transportation, e-commerce, etc. We combine a few popular feature selection methods and
popular ML classifiers. We find that there are indeed many cases on real datasets where
joins are safe to avoid, and both of our rules work surprisingly well: out of 14 joins in total
across all 7 datasets, both of our rules correctly classified 7 joins as safe to avoid and 3 joins
as not safe to avoid but deemed 4 joins as not safe to avoid even though avoiding them did

53

not blow up the test errors (note that our decision rules are conservative). Overall, our
decision rules improved the performance of the feature selection methods significantly in
many cases, including by over 10x in some cases.
In summary, this project makes the following contributions:

• To the best of our knowledge, this is the first project to study the problem of formally
characterizing the effects of KFK joins on ML classifiers and feature selection to help
predict when joins can be avoided safely.

• We perform a simulation study using Naive Bayes as an example in order to measure
how different properties of the normalized data affect ML error.

• We apply our theoretical and simulation results to design simple decision rules that
can predict a priori if it is perhaps safe to avoid a given join.

• We perform an extensive empirical analysis using real-world datasets to validate
that there are cases where avoiding joins does not increase ML error significantly
and that our rules can accurately predict such cases.

Outline Section 5.1 presents an in-depth theoretical analysis of the effects of joins on ML
and feature selection. Readers more interested in the practical implications can skip to
Section 5.2, which presents our simulation study and also explains how we design our
decision rules. Section 5.3 presents our empirical validation with real data.

5.1 Effects of KFK Joins on ML

We start with a description of some extra assumptions for this work compared to Project
Orion. We then provide an information theoretic analysis of the effects of KFK joins on
ML and then dig deeper to establish the formal connections between KFKDs and the
bias-variance trade-off in ML. For ease of exposition, we assume there is only one attribute
table R. Readers more interested in the practical aspects can skip to the summary at the
end of this section or to Section 5.3.

Assumptions and Setup We focus on the case in which all features (including Y) are
nominal, i.e., each feature has a finite discrete domain.1 Thus, we focus on classification.
We assume that the foreign keys are not keys of S (e.g., EmployerID is clearly not a key
of Customers). We also assume that the domains of all features in XS, XR, and all FKi are
“closed with respect to the prediction task” and the domain of FKi is the same as the set

1Numeric features are assumed to have been discretized to a finite set of categories, say, using bin-
ning [Mitchell, 1997].

54

of RIDi values in Ri (and there are no missing/NULL values)2. We explain the closed
domain assumption. In ML, recommendation systems assume that the foreign keys of
the ratings table, e.g., MovieID and UserID have closed domains, say, to enable matrix
factorization models [Koren et al., 2009]. A movie might have several past ratings. So,
MovieID can help predict future ratings. Note that closed domain does not mean new
MovieID values can never occur! It means that data scientists build models using only the
movies seen so far but revise their feature domains and update ML models periodically
(say, monthly) to absorb movies added recently. In between these revisions, the domain
of MovieID is considered closed. EmployerID in our example plays exactly the same role:
many customers (past and future) might have the same employer. Thus, it is reasonable
to use EmployerID as a feature. Handling new movies (or employers) is a well-known
problem called cold-start [Schein et al., 2002]. It is closely related to the referential integrity
constraint for foreign keys in databases [Ramakrishnan and Gehrke, 2003]. In practice, a
common way to handle it is to have a special “Others” record in Employers as a placeholder
for new employers seen in between revisions. Cold-start is orthogonal to our problem; we
leave it to future work.

Overall, each feature in XS, XRi , and FKi is a discrete random variable with a known
finite domain. We also assume that the foreign keys are not skewed (we relax this in a
discussion in the appendix). We discuss the effects of KFK joins on ML classifiers and
feature selection in general, but later we use Naive Bayes as an example.3 Naive Bayes
is a popular classifier with diverse applications ranging from spam detection to medical
diagnosis [Mitchell, 1997; Pearl, 1988]. It is also easy to understand and use; it does not
require expensive iterative optimization or “black magic” for tuning hyper-parameters.

We emphasize that our goal is not to design new ML models or new feature selection
methods, nor is to study which feature selection method or ML model yields the highest
accuracy. Rather, our goal is to understand the theoretical and practical implications
of ubiquitous database dependencies, viz., KFK dependencies (KFKDs) and functional
dependencies (FDs) on ML. In this work, we use the phrase “the join is safe to avoid” to
mean that XR can be dropped before feature selection without significantly affecting the
test error of the subset obtained after feature selection. We make this notion more precise
later (Section 5.2).

2To handle RIDi values absent from FKi in a given instance of S, we adopt the standard practice of
smoothing [Manning et al., 2008].

3We present some empirical results and a discussion of some other popular ML models in Section 5.3 and
the appendix.

55

The Information Theoretic Perspective

A standard theoretical approach to ascertain which features are “useful” is to use the
information theoretic notions of feature redundancy and relevancy [Guyon et al., 2006;
Koller and Sahami, 1995]. Thus, we now perform such an analysis to help explain why it
might be safe to avoid the join with R, i.e., ignore XR.

Feature Redundancy

We start with some intuition. The foreign key FK is also a feature used to predict Y. In our
example, it is reasonable to use EmployerID to help predict Churn. The equi-join condition
S.FK = R.RID that creates T causes FK to functionally determine all of XR in T. It is as if the
FD RID → XR in R becomes the FD FK → XR in T.4 Thus, given FK, XR is fixed, i.e., XR
does not provide any more “information” over FK. The notion of feature redundancy helps
capture such behavior formally [Yu and Liu, 2004; Koller and Sahami, 1995]. Its rigorous
definition is as follows.

Definition 5.1. Weak relevance. A feature F ∈ X is weakly relevant iff P(Y|X) = P(Y|X− {F})

and ∃Z ⊆ X − {F} s.t. P(Y|Z, F) 6= P(Y|Z).

Definition 5.2. Markov blanket. Given a feature F ∈ X, let MF ⊆ X − {F}; MF is a Markov
Blanket for F iff P(Y, X − {F}− MF|MF, F) = P(Y, X − {F}− MF|MF).

Definition 5.3. Redundant feature. A feature F ∈ X is redundant iff it is weakly relevant
and it has a Markov blanket in X.

Applying the above notion of feature redundancy yields our first, albeit simple, result
(let X ≡ XS ∪ {FK} ∪ XR).

Proposition 5.1.1. In T, all F ∈ XR are redundant.

The proof is in the appendix. This result extends trivially to multiple attribute tables.
In fact, it extends to a more general set of FDs, as shown by the following corollary.

Definition 5.4. A set of FDs Q over X is acyclic iff the digraph on X created as follows is acyclic:
include an edge from feature Xi to Xj if there is an FD in Q in which Xi is in the determinant set
and Xj is in the dependent set.

Corollary 5.5. Given a table T(ID, Y, X) with a canonical acyclic set of FDs Q on the features X,
a feature that appears in the dependent set of an FD in Q is redundant.

4KFKDs differ from FDs [Abiteboul et al., 1995], but we can treat the dependencies in T as FDs since we
had assumed that there are no NULL values and that all feature domains are closed.

56

In the ML literature, the redundancy of a feature is often considered an indication
that the feature should be dropped. In fact, many feature selection methods explicitly
search for such redundancy in order to remove the redundant features [Koller and Sahami,
1995; Yu and Liu, 2004; Guyon et al., 2006]. However, they try to detect the presence of
feature redundancy approximately based on the dataset instance. Our scenario is stronger
because Proposition 5.1.1 guarantees the existence of redundant features. This motivates
us to consider the seemingly “radical” step of avoiding these redundant features, i.e.,
avoiding the join with R.

Feature Relevancy

A redundant feature might sometimes be more “useful” in predicting Y; this is captured us-
ing the formal notion of feature relevancy. This leads to the classical redundancy-relevancy
trade-off in ML [Guyon et al., 2006]. We provide some intuition. Suppose, in our example,
that customers of rich corporations never churn and they are the only ones who do not
churn; then Revenue is perhaps the most relevant feature, even though it is redundant.
Thus, we would like to know if it is possible for some F ∈ XR to be more relevant than
FK. Feature relevancy is often formalized using scores such as the mutual information
I(F; Y) or the information gain ratio IGR(F; Y); formal definitions of these quantities are
provided in Chapter 2 (Section 2.3). A feature with a higher score is considered to be more
relevant [Guyon et al., 2006; Yu and Liu, 2004]. However, when we apply these notions to
our setting, we realize that our information theoretic analysis hits a wall.

Theorem 5.6. ∀F ∈ XR, I(F; Y) 6 I(FK; Y)

Proposition 5.1.2. It is possible for a feature F ∈ XR to have higher IGR(F; Y) than IGR(FK; Y).

The proofs are in the appendix. Basically, we get near-opposite conclusions depending
on the score! Using mutual information, features in XR are no more relevant than FK.
Coupled with the earlier fact that XR is redundant, this suggests strongly that the join is
not too useful and that we might as well stick with using FK as a “representative” of XR.
However, using information gain ratio, a feature in XR could be more relevant than FK. This
suggests that we should bring in XR by performing the join and let the feature selection
method ascertain which features to use. We explain this strange behavior intuitively.

The domain of FK is likely to be much larger than any feature in XR. For example, there
are fewer than fifty states in the USA, but there are millions of employers. Thus, EmployerID
might have a much larger domain than State in Employers. Mutual information tends
to prefer features with larger domains, but information gain ratio resolves this issue by
penalizing features with larger domains [Guyon et al., 2006; Mitchell, 1997]. This brings

57

us back to square one with our original conundrum! It seems the information theoretic
analysis is insufficient to help us precisely answer our core question of when it is safe
to avoid a join. Thus, we now dive deeper into our problem by analyzing the effects of
KFK joins on ML and feature selection from the perspective of the bias-variance trade-off,
which lies at the heart of ML.

The Join Strikes Back: KFK Joins and the Bias-Variance Trade-off

We now expose a “danger” in avoiding the join (using FK as a representative for XR). Our
intuition is simple: information theoretic arguments are generally applicable to asymptotic
cases but in the real world, training datasets are finite. Thus, we need to look to statistical
learning theory to understand precisely how ML error is affected. We start with an intuitive
explanation of some standard concepts.

The expected test error (i.e., error on an unseen labeled example) can be decomposed
into three components: bias (a.k.a approximation error), variance (a.k.a. estimation error),
and noise [Hastie et al., 2003; Shalev-Shwartz and Ben-David, 2014]. The noise is an
inevitable component that is independent of the ML model. The bias captures the lowest
possible error by any model instance in the class of ML models considered. For example,
using Naive Bayes introduces a bias compared to learning the expensive joint distribution,
since it assumes conditional independence [Pearl, 1988]. The variance captures the error
introduced by the fact that the training dataset is only a random finite sample from the
underlying data distribution, i.e., it formalizes the “instability” of the model with respect
to the training data. For example, if we train Naive Bayes on two different training samples,
their test errors are likely to differ. And if we provide fewer training examples to the ML
model, its test error is likely to increase due to higher variance. In colloquial terms, a
scenario with high variance is called overfitting [Hastie et al., 2003].

The crux of the argument is as follows: using FK as a representative is likely to yield a model
with higher variance than a model obtained by including XR for consideration. Thus, the chance
of getting a higher test error might increase if we avoid the join. Perhaps surprisingly, this
holds true irrespective of the number of features in XR! Before explaining why, we observe
that there is no contradiction with Section 5.1; the information theoretic analysis deals
primarily with bias, not variance. We explain more below.

Relationship between Hypothesis Spaces

To help formalize our argument, we first explain the relationship between the classes of
models built using FK and XR. This is important to understand because a model with a
larger hypothesis space might have higher variance.

58

HFK
H

𝐗R
 H

Xr
 H 𝐗R

 NB

Figure 5.2: Relationship between hypothesis spaces.

As before, let X ≡ XS ∪ {FK} ∪ XR. For simplicity of exposition, let DY = {0, 1}. Also,
since our primary goal is to understand the effects of the FD FK → XR, we set XS = φ

(empty) for ease of exposition. A learned ML model instance is just a prediction function
f : DX → {0, 1}. The universe of all possible prediction functions based on X is denoted
HX = {f|f : DX → {0, 1}}. A given class of ML models, e.g., Naive Bayes, can only learn
a subset of HX owing to its bias. This subset of functions that it can learn is called the
hypothesis space of the ML model. Let HNBX denote the hypothesis space of Naive Bayes
models on X. Given Z ⊆ X, we define the restriction of HX to Z as follows: HZ = {f|f ∈
HX ∧ ∀u, v ∈ DX, u|Z = v|Z =⇒ f(u) = f(v)}. Here, u|Z denotes the projection of u to
only the features in Z. We now establish the relationship between the various hypothesis
spaces. Figure 5.2 depicts it pictorially.

Proposition 5.1.3. HX = HFK ⊇ HXR

The proof is in the appendix. Note that the first part (HX = HFK) is essentially the
learning theory equivalent of Proposition 5.1.1. The second part might seem counter-
intuitive because even if there are, say, a million features in XR but only a hundred FK
values, using FK instead of XR is still more “powerful” than using XR and dropping FK. But
the intuition is simple: since R is fixed in our setting, we can only ever observe at most |DFK|
distinct values of XR, even if ΠF∈XR |DF| � |DFK|. Hence, using XR instead of FK might
increase the bias. For example, suppose that customers employed by Profit University and
Charity Inc. churn and they are the only ones who churn. Then it is impossible in general
to learn this concept correctly if EmployerID is excluded. Note that HNBXR ⊆ HXR . Finally,
∀Xr ∈ XR, HNBXR ⊇ HXr = HNBXr (and HNBFK = HFK), since Naive Bayes has no bias if there
is only one feature.

The relationship between the size of the hypothesis space and the variance is formalized
in ML using the powerful notion of the VC dimension [Vapnik, 1995; Shalev-Shwartz and
Ben-David, 2014]. We use this notion to complete the formalization of our argument.

59

VC Dimension

We give an intuitive explanation and an example here and refer the interested reader
to Shalev-Shwartz and Ben-David [2014] for more details. Intuitively, the VC dimension
captures the ability of a classifier to assign the true class labels to a set of labeled data points
of a given cardinality – a capability known as “shattering.” For example, consider a linear
classifier in 2-D. It is easy to see that it can shatter any set of 3 points (distinct and non-
collinear). But it cannot shatter a set of 4 points due to the XOR problem [Domingos, 2012].
Thus, the VC dimension of a 2-D linear classifier is 3. For finite hypothesis spaces (as in
our case), the VC dimension is a direct indicator of the size of the hypothesis space [Shalev-
Shwartz and Ben-David, 2014]. A standard result from ML bounds the difference between
the test and train errors (this difference is solely due to variance) as a function of the VC
dimension (v) and the number of training examples (n):

Theorem 5.7. (From Shalev-Shwartz and Ben-David [2014], p. 51) For every δ ∈ (0, 1), with
probability at least 1 − δ over the choice of the training dataset, and for n > v, we have:

|Test error− Train error| 6
4+
√
vlog(2en/v)
δ
√

2n

Thus, a higher VC dimension means a looser bound on the variance and, possibly,
higher variance. The VC dimension usually increases with the number of features. For
example, it is linear in the number of features for “linear” classifiers such as logistic
regression and also Naive Bayes [Vapnik, 1995]. But note that we had assumed that all
features are nominal in our setting. Thus, we recode the features to numeric space using
the standard binary vector representation, i.e., a feature F is converted to a 0/1 vector with
|DF|− 1 dimensions (the last category is represented as a zero vector). With this recoding,
the VC dimension of Naive Bayes (or logistic regression) on a set X of nominal features is
1 +

∑
F∈X(|DF|− 1). If we use FK alone, the maximum VC dimension for any classifier is

|DFK|, which is matched by almost all popular classifiers such as Naive Bayes. However,
as per the argument for Figure 5.2, the VC dimension of any classifier on XR is at most the
number of distinct values of XR in the given table R, say, r. Since RID is the primary key
of R, we have |DFK| > r. Thus, the VC dimension is likely to be higher if FK is used as a
representative for XR.

In the Context of Feature Selection

The above variance-based argument gets stronger when we consider the fact that we might
not retain all of XR after feature selection. Consider an extreme scenario: suppose the
“true” distribution can be succinctly described using a lone feature Xr ∈ XR. In our churn

60

example, this represents a case where all customers with employers based in Wisconsin
churn and they are the only ones who churn (Xr is State). Suppose an “oracle” told us to
only use Xr. Clearly, HXr is likely to be much smaller than HFK, as illustrated in Figure 5.2.
Thus, the variance for a model based on FK is likely to be higher than a model based on
Xr, as per Theorem 5.7. For the opposite extreme, i.e., the true concept needs all of XR, the
gap with HFK might decrease, but it might still be large.

