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Abstract

Background: There exist few maximal oxygen uptake (VO2max) non-exercise-based prediction equations, fewer using machine learning (ML),

and none specifically for older adults. Since direct measurement of VO2max is infeasible in large epidemiologic cohort studies, we sought to

develop, validate, compare, and assess the transportability of several ML VO2max prediction algorithms.

Methods: The Baltimore Longitudinal Study of Aging (BLSA) participants with valid VO2max tests were included (n = 1080). Least absolute

shrinkage and selection operator, linear- and tree-boosted extreme gradient boosting, random forest, and support vector machine (SVM) algo-

rithms were trained to predict VO2max values. We developed these algorithms for: (a) the overall BLSA, (b) by sex, (c) using all BLSA variables,

and (d) variables common in aging cohorts. Finally, we quantified the associations between measured and predicted VO2max and mortality.

Results: The age was 69.0 § 10.4 years (mean § SD) and the measured VO2max was 21.6 § 5.9 mL/kg/min. Least absolute shrinkage

and selection operator, linear- and tree-boosted extreme gradient boosting, random forest, and support vector machine yielded root mean

squared errors of 3.4 mL/kg/min, 3.6 mL/kg/min, 3.4 mL/kg/min, 3.6 mL/kg/min, and 3.5 mL/kg/min, respectively. Incremental quartiles

of measured VO2max showed an inverse gradient in mortality risk. Predicted VO2max variables yielded similar effect estimates but were

not robust to adjustment.

Conclusion: Measured VO2max is a strong predictor of mortality. Using ML can improve the accuracy of prediction as compared to simpler

approaches but estimates of association with mortality remain sensitive to adjustment. Future studies should seek to reproduce these results so

that VO2max, an important vital sign, can be more broadly studied as a modifiable target for promoting functional resiliency and healthy aging.
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1. Introduction

Cardiorespiratory fitness (CRF) refers to the circulatory and

respiratory systems’ capacity to provide oxygen to skeletal

muscles for engaging in physical activity.1 While factors such

as age, sex, health status, and genetics are strong determinants
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of CRF, one’s level of habitual physical activity is the prin-

cipal modifiable determinant of this attribute.1 Scientific

evidence from clinical, epidemiologic, and exercise science

studies has consistently shown higher CRF to have strong,

independent, and beneficial associations with several clinical

outcomes. Higher CRF predicts lower incidence and mortality

from coronary heart disease/cardiovascular disease,2�4 longer

survival times,3,5�7 and lower rates of loss of independence

for older adults.8
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Maximal oxygen uptake (VO2max) is the gold standard

measure of CRF and is recognized as a hallmark biomarker of

healthy aging.1,9 VO2max measurements in research settings

involve maximal graded exercise tests, usually conducted on a

treadmill or stationary cycle ergometer. Such assessments typi-

cally require highly trained personnel, specialized testing

equipment and, in most instances, direct physician supervision

to reduce the risk of adverse events. Because VO2max testing

involves strenuous activity to the point of absolute exhaustion,

it is often contraindicated for older adults. These features

make direct measurement of VO2max infeasible in large epide-

miologic cohort studies. To provide alternatives, researchers

have published non-exercise VO2max prediction equations that

can be used to approximate laboratory-measured VO2max in

large epidemiologic cohorts. However, few of these equations

were designed for use specifically in older adults.10,11 A recent

systematic review of the published VO2max prediction equa-

tions utilizing machine learning (ML) algorithms determined

few equations could be applied to epidemiologic cohorts that

do not have exercise testing data, and none of these ML

models were developed in older adult populations.12 By the

year 2060, nearly one-fourth of the U.S. population will be

�65 years of age. Given the associations of higher CRF with

beneficial health outcomes, the ability to precisely estimate

VO2max in older adults is a growing and critical need as we

continue to investigate the effects of CRF on healthy aging.13

Thus, we aimed to develop, validate, and compare multiple

machine-learned, non-exercise based VO2max prediction algo-

rithms for older adults using laboratory-measured VO2max in

the Baltimore Longitudinal Study of Aging (BLSA). We

aimed to develop these algorithms for the BLSA sample

overall and by sex, to assess the association of measured and

predicted VO2max with all-cause mortality, and to assess the

feasibility of transporting these algorithms to an external

epidemiologic cohort.
2. Methods

2.1. Study participants

The analytic sample was drawn from the BLSA, which is

conducted by the National Institute on Aging Intramural

Research Program.14 Established in 1958, the BLSA is the

longest on-going scientific study of aging.15,16 Participants

visit the BLSA testing facility every 1�4 years for health,

cognitive, and functional evaluations lasting 3 days. Since its

inception, over 3500 individuals have participated in the

BLSA, and more than 1300 remain active.15 Extensive details

about BLSA design, recruitment, and measurements are avai-

lable elsewhere.16 All participants provided written informed

consent, which was approved by the applicable Institutional

Review Boards (IRB protocol number: 03-AG-0325).
2.2. Measures

2.2.1. VO2max measurement

Using a modified Balke treadmill testing protocol,17,18

VO2max was measured as milliliters of oxygen uptake per
kilogram (kg) of body weight per minute (mL/kg/min). The

participants walked on a treadmill at a set pace (3.0 miles per

hour for women and 3.5 miles per hour for men) and the

incline of the treadmill increased by 3% every 2 min until the

participant indicated having reached exhaustion. Standard

safety measures were observed and are detailed in the Tech-

nical Appendix. During this test, a gas meter (Parkinson-

Cowan, Waitsfield, VA, USA) was used to measure expired

gas volumes. A medical mass spectrometer (Perkin-Elmer

MGA-1110; Milwaukee, WI, USA; calibrated daily using stan-

dard gases) was used to measure oxygen and carbon dioxide

concentrations. Every 30 s during the test, average expired gas

concentrations were calculated by a programmed interface

between the gas meter and mass spectrometer, and VO2max

was defined as the highest 30-s oxygen uptake value.

