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Large Language Models (LLMs) have revolutionized Natural Language to SQL (NL-to-SQL), dominating most
NL-to-SQL benchmarks. But LLMs still face limitations due to hallucinations, semantic ambiguity, and lexical
mismatches between an NL query and the database schema. Naturally, a lot of work in the ML+DB intersection
aims to mitigate such LLM limitations. In this work, we shine the light on a complementary data-centric
question: How should DB schemas evolve in this era of LLMs to boost NL-to-SQL? The intuition is that more
NL-friendly schema identifiers can help LLMs work better with DBs. We dive deeper into this seemingly
obvious, but hitherto underexplored and important, connection between schema identifier “naturalness”
and the behavior of LLM-based NL-to-SQL by creating a new integrated benchmark suite we call SNAILS.
SNAILS has 4 novel artifacts: (1) A collection of real-world DB schemas not present in prior NL-to-SQL
benchmarks; (2) A set of labeled NL-SQL query pairs on our collection not seen before by public LLMs; (3)
A notion of naturalness level for schema identifiers and a novel labeled dataset of modified identifiers; and
(4) AI artifacts to automatically modify identifier naturalness. Using SNAILS, we perform a comprehensive
empirical evaluation of the impact of schema naturalness on LLM-based NL-to-SQL accuracy, and present a
method for improving LLM-based NL-to-SQL with natural views. Our results reveal statistically significant
correlations across multiple public LLMs from OpenAI, Meta, and Google on multiple databases using both
zero-shot prompting as well as more complex NL-to-SQL workflows: DIN SQL, and CodeS. We present several
fine-grained insights and discuss pathways for DB practitioners to better exploit LLMs for NL-to-SQL.

CCS Concepts: • Information systems→ Data management systems; Database views; Structured Query
Language; • Computing methodologies→ Natural language processing.
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1 Introduction
Natural language-to-SQL (NL-to-SQL) query generation capability has been revolutionized by
foundational large language models (LLMs) [31, 42, 49]. This has made the integration of LLM-
based query tools into relational database workflows more viable, with both established DBMS
vendors and startups beginning to offer commercial NL-to-SQL interfaces. However, challenges in
the NL-to-SQL space remain that can degrade the effectiveness of an LLM-enabled data retrieval
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Fig. 1. Databases with poorly named, or less natural, schema identifiers perform poorly in LLM-based NL-
to-SQL interfaces, and this project exposes the need for more natural schemas. We offer approaches and
artifacts, including a naturalness classification and modification workflow, that can aid in the naturalness
assessment and modification processes required to create a performance-enhancing natural view. In this way,
the native schema remains as-is so that existing tools can continue talking to it without modification, while
an LLM-based NLI can be integrated into the existing stack via a natural view.

workflow in real-world databases [11]. Principal among such challenges is schema linking, which is
the association of entities in NL utterances to elements in the database schema.
While much work has studied making LLMs larger or more sophisticated, a more basic issue

often underlies this challenge: lexical mismatches between natural language and poorly-named
tables and columns in a schema. Intuitively, schema elements that are “better named” could raise
the accuracy of schema linking within the NL-to-SQL setup. In this paper, we unpack and dive
deeper into this intuition to study how exactly the “naturalness” of schema elements matters for
NL-to-SQL by instituting a new benchmark and performing extensive empirical analysis using that.
One might ask: Why bother formalizing a concept that seems obvious and intuitive? We believe this
is important for 2 reasons. First, without a more formalized–or at least automated way–to define,
verify, and compare “naturalness” researchers and practitioners alike will be forced to grapple with
ad hoc and inconsistent approaches. In turn, this can lead to confounded conclusions by researchers
on how different LLMs behave on different schemas and mislead practitioners comparing different
NLIs. This points to the need for a new benchmark labeled dataset for this problem.

Second, practitioners need a way to efficiently and accurately operationalize any insights about
the impact of naturalness on their schema elements for LLM-based NLIs. This points to the need
for a systematic evaluation of how naturalness affects different databases, queries, and LLMs used
for NL-to-SQL.

Our Focus. In this paper, we take the first steps toward deeper understanding on this seem-
ingly obvious, but hitherto underexplored and important, relationship between schema identifier
naturalness and LLM-based NL-to-SQL. Specifically, we ask the following three interconnected
questions. (1) How do we quantify “naturalness” of schema identifiers? (2) Does it really impact
schema linking accuracy in LLM-based NL-to-SQL and if so, by how much? (3) How does that
impact vary by complexity of the database and query, as well as across different popular LLMs?
To answer the above questions, we create a novel integrated benchmark suite we call SNAILS

with new collections of real-world databases and query pairs, a new labeled dataset of schema
identifiers, a set of evaluation metrics, and LLM prompting and other AI artifacts.
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1.1 Preliminaries and Setup
LLM-based NL-to-SQL. The most obvious way to seek LLM performance improvements would

be by increasing the power of the languagemodels themselves. But the cost of training and deploying
LLMs continues to increase in concert with their complexities. Additionally, many practitioners
seek “plug and play” solutions by employing already-available LLMs. Model training and finetuning
impose access barriers that may render such a pursuit untenable for organizations that use databases
but lack the requisite talent such as data science and machine learning expertise.
The practice of prompt engineering can also help improve NL-to-SQL performance, though

dealing with schema complexity and schema representations in LLM prompting is an ongoing
challenge in enterprise-level NL-to-SQL applications [11]. The majority of leading submissions on
the popular Spider NL-to-SQL benchmark leaderboard are LLM-based solutions [8, 13, 40] that
employ a variety of prompting strategies, some of which require multiple successive API requests
containing schema context and instructions. These approaches can be costly and unintuitive for
NLIDB end users, and can incur excessive costs and overhead when deployed at scale.
A complementary line of work on realistic NL-to-SQL benchmarking uses structural schema

modification such as normalization, flattening, and replacement to evaluate effects on LLM per-
formance. Making such structural changes to target schemas challenges model robustness and
increases error rates in NL-to-SQL performance [27], and this recent work indicates that schema
design is a viable target for LLM-based NL-to-SQL accuracy improvements.

Schema Linking. Schema linking remains as a persistent challenge for LLMs. With the avail-
ability of capable LLMs that consistently generate valid SQL statements, a larger proportion of
NL-to-SQL generation errors are now associated with incorrect or ambiguous database identifier
selection as opposed to incorrect syntax [46]. Schema linking performance has been improved using
lexical matching heuristics [16, 56], joint relationally aware embeddings with attention [3, 52], the
use of pre-trained language models to perform schema probing [53], and multimodel pipelines
with ML models for pruning schema knowledge [22]. Some NL-to-SQL methods address schema
linking challenges by adding additional context such as sample values or metadata [40] to schema
knowledge representations. These methods can improve performance in some cases [29], and can
be useful for schemas with obscurely-named tables and columns, though they do so at the cost of
much larger schema knowledge representations.

Schema linking still often fails, even with the most capable LLMs due to poorly-aligned schema
identifier names with natural language question contents, that could be due to the use of synonyms
or the obscurity of a database identifier. In the latter case, it can be challenging for even a sophisti-
cated linking solution to match natural language words to schema elements that yield minimal
semantic meaning.