Alas, in the real world, we do not have oracles to tell us which features are part of the
true distribution; it could be none, some, or all features in XR. What we do have instead
of an oracle is a feature selection method, although it does the job approximately using a
finite labeled sample. For example, in the above extreme scenario, if we input {FK,Xr} to a
feature selection method, it is likely to output {Xr} precisely because a model based on {Xr}

is likely to have lower variance than one based on {FK} or {FK,Xr}. By avoiding the join,
we shut the door on such possibilities and force the model to work only with FK. Thus,
overall, even though FK can act as a representative for XR, it is probably safer to give the
entire set X to the feature selection method and let it figure out the subset to use. Finally,
note that we had assumed XS is empty for the above discussion because it is orthogonal to
our core issue. If XS is not empty, all the hypothesis spaces shown in Figure 5.2 will blow
up, but their relative relationships, and hence the above arguments about the variance,
will remain unaffected.

Summary Our analysis reveals a dichotomy in the accuracy effects of avoiding a KFK
join for ML and feature selection: avoiding the join and using FK as a representative of
XR might not increase the bias, but the variance (compared after feature selection) might
increase significantly. All of the above arguments and results extend trivially to the case of
multiple attribute tables.

5.2 Predicting a priori if it is Safe to Avoid a KFK Join

Given our understanding of the dichotomy in the effects of joins, we now focus on answer-
ing our core question: how to predict a priori if a join with R is safe to avoid. We start with
a simulation study using “controlled” datasets to validate our theoretical analysis and
measure precisely how the error varies as we vary different properties of the normalized
data. We then explain our decision rules and how we use our simulation measurements to
tune the rules. All the plots in Section 5.2 are based on our synthetic datasets.

61

Simulation Study

We perform a Monte Carlo-style study. For the sake of tractability and depth of understand-
ing, we use Naive Bayes as the classifier in this section. But note that our methodology is
generic enough to be applicable to any classifier because we measure the accuracy only
using standard notions of error, bias, and variance for a generic ML classifier.

Data Synthesis We sample the labeled examples in an independently and identically
distributed manner from a controlled true distribution P(Y, X). Different scenarios are
possible based on what features in X are used: it could be any or all features in XS, FK,
and/or XR. Our primary goal is to understand the effects of the FD FK→ XR and explain
the danger in avoiding the join. Thus, we focus on a key scenario that intuitively represents
the worst-case scenario for avoiding the join: the true distribution is succinctly captured
using a lone feature Xr ∈ XR. This corresponds to the example in Section 5.1 in which all
customers with employers based in Wisconsin churn and they are the only ones who churn.
In line with Proposition 5.1.3, we expect FK to play an indirect role in predicting Y in both
scenarios. All other features are random noise. We also studied two other representative
scenarios: one in which all of XS and XR are part of the true distribution, and one in which
only XS and FK are. Since these two did not yield any major additional insights, we present
them in the appendix.

Simulation Setup There is one attribute table R (k = 1). All of XS, XR, and Y are boolean
(i.e., domain size 2). The following parameters are varied one at a time: number of features
in XS (dS), number of features in XR (dR), |DFK| (= nR), and total number of training
examples (nS). We also sample nS4 examples for the test set. We generate 100 different
training datasets and measure the test error and the variance based on the different models
obtained from these 100 runs. This whole process was repeated 100 times with different
seeds for the pseudo-random number generator [Rish et al., 2001]. Thus, we have 10, 000
runs in total for one combination of the parameters studied. While the test error and
variance were defined intuitively in Section 5.1, we now define them formally (based
on Domingos [2000]).

Definitions We start with the formal definition of error (based on Domingos and Pazzani
[1997]).

Definition 5.8. Zero-one loss. Let t be the true class label of a given example with X = x, while
cM(x) be the class predicted by a classifier M on x. The zero-one loss (of M on x), denoted
L(t, cM(x)), is defined as L(t, cM(x)) = 1t=cM(x), where 1 is the indicator function.

62

Definition 5.9. The local error (in short, the error) ofM on x, denoted EM(x), is defined as the
expected value of the zero-one loss, where the expectation is over the values of Y, given X = x, i.e.,
EM(x) =

∑
y∈DY

P(Y = y|X = x)LM(y, cM(x)).

SinceM depends on the training data, we compute the expectation of the error over
different training datasets, say, by averaging over a given finite collection of training
datasets S (typically, all of the same size). Note that |S| = 100 for our Monte Carlo runs.
The expected error of a classifier (across true distributions and S) on x is decomposed as
follows:

E[L(t, cM(x))] = B(x) + (1 − 2B(x))V(x) + cN(x) (5.1)

Here, B(x) is the bias, V(x) is the variance, and N(x) is the noise. The quantity (1 −

2B(x))V(x) is called the net variance, which is needed to capture the opposing effects of
the variance on biased and unbiased predictions [Domingos, 2000]. The main prediction
on x, given S, is defined as the mode among the multi-set of predictions that result from
learning M over each training dataset in S. The main prediction is denoted ym, while
a single prediction based on some dataset in S is denoted y. The bias is defined as the
zero-one loss of the main prediction, i.e., B(x) = L(t,ym). The variance is defined as the
average loss with respect to the main prediction, i.e., V(x) = ED[L(ym,y)]. The average bias
(resp. average net variance and average test error) is the average of the bias (resp. net variance
and test error) over the entire set of test examples. Our goal is to understand how the
average test error and the average net variance are affected by avoiding a join. For the sake
of readability, we only discuss the key results here and present the others in the appendix.

Results We compare three classes of models: UseAll, which uses all of XS, FK, and XR,
NoJoin, which omits XR, and NoFK, which omits FK. Figure 5.3 plots the average test error
and average net variance against nS as well as |DFK|.

At a high level, Figure 5.3 validates our theoretical results on the dichotomy in the
effects of avoiding the join. Both UseAll and NoFK use Xr, which enables them to achieve
the lowest errors. When nS is large, NoJoin matches their errors even though it does not
use Xr. This confirms our arguments in Section 5.1 about FK acting as a representative of
Xr. However, when nS drops, the error of NoJoin increases, and as Figure 5.3(A2) shows,
this is due to the increase in the net variance. Figure 5.3(B) drills into why that happens:
for a fixed nS, a higher |DFK| yields a higher error for NoJoin, again because of higher net
variance. This confirms our arguments in Section 5.1 about the danger of using FK as a
representative due to the increase in the variance. For the sake of readability, we discuss
other parameters and the other two simulation scenarios in the appendix.

63

Number of training examples (𝑛𝑆)

0

0.05

0.1

0.15

0.2

1E+2 1E+3 1E+4 1E+5

UseAll

NoJoin

NoFKA
vg

. T
es

t
Er

ro
r A1

0

0.05

0.1

0.15

0.2

1E+2 1E+3 1E+4 1E+5A
vg

. N
et

 V
ar

ia
n

ce A2

Number of FK values (|DFK|= 𝑛𝑅)

0

0.1

0.2

0.3

0.4

1 10 100 1000

A
vg

. T
es

t
Er

ro
r B1

0

0.1

0.2

0.3

0.4

1 10 100 1000A
vg

. N
et

 V
ar

ia
n

ce B2

Figure 5.3: Simulation results for the scenario in which only a single Xr ∈ XR is part of
the true distribution, which has P(Y = 0|Xr = 0) = P(Y = 1|Xr = 1) = p. For these
results, we set p = 0.1 (varying this probability did not change the overall trends). (A)
Vary nS, while fixing (dS,dR, |DFK|) = (2, 4, 40). (B) Vary |DFK| (= nR), while fixing
(nS,dS,dR) = (1000, 4, 4).

Towards a Decision Rule

We now precisely define what we mean by “a join is safe to avoid” and devise intuitive
decision rules to predict such cases. While our definition and decision rules are heuristic,
they are based on our theoretical and simulation-based insights and they satisfy all the
desiderata listed in the introduction of this chapter. Our key guiding principle is conser-
vatism: it is fine to not avoid a join that could have been avoided in hindsight (a missed
opportunity), but we do not want to avoid a join that should not be avoided (i.e., the error
blows up if it is avoided). This is reasonable since the feature selection method is there
to figure out if features in XR are not helpful, albeit with poorer performance. Designing
a rule to avoid joins safely is challenging mainly because it needs to balance this subtle
performance-accuracy trade-off correctly.

The Risk of Representation

We start be defining a heuristic quantity based on the increase in the error bound given
by Theorem 5.7. Intuitively, it quantifies the “extra risk” caused by avoiding the join. We
compare the bounds for a hypothetical “best” model that uses some subset of XR instead

64

Symbol

𝜖
𝛿
𝑣𝑌𝑒𝑠
𝑣𝑁𝑜
𝑞𝑆
𝑞𝑅
𝑞𝑁𝑜
𝑞𝑅
∗

Meaning

Tolerance for safety with the ROR
Failure probability for the VC-dim bound and the ROR
VC-dim of a (hypothetical) “best” classifier that avoids the join
VC-dim of a “best” classifier that does not avoid the join
 (𝐷𝐹 − 1)𝐹∈ 𝐗S

Number of unique values of 𝐗R in R
𝑣𝑁𝑜 − 𝑞𝑆
min𝐹∈ 𝐗R |𝐷𝐹|

Table 5.1: Notation used in this chapter.

of FK (join performed) against one that uses FK instead (join avoided). A subset of XS
might be used by both. We call this quantity the Risk of Representation (ROR):

ROR =

√
vYeslog(

2en
vYes

) −
√
vNolog(

2en
vNo

)

δ
√

2n
+ ∆bias

In the above, vYes is the VC dimension of a classifier that uses FK as a representative
and avoids the join, while vNo is for one that does not avoid the join. Table 5.1 lists all the
extra notation used in the rest of this section. We first define them and then explain the
intuition behind their definition. For the sake of simplicity, we restrict ourselves to models
such as Naive Bayes and logistic regression that have VC dimension linear in the number
of features, but discuss some other classifiers later.5 We are given X = XS ∪ {FK} ∪ XR.
Suppose an “oracle” told us that US ⊆ XS and UR ⊆ XR are the only features in the
true distribution. We only consider the case in which UR is non-empty.6 Thus, ideally,
vYes =

∑
F∈US(|DF| − 1) + |DFK|. Denote

∑
F∈US(|DF| − 1) by qS; this is the sum of the

number of unique values of all features in US. Let qR denote the number of unique values
of UR (taken jointly; not as individual features) in R. In general, vNo does not have a
closed form expression, since it depends on R, but we have qS < vNo 6 qS + qR. Thus,
vNo 6 vYes. Once again, since we do not have oracles in the real world, we will not
know US and UR a priori. Thus, it is impossible to compute the ROR exactly in general.7

Furthermore, Theorem 5.7 only deals with the variance, not the bias. Thus, we denote
the difference in bias using ∆bias in the ROR. Given this definition of the ROR, we now
precisely state what we mean by the join with R is “safe to avoid.”

5The upper bound derivation is similar for classifiers with more complex VC dimensions, e.g., the joint
distribution. We leave a deeper formal analysis to future work.

6If UR is empty, R is trivially useless.
7A feature selection method can ascertain US and UR roughly but our goal is to avoid this computation.

65

Definition 5.10. Given a failure probability δ and a bound ε > 0, we say the join with R is
(δ, ε)-safe to avoid iff the ROR with the given δ is no larger than ε.

The ROR Rule

While the ROR intuitively captures the risk of avoiding the join and provides us a threshold-
based decision rule, we immediately hit another wall: it is impossible in general to compute
∆bias a priori without knowing US and UR. Thus, prima facie, using the ROR directly for
a decision rule seems to be a hopeless idea to pursue! We resolve this quandary using a
simple observation: we do not really need the exact ROR but only a “good enough” indica-
tor of the risk of using FK as a representative. Thus, drawing upon our guiding principle
of conservatism, we upper bound the ROR and create a more conservative decision rule.
We explain the derivation step by step. Assume n > vYes. First, Proposition 5.1.3 showed
that dropping XR a priori does not increase the bias but dropping FKmight, which means
∆bias 6 0. Hence, we ignore ∆bias entirely:

ROR 6

√
vYeslog(

2en
vYes

) −
√
vNolog(

2en
vNo

)

δ
√

2n

Second, we substitute the values of some variables in the above inequality. Denote
qNo = vNo − qS (the slack in the inequality qS < vNo). The inequality now becomes:

ROR 6
1

δ
√

2n
[
√
(qS + |DFK|)log(2en/(qS + |DFK|))

−
√

(qS + qNo)log(2en/(qS + qNo))]

Third, we observe that since |DFK| > qR > qNo, the RHS above is a non-increasing
function of qS that is maximum when qS = 0. This lets us eliminate US from the picture:

ROR 6
1

δ
√

2n
(
√
|DFK|log(2en/|DFK|) −

√
qNolog(2en/qNo)

Fourth, let q∗R denote the minimum possible number of unique values of UR in R, i.e.,
q∗R = minF∈XR |DF|. Now, we observe that since qNo 6 |DFK| 6 n, the RHS above is a
non-increasing function of qNo that is maximum when qNo = q∗R. Thus, finally, we get
the following inequality:

66

ROR 6
1

δ
√

2n
(
√

|DFK|log(2en/|DFK|) −
√
q∗Rlog(2en/q∗R)

Intuitively, the above represents the worst-case scenario in which US is empty and
UR = {argminF∈XR |DF|}. Thus, we call this bound the worst-case ROR, and its “gap” with
the exact ROR could be large (Figure 5.1). Henceforth, we use the term “ROR” to refer to
this worst-case upper bound. The ROR rule uses a threshold: given a parameter ρ, avoid
the join if ROR 6 ρ.8 This rule is conservative because given a join that is (δ, ρ)-safe to
avoid, there might be some ρ ′ < ρ such that the join is actually also (δ, ρ ′)-safe to avoid.

The TR Rule

The ROR rule still requires us to look at XR to ascertain the features’ domains and obtain
q∗R. This motivates us to consider an even simpler rule that depends only on nS (number of
training examples in S) and |DFK| (= nR, by definition). We call nSnR the tuple ratio (TR). The
key advantages of the TR over the ROR are that this is easier to understand and implement
and that this does not even require us to look at XR, i.e., this enables us to ignore the join
without even looking at R. We now explain the relationship between the TR and the ROR.

When |DFK|� q∗R, the ROR can be approximated as follows:

ROR ≈
√
|DFK|log(2en/|DFK|)

δ
√

2n

Since n ≡ nS, we also have ROR ≈ (1/
√
nS/nR)(

√
log(2enS/nR)

δ
√

2), which is approxi-
mately linear in (1/

√
TR) for a reasonably large TR. Thus, the TR is a conservative simplifi-

cation of the ROR. The TR rule applies a threshold on the TR to predict if it is safe to avoid
join: given a parameter τ, the join is avoided if TR > τ. Note that since the TR rule is more
conservative, it might lead to more missed opportunities than the ROR rule (Figure 5.1).
We now explain why this “gap” arises. The key reason is that the TR cannot distinguish
between scenarios where |DFK|� q∗R and where |DFK| is comparable to q∗R, as illustrated
by Figure 5.4. When |DFK|� q∗R, the ROR is high, which means the join may not be safe
to avoid. But when |DFK| ≈ q∗R, the ROR is low, which means the join may be safe to avoid.
The TR is oblivious to this finer distinction enabled by the ROR. But in practice, we expect
that this extra capability of the ROR might not be too significant since it only matters if all
features in XR have domain sizes comparable to FK. Such an extreme situation is perhaps

8We set the failure probability δ to be always 0.1, but it can also be folded into ρ since ROR ∝ 1
δ

.

67

HFK
H
𝑋𝑟∗

HFK

High ROR Low ROR

H
𝑋𝑟∗

Figure 5.4: When q∗R = |DX∗r |� |DFK|, the ROR is high. When q∗R ≈ |DFK|, the ROR is low.
The TR rule cannot distinguish between these two scenarios.

0

0.1

0.2

0.3

0 2 4 6 8 10
ROR

∆
Te

st
 e

rr
o

r

A

0

0.002

0.004

0.006

0 1 2 3 4

Tuple Ratio

∆
Te

st
 e

rr
o

r

B

0

0.002

0.004

0.006

5 25 125

0

0.1

0.2

0.3

1 10 100 1000

0

3

6

9

0 0.3 0.6 0.9 1.2

1/√Tuple Ratio

R
O

R

C

Figure 5.5: Scatter plots based on all the results of the simulation experiments referred to
by Figure 5.3. (A) Increase in test error caused by avoiding the join (denoted “∆Test error”)
against ROR. (B) ∆Test error against tuple ratio. (C) ROR against inverse square root of
tuple ratio.

unlikely in the real world. In fact, as we explain later in Section 5.3, the ROR rule and the
TR rule yielded identical results for join avoidance on all our real datasets.