Maximal effort on the treadmill test was specified as a

respiratory exchange ratio of greater than 1.0. Of 52 partici-

pants with a respiratory exchange ratio value just below the

cutoff when the treadmill was stopped, 11 achieved 85% or

more of their age-predicted maximal heart rate in beats per

minute (computed as 220 � age in years) and had a value

greater than 17 on the 20-point Borg rating of perceived exer-

tion (RPE) scale. These test results were considered to reflect

their maximal effort and were included in the present analysis.

Of the remaining 41 participants with a respiratory exchange

ratio of less than 1.0 when the treadmill was stopped, 31 had

no other VO2max test meeting the aforementioned criteria and

were excluded from the present analysis, and 10 provided a

subsequent VO2max test that satisfied these maximal test

criteria and so were included in the analysis, resulting in a

final analytic sample of 1080 participants. For participants

having more than one VO2max measurement, only the first

measurement meeting the maximal effort criteria was

included.

2.2.2. Outcome ascertainment

Participant information was linked to the National Death

Index19 to ascertain vital status and, for those deceased, their

date of death. Follow-up occurred from the participant’s

VO2max test date (VO2max measurements ranged from January 1,

2007, to January 21, 2020) until April 15, 2021. Vital status

classification was obtained for 96% of participants. There were

141 participant deaths from any cause during a median follow-up

of 9.6 years (range: 0.6�14.1 years).

2.2.3. Covariates

2.2.3.1. Demographics and physical attributes. Demographic

variables included self-identified sex (male or female), race

and ethnicity (non-Hispanic White, non-Hispanic Black,

Hispanic, non-Hispanic Asian/other Pacific Islander, or non-

Hispanic other/not classifiable), education (non-college grad-

uate, college graduate, or post-college), age, height (cm)

measured using a stadiometer, weight (kg) measured using a

calibrated scale, body mass index (BMI) calculated as weight

(kg) divided by height (m) squared, and waist circumference

(cm) using a tape measure.
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2.2.3.2. Health status/health history/functional capacity. Health

status variables included the 12-item Short Form Survey of

self-rated health scale20 and its physical and mental health

composite scores, hand grip muscle strength scores (kg) in

both hands using a Jamar Hydraulic Hand Dynamometer

(Lafayette Instrument Company, Lafayette, IN, USA),21 and

Short Physical Performance Battery (SPPB) physical function

score (0�12, higher is better) and its 3 components.22,23

Additional timed walk tests included the number of meters

walked at usual pace for 2.5 min,24 the number of seconds to

walk 400 m at a fast pace,24 and a walking capacity summary

score. Details about the derivation of the walking capacity

summary score have been published elsewhere.25 Health

history variables included dichotomous indicators (yes/no) for

a physician diagnosis of myocardial infarction, congestive

heart failure, stroke, diabetes, glucose intolerance, high blood

sugar, and breast cancer. Additionally, measurements were

taken of seated, resting systolic and diastolic blood pressure

from both arms, resting heart rate, and heart rate at the end of

the 2.5-min usual pace walk.

2.2.3.3. Health behaviors. BLSA participants reported their

time spent performing 97 activities over the last 2 years, and

each activity was assigned a metabolic equivalent value26 to

estimate calories expended in all activity, calories expended in

all activities per kg of body weight, calories expended in exer-

cise-related activity, minutes of any exercise per week (0�29

min, >29�74 min, >74�149 min, or >149 min), continuous

minutes of: any walking per week, brisk walking per week,

vigorous activity per week. Self-reported health behavior vari-

ables were included: smoking history (never, current, or

former smoker), beta blocker use (yes/no), and blood sugar

medication use (yes/no).

2.2.3.4. Objective Physical Activity and Cardiovascular

Health Study (OPACH) covariates. We sought to assess the

feasibility of transporting the machine-learned algorithms

from BLSA to an external epidemiologic aging cohort

containing variables common in population studies on aging.

To accomplish this, the algorithms were re-trained using only

predictors that exist in both BLSA and the OPACH, an ancil-

lary study of the Women’s Health Initiative. Extensive details

about OPACH have been published elsewhere.27 For the

purposes of the present study, the OPACH dataset contained

all the BLSA covariates except for measures of rapid gait

speed, 2.5-min usual pace walk, 400-m fast walk, walking

capacity summary score, and heart rate measures during and

after the 2.5-min walk.
2.3. ML algorithms

Using measured VO2max as the ground truth, we trained 5

ML algorithms to predict VO2max: least absolute shrinkage

and selection operator (LASSO), extreme gradient boosting

(XGBoost) with a linear booster, XGBoost with a tree booster,

random forest, and Support Vector Regression, a specific

application of support vector machine (SVM). Details about
these algorithms’ processes, hyperparameter specifications,

and packages can be found in the Supplementary Technical

Appendix. When the LASSO algorithm was applied to

OPACH, approximately 38% of OPACH participants’

predicted VO2max values were missing due to missing covar-

iate data, so LASSO was not used in the regression modeling.

These ML algorithms were trained using all BLSA partici-

pants combined and separately for BLSA men and women.

The total sample and sex-stratified algorithms were trained

using all the aforementioned variables within the BLSA and,

to assess whether the results are transportable to an external

cohort, using only the variables common between BLSA and

OPACH.
2.4. Statistical analysis

Analysis of variance tests for continuous variables and x2

tests for categorical variables were used to compare covariates

by sex-specific quartiles of measured VO2max.