SchemaNamingConventions. Themajority of database schema naming best practices originate
from practitioners and are generally published as software documentation, organization policies,
tutorials, etc. We find that there is a gap in database and data integration academic literature
evaluating schema identifier naming practices for any purpose. While the semantics of schema
identifiers may not have been considered as a necessary subject of database research in the past,
the increasing integration of natural language interfaces to databases has elevated its importance.
Naming conventions for database schema identifiers vary by organization, database vendor,

application, and purpose. A web search for database table and column naming guidelines yields
multiple resources ranging from blog posts [4], StackOverflow responses [44], DBMS vendor
documentation [33], and tutorials [15]. Poor schema identifier naming practices is considered a
database code smell [43] where meaningless identifier names should be avoided. Generally, the
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most consistent best practices include selecting descriptive and concise names that contain only
commonly-understood abbreviations and acronyms, though some conventions suggest the use of
abbreviated prefix and suffix modifiers that describe application associations, or entity purpose [34].

In our research, we identified several databases containing schemas with varying levels of human-
readability and understandability (what we will call naturalness) which suggests that there can be
a tendency for database schema designers to choose shorter and less descriptive identifier naming
conventions. As we will see, such naming shortcuts can negatively affect NL-to-SQL performance.

1.2 Our Benchmark Artifacts and Analyses
Given the above context of our benchmarking setup, we now explain the new artifacts in SNAILS,
followed by a summary of our empirical analysis.

Artifact 1: Real-World Database Schemas. The SNAILS benchmark contains several new real-
world database schemas that are not part of existing NL-to-SQL benchmarks (Artifact 1). Our focus
on schema naming motivates the creation of a new novel benchmark dataset, because existing
benchmark naturalness levels are higher than those of many real-world schemas, and other real-
world schema collections including SchemaPile [7] lack the necessary database instances to enable
NL-to-SQL evaluation. In our analysis of these real-world schemas, we discover that identifier
naming variances generally appear in the form of abbreviations and expansions; we refer to these
variances as identifier naturalness.

Artifact 2: Identifier Naturalness Classifications. Our analysis reveals that naturalness can be
formalized categorically with the help of finetuned language models and feature engineering. We
then hand-label the schema identifiers, with some ML assistance, to classify their naturalness level
and produce a new golden labeled dataset. We classify identifiers into one of 3 naturalness levels
(Regular, Low, and Least) (Artifact 2). This dataset, consisting of over 17,000 labeled identifiers,
serves as the training data for the naturalness classifiers described next.

Artifact 3: Naturalness Classifiers. We experiment with various classification approaches, and
make available the models trained to classify the naturalness of a database schema identifier
(Artifact 3).

Artifact 4: Naturalness-Modified Identifiers. To better understand the effect of schema identifier
naturalness, and to enable within-database experiments, we create alternate versions of each real-
world schema identifier at each naturalness level (Artifact 4). This dataset serves two purposes:
1) Training data for ML-based naturalness modifiers, and 2) Generation of schemas with varying
naturalness levels to analyze the impact of naturalness on NL-to-SQL performance. We modify the
identifiers with the assistance of LLM prompting, finetuned models, and database metadata.

Artifact 5: Naturalness Modifier. We offer an in-context learning-based prompting strategy for
identifier naturalness reduction (or abbreviation). We also provide an identifier naturalness increaser
(or expander) that leverages retrieval augmented generation, interactive few-shot example building,
and database metadata parsing methods to streamline the database naturalness improvement
process.

Artifact 6: NL-to-SQL Question Query Pairs. The SNAILS benchmark contains 503 NL question-
SQL query pairs which we use for NL-to-SQL performance analysis of 4 LLMs. We created this new
collection as another hand-labeled golden dataset without the use of AI-based workflows (Artifact
6).
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Experimental Evaluation. Using the SNAILS benchmark artifacts, we analyze and experiment
with the effects of schema identifier naturalness on LLM NL-to-SQL performance. We select 5
publicly-available LLMs: OpenAI’s GPT-3.5, GPT-4o, a finetuned variant of Meta’s Code-Llama,
Google’s newest Gemini 1.5, and CodeS finetuned for NL-to-SQL. We evaluate them using both
execution result set matching and a novel identifier set comparison approach that pinpoints schema
linking performance.

In this paper we focus primarily on a simple zero-shot prompting of the LLM for our experiments.
We recognize that this may not be the best for overall execution accuracy, but it helps us isolate
the impact of schema identifier naturalness in this first work on this problem. As such, more
complex workflows will create confounding effects while not necessarily providing more insights
into schema linking performance. However, for completeness sake, we also compare two illustrative
complex workflows: DIN SQL for task-specific prompt chaining [40], and CodeS [23] for NL-to-SQL
finetuning.

We find that schema identifier naturalness by and large does have a meaningful effect on NL-to-
SQL accuracy and schema linking performance. Specifically, identifier naturalness is moderately and
positively correlated with both schema linking and execution accuracy. Identifiers of low naturalness
yield lower performing NL-to-SQL inferences in terms of both schema linking (identifier recall) and
execution accuracy. These findings have implications for practitioners who are either designing
new databases intended for LLM-based applications, or seeking to augment existing RDBMSs with
an LLM-based NL-to-SQL interface.

In summary, this paper makes the following contributions:

• We propose a novel measure of naturalness of a database schema identifier and demonstrate
through extensive experiments that naturalness has a significant effect on LLM schema
linking performance in the context of NL-to-SQL.

• We provide a hybrid LLM-generated and human-curated training dataset (Artifact 2) and
language model (Artifact 3) for schema naturalness classification.

• We offer a new multi-domain NL-to-SQL evaluation benchmark collection consisting of
9 real-world relational databases (Artifact 1) and 503 unpublished NL-to-SQL query pairs
(Artifact 6) that do not exist in any LLM training corpora.

• We create a novel labeled dataset of alternate naturalness levels that map the identifiers from
Artifact 1 to hybrid LLM-human curated identifiers of different naturalness levels (Artifact 4),
and methods for expanding and abbreviating identifiers to change their naturalness (Artifact
5).

• We conduct an extensive empirical analysis of the performance of 5 popular foundational
LLMs over our benchmark using a novel schema linking metric for NL-to-SQL.

• We propose a realistic workflow that enables the preservation of existing database integrations
while offering LLM-based NLIs a natural view of a target schema.

2 Schema Identifier Naturalness
Intuitively, naturalness can be thought of as the degree to which a phrase, or word, resembles
natural language. Naturalness is a concept and target of research in field of controlled natural
languages [21], where controlled language syntax is evaluated in terms of naturalness levels. Recent
NL-to-SQL research also defines and measures naturalness [27] for the purpose of evaluating
the naturalness of natural language question utterances, but avoids measuring the naturalness of
schema elements.
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Fig. 2. Mean Token in Dictionary, the proportion of tokens in an identifier that match a word in an English
dictionary, generally aligns with the SNAILS 3-class naturalness categorization approach.

Regular Low Least
airbag AccountChk AdCtTxIRWT
AdaptiveCruiseControl IsueFrDate COGM_Act
ModelYear RecvAsst DfltSlp
service_name UsrQuery FNDAbs
Research_Staff ValueOfT CSI22

Table 1. Example identifiers and their naturalness levels, from the SNAILS naturalness labeled dataset
(Artifact 2).