Tuning the Thresholds

We now explain how to tune the thresholds of our decision rules (ρ for ROR and τ for TR).
For our purposes, we define a “significant increase” in test error as an absolute increase of
0.001. This might be too strict (or lenient) based on the application. Our goal here is only
to demonstrate the feasibility of tuning our rules. Applications willing to tolerate a higher
(or lower) error can easily retune the rules based on our methodology.

Figure 5.5(A) shows a scatter plot of the (asymmetric) test error difference between
NoJoin and UseAll based on our diverse set of simulation results (varying nS, |DFK|, dR,
etc.) for the first scenario: a lone Xr ∈ XR is part of the true distribution. We see that as
the ROR increases, the test error difference increases, which confirms that the ROR is an

68

indicator of the test error difference. In fact, for sufficiently small values of the ROR, the
test error is practically unchanged. The zoomed-in portion of Figure 5.5(A) suggests that a
threshold of ρ = 2.5 is reasonable. Figure 5.5(B) shows the same errors against the TR. We
see that as the TR increases, the test error difference decreases. For sufficiently large values
of the TR, the test error is practically unchanged. Thus, even the more conservative TR
can be a surprisingly good indicator of the test error difference. The zoomed-in portion of
Figure 5.5(B) suggests a threshold of τ = 20 is reasonable. Finally, Figure 5.5(C) confirms
the relationship between the ROR and the TR: the ROR is approximately linear in 1/

√
TR

(Pearson correlation coefficient ≈ 0.97).
These thresholds need to be tuned only once per ML model (more precisely, once per

VC dimension expression). Thus, they are qualitatively different from (hyper-)parameters
in ML that need to be tuned once per dataset instance using cross-validation. The above
threshold values can be directly used in practice for models such as Naive Bayes and logistic
regression. In fact, they worked unmodified for all the real datasets in our experiments for
both Naive Bayes and logistic regression! If the error tolerance is changed, one can use our
simulation results to get new thresholds. For an ML model with a completely different VC
dimension expression, our simulations have to be repeated with that ML model and new
thresholds obtained in a manner similar to the above.

Foreign Key Skew We now briefly explain what happens if we relax the assumption that
the foreign key distribution is not skewed. Note that neither ROR nor TR capture skew in
P(FK). We studied this issue with more simulations. For the sake of readability, we only
provide the key results here and provide more details in the appendix. Overall, we found
that skew in P(FK) in and of itself is not what matters for ML accuracy, but rather whether
P(Y) is also skewed, and whether these two skews “collude”. We call such skews “malign”
and found that a simple way to account for them is to check if H(Y) is too low. We leave
more complex approaches to handle malign skews to future work.

Multiple Attribute Tables It is trivial to extend the TR rule to multiple Ri: avoid the
join with Ri if nSnRi > τ. As for the ROR rule, since US was eliminated when deriving the
worst-case ROR, we can ignore the other foreign keys in S. Thus, we can avoid the join
with Ri if the ROR computed using FKi and minF∈XRi |DF| is 6 ρ. Making join avoidance
decisions for multiple Ri jointly, rather than independently as we do, might yield less
conservative (albeit more complex) decision rules. We leave this to future work.

Multi-Class Case The VC dimension makes sense only when Y has two classes, which
might limit the applicability of the ROR rule. In the ML literature, there are various

69

Dataset #𝑌 (𝑛𝑆, 𝑑𝑆) 𝑘 𝑘′ (𝑛𝑅𝑖
, 𝑑𝑅𝑖

), 𝑖 = 1 𝑡𝑜 𝑘

Yelp 5 (215879, 0) 2 2 (11537, 32), (43873, 6)

Walmart 7 (421570, 1) 2 2 (2340, 9), (45, 2)
Expedia 2 (942142, 6) 2 1 (11939, 8), (37021, 14)
Flights 2 (66548, 20) 3 3 (540, 5), (3182, 6), (3182, 6)

BookCrossing 5 (253120, 0) 2 2 (49972, 4), (27876, 2)

MovieLens1M 5 (1000209, 0) 2 2 (3706, 21), (6040, 4)
LastFM 5 (343747, 0) 2 2 (4999, 7), (50000, 4)

Table 5.2: Dataset statistics. #Y is the number of target classes. k is the number of attribute
tables. k ′ is the number of foreign keys with closed domains.

generalizations of the VC dimension for multi-class classifiers, e.g., the Natarajan dimension
or the graph dimension [Shalev-Shwartz and Ben-David, 2014]. Intuitively, they generalize
the notion of the power of the classifier by also considering the number of classes. However,
it is known that these more general dimensions are bounded (for “linear” classifiers
such as Naive Bayes or logistic regression) by a log-linear factor in the product of the
total number of feature values (sum of the domain sizes for nominal features) and the
number of classes [Daniely et al., 2012]. Hence, intuitively, the ROR rule might be a stricter
condition than needed for the multi-class case, which is in line with our guiding principle
of conservatism for avoiding joins. We leave a deeper analysis of the multi-class case to
future work.

5.3 Experiments on Real Data

Our goal here is three-fold: (1) verify that there are cases where avoiding joins does not
increase error significantly, (2) verify that our rules can accurately predict those cases, and
(3) analyze the robustness and sensitivity of our rules.

Datasets Standard sources such as the UCI ML repository did not have datasets with
known KFKDs/FDs. Thus, we obtained real datasets from other sources: Walmart,
Expedia, and Yelp are from the data science contest portal Kaggle (www.kaggle.com);
MovieLens1M and BookCrossing are from GroupLens (grouplens.org); Flights is from
openflights.org; LastFM is from mtg.upf.edu/node/1671 and last.fm. Table 5.2 pro-
vides the dataset statistics. We describe each dataset and the prediction task. We used
a standard unsupervised binning technique (equal-length histograms) for numeric fea-
tures. All of these datasets are available on our project webpage: http://pages.cs.wisc.
edu/~arun/hamlet and all of our codes for data preparation are available on GitHub:

www.kaggle.com
grouplens.org
openflights.org
mtg.upf.edu/node/1671
last.fm
http://pages.cs.wisc.edu/~arun/hamlet
http://pages.cs.wisc.edu/~arun/hamlet

70

https://github.com/arunkk09/hamlet. To the best of our knowledge, this is the first
work to gather and clean so many normalized real datasets for ML. We hope our efforts
help further research on this topic.

Walmart. Predict department-wise sales levels by joining data about past sales with data
about stores and weather/economic indicators. S is Sales (SalesLevel, IndicatorID, StoreID,
Dept), while Y is SalesLevel. R1 is Indicators (IndicatorID, TempAvg, TempStdev, CPIAvg,
CPIStdev, FuelPriceAvg, FuelPriceStdev, UnempRateAvg, UnempRateStdev, IsHoliday).
R2 is Stores (StoreID, Type, Size). Both foreign keys (StoreID and IndicatorID) have closed
domains with respect to the prediction task.

Expedia. Predict if a hotel will be ranked highly by joining data about past search listings
with data about hotels and search events. S is Listings (Position, HotelID, SearchID, Score1,
Score2, LogHistoricalPrice, PriceUSD, PromoFlag, OrigDestDistance). Y is Position. R1 is
Hotels (HotelID, Country, Stars, ReviewScore, BookingUSDAvg, BookingUSDStdev, Book-
ingCount, BrandBool, ClickCount). R2 is Searches (SearchID, Year, Month, WeekOfYear,
TimeOfDay, VisitorCountry, SearchDest, LengthOfStay, ChildrenCount, AdultsCount,
RoomCount, SiteID, BookingWindow, SatNightBool, RandomBool). HotelID has a closed
domain with respect to the prediction task, while SearchID does not.

Flights. Predict if a route is codeshared by joining data about routes with data about
airlines and airports (both source and destination). S is Routes (CodeShare, AirlineID,
SrcAirportID, DestAirportID, Equipment1, . . . , Equipment20). Y is CodeShare. R1 is
Airlines (AirlineID, AirCountry, Active, NameWords, NameHasAir, NameHasAirlines).
R2 is SrcAirports (SrcAirportID, SrcCity, SrcCountry, SrcDST, SrcTimeZone, SrcLongitude,
SrcLatitude). R3 is DestAirports (DestAirportID, DestCity, DestCountry, DestTimeZone,
DestDST, DestLongitude, DestLatitude). All foreign keys have closed domains with respect
to the prediction task.

Yelp. Predict business ratings by joining data about past ratings with data about users and
businesses. S is Ratings (Stars, UserID, BusinessID). Y is Stars. R1 is Businesses (BusinessID,
BusinessStars, BusinessReviewCount, Latitude, Longitude, City, State, WeekdayCheck-
ins1, . . . , WeekdayCheckins5, WeekendCheckins1, . . . , WeekendCheckins5, Category1, . . .
Category15, IsOpen). R2 is Users (UserID, Gender, UserStars, UserReviewCount, Vote-
sUseful, VotesFunny, VotesCool). Both foreign keys have closed domains with respect to
the prediction task.

MovieLens1M. Predict movie ratings by joining data about past ratings with data about
users and movies. S is Ratings (Stars, UserID, MovieID). Y is Stars. R1 is Movies (MovieID,
NameWords, NameHasParentheses, Year, Genre1, . . . , Genre18). R2 is Users (UserID,

https://github.com/arunkk09/hamlet

71

Gender, Age, Zipcode, Occupation). Both foreign keys have closed domains with respect
to the prediction task.

LastFM. Predict music play levels by joining data about past play levels with data about
users and artists. S is Plays (PlayLevel, UserID, ArtistID), Y is PlayLevel, R1 is Artists
(ArtistID, Listens, Scrobbles, Genre1, . . . , Genre5), and R2 is Users (UserID, Gender, Age,
Country, JoinYear). Both foreign keys have closed domains with respect to the prediction
task.

BookCrossing. Predict book ratings by joining data about past ratings with data about
readers and books. S is Ratings (Stars, UserID, BookID). Y is Stars. R1 is Users (UserID,
Age, Country). R2 is Books (BookID, Year, Publisher, NumTitleWords, NumAuthorWords).
Both foreign keys have closed domains with respect to the prediction task.

Experimental Setup All experiments were run on CloudLab, which offers free and
exclusive access to physical compute nodes for research [Ricci et al., 2014]. We use their
default ARM64 OpenStack Juno profile with Ubuntu 14.10. It provides an HP Proliant
server with 8 ARMv8 cores, 64 GB RAM, and 100 GB disk. Our code is written in R (version
3.1.1), and all datasets fit in memory as R data frames.

End-to-end Error and Runtime

We compare two approaches: JoinAll, which joins all base tables, and JoinOpt, which joins
only those base tables predicted by the TR rule to be not safe to avoid (the ROR rule gave
identical results). For each approach, we pair Naive Bayes with one of four popular feature
selection methods: two wrappers (forward selection, and backward selection) and two
filters (mutual information-based and information gain ratio-based). We compare only
the runtimes of feature selection and exclude the time taken to join the tables. This can
work against JoinOpt but as such, the joins took < 1% of the total runtime in almost all our
results. As mentioned before, we use the standard holdout validation method with the
entity table (S) split randomly into 50%:25%:25% for training, validation, and final holdout
testing. For the filter methods, the number of features filtered after ranking was actually
tuned using holdout validation as a “wrapper.”

In order to make the comparison more meaningful, the error metric used to report the
holdout test error of the learned model depends on the type of the target and the number
of classes. Specifically, the zero-one error is used for Expedia and Flights, which have
binary targets, while the root mean squared error (RMSE) is used for the other datasets,
which have multi-class ordinal targets. Note that our goal is to check if JoinOpt avoided any

72

Walmart Expedia Flights Yelp
Error Metric RMSE RMSEZero-one Zero-one
Approach JoinAll JoinOpt JoinAll JoinOpt JoinAll JoinOpt JoinAll JoinOpt
Tables in i/p
Features in i/p

3
14

1
3

3
29

2
21

4
40

3
35

3
40

3
40

Error with full set 0.9850 0.8927 0.2820 0.2417 0.2445 0.1699 1.3279 1.3279

Validation error 0.8927 0.8927 0.2338 0.2338 0.1390 0.1390 1.1361 1.1361
Features in o/p 3 3 7 7 13 13 9 9
Holdout test error 0.8910 0.8910 0.2336 0.2336 0.1359 0.1359 1.1317 1.1317

Holdout test error 0.8961 0.8910 0.2337 0.2337 0.1390 0.1354 1.1330 1.1330

Holdout test error 0.8910 0.8910 0.2339 0.2339 0.1610 0.1610 1.1676 1.1676

Holdout test error 0.9014 0.8910 0.2401 0.2352 0.1476 0.1476 1.1423 1.1423

Forward Selection

Backward Selection

Mutual Information-based Filter

Information Gain Ratio-based Filter

Error Metric
Approach
Tables in i/p
Features in i/p
Error with full set

Validation error
Features in o/p
Holdout test error

Holdout test error

Holdout test error

Holdout test error

MovieLens1M
RMSE

JoinAll JoinOpt
3
27

1
2

1.1671 1.0671

1.0670 1.0671
3 2

1.0687 1.0685

1.0693 1.0685

1.0685 1.0685

1.0692 1.0685

LastFM
RMSE

JoinAll JoinOpt
3
13

2
6

1.2344 1.2145

1.0247 1.0247
1 1

1.0248 1.0248

1.0475 1.0248

1.0248 1.0248

1.0248 1.0248

BookCrossing
RMSE

JoinAll JoinOpt
3
8

3
8

1.4678 1.4678

1.4313 1.4313
2 2

1.4295 1.4295

1.4422 1.4422

1.4327 1.4327

1.4327 1.4327

Forward Selection

Backward Selection

Mutual Information-based Filter

Information Gain Ratio-based Filter

Figure 5.6: End-to-end results on real data: Error after feature selection.

joins, and if so, whether its error is much higher than JoinAll. Figures 5.6 and 5.7 present
the accuracy and runtime results respectively.

Errors and Output Features The results in Figure 5.6 validate our key claim: JoinOpt did
avoid some joins, and in all the cases where it did, the holdout test error did not increase
significantly. For example, JoinOpt avoided both joins in both Walmart and MovieLens1M
(“#Tables in input”) without any increase in error. On Expedia, Flights, and LastFM, only
one join each was avoided by JoinOpt, and the error did not increase much here either.
Finally, on Yelp and BookCrossing, none of the joins were predicted to be safe to avoid.
Furthermore, the trends are the same irrespective of the feature selection method used.
In general, sequential greedy search had lower errors than the filter methods, which is

73

consistent with the literature [Guyon et al., 2006]. Surprisingly, in 12 of the 20 results (4
methods × 5 datasets; Yelp and BookCrossing excluded), JoinOpt and JoinAll had identical
errors! This is because the output feature sets were identical even though the input
for JoinOpt was smaller. For example, both JoinAll and JoinOpt had selected the same 3
features on Walmart for both forward selection and MI-based filter: {IndicatorID, StoreID,
Dept}. Thus, none of the foreign features seem to matter for accuracy here. Similarly, on
Expedia, the outputs were identical for forward selection: {HotelID, Score2, RandomBool,
BookingWindow, Year, ChildrenCount, SatNightBool}, and backward selection but with 12
features. Thus, the HotelID sufficed and the hotel’s features were not needed. On LastFM,
for all methods except backward selection, both JoinAll and JoinOpt returned only {UserID}.
It seems even ArtistID does not help (not just the artist’s features), but our rules are not
meant to detect this. For the sake of readability, we provide all other output features in the
appendix.

In 3 of the 20 results, JoinOpt had almost the same error as JoinAll but with a different
output feature set. For example, on MovieLens1M, for forward selection JoinOpt gave
{UserID, MovieID}, while JoinAll also included a movie genre feature. More surprisingly,
the error was actually significantly lower for JoinOpt in 5 of the 20 results (e.g., backward
selection on Walmart and LastFM). This lower error is a serendipity caused by the variability
introduced by the heuristic nature of the feature selection method. Since these feature
selection methods are not globally optimal, JoinAll, which uses all the redundant features,
seems to face a higher risk of being stuck at a poor local optimal. For example, for backward
selection on Walmart, JoinAll dropped IndicatorID but retained many store and weather
features even though it was less helpful for accuracy.

Runtime The runtime speedup depends on the ratio of the number of features used by
JoinAll against JoinOpt: the more features avoided, the higher the speedup. Hence, the
speedup depends on the number of features in the base tables, as Figure 5.7 shows. Since
JoinOpt avoided both joins on MovieLens1M and Walmart, the speedups were high: 186x
and 82x resp. for backward selection; 26x and 15x resp. for the filter methods. But on
Expedia, the ratio of the number of features used is lower (≈ 1.4), which yielded more
modest speedups of between 1.5x to 2.8x. Similarly, the speedups are lower on Flights and
LastFM. It is noteworthy that these datasets cover the entire spectrum in terms of how many
joins can be avoided: Walmart and MovieLens1M on one end; Yelp and BookCrossing on
the other.

