
Saturn: An Optimized Data System for Multi-Large-Model Deep
Learning Workloads

Kabir Nagrecha
University of California, San Diego

knagrech@ucsd.edu

Arun Kumar
University of California, San Diego

akk018@ucsd.edu

ABSTRACT

Large models such as GPT-3 and ChatGPT have transformed deep

learning (DL), powering applications that have captured the pub-

lic’s imagination. Such models must be trained on multiple GPUs

due to their size and computational load, driving the development

of a bevy of łmodel parallelismž techniques and tools. Navigating

such parallelism choices, however, is a new burden for DL users

such as data scientists, domain scientists, etc., who may lack the

necessary systems knowhow. The need for model selection, which

leads to many models to train due to hyper-parameter tuning or

layer-wise finetuning, compounds the situation with two more bur-

dens: resource apportioning and scheduling. In this work, we unify

these three burdens by formalizing them as a joint problem that we

call SPASE: Select a Parallelism, Allocate resources, and Schedule.

We propose a new information system architecture to tackle the

SPASE problem holistically, exploiting the performance opportu-

nities presented by joint optimization. We devise an extensible

template for existing parallelism schemes and combine it with an

automated empirical profiler for runtime estimation. We then for-

mulate SPASE as an MILP. We find that direct use of an MILP-solver

is significantly more effective than several baseline heuristics. We

optimize the system runtime further with an introspective schedul-

ing approach. We implement all these techniques into a new data

system we call Saturn. Experiments with benchmark DL work-

loads show that Saturn achieves 39-49% lower model selection

runtimes than current DL practice.

PVLDB Reference Format:

Kabir Nagrecha and Arun Kumar. Saturn: An Optimized Data System for

Multi-Large-Model Deep Learning Workloads. PVLDB, 17(4): 712-725, 2023.

doi:10.14778/3636218.3636227

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/knagrecha/saturn.

1 INTRODUCTION

Large-model deep learning (DL) is growing in adoption across

many domains for data analytics over text, image, video, and even

multimodal tabular data. Large language models (LLMs) now power

popular applications like ChatGPT [35]. Such models [13] have

been ballooning in size, as Figure 1(A) shows. For instance, the

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 4 ISSN 2150-8097.
doi:10.14778/3636218.3636227

popular GPT-J [52, 63] and ViT [14] models need 10s of GBs of

GPU memory and take days to train. This is often impractical

for DL users in smaller companies, enterprises, and the domain

sciences. Thankfully, in most cases they need not train from scratch

to benefit from large-model DL. They can download łbasež models,

pre-trained on large general datasets (e.g., Web-scraped text), from

model hubs like HuggingFace [64] and just łfinetunež them on their

(smaller) application-specific data [9]. This enables companies to

keep their application data in house. Recent market research reports

that this form of large-model DL is rapidly growing [4].

While finetuning and customizing of base models has made

large-model DL more tractable, end users of DL still face 3 systems-

oriented headaches: (1) GPU memory remains a bottleneck. Large-

memory GPUs are expensive, and even public cloud vendors still

ration them. (2)Multi-GPU parallelism is needed but understanding

the performance behaviors of complex large-model parallelism

techniques is difficult for DL users; and (3) Model selection, which

involves tuning hyper-parameters, model layers, etc., only amplifies

the computational load.

Overall, large-model DL, including finetuning, is still painful for

regular DL users, hurting usability and raising runtimes and costs,

especially in pay-as-you-go clouds.

Case Study: Consider a data scientist, Alice, building an SQL au-

tocomplete tool to help database users at her company. She has a

(private) query log that contains her company’s database schemas,

common predicates, etc. She downloads two LLMs from Hugging-

Face Ð GPT-2 and GPT-J Ð both of which are known to offer strong

results for textual prediction tasks [52, 63]. She finetunes multi-

ple instances on her dataset, comparing different batch sizes and

learning rates to raise accuracy. She uses an AWS instance with 8

A100 GPUs. She launches the DL tuning jobs in parallel, assigning

one GPU each. Alas, all of them crash with out-of-memory (OOM)

errors. She is now forced to pick a large-model scaling/parallelism

technique and assign multiple GPUs to each job. But to do so she

must answer 3 intertwined systems-oriented questions: (1) Which

parallelism technique to use for each model? (2) Howmany GPUs to

assign to each model? (3) How to orchestrate such complex parallel

execution for model selection workloads?

In this paper, we tackle precisely those 3 practical questions in a

unified way to make it easier, faster, and cheaper for regular DL users

like Alice to benefit from such state-of-the-art large DL models.

1.1 Prior Art and Their Limitations

We start by first explaining why prior art for large-model and

parallel DL systems is insufficient to tackle the problem. Table 1

712

https://doi.org/10.14778/3636218.3636227
https://github.com/knagrecha/saturn
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3636218.3636227
https://www.acm.org/publications/policies/artifact-review-and-badging-current

B)A)

Figure 1: (A) Trends of the sizes of some state-of-the-art DL models in NLP and CV (log scale), extrapolated from a similar figure

in [58]. (B) Our empirically measured runtime crossovers between FSDP and pipeline parallelism, with knobs tuned per setting.

lists a conceptual comparison of our setting with prior art on several

key aspects. Section 6 discusses related work in greater detail.

(1) Which parallelism technique to use for each model? There

are a multitude of techniques in the ML systems world to paral-

lelize/scale large models across GPUs. Some common techniques

are: sharding the model, spilling shards to DRAM [22, 38], pipeline

parallelism as in GPipe [23], fully-sharded data-parallel (FSDP) as

in PyTorch [2] and ZeRO [53], hand-crafted hybrids as in Mega-

tron [58], as well as general hybrid-parallel approaches such as

Unity [25, 61] and Alpa [69]. But no technique dominates all others

in all cases. Relative efficiency depends on a complex mix of factors:

hardware, DL architecture specifics, even batch size for stochastic

gradient descent (SGD). Figure 1(B) shows two empirical results on

real workloads to prove our point. Even between just pipelining

and FSDP, complex crossovers arise as GPU counts and batch sizes

change. Furthermore, many techniques expose knobs that affect

runtimes in hard-to-predict ways [34], e.g., pipelining requires tun-

ing partitions and łmicrobatchž sizes, while FSDP requires tuning

offloading and checkpointing decisions. Thus, we need to automate

parallelism technique selection for large-model DL training.

(2) How many GPUs to assign to each model? Many DL practi-

tioners use fixed clusters or have bounded resource budgets. So,

they are either given (or decide) up front the number of GPUs

to use. But in multi-model settings like model selection, there is

more flexibility on apportioning GPUs across models. The naive

approach of running models one after another using all GPUs is sub-

optimal as it reduces model selection throughput and adding more

GPUs per model yields diminishing returns. Alas, the scaling behav-

iors of large-model parallelism techniques are not linear and often

hard to predict, as Figure 1(B) shows. Prior art has studied data-

parallel resource allocation (e.g., Pollux [51] and Optimus [48]) and

model selection optimization (e.g., Cerebro [28] and ASHA [30]).

But none of them target large-model DL, which alters the cost-

benefit tradeoffs of GPU apportioning in new ways due to interplay

with parallelism selection and complex scaling behaviors. Thus, we

must automate GPU apportioning for large-model model selection.

(3) How to orchestrate such complex parallel execution for model

selection? This is a scheduling question, i.e., deciding which jobs to

run when. Two naive approaches are to run models in a random

order or to use a generic task scheduler. Both can lead to GPU idling

due to a lack of awareness of how long models actually run. Prior

art has studied runtime-aware DL scheduling, e.g., Gandiva [65]

and Tiresias [17], but none target large-model DL. The complex in-

terplay of parallelism selection and GPU apportionment can affect

runtimes in a way that alters the tradeoffs of scheduling. The model

Model Selection on Large Models

UPPs Performance
Profiler

SPASE
Joint Optimizer

Structure & management for
varied parallelism space

Generalized performance
modeling over complex

workloads & parallelisms

Joint optimization of
parallelism, resource

allocation, and scheduling

Varied Parallelism Space General Multi-Model
Workloads Complex Joint Problem

Figure 2: Overview of how Saturn’s components tackle the

SPASE problem for multi-large-model DL workloads.

selection setting adds more considerations: we must optimize end-

to-end makespan rather than just a throughput objective [48, 51].

Specific desiderata must be met: fidelity on ML accuracy and gener-

ality on specification. We expand on these in Section 1.2.