To the best of our knowledge, no prior attempts have been made to definitively measure the
naturalness of a database schema’s identifiers. In order to achieve this goal, we propose a three-
category naturalness classification scheme in order to measure the effects of naturalness on NL-to-
SQL performance.

2.1 Naturalness Categories
As the first work on this topic of how schema identifier naturalness affects LLMs, we seek to
define a preliminary metric–one that is consistent and descriptive enough to differentiate between
naturalness levels and to measure their effects.

To gain insights into naturalness-related trends in the SNAILS datasets, we create a mean token-
in-dictionary measurement that describes the proportion of tokens in an identifier that exactly
match a word in a comprehensive English word list. Figure 2 reveals differences between each
naturalness category where Least naturalness identifiers contain fewer in-dictionary tokens, and
Regular naturalness identifiers are more likely to consist of in-dictionary tokens. This distribution
suggests that because the bulk of the training corpora of LLMs is human-generated natural language
text, what humans consider “natural” for such identifiers generally aligns with how LLMs react to
them.
Examples of schema identifiers and their naturalness categories are displayed in Table 1. We

define these categories with the underlying assumption that the identifiers are named as some
semantic representation of the data, and that naming-related problems of interest are related how
an identifier is codified. That is, identifiers are assumed to not be random character sequences or
random words that do not correspond to the content of the database entities they represent. With
this assumption in mind, we categorize naturalness into 3 discrete levels as follows:
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• Regular: The identifier contains complete English words with no abbreviations or acronyms,
or contains only acronyms in common usage (e.g., ID or GPS).

• Low: The identifier contains abbreviated English words and less common acronyms that are
usually recognizable by non-domain experts (e.g., UTM or CPI). The meaning of the identifier
can be inferred without consulting external documentation.

• Least: The identifier’s meaning cannot be inferred by non-experts due to indecipherable
acronyms or abbreviations, and external metadata or other documentation must be consulted
in order to determine its purpose.

While we recognize that naturalness can also be treated as a continuous spectrum, between the
choices of continuous scoring and discrete categories, we select the latter as an initial approach to
naturalness evaluation. The primary factors underlying this choice are the level of effort required to
conduct human-based scoring of a large set of database identifiers, and the difficulty of consistently
scoring naturalness on a continuous range over a large set of data. Therefore, we use an intuitive
and easily-verifiable discrete 3-class taxonomy in the first work on this topic.

2.2 Naturalness Classification
To consider naturalness as a factor in NL-to-SQL performance, we derive naturalness scores of the
target schemas’ identifiers. We use this score to consider effects of individual identifier naturalness,
schema naturalness, and query identifier naturalness. Because manual naturalness classification
can be a time consuming task for large schemas, we automate the process by training a machine
learning-based classifier. This effort is beneficial in multiple situations. First, it can ease some
manual effort of the labeling process and make the process of scaling to more databases in the
future less labor intensive. Second, it can help practitioners efficiently and consistently evaluate
the naturalness of their own database schema identifiers prior to NLI integration.
To train a classifier to perform identifier naturalness scoring, we employ the 3-class set of

naturalness categories described in Section 2.1, and a list of database identifiers drawn from the
SNAILS real-world database schemas (Artifact 1). We categorize the naturalness of each identifier
to generate the SNAILS identifier naturalness classification labeled data (Artifact 2) which we use
for ML-based naturalness classifier training, evaluation and testing.
We evaluate multiple classification approaches including heuristic-based word matching, few-

shot LLM prompting with GPT-3.5 and GPT-4, and LLM finetuning. The GPT-4 few-shot approach
achieves 74 percent accuracy and an f1 score of 0.77. We experiment with multiple finetuning
collections, first using a hand-labeled collection of 1,648 naturalness classifications and then
leveraging the initial classifier along with weak supervision to generate a larger collection of 17,226
labeled identifiers. Finetuning using the second collection outperforms all few-shot approaches,
with the two best-performing classifiers fine-tuned GPT 3.5 and BERT-based CANINE [5] models
performing at 89 percent accuracy, and 0.89 f1 score.
Figure 3 provides a visual comparison between the SNAILS schema collection and common

NL-to-SQL benchmarks including Spider, Spider Realistic, and BIRD. Additionally, we compare
the SNAILS collection to the real-world SchemaPile collection and find that SNAILS collection
proportions generally align to SchemaPile naturalness, more so than other existing benchmarks,
which creates a more realistic and challenging benchmark in terms of schema naturalness.

To better understand the magnitude of naming practices in real-world schemas, we use the
CANINE-based classifier to classify the naturalness of the SchemaPile collection: a large volume of
real-world database schemas [7] that contains over 22,000 database schemas, 198,000 tables, and 1
million columns. We find that in over 7,500 schemas (32 percent of the collection) Least natural
identifiers make up at least 10 percent of the schema identifier names. Additionally, over 5,000
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Fig. 3. Comparison of the SNAILS database collection (Artifact 1) described in Section 3.1 to other real-world
and benchmark schema collections. SNAILS naturalness proportions are generally biased toward less natural
identifiers and is more consistent with the real-world SchemaPile collection than other existing benchmarks
including Spider and Spider Realistic.
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Fig. 4. Schema identifiers are classified (Artifact 2) and modified to increase or decrease naturalness as
appropriate. Modified identifiers comprise the schema crosswalks used for schema modification during
NL-to-SQL experimentation (Artifact 3).

schemas register a combined naturalness of 0.7 or below–an indicator that the schema contains
a high level of Low and Least naturalness identifiers. We examined the naturalness category
distribution for these 5,000 schemas, and found that for this subset of schemas Low and Least
naturalness identifiers outnumber Regular naturalness identifiers. These findings reinforce the
importance of the naturalness problem by confirming that, although a reasonable majority of
schemas are already natural, there still exist many schemas with lower naturalness levels in the
real-world–enough to motivate the formalization of schema naming quality measures.

2.3 Identifier Schema Naturalness Mapping
In addition to measuring the effects of identifier naturalness in existing schemas, we also seek
to evaluate the effects of modifying schema naturalness. For this purpose, we create Artifact 4,
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naturalness-modified identifiers. This artifact enables schema modification during prompt genera-
tion and query inference, which provides a within-schema assessment of naturalness level effects
on NL-to-SQL accuracy.

Identifier Mapping. In addition to the ground truth, or Native, naturalness of the 9 schemas in
the SNAILS real-world database collection, the naturalness-modified identifier collection contains
3 additional sets of identifiers: Regular, Low, and Least. That is, each native identifier is mapped to
2 additional, semantically equivalent, identifiers of higher or lower naturalness, and mapped to
itself for its own naturalness level (i.e., we do not generate new identifiers of the same naturalness
as its native form).
Figure 4 provides a visual example of the Native identifier VegHeight which is classified as

Low naturalness. With this naturalness classification as a starting point, we abbreviate it further
to generate a corresponding Least naturalness identifier VgHt. We also expand it to generate
the corresponding Regular naturalness version vegetation_height. We map the Native VegHeight
identifier to itself in the Low naturalness category.