Summary In all 28 results, JoinOpt had either identical or almost the same error as JoinAll
but was often significantly faster, thus validating our core claim.

74

1E-1

1E+0

1E+1

1E+2

1E+3

Walmart Expedia Flights Yelp MovieL. LastFM BookC.

R
u

n
ti

m
e

(m
in

)
(i

n
 lo

gs
ca

le
)

7.6x

Forward Selection

1.5x
1.2x –

JoinAll JoinOpt

9.1x
1.1x –

1E-1

1E+0

1E+1

1E+2

1E+3

Walmart Expedia Flights Yelp MovieL. LastFM BookC.

Backward Selection

–

82.0x
2.8x

1.5x

R
u

n
ti

m
e

(m
in

)
(i

n
 lo

gs
ca

le
)

185.5x

2.3x –

1E-1

1E+0

1E+1

1E+2

1E+3

Walmart Expedia Flights Yelp MovieL. LastFM BookC.

MI-based Filter

–
15.4x

1.8x
1.3x

R
u

n
ti

m
e

(m
in

)
(i

n
 lo

gs
ca

le
)

–

1.3x
26.8x

1E-1

1E+0

1E+1

1E+2

1E+3

Walmart Expedia Flights Yelp MovieL. LastFM BookC.

IGR-based Filter

–
15.7x

1.8x
1.3x

R
u

n
ti

m
e

(m
in

)
(i

n
 lo

gs
ca

le
)

–

1.3x
26.1x

Figure 5.7: End-to-end results on real data: Runtime of feature selection.

Drill-down on Real Data

Robustness of Join Avoidance Decisions

JoinOpt avoids only the joins predicted by the TR rule as being safe to avoid. We would
like to understand the robustness of its decisions, i.e., what if we had avoided a different
subset of the joins? We focus only on sequential greedy search for brevity sake. Figure 5.8
presents the results. Expedia is absent because it has only one foreign key with a closed
domain and so, Figure 5.6 suffices for it.

75

Walmart

FS
BS

JoinAll No R1 No R2 NoJoins

0.8910
0.8961

0.8910
0.8910

0.8910
0.8910

0.8910
0.8910

Yelp

FS
BS

JoinAll No R1 No R2 NoJoins

1.1317
1.1330

1.2350
1.2145

1.2052
1.2446

1.3322
1.3322

MovieLens1M

FS
BS

JoinAll No R1 No R2 NoJoins

1.0687
1.0693

1.0685
1.0685

1.0687
1.0699

1.0685
1.0685

LastFM

FS
BS

JoinAll No R1 No R2 NoJoins

1.0248
1.0475

1.0248
1.0248

1.0248
1.0456

1.0248
1.0248

Flights

FS
BS

JoinAll No R1 No R2 No R3

0.1359
0.1390

0.1359
0.1354

0.1359
0.1363

0.1359
0.1363

No R1,R2

0.1359
0.1354

No R1,R3

0.1359
0.1387

No R2,R3

0.1359
0.1363

NoJoins

0.1359
0.1354

BookCrossing

FS
BS

JoinAll No R1 No R2 NoJoins

1.4295
1.4422

1.4295
1.4563

1.4327
1.4422

1.4327
1.4327

Figure 5.8: Robustness: Holdout test errors after Forward Selection (FS) and Backward
Selection (BS). The “plan” chosen by JoinOpt is highlighted, e.g., NoJoins on Walmart.

R
O

R

0

2

4

6

8

0 0.2 0.4 0.6 0.8
1/√Tuple Ratio

𝜌

1
2 3,4

5 7

14Join
avoided

8,9

10

12

11

13

6

1: Walmart R2

2: MovieL. R1

3: Walmart R1

4: MovieL. R2

5: Flights R1

Join with R is okay to avoid

12: LastFM R2

13: BookC. R1

:

6: Expedia R1

7: LastFM R1

8: Flights R2

9: Flights R3

10: Yelp R1

Join is NOT okay to avoid

14: Yelp R2

:

11: BookC. R2 1/√𝜏

Figure 5.9: Sensitivity: We set ρ = 2.5 and τ = 20. An attribute table is deemed “okay to
avoid” if the increase in error was within 0.001 with either Forward Selection (FS) and
Backward Selection (BS).

On Walmart and MovieLens1M, it was safe to avoid both joins. Our rule predicted this
correctly. At the opposite end, avoiding either join in Yelp and BookCrossing blows up
the error. Our rule predicted this correctly as well. This shows the need for decision rules
such as ours: the state-of-the-art JoinAll misses the speedup opportunities on Walmart and
MovieLens1M, while its naive opposite NoJoins causes the error to blow up on Yelp and
BookCrossing. On Flights, our rule predicted that the Airlines table is safe to avoid but not
the other two attribute tables. Yet, it turned out that even the other two could have been
avoided. This is an instance of the “missed opportunities” we had anticipated; recall that
our rules are conservative (Figure 5.1). LastFM and BookCrossing also have an attribute
table each that was deemed not safe to avoid, but it turned out that they could have been
avoided. However, the results for JoinAll suggest that the features from those tables were

76

JoinOpt

Walmart Expedia Flights Yelp

0.8910 0.2337 0.1354 1.1330
JoinAllNoFK

MovieL.

1.0685

LastFM

1.0248

BookC.

1.4422
0.9455 0.2760 0.1817 1.1381 1.1806 1.5863 1.5347

BS

JoinOpt

Walmart Expedia Flights Yelp

0.8910 0.2336 0.1359 1.1317
JoinAllNoFK

MovieL.

1.0685

LastFM

1.0248

BookC.

1.4295
0.9477 0.2800 0.1688 1.1317 1.1940 1.5375 1.5347

FS

Table 5.3: Holdout test errors of JoinOpt and JoinAllNoFK, which drops all foreign keys a
priori. FS is Forward Selection. BS is Backward Selection.

not useful for accuracy anyway because feature selection removed them; exploiting such
opportunities are beyond the scope of this work.

Sensitivity to Thresholds

The TR rule uses τ = 20 based on our simulation results. Similarly, we had picked ρ = 2.5
for the ROR rule. We now validate the sensitivity of the rules by comparing the threshold
settings with the actual TR and ROR values from the data. Figure 5.9 shows the results.

We see that the ROR is almost linear in the inverse square root of the TR even on the
real data. Many attribute tables of Walmart, MovieLens1M, Flights, and Expedia lie below
the thresholds chosen for either rule. They were all correctly predicted to be safe to avoid.
Both attribute tables of Yelp and one of BookCrossing were correctly predicted to be not
safe to avoid. The others fall in between and include some “missed opportunities.” But
note that there is no case in which avoiding an attribute table that was deemed safe to
avoid by the TR rule caused the error to blow up.

Finally, we also tried a higher error tolerance of 0.01 instead of 0.001. This yielded new
thresholds τ = 10 and ρ = 4.2 based on Figure 5.5. This setting correctly predicted that
two more joins could be avoided (both on Flights).

What if Foreign Keys Are Dropped?

Data scientists sometimes judge foreign keys as being too “uninterpretable” and simply
drop them. To assess the impact of this choice, we compare JoinOpt (whose accuracy is
similar to JoinAll) with JoinAllNoFK, which is similar to JoinAll, but drops all foreign
keys a priori. Table 5.3 shows the results. In 6 of the 7 datasets, dropping foreign keys
proved to be catastrophic for accuracy for both forward and backward selection. As we
explained in our theoretical analysis in Section 5.1 (Figure 5.2), this is primarily because
dropping foreign keys (JoinAllNoFK) might cause the bias to blow up drastically, while
JoinOpt does not increase the bias.

77

Walmart-10%

Forward Selection
Backward Selection

JoinAll No R1 No R2 No Joins

0.9006
0.9006

0.9090
0.9090

0.9006
0.8991

0.9242
0.9242

Yelp-10%

Forward Selection
Backward Selection

JoinAll No R1 No R2 No Joins

1.0775
1.1037

1.0774
1.1028

1.0775
1.0780

1.1421
1.1421

Table 5.4: Effects of row sampling on join avoidance.

Effects of Row Sampling

We conduct one more experiment to demonstrate an interesting behavior of foreign key
features when row sampling is performed. We use two “opposite extreme” datasets:
Walmart and Yelp. We down-sample Walmart to 10% of its size uniformly randomly,
but retain the original domains of the foreign keys. We call this dataset Walmart-10%.
Intuitively, such a sampling will increase the variance for models that include foreign
keys, and thus, make it less safe to avoid the join. We down-sample Yelp in a way that
retains only the top 10% of the users and businesses (based on frequency). Thus, the
domains of the foreign keys are altered. This is not far-fetched because Yelp Inc. itself
probably performed a similar sampling of its users and businesses before releasing their
dataset to Kaggle. The resultant sample turned out to be 35% of the full labeled set; we call
this dataset Yelp-10%. We run our accuracy experiments on these two datasets. Table 5.4
presents the results.

We see that the “optimal plan” has now changed compared to Figure 5.8. Whereas
both attribute tables were safe to avoid on the original Walmart dataset, only the Stores
table is safe to avoid on Walmart-10%. This is because the TR for the Indicators table fell
from 90 to just 9 and our rule correctly predicted that avoiding it might cause the error to
increase. Thus, this result exposes an interesting danger in using row sampling as a way
to get a quick estimate when large-domain features such as foreign keys are present: the
results of feature selection might be significantly different with and without row sampling.

On the other extreme, whereas neither attribute table was safe to avoid on Yelp, it turns
out that either attribute table at a time (but not both together) is safe to avoid on Yelp-
10%. This is because the TRs of the attribute tables increased and the variance decreased.
Interestingly, avoiding both tables together increases the error significantly, which suggests
that there might be more complex relationships between the features from both attributes
tables. It is interesting future work to design more complex decision rules that can model
and capture such effects that straddle multiple tables.

78

Dataset

Yelp RMSE

Walmart RMSE
Expedia Zero-one
Flights Zero-one

Error Metric
L1 Regularization L2 Regularization

JoinAll JoinOpt

1.1426

0.8335
0.2130
0.1167

1.1426

0.8335
0.2134
0.1183

JoinAll JoinOpt

1.1744

1.1140
0.2559
0.1494

1.1744

0.9370
0.2632
0.1485

BookCrossing RMSE

MovieLens1M RMSE
LastFM RMSE

1.3993

1.0444
1.0308

1.3993

1.0459
1.0300

1.6561

1.1438
1.5629

1.6561

1.1940
1.5605

Table 5.5: Holdout test errors for logistic regression with regularization for the same setup
as Figure 5.6.

Other ML Classifiers

It is natural to wonder if the trends observed on Naive Bayes would translate to other
ML models. Note that the theoretical results and arguments in Section 5.1 apply to ML
classifiers in general. Nevertheless, we now discuss another popular classifier: logistic
regression, followed by one more classifier: Tree-Augmented Naive Bayes (TAN).

Unlike Naive Bayes, the most popular feature selection method for logistic regression is
the embedded method of regularization that constrains the L1 or L2 norm of the coefficient
vector [Hastie et al., 2003; Guyon et al., 2006]. We consider both and use the well-tuned
implementation of logistic regression from the popular glmnet library in R [Friedman et al.,
2010]. Table 5.5 presents the results. We see that the errors of JoinOpt are comparable to
those of JoinAll with L1. Thus, the trends are the same as for Naive Bayes, which agrees
with our theoretical results. Interestingly, L2 errors are significantly higher than L1 errors.
This is an artefact of the data existing in a sparse feature space for which L1 is known to
be usually better than L2 [Hastie et al., 2003].

TAN strikes a balance between the efficiency of Naive Bayes and the expressiveness of
general Bayesian networks [Friedman et al., 1997]. TAN searches for conditional depen-
dencies among pairs of features in X given Y using mutual information to construct a tree
of dependencies on X. Surprisingly, TAN might actually be less accurate than Naive Bayes
on datasets with the KFKDs we study because TAN might not even use XR. Intuitively,
this is because the FD FK→ XR causes all features in XR to be dependent on FK in the tree
computed by TAN. This leads to XR participating only via unhelpful Kronecker delta dis-
tributions, viz., P(XR|FK). Depending on how structure learning is done, general Bayesian
networks could face this issue too. We leave techniques to solve this issue to future work.

79

Discussion: Implications for Data Scientists

Our work presents at least three major practical implications. These are based on our
conversations with data scientists at multiple settings – a telecom company, a Web company,
and an analytics vendor – about our results.

1. Data scientists often join all tables almost by instinct. Our work shows that this might
lead to much poorer performance without much accuracy gain. Avoiding joins that
are safe to avoid can speed up the exploratory process of comparing feature sets and
ML models. Our rules, especially the easy-to-understand TR rule, could help with
this task.

2. We found many cases in which avoiding some joins led to a counter-intuitive increase
in accuracy. Thus, at the least, it might be helpful for data scientists to try both
JoinOpt and JoinAll.

3. Data scientists often drop all foreign key features (even if they have closed domains,
e.g., StoreID in Walmart), since they subjectively deem such features as too “unin-
terpretable.” Our work shows that this ad hoc step could seriously hurt accuracy.
This finding helps data scientists be better informed of the precise consequences of
such a step.

Finally, most of the burden of feature engineering (designing and choosing features)
for ML today falls on data scientists [Domingos, 2012; Kandel et al., 2012]. But the database
community is increasingly recognizing the need to provide more systems support for
feature engineering, e.g., Columbus provides declarative feature selection operations
along with a performance optimizer [Zhang et al., 2014; Konda et al., 2013]. We think it is
possible for such systems to integrate our decision rules for avoiding joins either as new
optimizations or as “suggestions” for data scientists.

5.4 Conclusion: Avoiding Joins Logically

In this era of “big data,” it is becoming almost “big dogma” that more features and data
are somehow always better for machine learning. This project makes a contrarian case that
in some situations “less is more.” Specifically, using theoretical, simulation, and empirical
analyses, we show that in many cases, which can be predicted, features obtained using
key-foreign key joins might not improve accuracy much, but degrade runtime performance.
Our work opens up new connections between data management, machine learning, and
feature selection, and it raises new fundamental research questions at their intersection,

80

solving which could make it faster and easier for data scientists to use machine learning
on multi-table datasets.

Most of the content of this chapter is from our paper titled “To Join or Not to Join?
Thinking Twice about Joins before Feature Selection” that appeared in the ACM SIG-
MOD 2016 conference. All of our codes from this project are available on GitHub: https:
//github.com/arunkk09/hamlet, while the real datasets are available on our project web-
page: http://pages.cs.wisc.edu/~arun/hamlet.

To join or not to join?
That is the question.

Tuple ratio, we did coin,
Use at your discretion!

https://github.com/arunkk09/hamlet
https://github.com/arunkk09/hamlet
http://pages.cs.wisc.edu/~arun/hamlet

81

6 Related Work

6.1 Related Work for Orion

Factorized Computation The abstraction of factorized databases was proposed recently
to improve the efficiency of RDBMSs [Bakibayev et al., 2013]. The basic idea is to succinctly
represent relations with join dependencies using algebraically equivalent forms that store
less data physically. By exploiting the distributivity of Cartesian product over a union of
sets, they enable faster computation of relational operations over such databases. However,
as they admit, their techniques apply only to in-memory datasets. Our work can be seen as
a special case that only has key-foreign key joins. We extend the general idea of factorized
computation to ML algorithms over joins. Furthermore, our work considers datasets that
may not fit in memory. We explore the whole trade-off space and propose new approaches
that were either not considered for, or are inapplicable to, relational operations. For
example, the iterative nature of BGD for learning GLMs enables us to design the Stream-
Reuse approach. Recent work [Rendle, 2013] has also shown that combining features from
multiple tables can improve ML accuracy and that factorizing computations can improve
efficiency. They focus on a specific ML algorithm named factorization machine that is
used for a recommendation systems application. Using a simple abstraction called “block-
structured dataset” that encodes the redundancy information in the data, they reduce
computations. However, as they admit, their techniques apply only to in-memory datasets.
We observe that designing block-structured datasets essentially requires joins of the base
tables – a problem not recognized in Rendle [2013]. Hence, we take a first-principles
approach towards the problem of learning over joins. By harnessing prior work from
the database literature and avoiding explicit encoding of redundancy information, we
handle datasets that may not fit in memory. We devise multiple approaches that apply to
a large class of ML models (GLMs) and also extend them to a parallel setting. Finally, our
empirical results show that factorizing computation for ML may not always be the fastest
approach, which necessitates a cost model such as ours.