Overall, there is a pressing need for a unified and automated way

to tackle these 3 systems concerns of model selection on large models:

select parallelism technique per model, apportion GPUs per model,

and schedule them all on a given cluster. No prior art Ð including

all those described in Table 1 Ð can address this novel setting that

has emerged with the rise of large-model DL. We call this new joint

problem SPASE: Select Parallelism, Apportion resources, and SchedulE.

1.2 System Desiderata

To help democratize large-model DL and ease practical adoption, we

seek a data system that tackles SPASEwith the following desiderata:

(1) Extensibility on parallelism selection. Given the variety

of large-model parallelism techniques (henceforth called łparal-

lelismsž for brevity), the system must support and select over mul-

tiple parallelisms and also make it easy for users to add new paral-

lelisms in the future (e.g. for model-technique codesign [15, 47, 58]).

Without support for user extension, parallelism selectors/hybridiz-

ers are limited in scope, as noted in Table 1.

(2) Non-disruptive integration with DL tools. The system

must natively support popular DL tools such as PyTorch [33] and

TensorFlow [5] without modifying their internals. This can offer

backward compatibility as those tools evolve.

(3) Generality on multi-model specification. The system

should support multiple model selection APIs, e.g., grid/random

search or AutoML heuristics. We assume the system is given a set of

model training jobs with known epoch counts. Evolving workloads

can be supported by running all models one epoch at a time.

(4) Fidelity on ML accuracy. The system must not deliberately

alter ML accuracy when applying system optimizations. Approxi-

mations such as altering the model, training algorithm, or workload

parameters are out of scope because they can confound users.

713

Table 1: Overview of prior art. Column desiderata are described in Sections 1.1 and 1.2.

Fidelity Multi-Model Resource

Allocation

Parallelism

Selection

Out-of-the-Box

Large Model Support

Hybrid Parallelism

Alpa [69] ✓ ✗ ✗ ✓(limited) ✓

FlexFlow [25] ✓ ✗ ✗ ✓(limited) ✗

Unity [61] ✓ ✗ ✗ ✓(limited) ✓

Performance Evaluation Paleo [50] ✓ ✗ ✗ ✓(limited) ✗

Model Selection
Cerebro [28] ✓ ✓ ✗ ✗ ✗

ASHA [30] ✓ ✓ ✓ ✗ ✗

Scheduling

Gandiva [65] ✓ ✓ ✗ ✗ ✗

Antman [66] ✓ ✓ ✗ ✗ ✗

Tiresias [17] ✓ ✓ ✗ ✗ ✗

Resource Allocation
Pollux [51] ✗ ✓ ✓ ✗ ✗

Optimus [48] ✗ ✓ ✓ ✗ ✗

SPASE Saturn (ours) ✓ ✓ ✓ ✓ ✓

1.3 Our Proposed Approach

To meet all of the above desiderata, we design a new informa-

tion system architecture to tackle SPASE that is inspired by some

techniques in database systems. We call our system Saturn. Our

current focus is on the common fixed-cluster setting rather than

autoscaling [56]. As Figure 2 shows, our approach is three-pronged:

(1) Parallelism Selection and UPPs.We translate high-level

(łlogicalž) model training specifications into optimized łphysicalž

parallel execution plans based on instance details, inspired by phys-

ical operator selection in RDBMSs, e.g., selecting hash-join vs. sort-

merge join for a given join operation. To meet the first desideratum

of extensibility, we introduce the abstraction of User-Pluggable Par-

allelisms (UPPs). UPPs can be used to specify existing parallelisms

in standard DL tool code, or enable users to add new parallelisms as

blackboxes for Saturn to use. This also ensures the second desider-

atum of non-disruptive integration. We create a default UPP library

in Saturn to support 4 major existing parallelisms: pipelining,

spilling, distributed data parallelism (DDP), and FSDP. Each UPP

can support knob-autotuning, similar to auto-tuning of physical

configuration parameters of a data management system [21, 62].

(2) Performance Profiling. To apportion GPUs and select par-

allelisms in a way that ensures the fourth desideratum, we need

accurate estimates of job runtimes as is. We exploit a basic prop-

erty of SGD: since minibatch size is fixed within an epoch, we can

typically project epoch times accurately from runtime averages

over a few minibatch iterations. This is similar to prior works (e.g.

the Clockwork inference system [18]) that exploit the determinis-

tic and predictable performance behaviors displayed by DNNs to

proactively plan out high-quality execution schemes. Coupled with

the offline nature of model selection, we can create a general and

effective solution: profile all jobs using the full łgridž of options for

both GPU counts and parallelisms based on only a few minibatches.

The overhead of this approach is affordable due to the long run-

times of actual DL training. This also ensures our second and third

desiderata as all DL tools offer data sampling APIs that we can just

use on top of the user-given model specifications. Of course, we

use the full training data for the actual DL jobs to ensure the fourth

desideratum.

(3) Joint Optimization and Scheduling. Given the above sys-

tem design choices, we can now tackle SPASE using joint optimiza-

tion. We formalize this problem as a mixed-integer linear program

(MILP). Using realistic runtime estimates, we perform a simulation

study to compare an MILP solver (we use Gurobi [19]) to a handful

of strong scheduling heuristics. The solver yields the best results

overall even with a timeout. Thus, we adopt it in Saturn as our

SPASE optimizer. Actual model training, not the optimizer, heavily

dominates overall runtimes in DL workloads, so we view this design

decision as reasonable because it ensures both efficiency and simplic-

ity, easing system maintenance and adoption. Finally, we augment

our Optimizer with an łintrospectivež scheduling extension known

in prior art to further raise resource utilization.

We intentionally design Saturn to be a simple and intuitive sys-

tem to tackle SPASE in a way that can help ease practical adoption.

Figure 3 in Section 3 shows our system architecture. Saturn is

implemented in Python and exposes high-level APIs for (offline)

specification of UPPs and model selection APIs for actual DL train-

ing usage. Under the hood, Saturn has 4 components: Parallelism

Plan Enumerator, Performance Profiler, Joint Optimizer, and Execu-

tor. The runtime layer builds on top of the APIs of the massively

task-parallel execution engine Ray [40] for lower level machine

resource management, e.g., placing jobs on GPUs, as well as to

parallelize our profiling runs. Using two benchmark large-model

workloads from DL practice, we evaluate Saturn against several

baselines, including an emulation of current practice of manual

decisions on SPASE. Saturn reduces overall runtimes by 39% to

49%, which can yield proportionate cost savings on GPU clusters,

especially in the cloud. We perform an ablation study to isolate

the impacts of our optimizations. Finally, we evaluate Saturn’s

sensitivity to the sizes of models, workloads, and nodes.

714

Novelty & Contributions. To the best of our knowledge, this

is the first work to unify these three critical requirements of large-

model DL workloads for end users: parallelism selection, resource

apportioning, and scheduling. By casting the problem this way,

we judiciously synthesize key system design lessons to craft a

new information system architecture that can reduce user burden,

runtimes, and costs via joint optimization in this important analytics

setting. Overall, this paper makes the following contributions:

• We formalize and study the unified SPASE problem, freeing end

users of large-model DL from having to manually select and tune

parallelisms, apportion GPUs, and schedule multi-jobs.

• We present Saturn, a new information system architecture to

tackle SPASE that is also the first to holistically optimize paral-

lelism selection and resource apportioning for multi-large-model

DL. Saturn employs a generalized profiler to estimate paral-

lelism runtimes and an MILP solver for joint optimization.

• To enable generalized and extensible support for parallelisms, we

create the abstraction of User-Defined-Parallelisms (UPPs). UPPs

can be used to specify parallelisms as blackboxes in Saturn.

• We perform an extensive empirical evaluation of Saturn on two

benchmark large-model DL workloads. Saturn reduces model

selection runtimes by up to 49% in some cases. We make our

code publicly available on GitHub 1.

2 BACKGROUND AND PRELIMINARIES

We provide a brief background on parallelization techniques to

describe the fundamentals relevant to our problem space. For the

interested reader, we provide a broader overview of the ML Systems

space in the Appendix of our tech report [43].

Multi-GPU parallelism is now common in large-model DL train-

ing [24]. Several parallelization schemes already exist, and researchers

continue to routinely devise and propose new techniques. A com-

prehensive review of all such approaches is out of scope for this

paper; we refer interested readers to the relevant surveys [42, 59].

Instead, we only highlight a few common approaches here for refer-

ence. We also mention the tunable knobs for each parallelism that

complicate scaling behaviors and theoretical performance analyses.