Next, Cox proportional hazards regression models were

used to estimate the associations between quartiles of VO2max

(measured and predicted VO2max; independent variables) and

all-cause mortality (dependent variable). Model 1 was unad-

justed, and Model 2 was adjusted for age, sex, race and

ethnicity, and education. To test the linear trends across quar-

tiles and obtain a p value for trend (ptrend), we specified the

indicator for quartile in the model as a continuous variable.

Using the same modeling approach, we also assessed VO2max

as a continuous variable estimating adjusted hazard ratios

(HRs) for all-cause mortality associated with a 1-standard

deviation (SD) increase in VO2max. The p values for mean-

centered, SD-scaled VO2max variable for Models 1 and 2 are

presented. The concordance statistic (C-statistic), a measure of

discrimination for time-to-event models that gives the propor-

tion of participant pairs for which the model correctly predicts

the participant in the pair who experiences a mortality event

first, is also presented.28

All analyses were conducted in R version 3.6.3 (R Founda-

tion for Statistical Computing, Vienna, Austria). All R codes

and trained algorithms are available at: https://github.com/

benschumacher12/VO2maxPredicitionAlgos.
3. Results

3.1. Sample characteristics

For the 565 women and 515 men with laboratory measures of

VO2max, age was 69.0§ 10.4 years (mean§ SD), BMI was 27.0 §
4.4 kg/m2, and the measured VO2max was 21.6 § 5.9 mL/kg/min

(median§ SD) (Table 1). The median VO2max for the men was 23.7

§ 6.1 mL/kg/min (range: 9.5�48.9 mL/kg/min) and the median

VO2max for the women was 19.9§ 5.1 mL/kg/min (range: 6.2�42.1

mL/kg/min). Two-thirds of the participants were non-Hispanic White,

25.8% non-Hispanic Black, 4.6% Asian, 3.2% Hispanic, while

the remaining 0.7% belonged to other race/ethnicity categories. The

majority of participants (61.9%) had a post-college education. The

prevalence of current smoking was 1.8%. Mean systolic and diastolic

https://github.com/benschumacher12/VO2maxPredicitionAlgos
https://github.com/benschumacher12/VO2maxPredicitionAlgos
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blood pressure was 114.1 § 14.1 mmHg and 66.7 § 8.8 mmHg,

respectively (Table 1).
3.2. Performance of machine-learned VO2max prediction

algorithms

The first algorithm, LASSO, yielded a root mean squared

error (RMSE; lower values indicated better prediction) of
Table 1

Characteristics of BLSA participants overall and according to quartiles of measured

Characteristics Total

(n = 1080)
Quartile

(n = 270)

Death 141 (13.1) 81 (30.0)

Age (year) 69.0 § 10.4 75.5 § 8

Race and ethnicity

Non-Hispanic, White 708 (65.6) 169 (62.6

Non-Hispanic, Black 279 (25.8) 87 (32.2)

Non-Hispanic, Asian/other Pacific Islander 50 (4.6) 8 (3.0)

Hispanic 35 (3.2) 4 (1.5)

Non-Hispanic, other/not classifiable 8 (0.7) 2 (0.7)

Highest attained education

Post college 669 (61.9) 152 (56.3

College 225 (20.8) 51 (18.9)

Non-college graduate 183 (16.9) 67 (24.8)

Missing 3 (0.3) 0 (0.0)

BMI (kg/m2) 27.0 § 4.4 28.9 § 4

Beta blocker use 152 (14.1) 78 (28.9)

Minutes of exercise

0�29 465 (43.1) 171 (63.3

>29�74 169 (15.6) 36 (13.3)

>74�149 165 (15.3) 25 (9.3)

>149 272 (25.2) 36 (13.3)

Missing 9 (0.8) 2 (0.7)

Self-rated health

Excellent 339 (31.4) 43 (15.9)

Very good/good 715 (66.2) 219 (81.1

Fair/poor 14 (1.3) 5 (1.9)

Missing 12 (1.1) 3 (1.1)

Systolic BP (mmHg) 114.1 § 14.1 117.3 §
Diastolic BP (mmHg) 66.7 § 8.8 65.0 § 8

Smoking status

Never 682 (63.1) 149 (55.2

Former 372 (34.4) 112 (41.5

Current 19 (1.8) 7 (2.6)

Missing 7 (0.6) 2 (0.7)

Maximal exercise test

VO2max (mL/kg/min) (median § SD) 21.6 § 5.9 15.5 § 2

Respiratory exchange ratio 1.2 § 0.1 1.2 § 0.1

Borg score 16.5 § 1.7 16.1 § 1

Percent of maximum predicted HRc 98.8 § 50.2 89.6 § 1

Notes: Data are shown as mean § SD or n (%) unless otherwise noted. Percentages
a Sex-specific quartile definitions were as follows:

Quartile 1: Men: <19.9; n = 129; Women: <16.5; n = 141.

Quartile 2: Men: �19.9 and �23.7; n = 131; Women: �16.5 and �19.9; n = 146.

Quartile 3: Men: >23.7 and �27.4; n = 128; Women: >19.9 and �23.7; n = 137.

Quartile 4: Men: >27.4; n = 127; Women: >23.7; n = 141.
b p value for continuous variables from the 1-way analysis of variance and x2 good
c Maximum predicted HR = 220 � age.

* Bold indicates significance at the p < 0.05 level.