Naturalness Modification. For more natural to less natural modifications (the abbreviator
in Figure 4), we employ in-context learning (few-shot) prompt strategies with GPT-3.5 turbo to
generate naturalness-modified identifiers (e.g., Regular to Low, Low to Least, and Regular to Least).
We favor this approach over model finetuning, as simple instructions to abbreviate the identifier
coupled with several examples prove more effective and less prone to poor results (e.g., presence of
unwanted characters in the modified identifier).
Automating the reverse less natural to more natural naturalness modification (the expander

in Figure 4) requires additional context and external knowledge from data description sources.
Though a recent project describes a promising identifier expansion strategy [57] without external
knowledge, it requires finetuning over a large dataset, and is likely susceptible to overfitting;
therefore we opt for our own approach that incorporates the use of an LLM augmented with
schema metadata lookup capability. To accomplish this, we create a Python program with GPT
interaction that takes as input metadata describing a schema’s native identifiers, and outputs
an identifier with regular naturalness. More details of this process are available in the technical
report [26].

3 Base Collections
Given the recency of the LLMs selected for evaluation in this project, and the relative maturity of
existing NL-to-SQL benchmarks, we believe that foundational LLMs have been exposed to existing
benchmark training and development NL questions and queries in their training corpora. NL-to-SQL
performance differences between queries over seen vs. unseen schema are significant [46], and we
seek to avoid as much bias as possible due to intentional or unintentional pre-training on existing
benchmark datasets.
We also find that existing benchmarks including Spider [55], and BIRD [24], do not match

the identifier naturalness distribution of real-world schema collections such as SchemaPile [7].
Although SchemaPile is a very large representation of real-world schemas, it does not contain
database instances necessary for benchmark performance evaluations; so, we are not able to leverage
its dataset in the creation of a new benchmark. To reduce bias due to benchmark data exposure,
and to create a benchmark more representative of real-world schema naming, SNAILS contains
two artifacts for NL-to-SQL benchmarking: Artifact 1, which is a collection of 9 publicly-available
database schemas and data; and Artifact 6, a human-generated set of 503 NL question - gold query
pairs.
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Database Tables Columns Questions Org
ASIS 36 245 40 NPS
ATBI 28 192 40 NPS
CWO 13 71 40 NPS
KIS 18 157 40 NPS
NPFM 27 190 40 NPS
NTSB 40 1611 100 NHTSA
NYSED 27 423 63 NYSED
PILB 21 196 40 NPS
SBOD 2588 90,477 100 SAP

Table 2. SNAILS Real-World Database Schemas

3.1 Datasets
Native Schemas. The SNAILS real-world database schema collection (Artifact 1) consists of 9

databases sourced from multiple locations. We refer to the schema identifier names as they exist in
the source databases as Native, and we classify each schemas’ Native naturalness level (see Figure
5). Domain diversity facilitates a more thorough evaluation [10]; so, SNAILS database collections
span multiple domains. Domain coverage includes scientific nature observation records, vehicle
safety statistics, primary school performance data, and business resource planning.
The U.S. National Parks Service’s IRMA Portal [1] is the source of the scientific observation

databases which include the Field Data for the Inventory of Amphibians and Reptiles of Assateague
Island National Seashore (ASIS) [6], Great SmokyMountains All Taxa Biodiversity Inventory (ATBI)
Plot Vegetation Monitoring Database [9], Wildlife Observations Database: Craters of the Moon
National Monument and Preserve 1921-2021 (CWO) [45], Exotic and Invasive Plants Monitoring
Database (KIS) [19], Northern Plains Fire Management (NPFM) [28] and Pacific Island Network
Landbird Monitoring Dataset (PILB) [20].

The National Transportation Safety Bureaus 2021 safety sampling dataset [30, 41] is the source
of SNAILS NTSB safety statistics database. We source school performance data (NYSED) from the
New York State Education Department [2].

The business resource planning database SBOD is a training example of the popular SAP Business
One system, and is publicly available in MS SQL server backup format [39]. The SBOD schema
consists of an extremely large number of tables and columns; so pruning is required to fit the
schema within the context window of the LLMs we compared. We reduce the schema knowledge
token requirements by segmenting the SBOD schema into submodules and further reducing tables
through data profiling. Additional information on the SBOD schema knowledge management is
available in the technical report [26].
Each database was migrated from its source format into an MS SQL Server database. Several

databases contained identifiers with whitespace characters, which is uncommon in most schemas.
To mitigate whitespace-related inference failures as a confounder, we modify the native identifiers
by replacing whitespace characters with underscore characters. In total, 148 out of over 19,000 total
identifiers (less than .01 percent) contained at least 1 whitespace character.

Native Schema Naturalness Levels. Since the intent of this project is to measure the effect of
schema naturalness, we first check if there is sufficient distribution of naturalness levels across
the collection. We employ the GPT-3.5-based classifier described in Section 2.2 to evaluate the
naturalness of the native schema identifiers.
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Fig. 5. Proportion of identifiers in each naturalness category within the SNAILS real-world database collection
(Artifact 1). Horizontal line markers indicate calculated combined naturalness as described in the technical
report [26]

In addition to measuring the proportion of identifiers in each naturalness category, we also
derive a combined naturalness score. Combined naturalness is the weighted average of category
proportion values, where scores range from 0.0 to 1.0 with 1.0 representing a schema containing
only Regular naturalness identifiers. A more detailed description of its calculation is available in
the technical report [26].
Figure 5 displays the proportions of identifiers in each naturalness category, as well as the

combined naturalness, in each native schema. From the chart, we can see that the schemas in
the SNAILS collection described in Section 3.1 represent a heterogeneous selection of naturalness
combinations.

Modified (Virtual) Schemas. To control for confounding factors such as schema structure,
normalization levels, and constraint variances between native schemas, we performwithin-database
evaluations of naturalness. To accomplish this, we generate 3 additional virtual schemas using
the naturalness-modified identifiers (Artifact 4) described in Section 2.3. Each virtual schema is
representative of a naturalness category, where schema identifiers are replaced with a semantically
equivalent identifier of a different naturalness level. This results in 4 schema versions per database
in the base collection: Native, Regular, Low, and Least.

The modified schemas are virtual because we do not create database instances that can be queried
directly. Rather, we query virtual schemas via identifier replacement in prompts and generated
queries using processes described in Section 4. This approach reduces storage overhead. It also
enables possible future schema variations of different naturalness proportions without the need to
instantiate additional database instances.
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Database Qs Top Funct. Join C-Join Ex SQ Where Neg Grp Ord Hvg

ASIS 40 1 24 13 1 0 2 18 0 17 1 0
ATBI 40 5 20 18 0 1 7 21 2 16 7 1
CWO 40 2 18 5 1 5 10 34 7 12 2 1
KIS 40 8 26 15 0 0 2 25 1 11 8 0
NPFM 40 5 27 21 0 0 1 29 0 16 5 0
NTSB 100 8 82 23 21 0 6 62 4 42 23 4
NYSED 63 10 36 10 4 1 21 55 1 16 10 1
PILB 40 6 25 23 0 0 3 20 0 16 11 2
SBOD 100 2 33 44 0 0 0 82 0 17 2 1

Table 3. Gold query clause counts for each SNAILS database. Columns represent a count of gold queries that
contain the listed clause types. Qs is the count of question-query pairs for each database. C-Join is the subset
of joins that require a composite key. Ex indicates the use of an exists clause. SQ indicates a subquery. Neg,
Grp, Ord, and Hvg represent negation, group by, order by, and having. Note: MS SQL Server dialect replaces
the common LIMIT clause with an equivalent TOP clause that precedes select items in the SELECT clause.