Query Optimization As noted in Bakibayev et al. [2013], factorized computations gener-
alize prior work on optimizing SQL aggregates over joins [Yan and Larson, 1995; Chaudhuri
and Shim, 1994]. While BGD over joins is similar at a high level to executing a SUM over
joins, there are major differences that necessitate new techniques. First, BGD aggregates

82

feature vectors, not single features. Thus, BGD requires more complex statistics and rear-
rangement of computations as achieved by factorized learning. Second, BGD is iterative,
resulting in novel interplays with the join algorithm, e.g., the Stream-Reuse approach.
Finally, there exist non-commutative algorithms such as Stochastic Gradient Descent (SGD)
that might require new and more complex trade-offs. While we leave SGD for future work,
this paper provides a framework for designing and evaluating solutions for that problem.
Learning over joins is also similar in spirit to multi-query optimization (MQO) in which
the system optimizes the execution of a bunch of queries that are presented together [Sellis,
1988]. Our work deals with join queries that have sequential dependencies due to the
iterative nature of BGD, not a bunch of queries presented together.

Analytics Systems There are many commercial and open-source toolkits that provide
scalable ML and data mining algorithms [Hellerstein et al., 2012; Apache, b]. However,
they all focus on implementations of individual algorithms, not on pushing ML algorithms
through joins. There is increasing research and industrial interest in building systems
that achieve closer integration of ML with data processing. These include systems that
combine linear algebra-based languages with data management platforms [Zhang et al.,
2010; Ghoting et al., 2011; Oracle], systems for Bayesian inference [Cai et al., 2013], systems
for graph-based ML [Low et al., 2010], and systems that combine dataflow-based languages
for ML with data management platforms [Kumar et al., 2013; Kraska et al., 2013; Zhang
et al., 2014]. None of these systems address the problem of learning over joins, but we think
our work is easily applicable to the last group of systems. We hope our work contributes to
more research in this direction. Analytics systems that provide incremental maintenance
over evolving data for some ML models have been studied before [Koc and Ré, 2011;
Nikolic et al., 2014]. However, neither of those papers address learning over joins. It is
interesting future work to study the interplay between these two problems.

6.2 Related Work for Orion Extensions and Generalization

Compressed Query Processing RDBMSs have long integrated data compression schemes
to reduce storage and improve query efficiency [Iyer and Wilhite, 1994]. Most of these
systems store compressed data on disk and decompress it on the fly when processing
queries [Westmann et al., 2000]. Some systems process queries directly over the com-
pressed representation [Chen et al., 2001]. More recently, column-store databases integrate
columnar compression with SQL query processing [Abadi et al., 2006]. While our work on
compressed clustering is inspired by these systems, to the best of our knowledge, none of
these systems integrate clustering algorithms with data compression. We introduce a new

83

row-wise compression scheme that exploits specific properties of the data redundancy in
denormalized tables and modify three popular clustering algorithms to operate directly
on our compressed representation. Our empirical analysis also explains subtle trade-offs
between compressed clustering and factorized clustering.

Clustering Algorithms There are numerous clustering algorithms [Jain et al., 1999; Fa-
had et al., 2014]. For the sake of tractability, we focus on three of the most popular clustering
algorithms to explain the principles and techniques involved in extending factorized learn-
ing to clustering and in creating versions of clustering algorithms that operate directly on
our compressed data representation. We leave it to future work to handle other clustering
algorithms.

Linear Algebra-based Systems Several systems based on (or incorporating) linear al-
gebra have been built over the last few decades to support ML analytics, e.g., R, Matlab,
and SAS. Among these, the open source R is perhaps the most popular, with a rich set
of libraries on the Comprehensive R Archive Network [CRAN] and a diverse user base.
There has been a lot of research and industrial interest in building systems to improve
data processing in R [Sridharan and Patel, 2014] and integrating R (or R-like languages)
with large-scale data processing systems such as RDBMSs, Hive/Hadoop, and Spark, e.g.,
RIOT [Zhang et al., 2010], IBM’s SystemML [Ghoting et al., 2011], Oracle R Enterprise [Or-
acle], and SparkR [Apache, c]. There are also linear algebra-based database systems with
their own query language, e.g., SciDB [Cudré-Mauroux et al., 2009]. None of these systems
address the problem of optimizing linear algebra operations over normalized data. In a
sense, while these systems offer physical data independence for linear algebra, our work is the
first to bring the notion of logical data independence to linear algebra. Since our framework
is closed with respect to linear algebra, we think that it can be easily integrated into any of
these systems. It is interesting future work to study how to closely integrate our framework
with such systems.

6.3 Related Work for Hamlet

Database Dependencies Given a set of FDs, a relation can be decomposed into BCNF
(in most cases) [Abiteboul et al., 1995; Beeri and Bernstein, 1979]. Our work deals with the
opposite scenario of joins resulting in a relation with FDs. There are database dependencies
that are more general than FDs [Abiteboul et al., 1995]. We think it is interesting future
work to explore the implications of these more general database dependencies for ML and
feature selection.

84

Graphical ML Models The connection between embedded multi-valued dependencies
(EMVDs) and probabilistic graphical models in ML was first shown by Pearl and Verma
[1987] and studied further by Wong et al. [1995]. FDs are stronger constraints than EMVDs
and cause feature redundancy. We perform a theoretical and empirical analysis of the
effects of such redundancy in terms of its implications for avoiding joins.

Feature Selection There is a large body of work in the ML and data mining literature
whose focus is designing new feature selection methods to improve ML accuracy [Guyon
et al., 2006; Hastie et al., 2003]. Our focus is not on designing new feature selection methods
but on understanding the effects of joins on feature selection. Our work is orthogonal to the
feature selection method used. The redundancy-relevancy trade-off is also well-studied in
the ML literature [Guyon et al., 2006; Yu and Liu, 2004; Koller and Sahami, 1995]. There is
also some prior work on inferring approximate FDs from the data and using them as part
of feature selection [Uncu and Turksen, 2007]. However, all these methods generally focus
on approximately estimating redundancy and relevancy using the dataset instance [Guyon
et al., 2006]. In contrast, our results are based on the schema, which enables us to safely
avoid features without even looking at instances, that is, using just the metadata. To the best
of our knowledge, no feature selection method has this radical capability. A technique to
“bias” the input and reduce the number of features was proposed by FOCUS [Almuallim
and Dietterich, 1992]. At a high level, our rules are akin to a “bias” in the input. But
FOCUS still requires expensive computations on the instance, unlike our rules.

Analytics Systems There is growing interest in both industry and academia to more
closely integrate ML with data processing [Zhang et al., 2010; Oracle; Ghoting et al., 2011;
Cai et al., 2013; Kumar et al., 2013; Kraska et al., 2013; Hellerstein et al., 2012]. In this context,
there is a growing recognition that feature engineering is one of the most critical bottlenecks
for ML [Anderson et al., 2013; Ré et al., 2014; Zhang et al., 2014; Kumar et al., 2015b,c]. Our
work helps make it easier for analysts to apply feature selection over normalized data. We
hope our work spurs more research in this important direction.

85

7 Conclusion and Future Work

In this dissertation, we take a step back and question a widespread practice in advanced
analytics – when applying machine learning (ML) over multi-table datasets, data scientists
almost always join all the base tables and materialize a single table to use as input to their
ML toolkits. This practice of learning after joins introduces redundancy in the data, which
causes storage and runtime inefficiencies, as well as data maintenance overheads for data
scientists. To mitigate such issues, this dissertation asks if such joins are really “needed”
and in response, introduces the paradigm of learning over joins. We present two orthogonal
techniques: avoiding joins physically, in which we push ML computations through joins to
the base tables, and avoiding joins logically, in which we show that in many cases, entire
base tables can be, somewhat surprisingly, ignored outright.

We demonstrate the feasibility and efficiency of our technique of avoiding joins physi-
cally for a wide variety of ML models, including generalized linear models solved with
various optimization methods, probabilistic classifiers, and clustering algorithms, as well
as the formal framework of linear algebra. Applying learning theory, we explain why the
technique of avoiding joins logically works and devise easy-to-understand decision rules
to help data scientists use this technique in practice. Our work forces one to think twice
about common data management practices in the ML setting and in the process, opens up
new research questions at the intersection of data management and ML.

Future Work Related to Project Orion

Automating Factorized Learning An open question from Project Orion is whether it is
possible to automate the application of factorized learning to existing implementations
of ML algorithms. Our generalization of factorized learning with linear algebra gives a
formal framework for algebraic rewrites and an implementation in R. But it does not help
with existing ML code bases in other languages such as C, Java, or Python. These arise in
user-defined functions in an RDBMS [Feng et al., 2012], on Hadoop [Apache, b], and on
Spark [Kraska et al., 2013]. One could imagine combining static analysis techniques with
our framework of rewrite rules to automatically obtain new factorized ML codes on these
systems. This would obviate the need for developers to manually reimplement these code
bases.

86

Including Aggregates In some cases, data scientists perform joins before ML that are not
key-foreign-key joins but rather key-key joins following pre-aggregations of some features
on one of the input tables. These joins do not introduce redundancy in the output but
they perform extra data accesses. It would be interesting to consider jointly optimizing
ML with these queries that have aggregates along with joins, say, by pushing more of the
computations closer to the base tables.

Integrating Linear Algebra and Relational Algebra Our work on pushing linear alge-
bra operators through joins show the utility of jointly considering operations from both
algebras. It is interesting future work to explore the interactions of linear algebra opera-
tions with other relational operations, devise a single language to express ML and data
processing computations, and build a system that optimizes these computations in a joint
fashion. There is some related work in this direction that one could build on, especially
array stores [Cudré-Mauroux et al., 2009] and R-based analytics systems [Oracle].

Compressed Machine Learning Our work with compressed clustering shows the feasi-
bility and efficiency of integrating ML techniques with compressed data representations.
While the benefits of compression have been studied extensively for SQL query process-
ing [Iyer and Wilhite, 1994; Chen et al., 2001], its interplay with ML algorithms is less
understood. This is a rich avenue for more future work.

Future Work Related to Project Hamlet

Partial Avoidance A simple extension to Project Hamlet is to avoid a base table partially
rather than fully, i.e., ignore only a subset of the features from attribute tables. This
introduces a new trade-off space that could help improve performance for datasets on
which our decision rules say that none of the joins are safe to avoid.

More Complex ML Models An open question from Project Hamlet is whether the idea
of avoiding joins logically would work for more complex ML models such as neural
networks, decision trees, and Gaussian kernel SVMs. Recall that our analysis and decision
rules assumed that the ML model has a finite VC dimension that is linear in the number of
features. These more complex ML models either do not have a closed-form VC dimension
or have an infinite VC dimension [Shalev-Shwartz and Ben-David, 2014]. Nevertheless,
we suspect that it might still be possible to devise some heuristics for these models that
exploit the functional dependencies to short-circuit their learning and feature selection.

87

More General Database Dependencies Another open question is to formally explain
the relationship between database dependencies that are more general than functional
dependencies, e.g., multi-valued dependencies, and feature selection and ML algorithms.
Understanding this relationship might shed new light on the behavior of feature selection
algorithms, most of which are heuristic, and the underlying dependencies between the
features in the data.

More General Future Work

Stepping up to a higher level of abstraction, joins before ML are just one part of the process
of feature engineering for ML [Anderson et al., 2013]. Along with algorithm selection and
hyper-parameter tuning, this constitutes what is known as the iterative process of model
selection [Mitchell, 1997]. Currently, there is little systems support for the stages of this
process beyond faster implementations of ML algorithms. It is an open challenge to
provide more principled systems support for this process. Our recently proposed unifying
abstraction of model selection triples is a step in this direction [Kumar et al., 2015b]. We
describe a new kind of advanced analytics system called a model selection management
system that uses our abstraction and provides more pervasive systems support for the
different stages of model selection: defining or reconstructing declarative interfaces for
specifying model selection operations, optimizing the specified computations by avoiding
redundancy and sharing intermediate data, and defining and managing ML provenance to
help data scientists consume the results and pose what-if questions. Much work remains
to be done in making these ideas more precise and solving the technical challenges that
arise. But we believe that this direction of work could potentially make it dramatically
easier and faster for data scientists to use ML in data-driven applications.

88

references

Abadi, Daniel, Samuel Madden, and Miguel Ferreira. 2006. Integrating Compression
and Execution in Column-oriented Database Systems. In Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data, 671–682. SIGMOD ’06, New York,
NY, USA: ACM.

Abiteboul, Serge, Richard Hull, and Victor Vianu, eds. 1995. Foundations of Databases: The
Logical Level. 1st ed. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.

Agarwal, Alekh, Oliveier Chapelle, Miroslav Dudík, and John Langford. 2014. A Reliable
Effective Terascale Linear Learning System. Journal of Machine Learning Research (JMLR)
15:1111–1133.

Aggarwal, Charu C., and Chandan K. Reddy. 2013. Data clustering: Algorithms and
applications. 1st ed. Chapman & Hall/CRC.

Almuallim, Hussein, and Thomas G. Dietterich. 1992. Efficient Algorithms for Identifying
Relevant Features. Tech. Rep., Corvallis, OR, USA.

Anderson, Michael R., Dolan Antenucci, Victor Bittorf, Matthew Burgess, Michael J.
Cafarella, Arun Kumar, Feng Niu, Yongjoo Park, Christopher Ré, and Ce Zhang. 2013.
Brainwash: A Data System for Feature Engineering. In Sixth Biennial Conference on
Innovative Data Systems Research (CIDR).

Apache. a. Apache Hive. hive.apache.org.

———. b. Apache Mahout. mahout.apache.org.

———. c. SparkR. spark.apache.org/R.

Bakibayev, Nurzhan, Tomáš Kočiský, Dan Olteanu, and Jakub Závodný. 2013. Aggrega-
tion and Ordering in Factorised Databases. Proc. VLDB Endow. 6(14):1990–2001.

Beeri, Catriel, and Philip A. Bernstein. 1979. Computational Problems Related to the
Design of Normal Form Relational Schemas. ACM Trans. Database Syst. 4(1):30–59.

Cai, Zhuhua, Zografoula Vagena, Luis Perez, Subramanian Arumugam, Peter J. Haas,
and Christopher Jermaine. 2013. Simulation of Database-valued Markov Chains Using
SimSQL. In Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, 637–648. SIGMOD ’13, New York, NY, USA: ACM.

hive.apache.org
mahout.apache.org
spark.apache.org/R

89

Chaudhuri, Surajit, and Kyuseok Shim. 1994. Including Group-By in Query Optimization.
In Proceedings of the 20th International Conference on Very Large Data Bases, 354–366. VLDB
’94, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Chen, Zhiyuan, Johannes Gehrke, and Flip Korn. 2001. Query Optimization in Com-
pressed Database Systems. In Proceedings of the 2001 ACM SIGMOD International Conference
on Management of Data, 271–282. SIGMOD ’01, New York, NY, USA: ACM.

CRAN. Comprehensive R Archive Network. cran.org.

Cudré-Mauroux, Philippe, Hideaki Kimura, Kian-Tat Lim, Jennie Rogers, Roman Simakov,
Emad Soroush, Pavel Velikhov, Daniel Wang, Magdalena Balazinska, Jacek Becla, David J.
DeWitt, Bobbi Heath, David Maier, Samuel Madden, Jignesh M. Patel, Michael Stone-
braker, and Stanley B. Zdonik. 2009. A Demonstration of SciDB: A Science-Oriented
DBMS. Proc. VLDB Endow. 2(2):1534–1537.

Daniely, Amit, Sivan Sabato, and Shai Shalev-Shwartz. 2012. Multiclass Learning Ap-
proaches: A Theoretical Comparison with Implications. In In Neural Information Processing
Systems (NIPS).

Dantzig, George B. 1957. Discrete-Variable Extremum Problems. Operations Research 5(2):
pp. 266–277.

Das, Sudipto, Yannis Sismanis, Kevin S. Beyer, Rainer Gemulla, Peter J. Haas, and John
McPherson. 2010. Ricardo: Integrating R and Hadoop. In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of Data, 987–998. SIGMOD ’10, New York,
NY, USA: ACM.

Domingos, Pedro. 2000. A Unified Bias-Variance Decomposition and its Applications. In
In Proc. 17th International Conf. on Machine Learning (ICML), 231–238. Morgan Kaufmann.

———. 2012. A Few Useful Things to Know About Machine Learning. Commun. ACM
55(10):78–87.

Domingos, Pedro, and Michael Pazzani. 1997. On the Optimality of the Simple Bayesian
Classifier under Zero-One Loss. Machine Learning 29(2-3):103–130.

Fahad, Adil, et al. 2014. A survey of clustering algorithms for big data: Taxonomy and
empirical analysis. IEEE Trans. Emerging Topics Comput. 2(3):267–279.

Feng, Xixuan, Arun Kumar, Benjamin Recht, and Christopher Ré. 2012. Towards a
Unified Architecture for in-RDBMS Analytics. In Proceedings of the 2012 ACM SIGMOD

cran.org

90

International Conference on Management of Data, 325–336. SIGMOD ’12, New York, NY, USA:
ACM.

Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. 2010. Regularization Paths for
Generalized Linear Models via Coordinate Descent. Journal of Statistical Software 33(1):
1–22.

Friedman, Nir, Dan Geiger, and Moises Goldszmidt. 1997. Bayesian Network Classifiers.
Machine Learning 29(2-3):131–163.

Garey, Michael R., and David S. Johnson. 1990. Computers and Intractability; A Guide to the
Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co.

Gartner. Gartner Report on Analytics. gartner.com/it/page.jsp?id=1971516.

Getoor, Lise, and Ben Taskar. 2007. Introduction to Statistical Relational Learning (Adaptive
Computation and Machine Learning). The MIT Press.

Ghoting, Amol, Rajasekar Krishnamurthy, Edwin Pednault, Berthold Reinwald, Vikas
Sindhwani, Shirish Tatikonda, Yuanyuan Tian, and Shivakumar Vaithyanathan. 2011.
SystemML: Declarative Machine Learning on MapReduce. In Proceedings of the 2011 IEEE
27th International Conference on Data Engineering, 231–242. ICDE ’11, Washington, DC,
USA: IEEE Computer Society.

Gray, Jim, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart, Murali
Venkatrao, Frank Pellow, and Hamid Pirahesh. 1997. Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals. Data Min. Knowl. Discov.
1(1):29–53.

Guyon, Isabelle, Steve Gunn, Masoud Nikravesh, and Lotfi A. Zadeh. 2006. Feature
Extraction: Foundations and Applications (Studies in Fuzziness and Soft Computing). Secaucus,
NJ, USA: Springer-Verlag New York, Inc.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman. 2003. The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer.

Hellerstein, Joseph M., Christoper Ré, Florian Schoppmann, Daisy Zhe Wang, Eugene
Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun Li, and
Arun Kumar. 2012. The MADlib Analytics Library: Or MAD Skills, the SQL. Proc. VLDB
Endow. 5(12):1700–1711.

gartner.com/it/page.jsp?id=1971516

91

Iyer, Balakrishna R., and David Wilhite. 1994. Data Compression Support in Databases.
In Proceedings of the 20th International Conference on Very Large Data Bases, 695–704. VLDB
’94, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Jain, Anil K., et al. 1999. Data clustering: A review. ACM Comput. Surv. 31(3):264–323.

Kandel, Sean, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. 2012. Enterprise
Data Analysis and Visualization: An Interview Study. In IEEE Visual Analytics Science &
Technology (VAST).

Koc, M. Levent, and Christopher Ré. 2011. Incrementally Maintaining Classification
Using an RDBMS. Proc. VLDB Endow. 4(5):302–313.

Kohavi, Ron, and George H. John. 1997. Wrappers for Feature Subset Selection. Artif.
Intell. 97(1-2):273–324.

Koller, Daphne, and Mehran Sahami. 1995. Toward Optimal Feature Selection. In In 13th
International Conference on Machine Learning (ICML), 284–292.

Konda, Pradap, Arun Kumar, Christopher Ré, and Vaishnavi Sashikanth. 2013. Feature
Selection in Enterprise Analytics: A Demonstration Using an R-based Data Analytics
System. Proc. VLDB Endow. 6(12):1306–1309.

Koren, Yehuda, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization Techniques
for Recommender Systems. IEEE Computer 42(8):30–37.

Kraska, Tim, Ameet Talwalkar, John C. Duchi, Rean Griffith, Michael J. Franklin, and
Michael I. Jordan. 2013. MLbase: A Distributed Machine-learning System. In Sixth
Biennial Conference on Innovative Data Systems Research (CIDR).

Kumar, Arun, Mona Jalal, Boqun Yan, Jeffrey Naughton, and Jignesh M. Patel. 2015a.
Demonstration of Santoku: Optimizing Machine Learning over Normalized Data. Proc.
VLDB Endow. 8(12):1864–1867.

Kumar, Arun, Robert McCann, Jeffrey Naughton, and Jignesh M. Patel. 2015b. Model
Selection Management Systems: The Next Frontier of Advanced Analytics. SIGMOD Rec.
44(4):17–22.

Kumar, Arun, Jeffrey Naughton, and Jignesh M. Patel. 2015c. Learning Generalized Linear
Models Over Normalized Data. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, 1969–1984. SIGMOD ’15, New York, NY, USA: ACM.

92

Kumar, Arun, Jeffrey Naughton, Jignesh M. Patel, and Xiaojin Zhu. 2016. To Join or Not
to Join? Thinking Twice About Joins Before Feature Selection. In Proceedings of the 2016
International Conference on Management of Data, 19–34. SIGMOD ’16, New York, NY, USA:
ACM.

Kumar, Arun, Feng Niu, and Christopher Ré. 2013. Hazy: Making It Easier to Build and
Maintain Big-data Analytics. ACM Queue 11(1):30:30–30:46.

Lin, Jimmy, and Alek Kolcz. 2012. Large-scale Machine Learning at Twitter. In Proceed-
ings of the 2012 ACM SIGMOD International Conference on Management of Data, 793–804.
SIGMOD ’12, New York, NY, USA: ACM.

Low, Yucheng, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. 2010. GraphLab: A New Parallel Framework for Machine Learning.
In Conference on Uncertainty in Artificial Intelligence (UAI). Catalina Island, California.

Manning, Christopher D., Prabhakar Raghavan, and Hinrich Schütze. 2008. Introduction
to Information Retrieval. New York, NY, USA: Cambridge University Press.

Mitchell, Thomas M. 1997. Machine Learning. 1st ed. New York, NY, USA: McGraw-Hill,
Inc.

Nikolic, Milos, Mohammed ElSeidy, and Christoph Koch. 2014. LINVIEW: Incremental
View Maintenance for Complex Analytical Queries. In Proceedings of the 2014 ACM
SIGMOD International Conference on Management of Data, 253–264. SIGMOD ’14, New York,
NY, USA: ACM.

Nocedal, Jorge, and Stephen J. Wright. 2006. Numerical Optimization. 2nd ed. New York,
NY: Springer.

Oracle. Oracle R Enterprise. oracle.com/technetwork/database/
database-technologies/r/r-enterprise/overview/index.html.

Pavlo, Andrew, Carlo Curino, and Stanley Zdonik. 2012. Skew-aware Automatic Database
Partitioning in Shared-nothing, Parallel OLTP Systems. In Proceedings of the 2012 acm
sigmod international conference on management of data, 61–72. SIGMOD ’12, New York, NY,
USA: ACM.

Pearl, Judea. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html
oracle.com/technetwork/database/database-technologies/r/r-enterprise/overview/index.html

93

Pearl, Judea, and Thomas Verma. 1987. The Logic of Representing Dependencies by
Directed Graphs. In Proceedings of the Sixth National Conference on Artificial Intelligence,
vol. 1 of AAAI’87, 374–379. AAAI Press.

R. Project R. r-project.org.

Ramakrishnan, Raghu, and Johannes Gehrke. 2003. Database Management Systems. New
York, NY, USA: McGraw-Hill, Inc.

Ré, Christopher, Amir Abbas Sadeghian, Zifei Shan, Jaeho Shin, Feiran Wang, Sen Wu,
and Ce Zhang. 2014. Feature Engineering for Knowledge Base Construction. IEEE Data
Eng. Bull. 37(3):26–40.

Rendle, Steffen. 2013. Scaling Factorization Machines to Relational Data. Proc. VLDB
Endow. 6(5):337–348.

Ricci, Robert, Eric Eide, and the CloudLab Team. 2014. Introducing CloudLab: Scientific
Infrastructure for Advancing Cloud Architectures and Applications. ;login: 39(6).

Rish, Irina, et al. 2001. An Analysis of Data Characteristics that Affect Naive Bayes
Performance. In In 19th International Conference on Machine Learning (ICML).

SAS. a. Feature Selection and Dimension Reduction Techniques in SAS. nesug.org/
Proceedings/nesug11/sa/sa08.pdf.

———. b. SAS Report on Analytics. sas.com/reg/wp/corp/23876.

Schein, Andrew I., Alexandrin Popescul, Lyle H. Ungar, and David M. Pennock. 2002.
Methods and Metrics for Cold-start Recommendations. In Proceedings of the 25th Annual
International ACM SIGIR Conference on Research and Development in Information Retrieval,
253–260. SIGIR ’02, New York, NY, USA: ACM.

Selinger, P. Griffiths, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G. Price. 1979.
Access Path Selection in a Relational Database Management System. In Proceedings of the
1979 ACM SIGMOD International Conference on Management of Data, 23–34. SIGMOD ’79,
New York, NY, USA: ACM.

Sellis, Timos K. 1988. Multiple-query Optimization. ACM Trans. Database Syst. 13(1):
23–52.

Shalev-Shwartz, Shai, and Shai Ben-David. 2014. Understanding Machine Learning: From
Theory to Algorithms. New York, NY, USA: Cambridge University Press.

r-project.org
nesug.org/Proceedings/nesug11/sa/sa08.pdf
nesug.org/Proceedings/nesug11/sa/sa08.pdf
sas.com/reg/wp/corp/23876

94

Shapiro, Leonard D. 1986. Join Processing in Database Systems with Large Main Memories.
ACM Trans. Database Syst. 11(3):239–264.

Silberschatz, Abraham, Henry Korth, and S. Sudarshan. 2006. Database Systems Concepts.
5th ed. New York, NY, USA: McGraw-Hill, Inc.

Sridharan, Shriram, and Jignesh M. Patel. 2014. Profiling R on a Contemporary Processor.
Proc. VLDB Endow. 8(2):173–184.

Uncu, Ozge, and I.B. Turksen. 2007. A Novel Feature Selection Approach: Combining
Feature Wrappers and Filters. Information Sciences 177(2).

Vapnik, Vladimir N. 1995. The Nature of Statistical Learning Theory. New York, NY, USA:
Springer-Verlag New York, Inc.

Westmann, Till, et al. 2000. The implementation and performance of compressed
databases. SIGMOD Record 29(3):55–67.

Wong, S. K. M., C. J. Butz, and Y. Xiang. 1995. A Method for Implementing a Probabilistic
Model As a Relational Database. In Proceedings of the Eleventh Conference on Uncertainty
in Artificial Intelligence, 556–564. UAI’95, San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc.

Yan, Weipeng P., and Per-Åke Larson. 1995. Eager Aggregation and Lazy Aggregation.
In Proceedings of the 21th International Conference on Very Large Data Bases, 345–357. VLDB
’95, San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Yu, Lei, and Huan Liu. 2004. Efficient Feature Selection via Analysis of Relevance and
Redundancy. Journal of Machine Learning Research (JMLR) 5:1205–1224.

Zhang, Ce, Arun Kumar, and Christopher Ré. 2014. Materialization Optimizations for
Feature Selection Workloads. In Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data, 265–276. SIGMOD ’14, New York, NY, USA: ACM.

Zhang, Yi, Weiping Zhang, and Jun Yang. 2010. I/O-efficient Statistical Computing with
RIOT. In IEEE 26th International Conference on Data Engineering (ICDE), 1157–1160.

95

A Appendix: Orion

A.1 Proofs

Proposition A.1.1. The output (∇F, F) of FL is identical to the output (∇F, F) of both Materialize
and Stream.

Proof. Given S = {(sid, fk,y, xS)i}nSi=1, and R = {(rid, xR)i}nRi=1, with nS > nR, the output
of the join-project query: T← π(R ./R.rid=S.fk S) is T = {(sid,y, x)i}nSi=1. Note that sid is
the primary key of S and T, while rid is the primary key of R, and fk is a foreign key in
S that points to sid of R. Denote the joining tuples s ∈ S and r ∈ R that produce a given
t ∈ T as S(t) and R(t) respectively. Also given is w ∈ Rd, which is split as w = [wS wR],
where |wR| = dR.

Materialize and Stream both operate on T (the only difference is when the tuples of
T are produced). Thus, they output identical values of ∇F =

∑
t∈TG(t.y, wT t.x)t.x and

F =
∑
t∈T Fe(t.y, wT t.x). Denote their output (∇F∗, F∗), with ∇F∗ = [∇F∗S ∇F∗R], in a

manner similar to w. We first prove that the output F of FL equals F∗. As per the logical
workflow of FL (see Figure 3.3), we have:

HR = {(rid,pip)i}nRi=1, s.t. ∀h ∈ HR,∃r ∈ R s.t. h.rid = r.rid∧ h.pip = wTRr.xR

Also, we have U← π(HR ./HR.rid=S.fk S) expressed as U = {(sid, rid,y, xS,pip)i}nSi=1.
FL aggregates U to compute F =

∑
u∈U Fe(u.y, (wTSu.xS+u.pip)). Butu.pip = HR(u).pip =

wTRR(HR(u)).xR and wTSu.xS = wTSS(u).xS. Due to their join expressions, we also have
that ∀u ∈ U, there is exactly one t ∈ T s.t. u.sid = t.sid, which implies Fe(u.y, (wTSu.xS +
u.pip)) = Fe(t.y, wT t.x). That along with the relationship wT t.x = wTSS(t).xS+ wTRR(t).xR
implies F = F∗.

Next, we prove that the output∇FS of FL equals∇F∗S. As S is scanned, FL scales and
aggregates the feature vectors to get∇FS =

∑
u∈UG(u.y, (wTSu.xS + u.pip))xS. Applying

the same argument as for F, we have that ∀u ∈ U, there is exactly one t ∈ T s.t.u.sid = t.sid,
which implies G(u.y, (wTSu.xS +u.pip)) = G(t.y, wT t.x), Thus, we have∇FS = ∇F∗S.

Finally, we prove that the output ∇FR of FL equals ∇F∗R. We have the logical rela-
tion HS ← γSUM(rid)(π(U)) as HS = {(rid, fip)i}nRi=1, obtained by completing the inner
products, applying G, and grouping by rid. We have:

96

∀h ∈ HS,h.fip =
∑

u∈U:u.rid=h.rid
G(u.y, (wTSu.xS + u.pip))

We then have another relation: V← π(HS ./HS.rid=R.rid R) as V = {(rid, fip, xR)i}nRi=1.
Now, FL simply aggregates V to compute ∇FR =

∑
v∈V(v.fip)v.xR. Due to their join

expressions, we also have that ∀v ∈ V, there is exactly one r ∈ R s.t. v.rid = r.rid. Since
rid imposes a partition on T, we define the partition corresponding to v as Tv = {t ∈
T |t.rid = v.rid}. Thus, v.fip =

∑
t∈Tv G(t.y, wT t.x), which coupled with the distributivity

of product over a sum, implies∇FR = ∇F∗R.

Proposition A.1.2. The output (∇F, F) of FLP, FLSQL, and FLSQL+ are all identical to the
output (∇F, F) of FL.

Proof. The proof for FLSQL is identical to FL, since FLSQL simply materializes some
intermediate relations, while the proofs for FLSQL+ and FLP are along the same lines. For
FLP, we also use the fact that addition is associative over R and Rd, and both F and∇F are
just sums of terms.

Problem: FL-MULTJOIN Given m, k, {|Ri|}ki=1, {|HRi|}ki=1 as inputs and k binary vari-
ables {xi} to optimize over:

max
k∑
i=1

xi|Ri|, s.t.
k∑
i=1

xi(|HRi|− 1) 6 m− 1 − k

Theorem A.1. FL-MULTJOIN is NP-Hard in l, where l = |{i|m− k > |HRi| > 1}| 6 k.

Proof. We prove by a reduction from the 0/1 knapsack problem, which is proven to be NP-
Hard. The 0/1 knapsack problem is stated as follows. Given a weightW and n items with
respective weights {wi} and values {vi} as inputs and n binary variables {zi} to optimize
over, compute max

∑n
i=1 zivi, s.t.

∑n
i=1 ziwi 6 W. While not necessary, W, {wi}, and

{vi} are all generally taken to be positive integers. The reduction is obvious now. Set k = n,
m =W+k+1, |Ri| = vi and |HRi| = 1+wi, ∀i = 1 to k. Also,wi > W =⇒ zi = 0, while
wi = 0 =⇒ zi = 1. Thus, the actual size of the knapsack problem is |{i|W > wi > 0}|,
which after reduction becomes |{i|m − k > |HRi| > 1}| = l. Thus, FL-MULTJOIN is
NP-Hard in l.

97

0 4 8 12 16

0E0

1E4

2E4

3E4

Tuple Ratio
0 1 2 3 4 5

0E0

1E4

2E4

3E4

To
ta

l R
un

tim
e

(s
)

0 10 20 30 40
0E0

1E4

2E4

3E4

To
ta

l R
un

tim
e

(s
)

Feature Ratio Number of Iterations
To

ta
l R

un
tim

e
(s

)

M
S
FL

A1 A2 A3

(A) RMM: Total runtimes.