Abbreviations: BLSA = Baltimore Longitudinal Study of Aging; BMI = body mass i
3.4 mL/kg/min for VO2max prediction in the total sample using

all predictors (Table 2). For the subgroups (sex-stratified in

combination with the BLSA-predictor and OPACH-predictor

algorithms), predicted VO2max RMSEs ranged from 2.8 to 3.8

mL/kg/min for the women’s BLSA-predictor and men’s

OPACH-predictor, respectively. The linear XGBoost yielded

an RMSE of 3.6 mL/kg/min for VO2max prediction in the total

sample using all predictors and OPACH predictors. For the
VO2max (n = 1080).

Measured VO2max pb

1a Quartile 2a Quartile 3a Quartile 4a

(n = 277) (n = 265) (n = 268)

38 (13.7) 14 (5.3) 8 (3.0) <0.01

.8 72.1 § 9.7 67.3 § 8.9 60.9 § 8.2 <0.01

<0.01

) 177 (63.9) 177 (66.8) 185 (69.0)

82 (29.6) 60 (22.6) 50 (18.7)

9 (3.2) 14 (5.3) 19 (7.1)

6 (2.2) 11 (4.2) 14 (5.2)

3 (1.1) 3 (1.1) 0 (0.0)

<0.01

) 168 (60.6) 169 (63.8) 180 (67.2)

53 (19.1) 57 (21.5) 64 (23.9)

56 (20.2) 39 (14.7) 21 (7.8)

0 (0.0) 0 (0.0) 3 (1.1)

.7 27.4 § 4.6 26.6 § 4.1 24.9 § 3.4 <0.01

39 (14.1) 22 (8.3) 13 (4.9) <0.01

<0.01

) 127 (45.8) 93 (35.1) 74 (27.6)

48 (17.3) 33 (12.5) 52 (19.4)

42 (15.2) 52 (19.6) 46 (17.2)

59 (21.3) 84 (31.7) 93 (34.7)

1 (0.4) 3 (1.1) 3 (1.1)

<0.01

84 (30.3) 90 (34.0) 122 (45.5)

) 185 (66.8) 170 (64.2) 141 (52.6)

6 (2.2) 2 (0.8) 1 (0.4)

2 (0.7) 3 (1.1) 4 (1.5)

14.8 116 § 13.3 113 § 13.7 110.2 § 13.3 <0.01

.4 66.3 § 9.3 66.9 § 8.6 68.5 § 8.5 <0.01

<0.01

) 169 (61.0) 180 (67.9) 184 (68.7)

) 103 (37.2) 83 (31.3) 74 (27.6)

4 (1.4) 1 (0.4) 7 (2.6)

1 (0.4) 1 (0.4) 3 (1.1)

.5 19.8 § 2.1 23.5 § 2.2 28.8 § 4.5 <0.01

1.2 § 0.1 1.2 § 0.1 1.2 § 0.1 0.67

.7 16.2 § 1.7 16.7 § 1.7 17 § 1.6 <0.01

3.3 97.5 § 9.3 100.3 § 8.5 107.8 § 98.3 <0.01

may not add up to 100% due to rounding.

ness of fit test for categorical variables across VO2max quartiles.

ndex; BP = blood pressure; HR = heart rate; VO2max = maximal oxygen uptake.



Table 2

RMSE for various ML algorithms.

Sample, universe of predictors LASSO XGBoost, linear XGBoost, tree Random forest SVM

Total BLSA, all BLSA predictors 3.4 3.6 3.4 3.6 3.5

Total BLSA, OPACH predictors 3.5 3.6 3.6 3.7 3.6

BLSA men, all BLSA predictors 3.7 4.0 3.8 4.0 4.0

BLSA men, OPACH predictors 3.8 4.0 4.0 4.2 4.1

BLSA women, all BLSA predictors 2.8 3.2 3.0 2.9 2.8

BLSA women, OPACH predictors 2.9 3.2 3.1 3.1 3.0

Note: RMSE in units of VO2max (mL/kg/min).

Abbreviations: BLSA = Baltimore Longitudinal Study of Aging; LASSO = least absolute shrinkage and selection operator; ML =machine learning;

OPACH =Objective Physical Activity and Cardiovascular Health Study; RMSE = root mean squared errors; SVM = support vector machine; XGBoost = extreme

gradient boosted.
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subgroups, RMSEs ranged from 3.2 to 4.0 mL/kg/min for both

women’s algorithms and both men’s algorithms (i.e., BLSA-p-

redictor and OPACH-predictor algorithms), respectively. The

tree-boosted XGBoost algorithm yielded an RMSE of

3.4 mL/kg/min for VO2max prediction in the total sample using

all BLSA predictors. For the subgroups, RMSEs ranged from

3.0 to 4.0 mL/kg/min for the women’s BLSA-predictor and

men’s OPACH-predictor algorithms, respectively. The

random forest algorithm yielded an RMSE of 3.6 mL/kg/min

for the total sample using all predictors. For the subgroups,

RMSEs ranged from 2.9 to 4.2 mL/kg/min for the women’s

BLSA-predictor and men’s OPACH-predictor algorithms,

respectively. The SVM algorithm yielded an RMSE of

3.5 mL/kg/min for the total sample using all predictors. For

the subgroups, RMSEs ranged from 2.8 to 4.1 mL/kg/min for

the women’s BLSA-predictor and men’s OPACH-predictor

algorithms, respectively.

To summarize the performance of each algorithm, the

LASSO and tree-boosted XGBoost algorithms had the lowest

RMSE for the entire sample using the BLSA predictors

(3.4 mL/kg/min). LASSO had the best RMSE for the entire

sample when using the OPACH predictors (3.5 mL/kg/min).

Further details about the combination of subgroups can be

found in Table 2. Finally, for all algorithms the RMSE values

for the women were lower than the RMSE values for the men.