SNAILS Database Selection and Extension Processes. The initial 9 datasets and schemas
are included because they were (1) publicly available, (2) not included in any prior NL-to-SQL
benchmarks, (3) contained relational tables with dependencies and database instances with values,
(4) had available table and column metadata, (5) represented a diversity of application domains,
and (6) contain data potentially useful for real-world data analysis or data science applications.
Databases are not selected or pre-screened using perceived naturalness as criteria.
We view the initial 9 schemas as a starting point from which the SNAILS dataset can grow.

Researchers who wish to extend the SNAILS collection should use the same selection criteria. In
addition, the extension process must ensure that new databases: (1) can be represented as MS
SQL Server instances, (2) each native identifier’s naturalness is classified according to defined
criteria using the SNAILS naturalness classifier, and (3) that native identifiers are modified using
the SNAILS modification artifacts to create alternate naturalness levels.

3.2 NLQuestion - SQLQuery Pairs
To evaluate SQL inference performance over the Native and modified schemas in the SNAILS
real-world database collection, we create a new set of 503 NL-question and SQL gold query pairs
(Artifact 6). Schema identifier naturalness are the primary considerations for NL question and gold
query composition. During question and query formulation we track schema coverage to ensure
that the distribution of identifier naturalness within a set of gold queries generally matches the
naturalness distribution of target schemas.
To enable accuracy measurements at the identifier level, gold queries contain the minimum

identifiers (tables and columns) required to answer its corresponding question. For this reason, for
questions that require the count aggregation function, where appropriate, we use the COUNT(*)
clause (as opposed to selecting an arbitrary column). This approach eliminates incorrect penalties
to recall if a generated query fails to project an arbitrary column as a function argument.
Gold queries contain only native identifiers, such that all gold queries return valid non-null

results from target databases in the real-world database collection (Artifact 1). We measure query
complexity as a count of its clauses and identifiers. Gold queries span a range of complexities, from
very simple single table projections, to multi-table joins and nested subqueries (see Table 3).
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Adding New NL-SQL Pairs to the SNAILS Collection. For researchers interested in extending
the SNAILS collection, it is necessary to create new ground truth NL-SQL pairs for evaluation. While
we employed a fully manual approach for question writing, and this approach may be used for
future additions, they may also consider the use of new approaches such as using a template-based
approach for generating question-query pairs with relational data as input [36]. Regardless of
NL-SQL pair creation method, researchers should ensure adequate schema coverage and minimum
essential identifier selection as described in the preceding section.

4 NL-to-SQL Benchmarking Setup

Denaturalize 
Query

NL 
Question

 Schema

Generate 
Prompt

Modify 
Schema 

Identifiers 

NL-to-SQL
Inference

Predicted 
Query

Generate & 
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Identifiers

Naturalness-
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Data
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Fig. 6. Experiment setup workflow from NL question and schema as input to predicted query as output.

To evaluate the impact of naturalness on NL-to-SQL accuracy, we build a benchmarking setup
pipeline as shown in Figure 6. NL question and gold query pairs, database schemas, and naturalness
crosswalk mappings are inputs into subprocesses. The subprocesses include prompt generation,
schema identifier naturalness modification, identifier naturalness classification, LLM-based NL-to-
SQL inference, and predicted query “denaturalization” (i.e., converting table and column identifiers
to native schema identifiers prior to query execution). The output of the experiment setup is a
predicted query, which along with its gold query counterpart, is executed against a target database.
This predicted query is passed into a parser analysis tool as initial steps of the Performance Evaluation
and Results Classification phase of the experiment described in Section 5.

4.1 Prompt Generation
The design space for LLM-based NL-to-SQL prompting is quite large, with options ranging from
zero-shot instructions to sequential prompting broken into discrete tasks such as schema subsetting
and error handling. Although we evaluate 2 complex NL-to-SQL workflows, to maintain consistency
across the LLMs compared in this study, our performance comparisons focus on a single prompting
strategy: zero-shot prompting with schema knowledge.

Prompting Strategy. SNAILS prompts consist of zero-shot instructions with schema knowledge
(denoted as ZS in results figures) in a format similar to OpenAI’s Text-to-SQL demonstration
prompt [13] for completions. The prompt begins with task instructions and database information:

For the database described next, provide only a sql query.
do not include any text that is not valid SQL.
#Database: NTSB
#MS SQL Server tables, with their properties:

Target database system tables provide schema knowledge, which is represented as a list of tables
and their column names with data types in the format:

#TableName (Col1Name Type, Col2Name Type, ...)

The prompt ends with the instruction:
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### a sql query, written in the MS SQL Server dialect,
to answer the question: <Question>

Where <Question> is replaced with an NL question directed at the given schema.
To evaluate naturalness effects on more complex NL-to-SQL prompting workflows, we also

implement DIN SQL [40] which uses prompt chaining with GPT-4, and CodeS [23]–a multi-step
NL-to-SQL system (schema filtering and SQL inference) based on StarCoder [25] and finetuned for
the NL-to-SQL translation task.

Prompt Schema Identifier Modification. For inference on virtual schemas with modified
naturalness levels, we replace Native identifiers with corresponding identifiers of the target virtual
schema’s naturalness level. We accomplish this step using the naturalness-modified identifier
collection (Artifact 4) described in Section 2.3. We use a SQL parser to encase identifiers within
tags to improve identifier replacement accuracy and eliminate errors due to substring matching
between identifiers.

4.2 NL-to-SQL Inference
LanguageModels. Foundational LLMs continue to grow in capability at a rapid pace. Despite this

growth, not all NLI implementations can avail of the most-capable LLMs, often due to organizational
policy constraints (e.g., organizational security concerns [14]). Additionally, we seek to understand
if schema naming effects generalize across model architectures and sizes. Thus, we consider several
LLMs, both open and closed source, to capture as many use profiles as possible including OpenAI’s
GPT-3.5 Turbo and GPT-4o [31, 32]; Google’s Gemini 1.5 Ultra [47, 48]; and Phind-CodeLlama-34B-
v2 [38] which is a finetuned variant of Meta’s CodeLlama 2 [42].

CodeS and DIN SQL Implementation. For the more complex DIN SQL and CodeS NL-to-SQL
workflows, we provide additional versions of the SNAILS schema artifacts to conform to the input
requirements of the target systems. Additionally, we add data logging between agents to document
the schema filtering step for additional analysis. For consistency between approaches, we use
GPT-4o for all steps in the prompting chain. For CodeS inference, we execute the schema filtering
and NL-to-SQL inference using the CodeS codebase and finetuned models.

Generated Query Denaturalization. For queries targeted at virtual schemas and generated
using modified schema identifiers, we perform reverse modifications prior to query execution on the
native database schema. Using a purpose-built Antlr [37]-based parser, we extract table and column
identifiers, and generate a tagged query with identifier tags encasing table and column names.
The tags guide the replacement algorithm, ensuring accurate replacement of naturalness-modified
identifiers with their Native naturalness counterparts.

5 NL-to-SQL Benchmarking Results
This section describes the process of evaluating the generated SQL query output from the prior
section. We evaluate performance in terms of execution accuracy (result set comparison and manual
evaluation) and schema linking (recall, precision, and F1).