0 4 8 12 16

0

1000

2000

3000

4000

0 1 2 3 4 5
0

500

1000

1500

2000

2500

3000

To
ta

l R
un

tim
e

(s
)

0 10 20 30 40
0

1250

2500

3750

5000

To
ta

l R
un

tim
e

(s
)

To
ta

l R
un

tim
e

(s
)

Tuple Ratio Feature Ratio Number of Iterations

M
S
FL

B1 B3B2

(B) RLM: Total runtimes.
Figure A.1: Implementation-based performance against each of (1) tuple ratio (nSnR), (2)
feature ratio (dRdS), and (3) number of iterations (Iters) – separated column-wise – for (A)
RMM, and (B) RLM – separated row-wise. SR is skipped since its runtime is very similar
to S. The other parameters are fixed as per Table 3.3.

0 4 8 12 16
0E0

1E4

2E4

3E4

0 10 20 30 40
0E0

1E4

2E4

3E4

0 1 2 3 4 5
0E0

1E4

2E4

3E4

4E4

Feature RatioTuple Ratio

To
ta

l R
un

tim
e

(s
)

To
ta

l R
un

tim
e

(s
)

Number of Iterations

To
ta

l R
un

tim
e

(s
)

M
S
SR
FL

A1 A2 A3

(A) RMM: Total runtimes.

0 4 8 12 16
0

250

500

750

1000

0 1 2 3 4 5
0

300

600

900

1200

0 10 20 30 40
0

300

600

900

1200

To
ta

l R
un

tim
e

(s
)

To
ta

l R
un

tim
e

(s
)

Number of IterationsTuple Ratio Feature Ratio

To
ta

l R
un

tim
e

(s
)

M
S
SR
FL

B1 B3B2

(B) RLM: Total runtimes.

Figure A.2: Analytical plots of runtime against each of (1) nSnR , (2) dRdS , and (3) Iters, for
both the (A) RMM, and (B) RLM memory regions. The other parameters are fixed as per
Table 3.3.

A.2 Additional Runtime Plots

The implementation-based runtime results for RMM and RLM are presented in Figure A.1.
The analytical cost model-based plots for the same are in Figure A.2. Note that the param-
eters for both these figures are fixed as per Table 3.3.

Case |S| < |R| or Tuple Ratio 6 1

In this case, an RDBMS optimizer would probably simply choose to build the hash table
on S instead of R. It is straightforward to extend the models of M, S, and, SR to this case.

98

 0 1 2 3 4 5 6
0E0

1E3

2E3

3E3

4E3

To
ta

l R
un

tim
e

(s
) C

Feature Ratio
0 10 20 30 40

0E0

1E4

2E4

3E4

4E4

To
ta

l R
un

tim
e

(s
)

Number of Iterations

D

1E2 1E3 1E4 1E5 1E6
0.0E0

5.0E3

1.0E4

1.5E4

2.0E4

2.5E4

0 10 20 30 40
0E0

2E4

4E4

6E4

8E4

1E5

To
ta

l R
un

tim
e

(s
)

Tuple Ratio

B

To
ta

l R
un

tim
e

(s
)

A

Buffer Memory (MB)

M
S
SR
FL

Figure A.3: Analytical plots for the case when |S| < |R| but nS > nR. We plot the runtime
against each ofm, nS, dR, Iters, and nR, while fixing the others. Wherever they are fixed,
we set (m,nS,nR,dS,dR, Iters) = (24GB, 1E8, 1E7, 6, 100, 20).

FL, however, is more interesting. Prima facie, it appears that we can switch the access
to the tables: construct H using S, and join that with R, etc. This way, we need only one
scan of R and two of S. The two twists to the FL approach described earlier are: (1) The
associative array must store the SID, RID, Y, and PartialIP. (2) We need to doubly index the
array since the first join is on RID with R, while the second is on SID with S. Of course, we
could use a different data structure as well. Nevertheless, our plots suggest something
subtly different.

First, as long as nS > nR, even if |S| < |R|, it might still be beneficial to construct
H using R first as before. This is because the other approaches still perform redundant
computations, and FL might still be faster. Figure A.3 presents the runtimes for such a
setting for varying values of buffer memory as well as the other parameters. The figures
confirm our observations above. Of course, it is possible that the above modified version
of FL might be faster than the original version in some cases.

Second, when nS 6 nR (irrespective of the sizes of R and S), there is probably little
redundancy in the computations, which means that Materialize is probably the fastest
approach. This is because FL performs unnecessary computations on R, viz., with tuples
that do not have a joining tuple in S. The above modified version of FL might also be
slower than Materialize since the latter obtains a new dataset that probably has almost
no redundancy. Figure A.4 presents the runtimes for such a setting for varying values
of buffer memory as well as the other parameters. The figures confirm our observations

99

0 0.3 0.6 0.9 1.2 1.5
0.0E0

5.0E2

1.0E3

1.5E3

To
ta

l R
un

tim
e

(s
)

B

1E2 1E3 1E4 1E5 1E6
0E0

2E3

4E3

6E3

To
ta

l R
un

tim
e

(s
)

AM
S
SR
FL

0 1 2 3 4 5 6
0.0E0

3.0E2

6.0E2

9.0E2

1.2E3
Buffer Memory (MB)

To
ta

l R
un

tim
e

(s
)

C

Feature Ratio
0 10 20 30 40

0.0E0

3.0E2

6.0E2

9.0E2

1.2E3
D

Tuple Ratio

Number of Iterations

To
ta

l R
un

tim
e

(s
)

Figure A.4: Analytical plots for the case when nS 6 nR (mostly). We plot the runtime
against each ofm, nS, dR, Iters, and nR, while fixing the others. Wherever they are fixed,
we set (m,nS,nR,dS,dR, Iters) = (24GB, 2E7, 5E7, 6, 9, 20).

above. Of course, in the above, we have implicitly assumed that at most 1 tuple in S joins
with a tuple in R. If we have multiple tuples in S joining with R, Materialize might still
have computational redundancy. In such cases, a more complex hybrid of Materialize and
FL might be faster, and we leave the design of such a hybrid approach to future work.

A.3 More Cost Models and Approaches

Costs of Stream

I/O Cost If (m− 1) 6 df|R|e:

Iters * [
(|R| + |S|) //First read

+ (|R| + |S|).(1 - q) //Write temp partitions
+ (|R| + |S|).(1 - q) //Read temp partitions
]

If (m− 1) > df|R|e:

Iters * [
(|R| + |S|)

- min{|R|+|S|,(m-1) - f|R|]}.(Iters - 1)

100

]

CPU Cost

Iters.[
(nR+nS).hash //Partition R and S

+ nR.(1+dR).copy //Construct hash on R
+ nR.(1+dR).(1-q).copy //R output partitions
+ nS.(2+dS).(1-q).copy //S output partitions
+ nR.(1-q).hash //Hash rest of R
+ nS.(1-q).hash //Hash rest of S
+ nS.comp.f //Probe for all of S
+ nS.d.(mult+add) //Compute w.xi
+ nS.(funcG+funcF) //Apply functions
+ nS.d.(mult+add) //scale and add
+ nS.add //Add for total loss

]

Costs of Stream-Reuse

I/O Cost If (m− 1) 6 df|R|e:

(|R| + |S|) //First read
+ (|R| + |S|).(1 - q) //Write temp partitions
+ (|R| + |S|).(1 - q) //Read of iter 1
+ (Iters - 1).(|R| + |S|) //Remaining iterations
- (Iters - 1).min{|R|+|S|,[(m-2) - f|R0|]} //Cache

If (m− 1) > df|R|e:

(|R| + |S|)
+ (Iters - 1).|S|
- (Iters - 1).min{|S|,[(m-1) - f|R|]}

CPU Cost

(nR+nS).hash //Partition R and S
+ nR.(1+dR).copy //Construct hash on R
+ nR.(1+dR).(1-q).copy //R output partitions

101

+ nS.(2+dS).(1-q).copy //S output partitions
+ nR.(1-q).hash //Hash rest of R
+ nS.(1-q).hash //Hash rest of S
+ nS.comp.f //Probe for all of S
+ (Iters-1).[

nR.hash //Construct hash on R
+ nR.(1+dR).copy //Construct hash on R
+ nS.(hash + comp.f) //Probe for all of S

]
+ Iters.[//Compute gradient

nS.d.(mult+add) //Compute w.xi
+ nS.(funcG+funcF) //Apply functions
+ nS.d.(mult+add) //Scale and add
+ nS.add //Add for total loss

]

More Complex Approaches

These approaches are more complex to implement, since they might require changes to
the implementation of the join operation.

Stream-Reuse-Rock (SRR)

1. Similar to Stream-Reuse.

2. Only twist is that for alternate iterations, we flip the order of processing the splits
from 0→ B to B→ 0 and back so as to enable the hash table in cache to be reused
across iterations (“rocking the hash-cache”).

I/O Cost If (m− 1) 6 df|R|e:

I/O Cost of Stream-Reuse
+ (Iters - 1).min{|R|+|S|,[(m-2) - f|R0|]} //Cache
- b Iters2 c.[|Ri| + min{|R|+|S|,(m-2)-f|Ri|}] //H(RB)
- b Iters−1

2 c.[|R0| + min{|R|+|S|,(m-2)-f|R0|}] //H(R0)

If (m− 1) > df|R|e:

I/O Cost of Stream-Reuse

SRR also makes the join implementation “iteration-aware”.

102

CPU Cost

CPU Cost of Stream-Reuse
- b Iters2 c.[//Cache HASH(RB)

nR. (1−q)
B .[hash + (1+dR).copy]

]
- b Iters−1

2 c.[//Cache HASH(R0)
nR.q.[hash + (1+dR).copy]

]

Hybrid of Stream-Reuse-Rock and Factorize (SFH)

1. Let R ′ be an augmentation of R with two columns padded to store statistics. So,
|R ′| = d8nR.(1+dR+2)

p e.

2. Let B = df|R
′|−(m−1)

(m−1)−1 e. Let |R ′0| = b
(m−2)−B

f c, |R ′i| = d
|R ′|−|R ′0|
B e(1 6 i 6 B), and

q =
|R ′0|
|R ′| .

3. Similar to hybrid hash join on R ′ and S.

4. Only twist is that PartialIP from R ′i is computed when the H is constructed on Ri,
while SumScaledIP is computed when Si is read.

5. Repeat for remaining iterations, reusing the same partitions and rocking the hash-
cache as in SRR.

We omit the I/O and CPU costs of SFH here, since they are easily derivable from the
other approaches.

A.4 Comparing Gradient Methods

While our focus in this work has been on performance at scale for learning over joins, we
briefly mention an interesting finding regarding the behavior of different gradient methods
on a dataset with the redundancy that we study. This particular experiment is agnostic
to the approach we use to learn over the join. Figure A.5 plots the loss for three popular
gradient methods for LR – BGD, CGD, and LBFGS – against the number of iterations
and the number of passes. As expected, BGD takes more iterations to reach a similar loss
as CGD. However, the behavior of LBFGS (with five gradients saved to approximate the
Hessian) is more perplexing. Typically, LBFGS is known to converge faster than CGD
in terms of number of iterations [Nocedal and Wright, 2006; Agarwal et al., 2014] but

103

BGD
CGD
LBFGS

0 10 20 30 40
1E2

1E3

1E4

1E5

0 100 200 300 400
1E2

1E3

1E4

1E5

Number of Iterations Number of Passes

Lo
ss

 (
Lo

gs
ca

le
)

Lo
ss

 (
Lo

gs
ca

le
)

A B

Figure A.5: Comparing gradient methods: Batch Gradient Descent (BGD), Conjugate Gra-
dient (CGD), and Limited Memory BFGS (LBFGS) with 5 gradients saved. The parameters
are nS = 1E5, nR = 1E4, dS = 40, and dR = 60. (A) Loss after each iteration. (B) Loss after
each pass over the data; extra passes needed for line search to tune α.

we observe otherwise on this dataset. We also observe that LBFGS performs many extra
passes to tune the stepsize, making it slower than even BGD in this case. However, it
is possible that a different stepsize tuning strategy might make LBFGS faster. While we
leave a formal explanation to future work, we found that the Hessians obtained had high
condition numbers, which we speculate might make LBFGS less appealing [Nocedal and
Wright, 2006].

104

B Appendix: Hamlet

B.1 Proofs

Proposition B.1.1. In T, all F ∈ XR are redundant.

Proof. Consider an arbitrary feature F ∈ XR. We start by showing that F is weakly relevant.
To show this, we need to prove that P(Y|X) = P(Y|X− {F}) and ∃Z ⊆ X− {F} s.t. P(Y|Z, F) 6=
P(Y|Z). For the first part, we observe that due to the FD FK→ XR, fixing FK automatically
fixes XR (and hence F). Thus, fixing X automatically fixes X − {F} and vice versa, which
implies that P(Y|X) = P(Y|X − {F}). As for the second part, we only need to produce
one instance. Choose Z = φ, which means we need to show that it is possible to have
P(Y|F) 6= P(Y). It is clearly trivial to produce an instance satisfying this inequality. Thus,
F is weakly relevant. Next, we show that F has a Markov Blanket MF ⊆ X − {F}. In
fact, we have MF = {FK}. This is because the FD FK → XR causes F to be fixed when
FK is fixed, which implies MF ∪ {F} is fixed when MF is fixed and vice versa. Hence,
P(Y, X − {F}− MF|MF, F) = P(Y, X − {F}− MF|MF). Thus, overall, F is a redundant feature.
Since Fwas arbitrary, all features in XR are redundant.

Corollary B.1. Given a table T(ID, Y, X) with a canonical acyclic set of FDs Q on the features X,
a feature that appears in the dependent set of an FD in Q is redundant.

Proof. The proof is a direct extension of the proof for Proposition B.1.1, and we only present
the line of reasoning here. We convert T into a relational schema in Boyce-Codd Normal
Form (BCNF) using standard techniques that take Q as an input [Silberschatz et al., 2006].
Since ID is the primary key of T, both ID and Y will be present in the same table after the
normalization (call it the “main table”). Now, features that occur on the right-hand side of
an FD will occur in a separate table whose key will be the features on the left-hand side
of that FD. And there will be a KFKD between a feature (or features) in the main table
and the keys of the other tables in a manner similar to how FK refers to RID. Thus all
features that occur on the right-hand side of an FD provide no more information than the
features in the main table in the same way that XR provides no more information than FK
in Proposition B.1.1. Hence, any feature that occurs in the dependent set of an FD in Q is
redundant.

Theorem B.2. ∀F ∈ XR, I(F; Y) 6 I(FK; Y)

105

Proof. Let the FD FK → XR be represented by a collection of functions of the form fF :

DFK → DF for each F ∈ XR. Our goal is to show that I(FK; Y) > I(F; Y),∀F ∈ XR.
Consider any F ∈ XR. We have the following:

I(F; Y) =
∑
x,y
P(F = x, Y = y) log

P(F = x, Y = y)

P(F = x)P(Y = y)

I(FK; Y) =
∑
z,y
P(FK = z, Y = y) log

P(FK = z, Y = y)

P(FK = z)P(Y = y)

Due to the FD FK→ XR, the following equalities hold:

P(F = x) =
∑

z:fF(z)=x

P(FK = z)

P(F = x, Y = y) =
∑

z:fF(z)=x

P(FK = z, Y = y)

Since all the quantities involved are non-negative, we can apply the log-sum inequality,
which is stated as follows.

Definition B.3. Given non-negative numbers a1, . . . ,an and b1, . . . ,bn, with a =
∑
ai and

b =
∑
bi, the following inequality holds, and it is known as the log-sum inequality:

n∑
i=1

ailog(
ai
bi

) > alog(
a

b
)

In our setting, fixing (x,y), we have a = P(F = x, Y = y) and ais are P(FK = z, Y = y),
for each z : fF(z) = x. Similarly, b = P(F = x)P(Y = y) and bis are P(FK = z)P(Y = y), for
each z : fF(z) = x. Thus, we have the following inequality:

∑
z:fF(z)=x

P(FK = z, Y = y)log
P(FK = z, Y = y)

P(FK = z)P(Y = y)
>

P(F = x, Y = y)log
P(F = x, Y = y)

P(F = x)P(Y = y)

Since this is true for all values of (x,y), summing all the inequalities gives us I(FK; Y) >
I(F; Y).

Proposition B.1.2. It is possible for a feature F ∈ XR to have higher IGR(F; Y) than IGR(FK; Y).

Proof. It is trivial to construct such an instance. Thus, we omit the proof here.