3.3. Correlations of measured and predicted VO2max with

selected covariates

Correlations between measured VO2max, all predicted

VO2max estimates, age, BMI, and SPPB are shown in Supplemen-

tary Table 1. In short, the correlations between predicted VO2max

and measured VO2max ranged from 0.80 (OPACH-predictor

linear-boosted XGBoost) to 0.93 (BLSA-predictor tree-boosted

XGBoost). All predicted VO2max estimates were more strongly

associated with age, BMI, and SPPB than measured VO2max.

3.4. Associations of measured and predicted VO2max with

all-cause mortality

When assessing the associations between quartiles of

measured VO2max and all-cause mortality, a steep inverse

gradient in mortality risk across incremental VO2max quartiles
was evident in all models. Adjusting for Model 2 covariates,

the HRs (95% confidence intervals (95%CIs)) were 0.55

(0.37�0.82), 0.30 (0.17�0.54), and 0.34 (0.15�0.75) for quar-

tile 2 (Q2)�Q4 relative to Q1 of measured VO2max, respec-

tively, ptrend < 0.01 (Table 3). When evaluated in continuous

format, every 1-SD increment (5.9 mL/kg/min) in measured

VO2max was associated with a 50% percent lower risk of all-

cause mortality (p < 0.01) controlling for Model 2 covariates.

The C-statistic for this model (95%CI) was 0.79 (0.75�0.83).

In the unadjusted models, every VO2max prediction algo-

rithm demonstrated patterns that were similar to those seen for

measured VO2max—that is, an inverse gradient in mortality

risk across incremental predicted VO2max quartiles (Q4 HRs

ranged 0.09�0.17). However, adjusting for the Model 2

covariates attenuated the HRs for Q2�Q4, and while the

majority of the 95%CIs widened to include 1.0, the significant

trend across quartiles persisted except for the SVM-OPACH

algorithm. After adjusting for Model 2 covariates, the HRs for

a 1-SD increment in predicted VO2max were similar to that

seen for measured VO2max (HRs ranged from 0.48 to 0.61).

The C-statistics for all predicted VO2max models were 0.78

and 0.79 after adjustment for Model 2 covariates (see Table 3

for the C-statistics’ 95%CIs).

Among the BLSA men, there were 91 deaths: 53, 27, 8, and

3 in Q1�Q4 of measured VO2max, respectively. Among the

BLSA women, there were 50 deaths: 28, 11, 6, and 5 in

Q1�Q4 of measured VO2max, respectively. Sex-specific asso-

ciations for measured and predicted VO2max with all-cause

mortality can be found in Supplementary Table 2 (men) and

Supplementary Table 3 (women). In the unadjusted and

adjusted models, higher measured VO2max values are more

strongly, inversely associated with risk of death in men than in

women (Model 2 Q4 vs. Q1: men HR = 0.20 (0.06�0.70),

ptrend < 0.01; women HR = 0.63 (0.21�1.90), ptrend = 0.14).

This pattern of stronger inverse associations with mortality

among men than women held for every predicted VO2max esti-

mate. In both the BLSA- and OPACH-predictor models,

inverse trends were observed between increasing quartiles and

mortality risk, with most HRs and trends achieving signifi-

cance in men but fewer significant HRs and trends in women.

Model 2 C-statistics were somewhat stronger for the men than

the women.



Table 3

HRs of all-cause mortality by measured and predicted VO2max in the BLSA (n = 1080).

Sample, universe of predictors Model Quartiles of VO2max (mL/kg/min) or HR (95%CI) ptrend HR for 1-SD increase p C-statistic

Q1 Q2 Q3 Q4

<17.8 �17.8 and <21.6 �21.6 and <25.7 �25.7 5.9

Measured VO2max 1 1.00 (ref.) 0.43 (0.29�0.63) 0.16 (0.09�0.29) 0.10 (0.05�0.20) <0.01 0.46 (0.38�0.57) <0.01 0.71 (0.67�0.75)

Measured VO2max 2 1.00 (ref.) 0.55 (0.37�0.82) 0.30 (0.17�0.54) 0.34 (0.15�0.75) <0.01 0.50 (0.38�0.66) <0.01 0.79 (0.75�0.83)

Total BLSA, all BLSA predictors

Quartiles <18.7 �18.7 and <22.1 �22.1 and <25.2 �25.2 4.6

XGBoost, linear 1 1.00 (ref.) 0.39 (0.26�0.58) 0.18 (0.10�0.30) 0.14 (0.07�0.26) <0.01 0.53 (0.44�0.63) <0.01 0.69 (0.65�0.73)

XGBoost, linear 2 1.00 (ref.) 0.62 (0.40�0.94) 0.44 (0.24�0.81) 0.72 (0.33�1.55) 0.02 0.61 (0.46�0.80) <0.01 0.78 (0.74�0.82)

Quartiles <18.5 �18.5 and <22.1 �22.1 and <25.4 �25.4 5.0

XGBoost, tree 1 1.00 (ref.) 0.36 (0.24�0.53) 0.18 (0.11�0.30) 0.09 (0.05�0.19) <0.01 0.48 (0.39�0.58) <0.01 0.71 (0.67�0.75)

XGBoost, tree 2 1.00 (ref.) 0.46 (0.30�0.69) 0.36 (0.20�0.63) 0.40 (0.17�0.91) <0.01 0.49 (0.37�0.66) <0.01 0.79 (0.75�0.83)

Quartiles <18.6 �18.6 and <22.3 �22.3 and <25.5 �25.5 5.0

Random forest 1 1.00 (ref.) 0.47 (0.29�0.77) 0.19 (0.10�0.38) 0.11 (0.05�0.27) <0.01 0.49 (0.38�0.62) <0.01 0.69 (0.63�0.75)