Data Parallelism replicates a given DL model across multiple

accelerators. Each is fed a different minibatch partition for parallel

processing. Replica synchronization can be done in two ways Ð

either via a central parent server, for Parameter Server (PS)-style

data parallelism [32, 55], or through peer-to-peer communication,

for all-reduce data parallelism [33, 57] with synchronization at SGD

boundaries.

Model Parallelism partitions the model rather than the data. The

model graph is sharded and partitioned over GPUs to distribute

the memory footprint. The speedup potential of model parallelism

depends on the partitioning scheme and model architecture. Hand-

crafted, architecture-specific approaches can performwell [1], while

simple and generic partitioning schemes tend to be slower [41].

Pipelining [23, 26, 34, 67] & Fully-Sharded Data Parallelism (FSDP) [33,

53] are more advanced hybridizations of model parallelism with

data parallelism. Each presents its own tradeoffs and optimization

knobs (e.g. łmicrobatchesž for pipelining [34], and łoffloadingž and

1https://github.com/knagrecha/saturn

Parallelism Library

Library API

Joint Optimizer

Executor

Trainer API

Plan Enumerator

Trial Runner

Profiler

User

Trainer

Library

Job Submission

Parallelism Registration

SATURN

GPU Node

GPU Node

Figure 3: System architecture of Saturn and the interactions

between the components.

łcheckpointingž [11] for FSDP). For brevity, we elaborate on the

specifics of these techniques in the Appendix of our tech report [43].

Spilling is not a parallelism technique in itself but is often used in

combination with a parallelism technique to reduce GPU memory

pressure. It swaps model shards between GPU memory and DRAM

for piece-wise GPU-accelerated execution [7, 41]. This adds DRAM-

GPU communication overheads, but it can enable large models to

be trained with even just one GPU. Spilling exposes a partition

count knob, to select the number of DRAM spills during execution.

Model selection is the process of training and comparing model

configurations. Two popular procedures are grid search, in which all

combinations of sets of values of hyper-parameters (e.g., batch size,

learning rate) are used, and random search [8], in which random

hyper-parameter combinations from given intervals are used. Early

stopping can reduce the set of configurations during training [30,

31, 54]. The high resource demands of model selection on large

models can sometimes force a DL user to settle for a smaller search

space, but this risks missing out on higher accuracy [16, 27]. Faster

execution of such workloads empowers users to run larger searches,

in turn helping accuracy. Many users expect fidelity in this setting,

as we explain in Section 1.2.

3 SYSTEM OVERVIEW

We now describe Saturn’s architecture that meets the desiderata

in Section 1.2. Saturn has 4 main modules, as Figure 3 shows.

For workload specification, it exposes a high-level API and the

Parallelism Library. The Trial Runner handles runtime estimation.

The Joint Optimizer and Executor tackle the SPASE problem. Sat-

urn uses Ray [40]’s low-level APIs as the runtime layer that places

jobs on GPUs. Next, we describe each of Saturn’s components.

3.1 Workload Specification

The first phase, workload specification, is handled by our API and

the Parallelism Library component.

API. Saturn’s API provides an easy-to-use interface for both

registering parallelisms (for developers) and submitting large-model

training jobs (for end users of DL).We now provide a brief overview;

due to space constraints, we provide the full example pseudocode in

the technical report [43]. There are two parts to the API: the Library

API and the Trainer API. Users create łTasksž through the Trainer

715

API by specifying functions for model initialization and data load-

ing, along with any hyper-parameters. This is sufficiently general

to cover most model selection workloads. Listing 1 illustrates.

1 from saturn.trainer import Task , HParams , execute , profile

2
3 t_1=Task(get_model ,get_data ,HParams(lr=1e-3,epochs=5,optim=SGD))

4 t_2=Task(get_model ,get_data ,HParams(lr=3e-3,epochs=5,optim=SGD))

Listing 1: Specifying tasks through Saturn’s API.

Training procedures are defined by łUser-Pluggable Parallelismsž

(UPPs), which implement the parallel execution approach for SGD.

These parallelisms can be registered with our Library by a devel-

oper (e.g., ML engineer) or a system-savvy end user of DL. The

registration process is shown in Listing 2.

1 from saturn.library import register

2
3 register("parallelism -a", ParallelismA)

4 register("parallelism -b", ParallelismB)

Listing 2: Parallelism registration.

Once all parallelisms and tasks are specified, DL users can invoke

the Trial Runner to produce runtime estimates in a single line of

code, followed by invoking the whole training execution in another

single line of code. Listing 3 illustrates these.

1 profile ([t_1 , t_2 , t_3])

2 execute ([t_1 , t_2 , t_3])

Listing 3: Profiling and execution invocations.

Parallelism Library. The design of this library is inspired by

functional frameworks, user-defined function templates in RDBMSs,

and DL model hubs [64]. We follow a define-once, use-anywhere

design, wherein registered UPPs can be reused across models, exe-

cution sessions, and even different cluster users. This is achieved

by managing library-registered parallelisms as a database of code

files. The Library allows developers to register new parallelisms by

implementing an abstract skeleton, shown in Listing 4.

1 class BaseParallelism:

2 def search(task:Task ,gpus:List[int])->Dict ,float:

3 pass

4 def execute(task:Task ,gpus:List[int],knobs:Dict)->None:

5 pass

Listing 4: Parallelism specification skeleton.

The search function should use the task and GPUs to provide (1) exe-

cution parameters (e.g., microbatch count, partition count) and (2) a

runtime estimate. Knob-optimization can also optionally be tackled

here. Failed searches (e.g., OOMs) can be handled by returning null

values. The execute function trains the provided task to comple-

tion using the allotted GPUs. It also uses any execution parameters

produced during the search phase to optimize execution.

Developers can implement a UPP with standard DL tool code

(e.g., TensorFlow or PyTorch) without restrictions. This enables

easy integration of pre-existing parallelisms. Indeed, we validate

that functionality by adding 4 major parallelisms in our default

Parallelism Library: DDP [33], GPipe-style pipeline parallelism [26],

FSDP, and model spilling via the FairScale package [7]. These out-

of-the-box parallelisms in Saturn are maximally general in that

they can be automatically applied to any DL model supported by

them. Implementing UPPs for each took 100 − 250 lines of Python

code. Once defined, UPPs can be registered with the Library under

a user-set name (e.g. łpytorch-ddpž).

Our design can help developers retain a familiar environment

without low-level code changes or extraneous workflows to, say,

translate their parallelism implementation into a new configuration

file format, a custom domain specific language, etc. Our Parallelism

Library serves as an organized roster for registering and using

large-model DL parallelisms. While it is a key part of Saturn, it

can potentially also be useful as its own standalone tool.

3.2 Performance Estimation

The Trial Runner estimates the runtime performance of models

with different parallelisms and GPU apportionments. The Trial

Runner is not a parallelism selector: it simply generates the statistics

needed to solve SPASE. It is our empirical substitute for the complex

parallelism-specific theoretical models used in prior art [48, 51].

Such empirical profiling helps łfuture proofž Saturn to an extent:

by not tightly coupling Saturn to specific parallelisms’ theoretical

models, we can directly support future DL tool compilers and/or

accelerator hardware as they evolve. As we highlight in Section 1.2,

extensibility is one of our key desiderata. The Trial Runner has two

submodules: Plan Enumerator and Profiler.

Plan Enumerator. This sub-module constructs a łgridž across

all supported parallelisms and GPU apportionment levels for each

model. That represents the space of łphysical plansž for everymodel

that will then be profiled to obtain runtime performance estimates.

Profiler. This sub-module takes the outputs of the Plan Enumer-

ator to produce runtime estimates for the optimization phase. We

exploit a property of SGD: since it is iterative and consistent, we can

accurately extrapolate epoch runtimes from averaged performance

over a just few minibatches [18]. We use Ray to parallelize these

profiling runs and reduce the Profiler’s runtime. In our experiments,

profiling 12 multi-billion-parameter models for 4 parallelisms took

< 30min. This overhead is affordable because the actual DL model

selection, on the full training data, can take hours or even days.

3.3 Joint Optimizer and Executor

We now use the Trial Runner’s statistics to tackle the SPASE prob-

lem in a unified manner via holistic optimization.

Joint Optimizer. The Joint Optimizer is invoked transparently

when the user invokes the execute function. It uses the runtime esti-

mates produced by the Trial Runner and cluster details to produce

a full execution plan. This plan bakes in all of parallelism selection,

GPU apportionment, and schedule construction. To construct the

plan, the Joint Optimizer automatically determines the following

for all model configurations given by the user: (1) which parallelism

to use, (2) how many GPUs to give it, and (3) when to schedule it.