106

Proposition B.1.3. HX = HFK ⊇ HXR

Proof. Recall that we had assumed XS = φ. Thus, X ≡ {FK} ∪ XR. We first prove the first
part. By definition, given Z ⊆ X, we have: HZ = {f|f ∈ HX ∧ ∀u, v ∈ DX, u|Z = v|Z =⇒
f(u) = f(v)}. It is easy to see that the FD FK→ XR automatically ensures that this condition
is true for Z = {FK}. This is because ∀u, v ∈ DX s.t. u|FK = v|FK, the FD implies u|XR = v|XR ,
which in turn implies u = v, and hence, f(u) = f(v). Thus, HX = HFK.

As for the second part, we show that for any arbitrary f ∈ HXR , ∃gf ∈ HFK s.t. f = gf.
Note that an f ∈ HXR satisfies the condition ∀u, v ∈ DX, u|XR = v|XR =⇒ f(u) = f(v).
Similarly, any g ∈ HFK satisfies the condition ∀u, v ∈ DX, u|FK = v|FK =⇒ g(u) = g(v).
We now pick some gf ∈ HFK that also satisfies the following condition: ∀u ∈ DX, gf(u) =
f(u). Such a gf necessarily exists because of three reasons: HXR is defined based only on
those values of XR that are actually present in R, the FD FK → XR ensures that there is
at least one value of FK that maps to a given value of XR, and the same FD also ensures
(by definition) that ∀u, v ∈ DX, u|FK = v|FK =⇒ u|XR = v|XR . Thus, overall, HXR ⊆ HFK.
Note that the equality arises when there is exactly one value of FK that maps to one value
of XR in R, i.e., all tuples in R have distinct values of XR.

B.2 More Simulation Results

Figure B.1 presents the remaining key plots for the simulation scenario in which the true
distribution is succinctly captured using a lone feature Xr ∈ XR. We also studied two other
scenarios: one in which all of XR and XS are part of the true distribution, and another in
which only XS and FK are. Figure B.2 presents the plots for the former. Since the latter
scenario in which XR is useless did not reveal any interesting new insights, we skip it for
brevity. We also plot the difference in test error between NoJoin and JoinAll for the scenario
in which all of XR and XS are part of the true distribution in Figure B.3. We see that the
trends are largely similar to those in Figure 5.5 and that the same thresholds for ρ and τ
work here as well.

Foreign Key Skew

So far, we had assumed that FK values are not skewed. Neither the ROR nor the TR account
for skew in P(FK). Foreign key skew is a classical problem in the database literature due
to its effects on parallel joins [Silberschatz et al., 2006] but its effects on ML have not been
studied before. We now shed some light on the effects of skew in P(FK) on ML.

We start by observing a key twist to the database-style understanding of skew: skew in
P(FK) per se is less important than its implications for learning the target. Thus, we classify

107

Number of features in R (𝑑𝑅)

A
vg

. T
es

t
Er

ro
r

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10

UseAll

NoJoin

NoFK

Number of features in S (𝑑𝑆)

A
vg

. T
es

t
Er

ro
rA

0

0.05

0.1

0.15

0.2

0 2 4 6 8 10

B

Probability parameter for 𝑃(𝑌|𝑋𝑟), denoted 𝑝

0

0.15

0.3

0.45

0.6

0 0.2 0.4 0.6 0.8 1

A
vg

. T
es

t
Er

ro
r C1

0

0.02

0.04

0.06

0.08

0 0.2 0.4 0.6 0.8 1A
vg

. N
et

 V
ar

ia
n

ce C2

Figure B.1: Remaining simulation results for the same scenario as Figure 5.3. (A)
Vary dR, while fixing (nS,dS, |DFK|,p) = (1000, 4, 100, 0.1). (B) Vary dS, while fix-
ing (nS,dR, |DFK|,p) = (1000, 4, 40, 0.1). (C) Vary p, while fixing (nS,dS,dR, |DFK|) =
(1000, 4, 4, 200).

skew in P(FK) into two types: benign and malign. Loosely defined, benign skew in P(FK)
is that which does not make it much harder to learn the target, while malign skew is the
opposite. We give some intuition using the scenario of a lone feature Xr ∈ XR being part
of the true distribution. Suppose P(Xr) has no skew (the distribution is based on T, not
R). Since multiple FK values might map to the same Xr value, there might still be high
skew in P(FK). But what really matters for accuracy is whether P(Y) is skewed as well,
and whether the skew in P(Y) “colludes” with the skew in P(FK).

There are three possible cases when there is skew in P(FK): (1) P(Y) is not skewed,
(2) P(Y) is skewed (some class label is dominant), and P(FK) is skewed such that low-
probability FK values co-occur mostly with high-probability Y values, and (3) P(Y) is
skewed, and P(FK) is skewed such that low-probability FK values co-occur mostly with
low-probability Y values. Cases (1) and (2) represent benign skew: even though some FK
values have low probability, together they might still be able to learn the target concept
reasonably well because there might be “enough” training examples for each class label.
But case (3) is an instance of malign skew: essentially, FK “diffuses” the already low
probability of some Y value(s) into a potentially large number of low-probability FK values.
This issue might be less likely if Xr was used instead, i.e., the join was not avoided, since

108

Number of training examples (𝑛𝑆)

A
vg

. T
es

t
Er

ro
r

0.35

0.4

0.45

0.5

1E+2 1E+3 1E+4 1E+5

UseAll
NoJoin
NoFK

A1

0

0.02

0.04

0.06

1E+2 1E+3 1E+4 1E+5

A2

A
vg

. N
et

 V
ar

ia
n

ce

Number of FK values (|DFK|= 𝑛𝑅)

A
vg

. T
es

t
Er

ro
r

A
vg

. N
et

 V
ar

ia
n

ce
0.2

0.3

0.4

0.5

1 10 100 1000

B1

0

0.02

0.04

0.06

1 10 100 1000

B2

Number of features in R (𝑑𝑅)

A
vg

. T
es

t
Er

ro
r

A
vg

. N
et

 V
ar

ia
n

ce

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10

C1

0

0.02

0.04

0.06

0 2 4 6 8 10

C2

Number of features in S (𝑑𝑆)

A
vg

. T
es

t
Er

ro
r

A
vg

. N
et

 V
ar

ia
n

ce

0.1

0.2

0.3

0.4

0.5

0 2 4 6 8 10

D1

0

0.02

0.04

0.06

0 2 4 6 8 10

D2

Figure B.2: Simulation results for the scenario in which all of XS and XR are part of the true
distribution. (A) Vary nS, while fixing (dS,dR, |DFK|) = (4, 4, 40). (B) Vary |DFK|, while
fixing (nS,dS,dR) = (1000, 4, 4). (C) Vary dR, while fixing (nS,dS, |DFK|) = (1000, 4, 100).
(D) Vary dS, while fixing (nS,dR, |DFK|) = (1000, 4, 40).

109

-0.15

-0.1

-0.05

0

0.05

0 2 4 6 8 10

∆
Te

st
 e

rr
o

r

A ROR

-0.004

-0.002

0

0.002

0.004

0.006

0 1 2 3 4

∆
Te

st
 e

rr
o

r

B

-0.15

-0.1

-0.05

0

0.05

1 10 100 1000
Tuple Ratio

-0.004

-0.002

0

0.002

0.004

0.006

5 25 125

0

3

6

9

0 0.3 0.6 0.9 1.2

1/√Tuple Ratio

R
O

R

C

Figure B.3: Scatter plots based on all the results of the simulation experiments referred
to by Figure B.2. (A) Increase in test error caused by avoiding the join (denoted “∆Test
error”) against ROR. (B) ∆Test error against tuple ratio. (C) ROR against inverse square
root of tuple ratio.

usually |DXr |� |DFK|. Thus, malign skews in P(FK) might make it less safe to avoid the
join.

To verify the above, we performed two more simulation experiments. First, we embed a
benign skew in FK using the standard Zipf distribution, which is often used in the database
literature [Pavlo et al., 2012]. Second, we embed a malign skew in FK using what we
call a “needle-and-thread” distribution: one FK value has a probability mass p (“needle”
probability) and it is associated with one Xr value (and hence, one Y value). The remaining
1 − p probability mass is uniformly distributed over the remaining (nR − 1) FK values, all
of which are associated with the other Xr value (and hence, the other Y value). Intuitively,
this captures the extreme case (3) in which the skew in FK colludes with the skew in Y.
Figure B.5 presents the results for UseAll and NoJoin. As expected, the benign skew does
not cause the test error of NoJoin to increase much, but the malign skew does. Figure B.5(A)
also suggests that benign skew might sometimes work in favor of NoJoin (this is primarily
because the bias increased for UseAll). But as Figure B.5(B1) shows, the test error of NoJoin
increases when the skew in Y colludes with the skew in FK. However, as Figure B.5(B2)
shows, this gap closes as the number of training examples increases.

Overall, we need to account for malign skews in FKwhen using the ROR or TR rules
for avoiding joins safely. While it is possible to detect malign skews using H(FK|Y), we
take a simpler, albeit more conservative, approach. We just check H(Y), and if it is too low

110

Number of training examples (𝑛𝑆)

A
vg

. T
es

t
Er

ro
r

A
vg

. N
et

 V
ar

ia
n

ce

0
0.1
0.2
0.3
0.4
0.5

1E+2 1E+3 1E+4 1E+5

UseAll

NoJoin

NoFK

A1

0

0.01

0.02

0.03

0.04

1E+2 1E+3 1E+4 1E+5

A2

Number of FK values (|DFK|= 𝑛𝑅)

A
vg

. T
es

t
Er

ro
r

A
vg

. N
et

 V
ar

ia
n

ce
0

0.1
0.2
0.3
0.4
0.5

1E+0 1E+1 1E+2 1E+3

-0.05

0

0.05

0.1

0.15

1E+0 1E+1 1E+2 1E+3

B1 B2

Number of features in R (𝑑𝑅)

A
vg

. T
es

t
Er

ro
r

A
vg

. N
et

 V
ar

ia
n

ce

0
0.1
0.2
0.3
0.4
0.5

0 2 4 6 8 10

0

0.01

0.02

0.03

0.04

0 2 4 6 8 10

C1

C2

Number of features in S (𝑑𝑆)

A
vg

. T
es

t
Er

ro
r

A
vg

. N
et

 V
ar

ia
n

ce

0
0.1
0.2
0.3
0.4
0.5

0 2 4 6 8 10
0

0.01

0.02

0.03

0.04

0 2 4 6 8 10

D1 D2

Figure B.4: Simulation results for the scenario in which only XS and FK are part of the true
distribution. (A) Vary nS, while fixing (dS,dR, |DFK|) = (2, 4, 40). (B) Vary |DFK|, while
fixing (nS,dS,dR) = (1000, 2, 4). (C) Vary dR, while fixing (nS,dS, |DFK|) = (1000, 2, 100).
(D) Vary dS, while fixing (nS,dR, |DFK|) = (1000, 4, 40).

111

0

0.05

0.1

0.15

0.2

100 1000 10000

A
vg

. T
es

t
Er

ro
r

Number of training examples (𝑛𝑆)

A2
0.04

0.06

0.08

0.1

0.12

0 1 2 3 4 5

UseAll
NoJoin

A
vg

. T
es

t
Er

ro
r

Zipfian skew parameter

A1

0.04

0.06

0.08

0.1

0.12

0 0.2 0.4 0.6 0.8 1

A
vg

. T
es

t
Er

ro
r

Needle probability (𝑝)

0

0.05

0.1

0.15

0.2

100 1000 10000

A
vg

. T
es

t
Er

ro
r

Number of training examples (𝑛𝑆)

B1 B2

Figure B.5: Effects of foreign key skew for the scenario referred to by Figure 5.3. (A) Benign
skew: P(FK) has a Zipfian distribution. We fix (nS,nR,dS,dR) = (1000, 40, 4, 4), while for
(A2), the Zipf skew parameter is set to 2. (B) Malign skew: P(FK) has a needle-and-thread
distribution. We fix (nS,nR,dS,dR) = (1000, 40, 4, 4), while for (A2), the needle probability
parameter is set to 0.5.

(say, below 0.5, which corresponds roughly to a 90%:10% split), we do not avoid the join.
This is in line with our guiding principle of conservatism. It also captured all the cases of
malign skews in our above simulations. We leave more complex approaches for handling
skew to future work.

B.3 Output Feature Sets

For each dataset and feature selection method combination, we provide the output feature
sets of both JoinAll and JoinOpt. We omit Yelp and BookCrossing, since none of the joins
were avoided by JoinOpt on those two datasets.

Walmart:

Forward Selection:

JoinAll = JoinOpt = {Dept, StoreID, IndicatorID}

Backward Selection:

JoinAll = {Dept, StoreID, Type, Size, FuelPriceStdev, TempStdev, FuelPriceAvg, CPISt-
dev}

112

JoinOpt = {Dept, StoreID, IndicatorID}

MI-Based Filter:

JoinAll = JoinOpt = {Dept, StoreID, IndicatorID}

IGR-Based Filter:

JoinAll = {Dept, StoreID, Type, Size}
JoinOpt = {Dept, StoreID, IndicatorID}

Expedia:

Forward Selection:

JoinAll = JoinOpt = {HotelID, BookingWindow, SatNightBool, Year, RandomBool,
ChildrenCount, Score2}

Backward Selection:

JoinAll = JoinOpt = {HotelID, BookingWindow, Time, SatNightBool, RandomBool,
ChildrenCount, Score2, AdultsCount, LengthOfStay, VisitorCountry, RoomCount,
SiteID}

MI-Based Filter:

JoinAll = JoinOpt = {HotelID, Score2}

IGR-Based Filter:

JoinAll = {HotelID, Score2, PromoFlag, BookingCount}
JoinOpt = {HotelID, Score2, PromoFlag}

Flights:

Forward Selection:

JoinAll = JoinOpt = {AirlineID, Eq5, Eq4, Eq10, Eq20, Eq1, Eq17, Eq16, Eq6, Eq7,
Eq13, Eq9, Eq11}

Backward Selection:

JoinAll = {AirlineID, Eq5, Eq4, Eq10, Eq20, Eq1, Eq17, Eq16, Eq6, Eq7, Eq13, Eq9,
Eq11, Eq2, Eq3, Name1, Active, Eq12, Eq15, Eq19}
JoinOpt = {AirlineID, Eq5, Eq4, Eq10, Eq20, Eq1, Eq17, Eq16, Eq6, Eq7, Eq9, Eq11,
Eq2, Eq17, Eq14, Eq15, Eq18, Eq19}

MI-Based Filter:

JoinAll = JoinOpt = {AirlineID, DestAirportID}

IGR-Based Filter:

113

JoinAll = {AirlineID, Active, Eq12, Eq12, Eq15, Eq7, Eq8, Eq9, Eq6, Eq2, Eq1, Eq3,
Eq11}
JoinOpt = {AirlineID, Eq12, Eq12, Eq15, Eq7, Eq8, Eq9, Eq6, Eq2, Eq1, Eq3, Eq11, Eq19}

MovieLens1M:

Forward Selection:

JoinAll = {UserID, MovieID, Genre18}
JoinOpt = {UserID, MovieID}

Backward Selection:

JoinAll = {UserID, MovieID, Genre18, Gender, Genre3, Genre4, Genre16}
JoinOpt = {UserID, MovieID}

MI-Based Filter:

JoinAll = JoinOpt = {UserID, MovieID}

IGR-Based Filter:

JoinAll = {UserID, MovieID, Genre10}
JoinOpt = {UserID, MovieID}

LastFM:

Forward Selection:

JoinAll = JoinOpt = {UserID}

Backward Selection:

JoinAll = {UserID, Gender, Genre2, Genre3, Genre4, Genre5}
JoinOpt = {UserID}

MI-Based Filter:

JoinAll = JoinOpt = {UserID}

IGR-Based Filter:

JoinAll = JoinOpt = {UserID}

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Example
	Technical Contributions
	Summary and Impact

	Preliminaries
	Problem Setup and Notation
	Background for Orion
	Background for Hamlet

	Orion: Avoiding Joins Physically
	Learning Over Joins
	Factorized Learning
	Experiments
	Conclusion: Avoiding Joins Physically

	Extensions and Generalization of Orion
	Extension: Probabilistic Classifiers Over Joins and Santoku
	Extension: Other Optimization Methods Over Joins
	Extension: Clustering Algorithms Over Joins
	Generalization: Linear Algebra Over Joins

	Hamlet: Avoiding Joins Logically
	Effects of KFK Joins on ML
	Predicting a priori if it is Safe to Avoid a KFK Join
	Experiments on Real Data
	Conclusion: Avoiding Joins Logically

	Related Work
	Related Work for Orion
	Related Work for Orion Extensions and Generalization
	Related Work for Hamlet

	Conclusion and Future Work
	References
	Appendix: Orion
	Proofs
	Additional Runtime Plots
	More Cost Models and Approaches
	Comparing Gradient Methods

	Appendix: Hamlet
	Proofs
	More Simulation Results
	Output Feature Sets