Random forest 2 1.00 (ref.) 0.65 (0.39�1.07) 0.38 (0.18�0.78) 0.40 (0.15�1.07) <0.01 0.52 (0.37�0.72) <0.01 0.79 (0.73�0.85)

Quartiles <18.7 �18.6 and <22.2 �22.2 and <25.5 �25.5 4.6

SVM 1 1.00 (ref.) 0.38 (0.23�0.64) 0.18 (0.09�0.34) 0.14 (0.06�0.30) <0.01 0.54 (0.43�0.67) <0.01 0.70 (0.64�0.76)

SVM 2 1.00 (ref.) 0.51 (0.30�0.87) 0.36 (0.17�0.76) 0.52 (0.20�1.37) <0.01 0.57 (0.40�0.80) <0.01 0.78 (0.72�0.84)

Total BLSA, OPACH predictors

Quartiles <18.7 �18.7 and <22.2 �22.2 and <25.2 �25.2 4.5

XGBoost, linear 1 1.00 (ref.) 0.40 (0.27�0.60) 0.23 (0.14�0.38) 0.11 (0.06�0.23) <0.01 0.54 (0.45�0.64) <0.01 0.69 (0.65�0.73)

XGBoost, linear 2 1.00 (ref.) 0.56 (0.37�0.86) 0.60 (0.34�1.05) 0.62 (0.27�1.45) 0.04 0.60 (0.45�0.81) <0.01 0.78 (0.74�0.82)

Quartiles <18.6 �18.6 and <22.1 �22.1 and <25.2 �25.2 4.8

XGBoost, tree 1 1.00 (ref.) 0.36 (0.24�0.54) 0.18 (0.11�0.31) 0.11 (0.05�0.22) <0.01 0.50 (0.41�0.60) <0.01 0.71 (0.67�0.75)

XGBoost, tree 2 1.00 (ref.) 0.50 (0.33�0.76) 0.37 (0.21�0.65) 0.58 (0.25�1.33) <0.01 0.51 (0.38�0.69) <0.01 0.79 (0.75�0.83)

Quartiles <18.6 �18.6 and <22.1 �22.1 and <25.2 �25.2 4.8

Random forest 1 1.00 (ref.) 0.35 (0.23�0.55) 0.16 (0.09�0.30) 0.10 (0.04�0.21) <0.01 0.46 (0.37�0.57) <0.01 0.71 (0.67�0.75)

Random forest 2 1.00 (ref.) 0.50 (0.32�0.79) 0.33 (0.17�0.63) 0.36 (0.15�0.89) <0.01 0.48 (0.35�0.67) <0.01 0.78 (0.74�0.82)

Quartiles <18.8 �18.8 and <22.2 �22.2 and <25.5 �25.5 4.5

SVM 1 1.00 (ref.) 0.52 (0.32�0.85) 0.19 (0.10�0.38) 0.17 (0.08�0.37) <0.01 0.55 (0.44�0.69) <0.01 0.68 (0.62�0.74)

SVM 2 1.00 (ref.) 0.75 (0.45�1.25) 0.44 (0.21�0.95) 1.00 (0.37�2.69) 0.16 0.59 (0.41�0.86) <0.01 0.79 (0.73�0.85)

Notes: Model 1 = VO2max quartiles, crude; Model 2 =Model 1 + age + race and ethnicity + education. Data in bold indicate significant.

Abbreviations: 95%CI = 95% confidence interval; BLSA = Baltimore Longitudinal Study of Aging; C-statistic = concordance statistic; HR = hazard ratio; OPACH =Objective Physical Activity and Cardiovascular

Health Study; ref. = reference; SVM = support vector machine; VO2max = maximum oxygen uptake; XGBoost = extreme gradient boosted.
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3.5. Variable importance scores

Variable importance scores were obtained for the random

forest, tree-boosted XGBoost, and linear-boosted XGBoost

algorithms. The 5 most important variables in the linear-boosted

all BLSA-predictor XGBoost algorithm were: (a) non-Hispanic

other race, (b) usual gait speed in the 2.5-min walk, (c) history

of myocardial infarction, (d) usual gait speed, and (e) being

a former smoker. The 5 most important variables in the

tree-boosted all BLSA-predictor XGBoost algorithm were, in

order from more to less important: (a) number of seconds to

complete the 400-m walk, (b) caloric expenditure from all

activity, (c) caloric expenditure from exercise, (d) right-hand

grip muscle strength, and (e) diastolic blood pressure.

The 5 most important variables in the random forest all

BLSA-predictor XGBoost algorithm were: (a) number of

seconds to complete the 400-m walk, (b) the balance compo-

nent of the SPPB, (c) meters walked in the 2.5-min walk,

(d) 2.5-min gait speed, and (e) weight. In summary, when using

all the variables in the BLSA, the number of seconds to

complete the 400-m walk showed to be the most important vari-

able across the random forest and tree-boosted XGBoost algo-

rithms, and in the OPACH-predictor algorithms (i.e., in the

absence of the 400-m walk), age became the most important

variable. See Table 4 for the top 10 most important variables.