Our Optimizer is implemented in two layers. First, anMILP solver

to produce makespan-optimized execution plans. Second, an intro-

spective, round-based resolver that runs on top of the MILP solver

to support dynamic reallocation. Section 4 goes into the technical

details of the MILP, why we chose to use an MILP solver instead of

heuristics, and additional techniques in the Joint Optimizer.

Executor. This module handles the running of the full execution

plan generated by the Joint Optimizer. The Executor runs on top of

the lower level APIs of Ray to leverage its task-parallel processing.

By default, Ray uses its own task scheduler, and swapping that

out for a custom scheduler is challenging. So, for the Executor we

716

implement our plan over Ray’s scheduler. We achieve this by łtaint-

ingž Ray-owned GPUs so that they can only be used by the corre-

sponding jobs from our pre-calculated schedule. Thus, the Executor

ensures that Ray’s scheduler cannot deviate from our SPASE solu-

tion. This scheme lets us faithfully recreate the optimizer-designed

plan without overheads or induced inefficiencies, even though the

design goes beyond Ray’s intended usage.

3.4 Current Limitations

Saturn supports both single-node and multi-node training across

different models, but in the current version we focus on the case

where each model fits in aggregate node memory (i.e., total GPU

memory + DRAM). Since we focus on the large-model case, we do

not consider GPU multi-tenancy (e.g., as in ModelBatch [46]). We

also focus on the homogeneous GPU cluster setting and leave to

future work adding support for heterogeneous hardware clusters,

hardware type selection, and elastic provisioning (e.g., like in [36,

45]). Anecdotally, we find that many DL users in domain sciences

and enterprises do indeed fit this setting. Furthermore, many of the

parallelisms in our existing Library do not yet support cross-node

training for a single model out-of-the-box. So, we defer support

to a future extension as those parallelisms evolve. Despite these

assumptions, Saturn can already train 10B+ parameter models

on even just one node. These limitations can be mitigated in the

future as follows: (1) adjust the MILP in Section 4 for hardware

selection, (2) give the Trial Runner a larger space to explore, and

(3) add multi-node parallelisms to the Library [68].

Two other relevant extensions are support for autoscaling sup-

port and elastic re-configurations of jobs mid-execution. An obvious

and straightforward way to incorporate these extensions would

be to submit workloads to Saturn one-epoch-at-a-time, then in-

duce environment/workload changes at a higher level, in between

Saturn’s invocations. Future work could look to support more fine-

grained integrations, e.g., where Saturn controls the autoscaling

decisions. We discuss some possible adaptation points in Section 4.4,

but leave these extensions to future work.

4 SPASE JOINT OPTIMIZER

We now describe the SPASE problem and dive into our MILP for-

malization. Using a simulation study, we evaluate an MILP solver

(Gurobi [19]) against baselines and heuristics from standard prac-

tice and prior art. We explain our introspective mechanism that

enables Saturn to adaptively reassess its MILP solution over time.

4.1 Problem Basics

SPASE unifies parallelism selection, resource allocation, and sched-

ule construction. Typical schedulers can set task start times, while

resource schedulers can select a GPU apportionment as well. But

with SPASE, our joint optimizer must consider a third performance-

critical dimension: select the parallelism to use for each model on

the allotted GPUs. To the best of our knowledge, ours is the first

work to unify and tackle this joint problem.

In model selection workloads, it is common for all jobs to be

given up front. So, we focus on that setting. Using the Trial Runner

module, we generate the necessary runtime statistics for all given

jobs. But evenwith that information, the joint problem is intractable;

Table 2: MILP Notation used in Section 4.2

Inputs to the MILP

Symbol Description

𝑁 List of nodes available for execution.

𝑇 List of input training tasks.

𝑈 Large integer value used to enforce conditional con-

straints.

𝐺𝑃𝑈𝑛 The number of GPUs available on node 𝑛.

𝑆𝑡 Number of configurations available to task 𝑡 . A con-

figuration consists of both a parallelism and a GPU

allocation.

𝐺𝑡 ∈ Z
+𝑆𝑡 Variable length list of requested GPU counts for each

configuration of task 𝑡 .

𝑅𝑡 ∈ R
+𝑆𝑡 Variable length list of estimated runtimes for each

configuration of task 𝑡 .

MILP Selected Variables

Symbol Description

𝐶 Execution schedule makespan.

𝐵𝑡 ∈ 0, 1𝑆𝑡 Variable length list of binary variables indicating

whether task 𝑡 uses the corresponding configuration

from 𝑆𝑡 .

𝑂𝑡,𝑛 ∈ 0, 1 Binary indicator of whether task 𝑡 ran on node 𝑛.

𝑃𝑡,𝑛,𝑔 ∈ 0, 1 Binary indicator of whether task 𝑡 ran on GPU 𝑔 of

node 𝑛.

𝐴𝑡1,𝑡2 ∈ 0, 1 Binary indicator of whether task 𝑡1 ran before task

𝑡2. If 𝐴𝑡1,𝑡2 is 1, 𝑡2 must have run after 𝑡1.

𝐼𝑡,𝑛,𝑔 ∈ R
+ Start time of task 𝑡 on GPU 𝑔 of node 𝑛.

prior work on network bandwidth distribution [6] has shown that

even the basic resource allocation problem is NP-hard. SPASE is a

more complex version of that problem that also handles parallelism

selection and makespan-optimized scheduling; so it is also NP-

hard. Brute-forcing the search space is also impractical due to its

sheer size. The number of schedule orderings alone grows super-

exponentially with the number of jobs [60]. As such, solving it

optimally is ruled out. Thus, we choose to formulate SPASE as an

MILP and use an industrial-strength MILP solver (Gurobi [19]) to

leverage its time-tested optimization power. Later, in Section 4.3, we

justify this decision further using a simulation study. We find that

the MILP solver significantly and consistently outperforms known

baselines and strong heuristics despite its time limit. We rely on

Gurobi’s sophisticated techniques to avoid pitfalls such as poor local

optima [20] in this highly non-convex optimization space. Even if

the solver does only reach a local optimum, the solution should be

of reasonably high quality. We describe and evaluate these risks

further towards the end of Section 4.3.1 and the Appendix of our

tech report [43]. To the best of our knowledge, ours is the first MILP

formulation to unify DL parallelism selection, resource allocation,

and scheduling. Not only does it enable us to state the problem with

mathematical precision, it also enables us to explore the problem

space’s intricacies via the simulation study.

717

4.2 MILP Formulation

Inputs. Our MILP input consists of a full grid of models, their

valid configurations, as well as the corresponding runtime esti-

mates generated by the Trial Runner. Table 2 lists our notation,

and Figure 4(A) illustrates an example. As noted in Section 3, our

empirical runtime estimates already bake in the communication

overheads of each parallelism.

Summary. To summarize the MILP’s function in plain-English:

we ask the solver to assign to each task: (1) GPU IDs with associated

node IDs, (2) an execution configuration (determining the paral-

lelism and resource apportionment), and (3) a float start time. Each

task should only be assigned one node and one configuration, and

the number of GPUs assigned should agree with the specifications

of the chosen configuration. The task should not block any GPUs

on a node it is not using. The start time for a given task should align

all assigned GPUs (i.e., gang scheduling), and the assigned start

times should not cause task overlaps on the same GPUs. Ultimately,

the solution should minimize the makespan.

Formulation. We now go into each constraint in depth. To

make the formulation easier to comprehend, we illustrate our con-

straints using a running example workload in Figure 4 (continued

in the Appendix of our tech report [43]). The figures are purely

demonstrative, and do not represent a realistic model selection job.

Objective: min
𝐵,𝑂,𝑃,𝐴,𝐼

𝐶 (1)

We now define the constraints. Equation 2 defines the makespan;

it is the latest task’s start time plus the runtime of that task’s se-

lected configuration. Figure 4(B) & (C) illustrate some example

SPASE solutions and their corresponding makespans.

𝐶 ≥ 𝐼𝑡,𝑛,𝑔 + 𝑅𝑡,𝑠 −𝑈 × (1 − 𝐵𝑡,𝑠)

∀𝑠 ∈ 𝑆𝑡∀𝑡 ∈ 𝑇,∀𝑛 ∈ 𝑁,∀𝑔 ∈ 𝐺
(2)

Next, for each task, there should only be one selected config-

uration and only one selected node. Figure 4(D) illustrates this

constraint.