Key Takeaways. Overall, there is a model-dependent statistically significant correlation between
identifier naturalness and execution accuracy, with smaller models exhibiting higher correlations
between naturalness and performance. The presence of Least naturalness identifiers has the largest
negative effect on schema linking. Additionally, while the performance difference between Regular
and Low is visible, it is less impactful. So, modifying Least naturalness identifiers should be a higher
priority than modifying Low naturalness identifiers.
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Fig. 7. Benchmark results evaluation includes generated and gold query execution on target schemas, parser-
based analysis, and identifier set comparisons. We evaluate performance in terms of execution accuracy and
schema linking (precision, recall, and F1).
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Fig. 8. Execution accuracy (proportion of correct queries) by model. There is slight accuracy improvement
from native schemas to schemas modified to regular naturalness. Accuracy drops significantly for schemas
modified to low naturalness.

5.1 Execution Accuracy
Execution Result Set Comparison. Execution accuracy is the standard measure of performance

in most NL-to-SQL benchmarks [24, 55] where accuracy is determined using result set comparisons
between gold and generated queries executed over one or more database instances. A drawback
of existing methods is that strict set or bag comparisons risk increased false-negatives when a
generated query includes additional fields that are not required, but do not render the result
incorrect in terms of the natural language question [11, 56].
To reduce false negatives, the SNAILS approach to execution accuracy evaluation adopts 2

aspects of relaxed execution matching as described in [11]; it accounts for: (1) The possibility that
a predicted query may contain additional columns beyond those retrieved by a gold query; and
(2) That unless specified in the NL question, tuples may appear in any order. To achieve this, we
perform result set-superset comparisons to ensure that the predicted result set column set is a
superset of the gold result set column set. That is, a generated query is considered incorrect if
it does not contain all gold query columns; but it is not considered incorrect (at this stage) if it
includes columns not present in the gold query result. A more detailed description of this approach
is available in the technical report [26].

Manual Evaluation. Execution result set comparison cannot prove query correctness; so we
rely on it only to rule out true negatives from further consideration. To validate correctness, the
authors manually review generated queries that pass execution result set-superset comparison
checks. We streamline this process by creating a Python-based manual validation user interface that
makes the process of comparing gold and generated queries more user-friendly. Manual validation
steps include ensuring the generated query answers the NL question, matches the gold query in
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terms of semantic structure, and does not contain semantically incorrect predicates, projections, or
clauses.

Naturalness Effect on Execution Accuracy. Figure 8 shows execution accuracy for each LLM
and naturalness level. There is a clear difference in overall performance between LLMs, most likely
due to model size. We find that generally more natural database schemas yield more correct queries.
Databases with more natural native schemas did not benefit from identifier renaming, though we
observe that altering a schema to become less natural degrades accuracy in most cases. We find
that for databases with Native schema combined naturalness scores less than 0.69, modifying the
schema identifiers to increase naturalness improves execution accuracy.

Statistical Significance. The Kendall-Tau correlation between the naturalness of identifiers in
a query and execution accuracy ranges from low (𝜏 = 0.09, 𝑝 < 0.0001) for Gemini 1.5, to moderate
(𝜏 = 0.19, 𝑝 < 0.0001) for Phind-CodeLlama2 and CodeS. The most impactful relationship is between
the presence of Least naturalness identifiers and performance, with Kendall-Tau correlations
between the proportion of Least identifiers in a query and execution accuracy between 𝜏 = −.15
and 𝜏 = −.22 with 𝑝 < 0.0001 for all models.

5.2 Schema Linking Evaluation
Wemake schema linking a “first class citizen” of our analysis, and study schema linking performance
in queries irrespective of other aspects of correctness. Thus, we propose query-level and identifier-
level schema linking measurements. We propose an approach similar to the Spider benchmark exact
set matching system [55] in which we employ a schema linking-specific evaluation method using
recall scoring of gold and generated query pairs. Other schema linking-focused research measure
effects of schema linking improvements using ablation [3, 46, 52, 53]. In other cases, schema linking
is described in post-hoc analysis of NL-to-SQL model performance, with schema linking accounting
for roughly 30% of failures [8, 40].

Query-Level Linking Analysis. The set of all schema identifiers (table and column names)
present in gold queries represents the minimum identifiers required to correctly answer an NL
question. Our purpose-built ANTLR4-based [37] query parser extracts identifiers from gold and
generated queries. With a set 𝑄𝐼𝑔 of identifiers present in the gold query and a set of identifiers
𝑄𝐼𝑝 present in the generated (or predicted) query, we calculate recall, as well as F1 and precision.

𝑄𝑢𝑒𝑟𝑦𝑅𝑒𝑐𝑎𝑙𝑙 =
|𝑄𝐼𝑔 ∩𝑄𝐼𝑝 |

|𝑄𝐼𝑔 |
(1)

𝑄𝑢𝑒𝑟𝑦𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑄𝐼𝑔 ∩𝑄𝐼𝑝 |

|𝑄𝐼𝑝 |
(2)

𝑄𝑢𝑒𝑟𝑦𝐹1 =
2(𝑄𝑢𝑒𝑟𝑦𝑅𝑒𝑐𝑎𝑙𝑙 ∗𝑄𝑢𝑒𝑟𝑦𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛)
𝑄𝑢𝑒𝑟𝑦𝑅𝑒𝑐𝑎𝑙𝑙 +𝑄𝑢𝑒𝑟𝑦𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(3)

We exclude 137 linking score calculations from analysis in situations where the predicted query
contains invalid SQL that prevents query parsing and identifier extraction. We use recall as the
primary measure for schema linking, as it does not penalize generated queries that contain extra
identifiers that do not render an answer incorrect in our setting, such as cases when an arbitrary
column is referenced in a count function. Charts and tables depicting F1 and precision scores are
available in the technical report [26].
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Fig. 9. Native identifier recall scores by model and naturalness level. Error bars set with confidence interval
of 0.95. For all models, identifiers in lower naturalness categories yield lower recall scores.
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Fig. 10. Schema linking performance across database schema naturalness levels generally yields equal or better
performance for higher levels of naturalness, with open source models Phind-CodeLlama2 (Ph-CdLlm2-ZS)
and CodeS as well as OpenAI’s GPT-3.5 (GPT-3.5-ZS) exhibiting higher sensitivity to changes in naturalness.
Zero-shot prompting NL-to-SQL methods are denoted as (ZS).

Identifier-Level Linking Analysis. For an identifier-focused (rather than query-focused) metric,
we perform identifier-level linking analysis. We derive recall linking scores for each Native schema
identifier 𝐼 as follows. 𝐼𝑚𝑎𝑡𝑐ℎ is the count of instances when 𝐼 is correctly present in a predicted
query. 𝐼𝑔𝑜𝑙𝑑 is the count of gold queries that contain 𝐼 .