4. Discussion

We developed and assessed the performance of multiple

ML, non-exercise-based VO2max prediction algorithms that

may enable large-scale epidemiologic cohorts with older,

ambulatory, community-dwelling adults to accurately estimate

VO2max, an important biomarker of aging resiliency. The

performance of all the ML algorithms evaluated in this study

were reasonably good in relation to the performance of previ-

ously published RMSE values. Our RMSE values ranged from

2.8 to 4.2 mL/kg/min. For additional context, if one assumes

the standard conversion of 3.5 mL/kg/min as being equivalent

to 1 metabolic equivalent, the errors in VO2max prediction

based on the ML algorithms were about 0.8 and 1.2 metabolic

equivalents. These predictive error values are lower than previ-

ously published non-exercise-based VO2max prediction equa-

tions derived using ordinary least squares and lower than

several RMSEs of previously published ML VO2max prediction

algorithms12 Further, these non-exercise based predictive error

values are comparable to those obtained when predicting VO2max

using exercise-based covariates such as the duration of maximal

treadmill exercise tests29 and timed walk tests.30 These RMSE

values, coupled with the strong correlations between predicted and

measured VO2max, further enhance our confidence in the VO2max

prediction algorithms described herein, even when performance-

based assessment of CRF is not feasible.

For the total sample, the LASSO and tree-boosted XGBoost

algorithms yielded the lowest RMSEs. When restricting to

the OPACH predictors, LASSO had the lowest RMSE

(3.5 mL/kg/min) followed by the 2 XGBoost algorithms and

SVM at 3.6 mL/kg/min. Across all the algorithms, the RMSE

values for women were lower than for men. This is likely due
to the larger variation in men’s VO2max measurements

compared to the women’s. Despite the better prediction of

VO2max for the BLSA women than men, the associations

between measured and predicted VO2max and all-cause

mortality were notably stronger for the men than the women,

though the number of deaths in each quartile after stratifying

by sex are few.

Minimal differences in RMSEs were observed when using

the BLSA compared to OPACH covariate inputs, indicating

that the variables that are not measured in OPACH are not crit-

ical to obtaining an accurate prediction of VO2max, or at least

that other variables were able to compensate for their absence

using these ML approaches. For example, in the BLSA-

predictor random forest algorithms, the number of seconds it

took to complete the 400-m walk, an objective measure of

physical performance capacity, is the most important variable

in VO2max prediction (RMSE = 3.6 mL/kg/min). However,

since OPACH does not have a 400-m walk measure, age

becomes the most important variable in the OPACH-predictor

random forest algorithms; nonetheless, the effectiveness of

this model for predicting VO2max is nearly identical

(RMSE = 3.7 mL/kg/min). Since age and physical perfor-

mance capacity are inversely correlated, it could be that age

serves as a proxy of physical performance in OPACH.

Few non-exercise-based VO2max prediction ML models

have been published to this point, and even fewer have been

developed specifically for older adults. Our prior work

assessing the performance of previously published linear

regression models31 showed that when these OLS models

are used to predict VO2max in the BLSA, the RMSE values

range from 5.1 (using equations from Bradshaw et al.32 and

Sloan et al.’s33 HR equation) to 20.4 (Jang et al.34) mL/kg/min.

After recalibrating these formulas to measured VO2max in the

BLSA (i.e., obtaining new regression weights derived from the

distribution of covariates in the BLSA) the RMSE values

decrease to a range of 3.8 mL/kg/min (Bradshaw et al.32) to

4.2 mL/kg/min (Myers et al.2). A recent meta-analysis of 16

VO2max prediction equations using ML,12 few of which use

non-exercise predictors and none of which were developed in

older adults (the majority of the 16 equations were trained

men and women in their mid- to late-20s; the oldest age range

included in the meta-analysis was 18�65 years), found

RMSEs (mL/kg/min) of 2.90 (SVM), 3.14 (multilayer percep-

tron neural network), 3.38 (tree boost), 4.78 (multilayer

perceptron), 4.07 (artificial neural networks), 2.91 (feature

selection with SVM), 3.37 (generalized regression neural

networks), 4.51 (single decision tree), and 4.78 (multiple input

single output with multilayer perceptron, SVM, and artificial

neural networks with radial basis functions). Interestingly, in

the multiple input single output model, the RMSEs were 4.07

for the women and 5.30 for the men, suggesting similar sex

differences to those seen in the present study. The majority of

the RMSEs in the algorithms for the present study outperform

(lower RMSE values) those reported in this meta-analysis.

While several of the ML algorithms yielded reasonable

predictions of VO2max, the utility of predicted VO2max in esti-

mating mortality risk was not as clear as measured VO2max. In



Table 4

Top 10 important variables by algorithm.

Algorithm Total BLSA, all BLSA

predictors

Total BLSA, OPACH

predictors

BLSA men, all BLSA

predictors

BLSA men, OPACH

predictors

BLSA women, all BLSA

predictors

BLSA women, OPACH

predictors

XGBoost, linear

1 Non-Hispanic, other race Non-Hispanic, other race Non-Hispanic, other race Male High blood sugar despite

medication

Fair/poor self-rated health

2 2.5-min gait speed Very good/good self-rated

health

�150 min/week exercise History: heart failure/CHF 2.5-min gait speed Former smoker

3 History: heart attack or MI History: heart attack or MI 30�74 min/week exercise �150 min/week exercise 30�74 min/week exercise 30�74 min/week exercise

4 Usual gait speed History: breast cancer History: heart attack or MI Non-Hispanic, Asian/other

Pacific Islander

Usual gait speed Very good/good self-rated

health

5 Former smoker �150 min/week exercise Usual gait speed Usual gait speed History: heart attack or MI �150 min/week exercise

6 History: breast cancer Former smoker Never smoker 30�74 min/week exercise Non-Hispanic, Asian/other

Pacific Islander

Post-college education

7 Non-college graduate Non-college graduate Non-Hispanic, Asian/other

Pacific Islander

History: diabetes Former smoker Non-Hispanic, Asian/other

Pacific Islander

8 �150 min/week exercise History: diabetes History: heart failure/CHF Non-college graduate History: stroke Non-Hispanic, White