∑︂

𝑥 ∈𝐵𝑡

𝑥 = 1;
∑︂

𝑦∈𝑂𝑡

𝑦 = 1
(3)

Next, we enforce the GPU requests of the solver onto the exe-

cution schedule. Each task must be assigned the number of GPUs

corresponding to its selected configuration. Since direct equality

comparisons are not possible in an MILP formulation, Equations 4

and 5 in combination ensure this constraint by enforcing both ≤

and ≥ inequalities.

∑︂

𝑡 ∈𝑃𝑡,𝑛

𝑡 ≥ 𝐺𝑡,𝑠 −𝑈 × (2 −𝑂𝑡,𝑛 − 𝐵𝑡,𝑠)∀𝑠 ∈ 𝑆𝑡 ,∀𝑡 ∈ 𝑇,∀𝑛 ∈ 𝑁
(4)

∑︂

𝑡 ∈𝑃𝑡,𝑛

𝑡 ≤ 𝐺𝑡,𝑠 +𝑈 × (2 −𝑂𝑡,𝑛 − 𝐵𝑡,𝑠)∀𝑠 ∈ 𝑆𝑡 ,∀𝑡 ∈ 𝑇,∀𝑛 ∈ 𝑁
(5)

We must also ensure that the task uses 0 GPUs on any nodes it is

not executing on. Equations 6 and 7 combine ≤ and ≥ inequalities

to enforce this requirement. This constraint and all subsequent

ones are illustrated with examples in the Appendix of our tech

report [43].

∑︂

𝑡 ∈𝑃𝑡,𝑛

𝑡 ≤ 0 −𝑈 × (𝑂𝑡,𝑛 + 𝐵𝑡,𝑠)∀𝑠 ∈ 𝑆𝑡 ,∀𝑡 ∈ 𝑇,∀𝑛 ∈ 𝑁
(6)

∑︂

𝑡 ∈𝑃𝑡,𝑛

𝑡 ≥ 0 +𝑈 × (𝑂𝑡,𝑛 + 𝐵𝑡,𝑠)∀𝑠 ∈ 𝑆𝑡 ,∀𝑡 ∈ 𝑇,∀𝑛 ∈ 𝑁
(7)

Next we apply a gang scheduling constraint, i.e. for each task,

all assigned GPUs must initiate processing simultaneously. Formu-

lating this constraint is challenging Ð we need consistency over

a set of MILP-selected values, on a set of MILP-selected indices,

across an MILP-selected gang size. Our solution is to take a fixed

start-time target Ð the sum of MILP-selected start times over all

GPUs, divided by the number of allocated GPUs. By ensuring each

selected time is thus equal to the average of the times, the times

must by definition be equal to one another. This constraint also

naturally encourages the solver to fix start times on unused GPUs

to 0 without explicit enforcement, since non-zero values bloat the

numerator of the left hand side. Equations 8 and 9 in combination

enforce this constraint.

∑︁
𝑥 ∈𝐼𝑡,𝑛 𝑥

𝐺𝑡,𝑠
≤ 𝐼𝑡,𝑛,𝑔 +𝑈 × (3 − 𝑃𝑡,𝑛,𝑔 − 𝐵𝑡,𝑠 −𝑂𝑡,𝑛)

∀𝑠 ∈ 𝑆𝑡 ,∀𝑡 ∈ 𝑇,∀𝑔 ∈ 𝐺𝑃𝑈𝑛,∀𝑛 ∈ 𝑁

(8)

∑︁
𝑥 ∈𝐼𝑡,𝑛 𝑥

𝐺𝑡,𝑠
≥ 𝐼𝑡,𝑛,𝑔 −𝑈 × (3 − 𝑃𝑡,𝑛,𝑔 − 𝐵𝑡,𝑠 −𝑂𝑡,𝑛)

∀𝑠 ∈ 𝑆𝑡 ,∀𝑡 ∈ 𝑇,∀𝑔 ∈ 𝐺𝑃𝑈𝑛,∀𝑛 ∈ 𝑁

(9)

Finally, we encode a task isolation constraint, so that no tasks

overlap on the same GPU. Equation 10 applies if task 𝑡1 came before

task 𝑡2, while equation 11 guarantees no overlap if task 𝑡1 came after

task 𝑡2. Variable 𝐴 acts as a before-or-after selector, determining

which constraint is relevant for each pair of tasks.

𝐼𝑡1,𝑛,𝑔 ≤ 𝐼𝑡2,𝑛,𝑔 − 𝑅𝑡,𝑠 +𝑈 × ((3 − 𝑃𝑡1,𝑛,𝑔 − 𝑃𝑡2,𝑛,𝑔) − 𝐵𝑡,𝑠 +𝐴𝑡2,𝑡1)

∀𝑠 ∈ 𝑆𝑡 ,∀𝑡1 ∈ 𝑇,∀𝑡2 ∈ (𝑇 − {𝑡1}),∀𝑔 ∈ 𝐺𝑃𝑈𝑛,∀𝑛 ∈ 𝑁

(10)

𝐼𝑡1,𝑛,𝑔 ≥ 𝐼𝑡2,𝑛,𝑔 + 𝑅𝑡,𝑠 −𝑈 × ((4 − 𝑃𝑡1,𝑛,𝑔 − 𝑃𝑡2,𝑛,𝑔) −𝐴𝑡2,𝑡1 − 𝐵𝑡,𝑠)

∀𝑠 ∈ 𝑆𝑡 ,∀𝑡1 ∈ 𝑇,∀𝑡2 ∈ (𝑇 − {𝑡1}),∀𝑔 ∈ 𝐺𝑃𝑈𝑛,∀𝑛 ∈ 𝑁

(11)

This MILP formulation is complex because it spans and unifies

three different system decisions in our setting. Our Joint Optimizer

constructs all the constraints automatically for a given instance

and provides them to Gurobi [19]. We use the PuLP interface for

Gurobi to keep all variables within a single Python process space.

4.3 Simulation-based Comparisons

Wenow evaluate ourMILP-solver approach.We begin by discussing

baselines from current practice and heuristics in prior art. Then,

we run evaluations on simulated workloads and find that the MILP-

solver outperforms the other approaches by a significant margin.

718

Model A Model B Model C

Configs

Config 1
Parallelism: FSDP
Resources: 2 GPUs
Runtime: 10 hours

Config 2
Pipelining

3 GPUs
8 hours

Config 3
FSDP

4 GPUs
7 hours

Config 1
Spilling
1 GPUs

40 hours

Config 3
FSDP

3 GPUs
27 hours

Config 4
Pipelining

4 GPUs
25 hours

Config 1
FSDP

4 GPUs
24 hours

Config 2
Pipelining

2 GPUs
30 hours

A) B) C) D)

Figure 4: (A) depicts the configs (i.e., variables 𝐺 & 𝑅) used throughout our examples; (B) illustrates a feasible but suboptimal

SPASE solution and the corresponding makespan; (C) illustrates an optimal SPASE solution; (D) illustrates violations of the

constraints in Equation 3. The remainder of the constraints are illustrated in the Appendix of our tech report [43].

4.3.1 Baselines. As the case study in Section 1 highlighted, large-

model users must currently tackle the SPASE problem manually. So

we can define the initial baseline based on current best practices. A

common heuristic is to just maximize each task’s allocation. Each

task is given all GPUs in a node; then the best parallelism for that

particular setting is applied. The models are run one after another.

This optimizes local efficiency and maximizes available GPU mem-

ory for each task. This heuristic becomes a suboptimal degenerate

case of the apportioning and scheduling parts of the SPASE problem.

We call this baseline łMax-Heuristicž, and anecdotally we find this

is common in current practice.

The opposite extreme would be to minimize the number of GPUs

assigned to each task to maximize task-parallelism [41]. We call this

baseline łMin-Heuristic.ž While it runs many models in parallel,

this approach suffers a lot of DRAM spilling for large models.

Finally, we devise a strong algorithmic heuristic that incorporates

our runtime estimates to produce non-trivial solutions. It extends

an idea from Optimus, a DL resource scheduler in prior art that

proposes a greedy resource allocator that uses an łoraclež to provide

runtime estimates [48, 51]. Optimus iteratively assigns GPUs to

whichever model that will see the greatest immediate benefit. The

original Optimus implementation used a throughput-prediction

oracle for PS-style data parallelism, but subsequent works [51]

have made it standard to provide an alternate oracle to adapt Opti-

mus for different parallelisms. Our Trial Runner statistics serve as

our oracle, thus allowing us to manually configure optimal paral-

lelism selections for Optimus’ benefit. Since this is not part of the

base offerings of Optimus, we denote this strengthened modifica-

tion of Optimus as Optimus*. Optimus* serves as a strong baseline

SPASE solver, tackling problems of resource allocation and model

selection natively, and parallelism selection through our augmen-

tation. Saturn’s main advantage over this baseline is its use of

joint optimization. For our simulation study, we call this baseline

algorithm Optimus*-Greedy. Algorithm 1 presents its pseudocode,

reusing variables from Table 2.