𝐼𝑑𝑒𝑛𝑡𝑖 𝑓 𝑖𝑒𝑟𝑅𝑒𝑐𝑎𝑙𝑙 =
𝐼𝑚𝑎𝑡𝑐ℎ

𝐼𝑔𝑜𝑙𝑑
(4)

Figure 9 visualizes IdentifierRecall of Native identifiers in each naturalness level, and for each
LLM. The chart indicates an observable difference in IdentifierRecall scores for each naturalness
level, with IdentifierRecall increasing for higher naturalness levels. These results remain consistent
relative to overall model performance across all 5 LLMs and various workflows.
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Naturalness Effect on Schema Linking. Overall, we find that schema naturalness has a model-
dependent and significant effect on schema linking performance with the highest correlations
between QueryRecall and query naturalness occurring with the open-source CodeLlama and CodeS
models, and the lowest (though still significant) correlations occurring with Google’s SoTA Gemini
1.5 Pro and OpenAI’s GPT-4o models. The more complex DIN SQL and CodeS workflow QueryRecall
results are also significantly affected by naturalness level differences.
Both DIN SQL and the CodeS complex NL-to-SQL workflows are sensitive to changes in natu-

ralness, suggesting that these more complex workflows by themselves do not overcome schema
naturalness effects. We also see that execution accuracy differences between the GPT-4o zero-shot
prompting method and the DINSQL prompt chaining method suggest that applying more complex
workflows to high-performing LLMs may be counterproductive for more recent SoTA LLMs.

Figure 10 illustrates QueryRecall across schema naturalness levels, and for each LLM. For GPT
3.5, Phind-CodeLlama2, and CodeS, we observe an improvement to QueryRecall when converting
identifiers in a Native schema to Regular naturalness. This improvement did not manifest for
Gemini and GPT-4o when observing the data in aggregate (i.e., between databases) due to their
overall high performance relative to the other models, but improvements within databases of lower
naturalness are still present (see Figure 11). The recall drop (approximately 20 percent decrease)
associated with a modification from both Regular and Low to Least naturalness remains consistent
across all LLMs.
Naturalness changes within specific SNAILS database schemas paints a clearer picture of the

impact of naturalness. Figure 11 provides a drill-down view of the effect of schema modification
on the PILB, SBOD, and NTSB schemas in terms of QueryRecall, and for each LLM and schema
naturalness level. The center example (PILB) is a highly natural Native schema where schema
naturalness modification would not be required. The leftmost example (NTSB) indicates linking
performance improvement across all models for a native schema of lower naturalness converted
to a higher naturalness schema, and presents a case where naturalness modification will improve
NLI performance. The rightmost database (SBOD) represents a Least naturalness schema, and
transformation from Native to Regular yields significant improvements for all models. In all cases,
we see that reducing naturalness to the Least level consistently degrades QueryRecall.

Statistical Significance. Kendall-Tau correlations between the proportion of Least identifiers
and QueryRecall range from 𝜏 = −0.16 (Gemini) to 𝜏 = −0.28 (Phind-CodeLlama2), with 𝑃 < 0.001
for all models. Both Regular and Low identifier proportions are significantly correlated with
improved outcomes in terms of QueryRecall. Identifiers with Regular naturalness show the highest
positive Kendall-Tau correlations ranging from 𝜏 = 0.07 (Gemini) to 𝜏 = 0.20 (Phind-CodeLlama2).
Low naturalness identifier proportions correlate positively, but to a lesser degree, with Kendall-Tau
values ranging from 𝜏 = 0.05 (Phind-CodeLlama2) to 𝜏 = 0.07 (Gemini).

Naturalness Effects on Schema Subsetting. Wemeasure the schema subsetting (also known as
schema filtering, or table retrieval) in terms of recall, precision, and f1 score, and present the results
in Figure 12. We find that for the CodeS finetuned classifier approach, schema naturalness level
differences result in observable differences in f1. For the DIN SQL LLM-based approach, naturalness
effects are less pronounced, though still present, particularly for Least level schemas.

Performance Over Modified Spider Schemas. Figure 13 shows that with the SNAILS schema
renaming artifacts applied to the Spider NL-to-SQL benchmark dev dataset [55], naturalness effects
are the most significant between Low and Least levels of naturalness. Performance differences
across naturalness levels for the highly natural Spider schemas resemble performance over similarly-
natural schemas in the SNAILS collection.
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Fig. 11. Schema linking performance (QueryRecall score) changes across 3 example databases’ native and
virtual schemas. We selected these 3 examples to showcase the diversity of the databases in our collection.
PILB Native is a more natural schema with 65 percent Regular, 22 percent Low, and 13 percent Least; NTSB
Native contains 42 percent Regular, 34 percent Low, and 24 percent Least; and SBOD Native is the lowest
naturalness schema with 24 percent Regular, 49 percent Low, and 27 percent Least.
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Fig. 12. Schema subsetting performance, measured with recall, precision, and f1 score, varies by naturalness
levels for both DIN SQL and CodeS. Measurement Score is Recall, Precision, or f1 respectively.
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Fig. 13. QueryRecall and Execution Accuracy differences over the Spider [55] dev set modified using SNAILS
renaming artifacts.

Additional Charts and Figures. The technical report [26] also provides additional fine-grained
results: a more detailed tabular breakdown of execution accuracy by schema and LLM; Precision-
and F1-based results; token ratio correlations; and more granular QueryRecall correlations and box
plots.
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6 Discussion and Limitations
The ability to assess the naturalness of existing schemas can inform the feasibility of “hooking up”
an NL query interface to an existing database. We believe that practitioners who are considering
the integration of an LLM into their database interaction workflows would benefit from making
naturalness-focused schema analysis a key step in their integration process.

Other Naming Patterns in Real-World Schemas. To examine naming practices in the real-
world, we classified the identifiers of SchemaPile dataset [7] with our CANINE-based classifier, and
evaluated the identifiers for other LLM-unfriendly patterns. We observe that whitespace characters
within schema identifiers contributes to identifier mutation during inference. That is, rather than
encasing a whitespace-containing identifier with brackets or quotes, the LLM hallucinates the
identifier into snake or camel case format. We find that in the SchemaPile collection, though
whitespace is uncommon (less than 1 percent for both tables and columns), it appears in 808
columns and 63 tables, and is comparable to the proportions in the SNAILS dataset.
Another naming practice that yields disproportionate failures with some LLMs is the presence

of the word table in the identifier name. In these instances, we find that the LLM tends to drop the
word table from the name (e.g., table_employee becomes employee). There are over 700 identifiers
(less than 1 percent of all identifiers) in the SchemaPile collection that employ this naming pattern.

These observations suggest that although these naming patterns are not necessarily a common
occurrence in many real-world schema designs, they do appear in some cases. We suggest that
practitioners would benefit from assessing the naming patterns of their database schemas.

Variations in LLM Sensitivity to Naturalness. There are many LLMs to select from for
NLIDBs, and we can see even within the select 5 models in our work large variations in NL-to-SQL
performance as well as the degree of sensitivity to schema naturalness. The Google Gemini and
GPT-4o models demonstrate the highest overall performance, as well as the lowest sensitivity to
naturalness differences between Regular and Low levels. Without access to the underlying model
architectures and weights, it remains as a black box in our research, and we can merely speculate
the reasons why it is not as affected by naturalness as the other 3 models in our study. Generally,
we observe that the these models have an overall higher performance, and are less prone to linking
errors such as selecting the incorrect identifier from the schema knowledge representation or
committing a typo-like hallucination.
Though selecting the most performant model would seem to be an obvious course of action,

competing factors such as an organization’s policies, budget, or existing vendor contracts, may
require the selection of a model that is more sensitive to schema naturalness differences. Thus, we
believe that naturalness-aware NLI integration will remain important for at least the practitioners
who use LLMs other than Gemini in the set that we have studied.