9 History: diabetes 75�149 min/week exercise Non-Hispanic, White History: heart attack or MI Post-college education BMI

10 Never smoker Non-Hispanic, Asian/other

Pacific Islander

High blood sugar despite

medication

Non-Hispanic, White Never smoker History: heart attack or MI

XGBoost, tree

1 400-m walk time Age 400-m walk time Age 400-m walk time BMI

2 Calories from all activity SF12: physical Minutes of any walking/week Diastolic BP Calories per kg weight Right-hand grip

3 Calories from exercise Minutes of vigorous activity/

week

Radial pulse Weight Waist circumference Height

4 Right-hand grip Non-Hispanic, Black Systolic BP Right-hand grip SF12: physical Weight

5 Diastolic BP Height SF12: mental SF12: mental Minutes of vigorous activity/

week

Calories from all activity

6 Walking score Minutes of any walking/week 2.5-min gait meters Beta blocker use Non-Hispanic, Black Waist circumference

7 SF12: physical Calories per kg weight Calories per kg weight Calories per kg weight Minutes of any walking/week Non-Hispanic, Black

8 Weight Calories from all activity Weight Minutes of any walking/week Weight Radial pulse

9 Radial pulse Beta blocker use Calories from all activity Calories from all activity Radial pulse Systolic BP

10 Waist circumference Diastolic BP Height Systolic BP Height Diastolic BP

Random forest

1 400-m walk time Age 400-m walk time Age 400-m walk time Age

2 SPPB�balance SPPB�chair stands HR at end of 2.5-min walk Left-hand grip 2.5-min gait meters Calories from all activity

3 2.5-min gait meters Waist circumference Right-hand grip SF12: physical Calories per kg weight Minutes of any walking/week

4 2.5-min gait speed Calories per kg weight Left-hand grip Calories from all activity SF12: physical Left-hand grip

5 Weight SF12: physical Self-rated health Right-hand grip Calories from all activity Height

6 Usual gait speed Calories from all activity Diastolic BP Race/ethnicity SPPB�chair stands Right-hand grip

7 Height Race/ethnicity Calories per kg weight Radial pulse Calories from exercise Race/ethnicity

8 Calories from exercise Minutes of any walking/week Rapid gait speed Diastolic BP HR at end of 2.5-min walk Minutes of vigorous activity/

week

9 Waist circumference Radial pulse Walking score Minutes of vigorous activity/

week

HR at end of 400-m walk SF12: mental

10 SF12: physical Minutes of vigorous activity/

week

Calories from all activity Height Minutes of vigorous activity/

week

Systolic BP

Abbreviations: BLSA = Baltimore Longitudinal Study of Aging; BMI = body mass index; BP = blood pressure; CHF = congestive heart failure; HR = heart rate; MI = myocardial infarction; OPACH = Objective

Physical Activity and Cardiovascular Health in Older Women; SF12 = 12-item Short Form Survey of self-rated health; SPPB = Short Physical Performance Battery; XGBoost = extreme gradient boosted.
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unadjusted models, all predicted VO2max variables produced

HRs comparable to measured VO2max. However, after adjust-

ment for even the limited set of covariates, these HRs were

attenuated compared to measured VO2max, though significant

inverse trends in mortality risk remained evident in men (less

so in women). The C-statistics were comparable for measured

and predicted VO2max. Direct measurement of VO2max

provides a more accurate representation of the underlying

physiological construct of CRF than is possible using predic-

tion. However, the present study indicates that ML prediction

of VO2max in older adults has relatively low prediction error

and is associated with a clinical aging outcome (i.e., all-cause

mortality) in a similar pattern and magnitude of association as

measured VO2max in unadjusted analysis. The attenuation of

associations with mortality for predicted VO2max but not

measured VO2max when adjusting for even a limited set of

demographic covariates likely reflects the effect of controlling

for factors correlated with mortality risk that were used in the

prediction of VO2max. Replication of the present investigation

using large study samples with greater numbers of outcome

events for analysis are needed to build upon our findings.

These findings should be confirmed and extended as ML

algorithms continue to evolve to enable more precise estima-

tions. The main limitation of this study, though not unique to

it, would be the black box nature of these algorithms.

However, and in direct response to the call for future research

in the aforementioned ML meta-analysis,12 we implemented

the use of multiple ML methods to allow for meaningful

comparisons of the algorithms’ performances. Further, we

compared these algorithms’ associations with all-cause

mortality for the total BLSA sample and by sex. To assess the

transportability of these algorithms, we provided these metrics

and associations with respect to a restricted universe of varia-

bles likely to be available in most aging studies. Another

strength of our study is the prospective follow-up, enabling the

evaluation of the accuracy of predicted VO2max with respect to

measured VO2max and their associations with mortality. BLSA

enrolled a large group of racially and ethnically diverse older

adults, included objectively measured VO2max, followed

participants for mortality outcomes after VO2max assessment,

and collected data that enabled adjustment for confounders.
5. Conclusion

Measured VO2max is a strong predictor of all-cause

mortality in aging men and women enrolled in the BLSA,

which further supports the recognition of VO2max as a

biomarker of aging resiliency. Given the infeasibility of direct

measurement of VO2max in large epidemiologic cohorts,

simple linear regression models have been proposed to predict

VO2max and guide exercise prescription in older adults, but

these more simplistic predicted VO2max measures are not

robust to adjustment in multivariable analyses. Using ML can

improve the accuracy of VO2max prediction as compared to

simple OLS approaches but estimates of association with

mortality remain sensitive to adjustments in multivariable

analyses. Future studies should seek to reproduce these results
to further improve the ability to predict VO2max in community-

dwelling older adults so that this “vital sign” can be more

broadly studied as a modifiable target for promoting functional

resiliency and healthy aging.
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