Algorithm 1 : Optimus*-Greedy(Tasks 𝑇 , GPUs 𝐺)

1: 𝐿 = [1|𝑡 ∈ 𝑇]

2: while sum(L) < G do

3: 𝐶𝑅 = [𝑅𝑡,𝑠 |𝑡, 𝑙 ∈ (𝑇, 𝐿), 𝑠 ∈ 𝑆𝑡 where 𝐺𝑠,𝑡 == 𝑙]

4: 𝑃𝑅 = [𝑅𝑡,𝑠 |𝑡, 𝑙 ∈ (𝑇, 𝐿), 𝑠 ∈ 𝑆𝑡 where 𝐺𝑠,𝑡 == 𝑙 + 1]

5: 𝐺𝐴𝐼𝑁 = [𝑐 − 𝑝 |𝑐, 𝑝 ∈ (𝐶𝑅, 𝑃𝑅)]

6: 𝐿[𝐴𝑟𝑔𝑀𝑎𝑥 (𝐺𝐴𝐼𝑁)] + +

7: end while

8: return 𝐿

1) 2.2X

2) 1.31X

1) 2.41X

2) 1.43X

1) 3.56X

2) 1.56X

1) 3.41X

2) 1.58X

TXT IMG TXT IMG

Single-Node 4-Node 4-Node Heterogeneous

1) 2.45X

2) 1.51X

1) 2.27X

2) 1.49X

TXT IMG

Figure 5: Simulation results comparing our MILP to two key

baselines. For each group, we list Saturn’s speedup versus

(1) the weakest and (2) the second-best performer.

The Optimus*-Greedy algorithm yields resource allocations per

task. We transform that into a SPASE solution by selecting the best

parallelism for each task’s allocation post-hoc. In the multi-node

case, we run this algorithm one node at a time. Like many iterative

greedy algorithms, this approach relies on consistent scaling be-

haviors. It has only a local greedy view, rather creating a one-shot

global resource distribution.

Apart from the above three approaches to cover standard practice

and prior art extensions, we also include a simple randomization-

based baseline. In summary, we compare with 4 approaches:

(1) Max-heuristic: All GPUs within a node are given to one

task at a time.

(2) Min-heuristic: A single-GPU technique (spilling) is given

to each task to maximize task parallelism. If additional

GPUs are available, they are divided evenly.

(3) Optimus*-Greedy: A greedy algorithm inspired by the

one used in the Optimus [48] resource scheduling paper.

(4) Randomized: Parallelisms and allocations are randomly

selected for every task, then tasks are randomly scheduled.

For each of the above approaches, we use our Profiler results to

select the best possible parallelism+allocation for each model. For

instance, if a baseline determines that Model A should receive 8

GPUs, we refer to the Profiler to determine which parallelism gives

Model A the best runtime at 8 GPUs. This same best-check proce-

dure is used to determine the gain values for Optimus*-Greedy.

Since our MILP is complex, Gurobi is unlikely to converge to an

optimal solution in a practical timeframe. Thus, we set a reasonable

timeout Ð from our trials [43], we set it to 5mins Ð for the solver

to produce a solution. We rely on Gurobi’s industry-strength tech-

niques to find a high-quality (though possibly suboptimal) solution

even within the allotted time. The Appendix of our tech report [43]

shows the diminishing returns of having a larger timeout. We leave

it to future work to adapt the timeout for the given workload.

4.3.2 Simulation Workloads. We simulate 2 benchmark work-

loads, described in Table 3. Runtime estimates for all models and

configs are produced by the Trial Runner beforehand. We simulate

719

Application

Requests Execution Plan

Input TasksTask 1 Task N…Task 2

Final Plan

MILP

Candidate Plan

Current Plan

Comparison

Interval
Simulator

Chosen Plan

Figure 6: Depiction of the introspective feedback loop.

3 hardware settings: an 8-GPU single node, 32-GPUs over 4-nodes,

and 4 heterogeneous nodes with GPU counts of 2, 2, 4, and 8 (16

GPUs in total). To adapt the baselines for the heterogeneous set-

ting, we distribute models across nodes randomly, weighting each

node’s probability by its GPU count. Figure 5 presents the simu-

lation results. All approaches are run 3 times and averaged, with

90% confidence intervals displayed; but only the randomized al-

gorithm shows significant non-determinism on the homogeneous

node settings. In all cases, the MILP-solver approach yields signifi-

cantly better solutions than the baselines. We achieve a makespan

reduction of up to 59% over the Min-Heuristic, 36% over the Max-

Heuristic, 54% over Randomized, and 33% over Optimus*-Greedy.

In the heterogeneous setting, the improvements are slightly lower,

ranging from 18% to 42%. We attribute this to the small 2-GPU

nodes, which provide less flexibility for resource apportioning or

parallelism selection, thus reducing the candidate solution space.

Overall, Saturn’s Gurobi-solved approach consistently outper-

forms the alternatives. The MILP-solved approach has the highest

overhead; a 5min timeout versus < 10 seconds for the baselines. But

the overhead is negligible given the typical scale of the makespans.

4.4 Introspection

In general, one-shot up-front scheduling is suboptimal. Workloads

can evolve over time, either due to online changes (e.g., an AutoML

heuristic killing or adding models to train) or ongoing execution

(task runtime reduce as they are trained). If the optimizer can be

rerun partway through execution, it might produce a different, more

performant, solution for the remainder of the workload. To achieve

this, we propose the use of introspection [65].

A key feature in some state-of-the-art DL schedulers [65], intro-

spection proposes that a scheduler should łlearnž as it executes.

There are two ways in which a schedule might be altered or adapted

via introspection. First is pre-emption. Rather than blocking a GPU

for a full job lifecycle, jobs can be swapped to different GPUs or

paused temporarily. This enables fine-grained schedule construc-

tion and increased optimization flexibility. Second is dynamic rescal-

ing. The initial up-front training plans could be adjusted (e.g., 6

GPUs down to 2) partway through a schedule. In SPASE, this can

also involve changing the parallelism.

We now describe how we implement introspection in Saturn.

Figure 6 illustrates our design. We treat our SPASE MILP solver as

a blackbox sub-system. At periodic intervals (e.g., every 1000 sec-

onds), we re-evaluate the underlying workload. The partial training

over the previous interval may have modified the set of models.

Figure 7: Sensitivity plots for Saturn andOptimus*-Dynamic

for interval and threshold knobs. We fix the interval to 1000s

for the first analysis and the threshold to 500s for the second.

We rerun the solver on the interval boundaries so that it can in-

trospectively adjust its original solution. By treating each interval-

defined segment of training as effectively independent, we preserve

gang scheduling semantics within each segment, while allowing

for graceful exits and relaunches across intervals. Such sequences

of independent segments are possible due to the iterative nature

of SGD, as well as the ease of checkpointing models during train-

ing [51]. Global batch size consistency is respected by adjusting

per-device batch sizes to account for new allocations. Since we

focus on model selection with the fidelity desideratum, we cannot

modify the user-configured batch size transparently. Due to space

constraints, we provide the full pseudocode of our approach in the

Appendix of our tech report [43].

To demonstrate the impact of Saturn’s introspection, we com-

pare with a new dynamic baseline, łOptimus*-Dynamicž, by swap-

ping the MILP-solver for the Optimus*-Greedy algorithm. Figure 7

shows the impact of the interval length and the improvement thresh-

old knob. Since each round produces a holistically optimized solu-

tion, Saturn’s performance improves monotonically (not account-

ing for pre-emption costs) as knobs become more fine-grained.

Lower interval/threshold levels naturally subsume higher levels

in this scheme. In contrast, locally-optimizing algorithms such the

Optimus*-Dynamic approach have non-monotonic behaviors.

Introspection does not have to occur on interval completion; we

can simulate the next-interval state based on the current solution.

Then, the solving process for the next introspection round can

be overlapped with execution of the current round to hide the

latency of introspection. This scheme provides speedups of 15%

to 20% over our one-shot MILP, as shown in Section 5.3. With

introspection plus our MILP-solver, Saturn’s Joint Optimizer is

1.5x-4.1x faster than the heuristics described in Section 4.3. Our

introspection optimization significantly improves offline execution,

but it also naturally supports online AutoML optimizations such as

early-stopping [30, 31] or new job arrivals in a multi-tenant cluster

through workload reassessment. We do not explicitly optimize for

AutoML heuristics in the current version of Saturn; but it is easy

to extend it to exploit this optimization.