Modifying Existing Schemas. For already-existing schemas, renaming identifiers is generally
a non-trivial effort, particularly for those databases for which documentation has been published
and application interfaces have been integrated. Schema modifications may not be necessary (or
helpful), if a schema is already classified as highly natural. DBAs should assess current naturalness
levels prior to committing to naming modifications. At a minimum, we recommend that any Least
identifier be modified to a Regular naturalness level and, if feasible, Low identifiers as well. If
renaming a less natural schema’s identifiers is not feasible due to integration constraints, we
suggest one of two approaches: 1) adopting a naturalness-as-a-view strategy by mapping Native
identifiers to Regular naturalness identifiers using SQL views, or 2) a middleware approach that
modifies schema knowledge in LLM prompts and generated SQL queries prior to execution on the
database. We sketch a rough design of both options in the technical report [26].
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We demonstrate a natural schema view proof of concept with our SNAILS database collection
and their MS SQL Server instances. For each table and column in the collection’s database schemas,
we map the Native table or column to its Regular counterpart in the naturalness modified identifier
dataset using SQL view creation DDL and a db_nl schema. This enables schema information retrieval
for LLM-based NL-to-SQL prompting without prompt or generated query modification while still
retaining the underlying Native schema naming patterns required for existing integrations.
In lieu of schema modificaftion, practitioners may elect to employ prompting techniques that

augment schema representations with additional metadata or value samples. While these methods
may improve schema linking performance in some contexts [29], they greatly increase schema
representations on a per-identifier basis. Thus, the cost to do so is high in terms of token efficiency,
latency, and implementation complexity, especially for very large schemas.

Designing New Schemas. For new schema development, our results show that making schema
identifiers more natural from the start can make databases work better with LLMs. Specifically,
database designers should try to avoid Least naturalness identifiers and would likely also benefit
from limiting Low naturalness identifiers. Database practitioners can evaluate the naturalness of
identifiers using the identifier naturalness classification techniques and model artifacts described
in this paper and released publicly by us as part of the SNAILS collection.

Limitations. LLM research is advancing rapidly, and the LLMs represented in this paper may
get superseded by newer versions or newer models (e.g., DBRX [50], Arctic [51]). But it does not
negate our work’s core value–the first in-depth characterization of how schema naturalness affects
LLM-based NL-to-SQL–and our new labeled datasets, AI artifacts, and benchmarking framework
can be used for future LLMs too. We leave it to future work to also include such very recent LLMs
for further benchmark analyses.
We recognize that the correlation statistics indicate a moderate (in some cases only a weak)

correlation between naturalness and IdentifierRecall. This suggests that other undiscovered fac-
tors also influence linking performance; and further research may reveal additional schema- and
language-related correlations.

Our selection of 9 database schemas is of course not fully representative of all types of schemas
available in the real-world. The SNAILS collection will benefit from continued growth in terms
of both databases and NL-SQL pairs. We hope our open source datasets and artifacts can be built
upon by the database and NLP communities to keep improving LLM-based NL-to-SQL.

Future Work. In addition to extending the SNAILS benchmark artifacts to include additional
datasets and artifacts, we identify several NLP+DB directions for future work. First, we wish to
ask why and how exactly do different naturalness levels alter schema linking performance so
much? Is it due to the tokenization and embedding mechanics? If so, where in the latent space
do these altered tokens end up, and how do the encoders make use of them? Second, why do the
different foundational LLMs behave so differently? Is it related to their architectures, tokenization,
(pre)training data, post-training finetuning process, or some other factors? We believe these open
questions have the potential to lead to several interesting new lines of research at the DB and NLP
intersection.

7 Related Work
Ontology Mapping. Schema modifications and intermediate representations to enhance perfor-

mance in a specific context extend beyond NL-to-SQL applications. Mapping relational database
schemas to ontologies is an approach used to improve schema-to-schema integration and web
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application application-database interfaces [54]. This improves the semantic description of under-
lying data, which is often a desirable feature in web applications that interact within the semantic
web [17]. While ontological mapping of a relational database can improve performance in this
context; we see less evidence that such an approach is useful or necessary in NL-to-SQL applications,
though this may serve as a compelling opportunity for future research.

NL-to-SQL Benchmarks. Spider [55], soon to be superseded by a more challenging benchmark
for the LLM era, was a popular NL-to-SQL benchmark that still offers a publically-available dataset
consisting of 166 multi-table databases and 1,034 NL questions and gold queries over the databases
in a development dataset. Spider-Syn [12] and Spider-Realistic [12] are extensions of the Spider
benchmark that perform NL question synonym replacement to reduce the occurrences of lexi-
cal matching between NL question keywords and schema identifiers. BIRD [24] is an emergent
benchmark containing 95 large databases over 37 domains that seeks to better replicate real-world
databases in order to better challenge highly capable LLM-based NL-to-SQL systems. While Spi-
der and its variants as well as BIRD intend to better-replicate real-world database designs, our
naturalness-focused analysis indicates that their schema identifiers are more natural than those we
encountered in our real-world database selection process (see the statistics in Figure 3). Additionally,
Spider and BIRD both evaluate performance using either exact set matching or execution result
set comparison while we use the more pragmatic set-superset matching as proposed in [11] and
schema linking-specific recall metrics.
Archerfish [11] is a benchmarking framework that relaxes execution matching and accounts

for semantic ambiguity in NL questions by allowing for multiple correct answers derived from
candidate key analysis. This framework relies on the binary “correct, or not” evaluation approach
common to other benchmarks, whereas in addition to relaxed executionmatching, SNAILS evaluates
target schema linking performance via query identifier recall. Overall, we find that our benchmark
and findings complement this existing and ongoing research by enhancing our ability to target
specific schema-related aspects of NL-to-SQL performance in future NLI development.

Impacts of Schema on NL-to-SQL Performance. Spider-Syn [12] demonstrates degraded NL-
to-SQL performance of language models trained for NL-to-SQL tasks when the occurrence of lexical
matching between NL questions and schema identifiers is reduced. This approach differs from our
experiments in that it evaluates a LM specifically trained on NL-to-SQL tasks using the Spider
training set as opposed to the more general-purpose foundational LLMs evaluated in this work.
They also make no apparent attempt to reduce the naturalness of database schema identifiers.

Semantics-preserving schema transformation is a design feature of MT-teql [27], an NL-to-
SQL evaluation framework that modifies natural language utterances and schema properties to
stress LM robustness. MT-teql provides a holistic view of the effect of NL utterance variances and
schema design on LM performance. However, it does not address the question of schema identifier
naturalness, nor does it make modifications to schema elements that are necessary for answer
generation.
Some recent work has examined the effects of schema ambiguity, where semantically different

tables or columns have identical or synonymous names. Schema ambiguity, where a schema
contains one or more semantically similar pairs of elements, degrades semantic parsing (i.e.,
NL-to-SQL) performance by recalling undesired tables or columns in response to a NL question
that contains patterns or keywords that align with more than one schema element in the latent
space [35]. Documentation, combined with agent-based column selection, can improve Text-to-SQL
performance in the presence of data and schema ambiguity [18]. Though we did not focus on
ambiguity in our work, identifier naturalness and ambiguity are complementary efforts that provide
a potential future direction for the expansion of the SNAILS benchmark artifacts.
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