Our introspection optimization takes inspiration from prior art

in DL cluster scheduling, e.g., Antman [66] and Gandiva [65] which

demonstrated the value of pre-emption on minibatch boundaries,

as well as Pollux and Optimus [48, 51], which showed the value of

dynamic rescaling. Our contribution is in unifying both of those

optimization ideas to craft our introspection technique, which also

incorporates change-of-parallelism across introspection rounds.

5 EXPERIMENTAL EVALUATION

We now run an extensive empirical evaluation. We aim to answer

two questions: (1) What performance benefits does Saturn provide

720

Table 3: Model selection configurations of workloads.

Workload
Model Selection Configuration

Models

Model Arch. (params) Dataset Batch Size Learning Rate Epochs

TXT GPT-2 (1.5B), GPT-J (6B) WikiText-2 {16, 32} {1e-5, 1e-4, 3e-3} 10 12

IMG ViT-G (1.8B), ResNet (200M) ImageNet {64, 128} {1e-5, 1e-4, 3e-3} 10 12

compared to current practice? (2) How much do each of Saturn’s

optimizations contribute to the overall speedups?

Workloads, Datasets, and Model Configurations: We run 2

model selection workloads with benchmark DL tasks. Table 3 lists

the model selection configurations for both workloads. The first

(TXT) is a text workload with LLMs. It uses the popular WikiText-

2 [39] dataset. WikiText-2, which is drawn from Wikipedia, has

previously been used as a benchmark on landmark LLMs such as

GPT-2 [52]. TXT uses two GPT models: GPT-2 (1.5B parameters),

introduced in 2019, and GPT-J (6B parameters), introduced in 2021.

Both are still considered state-of-the-art for application-specific

finetuning purposes. The second (IMG) is image classification com-

paring a large ResNet (200M parameters) and a large-scale Vision

Transformer (1.8B parameters). It uses the computer vision bench-

mark dataset ImageNet [12] (14M images and 1000 classes).

Software Setup: All models are implemented and trained with

PyTorch 2.0. We register 4 parallelisms in Saturn.

(1) PyTorch Distributed Data Parallelism [33].

(2) PyTorch Fully-Sharded Data Parallelism [33].

(3) GPipe, adapted from an open-source implementation [26].

(4) Model spilling, provided by the FairScale library [7].

We use Gurobi 10.0 for our SPASEMILP-solver; the introspec-

tion threshold and interval parameters are set to 500s and 1000s,

respectively. For the underlying job orchestration, we use Ray v2.2.0.

Datasets are copied across nodes upfront.

Hardware Setup: We configure 3 hardware settings: (1) 8-GPU

single-node, (2) 16-GPU 2-nodes, and (3) heterogeneous 2-nodes,

where one node has 8 GPUs and the other has 4 (12 GPUs in total).

All settings use AWS p4d instances.

Baselines: No prior end-to-end system can solve the SPASE prob-

lem; prior art either does not support large models or else fails

model selection constraints, as Table 1 showed. So, we compare

Saturn with 4 baselines using the approaches in Section 4.3.

(1) Current Practice:A heuristic without any task parallelism

within nodes. It allocates 8 GPUs per task. Parallelism se-

lection is set by a human to łoptimalž choices for an 8-GPU

allocation, (typically FSDP). This is perhaps most represen-

tative of current practice by end users of DL.

(2) Random: A randomizer tool selects parallelism and appor-

tioning and then applies a random scheduler. This repre-

sents a system-agnostic user.

(3&4) Two modified versions of Optimus*-Greedy (Alg. 1) com-

bined with a randomized scheduler (see Section 4). We

name these baselines Optimus*-Dynamic and Optimus*-

Static. These are the strongest baselines for large-model

model-selection we could assemble from prior art.

The above approaches cover both current practices and reason-

able strong heuristics for our problem setting. We note that the

two Optimus*-based baselines use our Trial Runner as an oracle

for their runtime estimates and parallelism selection decisions (the

original Optimus paper only had runtime models for Parameter

Server-style data parallelism [48]). This highlights the novelty of

our problem setting Ð the strongest baseline from prior art needs

to reuse a module of our system.

5.1 End-to-End Results

Model Selection Runtimes: We first compare the end-to-end

runtimes versus the 4 baselines. The Trial Runner search overheads

are included in Saturn’s runtime. Figure 8(A) presents the results.

Saturn achieves significant speedups versus all baselines. Against

Current Practice, we see makespan reductions of 39-40% on a single-

node, 43-48% on 2 homogeneous nodes, and 41-45% on 2 heteroge-

neous nodes. Against the strongest baseline (Optimus*-Dynamic),

we see makespan reductions of 30-34%, 38-40%, and 32-39% on the

three hardware configurations respectively. Since the same UPP

implementations are used in all cases, the speedups are achieved

purely via the better parallelism selections, resource allocations,

and schedule constructions. All compared approaches (including

Saturn) use logically equivalent SGD and offer the same accuracy.

Figure 8(B) plots GPU utilization. Saturn achieves good utiliza-

tion throughout, except an initial low-utilization period for the Trial

Runner’s search and MILP solving period. GPU utilization alone

can be misleading; tools such as nvidia-smi can artificially inflate

utilization [3]. So, these results should not be taken as a measure

of training performance in isolation.

Overall, Saturn reduces model selection runtimes substantially

for all workloads in all evaluated settings. It also offers more qual-

itative benefits to end users of DL because they are freed from

manually selecting parallelisms, deciding on resource allocations,

or tuning system parameters.

Intuition on Efficiency Gains. Saturn’s performance improve-

ments arise due to its holistic optimization approach. To the best of

our knowledge, this is the first work that characterizes the paral-

lelism performance crossovers and incorporates them into a joint

optimizer. Our empirical profiler and unified SPASE formulation en-

able us to optimize in a parallelism-agnostic fashion. The heuristic

and algorithmic baselines make assumptions about scaling behav-

iors (e.g., consistency, linear scaling, etc.) that do not always hold up

in large-model DL practice. To prove our point further, Table 4 lists

the parallelisms+allocations selected by Saturn for a few models

from the single-node workloads. We see a non-trivial mixture of

decisions across the models trained.

721

2.97X

1.67X 1.54X

6.25X

1.95X

3.22X

M
ak

es
p

an
 (h

o
ur

s)

Single-Node 2-Node
TXT IMG TXT IMG

A) B)

1.
0X

0.
68

X

0.
97

X

1.
14

X

1.
64

X
1X

0.
67

X

0.
98

X

1.
1X

1.
69

X

1X

0.
67

X

0.
87

X

1.
06

X

1.
77

X 1X

0.
7X

1X

1.
2X

1.
96

X

TXT IMG

2-Node Heterogeneous

1X

1X

0.
69

X

0.
93

X

1.
16

X

1.
70

X

0.
7X

0.
93

X

1.
12

X

1.
84

X

C)

Figure 8: (A) End-to-end runtimes. Speedups versus current practice are also noted. Results are averaged over three trials, with

the 90% confidence interval displayed. (B) Average GPU utilization over time at a 100s sampling rate on the single-node TXT

job. (C) End-to-end runtimes of Saturn versus compositions of tools on a reduced version of the TXT job on 2 nodes.

Table 4: Parallelisms and apportionments chosen by Sat-

urn for a few evaluated models.

Model Config Parallelism Apportionment

GPT-2 (Batch 16, 1e-5 LR) Pipelining 5 GPUs

GPT-2 (Batch 32, 1e-4 LR) FSDP 4 GPUs

GPT-J (Batch 16, 1e-5 LR) FSDP 8 GPUs

GPT-J (Batch 32, 1e-4 LR) Pipelining 3 GPUs

ResNet (Batch 64, 1e-4 LR) DDP 2 GPUs

ResNet (Batch 32, 1e-4 LR) Spilling 1 GPU

ViT-G (Batch 32, 1e-4 LR) FSDP 4 GPUs

ViT-G (Batch 16, 1e-4 LR) FSDP 6 GPUs

Saturn’s MILP-chosen SPASE solutions combine into a multi-

model SPASE solution to minimize end-to-end runtimes. Our uni-

fied data systems-style approach frees DL users to focus on their

goals instead of tedious low-level decisions.

5.2 Joint Optimization Evaluation

To better understand the value of joint optimization for SPASE, we

evaluate Saturn against different compositions of tools Ð Alpa [69]

+ ASHA [30]; Alpa + Optimus* [48]; Alpa + SHA [31] Ð each used

together but unaware of each other. A/SHA & Optimus are de-

signed for multi-model training and GPU allocation; Alpa tackles

parallelism selection. In combination, they can be used to solve the

dimensions of the SPASE problem, but in a separated fashion. We

elaborate on these tools in Section 6.

To mimic A/SHA’s early-stopping behaviors, we run Saturn and

Optimus* one epoch at a time. We take the early stops produced

by A/SHA and apply them to Saturn and Optimus*’s workloads

on epoch boundaries. A/SHA is configured to use 3 rungs, with

allocations of 1, 3, and 6 epochs respectively, so completed jobs

will have run for 10 epochs. The decay factor is set to 2, so half

of the jobs survive each rung. Since A/SHA was built for settings

with substantially more accelerators than models, we use a smaller

version of the TXT workload with 8 jobs (eliminating the 3e-3

learning rate option) on 2 nodes.

We report the results in Figure 8(C). We find that Saturn outper-

forms Alpa + ASHA by nearly 3X. Even if we remove Alpa’s search

times (e.g., if the searches were run once up-front) and directly

compare SPASE solution quality, Saturn still outperforms the com-

posite baseline by 1.67X. Against Alpa + Optimus*, the speedups

are 6.25X (resp. 1.54X) when including (resp. excluding) Alpa’s

compilation times. The Optimus* runtime that includes the compi-

lation times is so high because it needs to construct its throughput

oracle [51] up front by running the compiler for every possible

allocation for every model. Saturn’s significant speedups against

all 3 baselines support our view that the SPASE problem is a novel

space where joint optimization has a significant role to play, rather

than a simple composition of existing problem spaces.

5.3 Drilldown Analyses

5.3.1 Ablation Study. We separate our optimizations into 4 lay-

ers: scheduling, resource allocation, parallelism selection, and in-

trospection. We apply these one-by-one as follows. First, a version

without any of our optimizations. FSDP is used with checkpointing

and offloading (i.e., a non-expert config), resource allocations are

set manually to 4 GPUs per task, and a random scheduler is used.

Second, we use our makespan-optimized scheduler. Third, we rein-

troduce resource apportioning to the MILP. Fourth, we allow for

automatic parallelism selection and knob tuning. Finally, we over-

lay introspection. This completes Saturn. We use the single-node

TXT workload in our study. Table 5 notes the marginal speedups.

Table 5: Ablation study.

Optimizations Abs. Speedup Extra Speedup

Unoptimized 1.0X 1.0X

+ MILP Scheduler 1.1X 1.1X

+ Resource Allocation in MILP 1.33X 1.2X

+ Auto. Parallelism Selection 1.95X 1.47X

+ Introspection 2.27X 1.16X

The scheduler-only MILP provides better packing for some ini-

tial makespan improvements. Adding in resource apportioning lets

the solver reshape task runtimes and demands to produce more

speedups. Automatic parallelism selection creates even more flexi-

bility and adds in knob-tuning to improve parallelism performance.

Introspection enables the solver to reassess its solution and adapt

to shifts in the workload to cap off Saturn’s speedups.

5.3.2 Sensitivity Analyses. We test Saturn’s sensitivity to the

size of: (1) workloads, (2) models, and (3) clusters.

722

A) B) C)

1X

2.85X

2.5X

2.54X
2.1X

Figure 9: Saturn sensitivity plots on the TXT workload ver-

sus (A) workload size, (B)model size, and (C) node size. Charts

are in log-log scales, normalized to the initial setting. (C) la-

bels each point with the marginal speedup.

For workload size scaling, we run TXT on a single 8-GPU node

with the GPT-2 model, set batch size to 16, and vary the number

of learning rates explored. Figure 9(A) presents the results. Sat-

urn scales slightly superlinearly as larger workloads enable broader

scope for optimization. This suggests strong performance on large-

scale model selection workloads.

Next, we vary model size. We run TXT on a single 8-GPU node

with batch size set to 16 and learning rate set to 1e-5. All models are

versions of GPT-2. We vary model size by stacking encoder blocks,

akin to what GPT-3 does [10]. Figure 9(B) presents the results.

Saturn achieves mostly linear scaling, but with slight slowdowns

on the largest model sizes. This is because the largest models force

the SPASE solution to use the only viable configuration (8-GPU

FSDP with checkpointing and offloading) for every model.

Finally, we vary the number of GPUs visible to Saturn. We

use TXT for this experiment. Figure 9(C) presents the results. Sat-

urn achieves superlinear speedups for 2 reasons. First, the single-

GPU case necessitates DRAM spilling, while larger GPU counts

reduce the spilling required and open up more parallelism options.

Second, higher GPU counts broaden the solution space for the MILP,

enabling higher flexibility.

6 RELATED WORK

Saturn’s focus on the unified SPASE problem is a first for large-

model DL workloads. We now elaborate on prior art connected

to each dimension of the SPASE problem. The Appendix of our

tech report includes further discussion of the wider DL systems

landscape.

Parallelism Selectors and Hybridizers: Paleo [50] focused on

performance models for data parallelism and model parallelism. But

the DL parallelism landscape has changed since then (2016), with

numerous new approaches.While Paleomight be extended to newer

parallelisms, our empirical Trial Runner approach is more easily

extensible and highly general. Alpa, FlexFlow, and Unity [25, 61, 69]

focus on generating bespoke parallelism strategies for model archi-

tectures through complex search procedures. They can produce ef-

ficient single-model plans, but the cumulative search overheads can

get highwhen applied repeatedly tomulti-model training. They also

do not consider multiple models being trained in model selection

workloads. In addition, these tools must manually be redesigned

for new approaches (e.g., spilling). These tools could potentially be

viewed as parallelisms for Saturn’s UPP abstraction.

DL Model Selection Systems: Saturn follows a line of work

on systems for model selection, including Cerebro [28], Hyper-

band [31], and ASHA [30]. However, none of these prior works

were explicitly designed for the large-model setting, where users

must navigate multiple complex and varied parallelisms, as ex-

plained in Section 1. Cerebro hybridizes task- and data-parallelism

to train multiple DL models in parallel on sharded data. Hyper-

band reallocates training resources (e.g., number of epochs) across

tasks based on convergence behaviors. SHA implements a rung-

based promotion plan to kill off less-promising job instances and

prioritize the execution of higher-value ones. ASHA extends this

to execute promotions asynchronously. ModelKeeper [29] suggests

warm-starting across similar model configurations. All these tech-

niques exist at a higher-level of abstraction, e.g., data sharding,

early-stopping, or warm-starting. Thus, they are orthogonal to

Saturn and could be combined with our work in future extensions.

DL Resource Schedulers: Pollux and Optimus [48, 49, 51] tackle

apportionment [44] and scheduling, two parts of SPASE. But they

do not explicitly support larger-than-GPU-memory models, where

complex parallelisms alter performance tradeoffs in non-trivial

ways, as our work shows. In Optimus’ case, we can take the core

mechanisms and adapt them for large-model training, as we do in

our Optimus* baselines. But such adaptations underperform native

large-model tools such as Saturn. These tools also do not target

model selection workloads and optimize for throughput, while

makespan is better suited for our setting. They also alter model

accuracy, violating our fidelity desideratum. A config submitted to

Pollux (e.g., batch size X and learning rate Y) may yield different

accuracies than the same X and Y without Pollux. Themis [37]

studies scheduling fairness for ML jobs from different users; their

goal and setting are orthogonal to ours in that we focus on model

selection jobs from the same user and optimize for makespan.

7 CONCLUSIONS AND FUTUREWORK

Finetuning of pre-trained large DL models is increasingly com-

mon. But navigating the complex space of model-parallel training

is unintuitive for DL users even though it is needed to reduce run-

times and costs. The complex interplay of parallelism selection with

model selection workloads, which requires resource apportioning

and scheduling decisions, can also lead to high resource wastage

if improperly handled. This work resolves these issues by formal-

izing the joint SPASE problem unifying large-model parallelism

selection, resource apportionment, and scheduling and designing

a new information system architecture we call Saturn to tackle

SPASE. With user-friendly APIs, joint optimization, and a judi-

cious mix of systems techniques, Saturn reduces large-model DL

model selection runtimes by 39-49% over current practice, while

freeing DL users from tedious systems-level decisions. Overall, Sat-

urn offers maximal functionality in a critical DL setting, while

promoting architectural simplicity to ease real-world adoption. Fu-

ture extensions could explore alternative algorithmic approaches to

the SPASE problem, extend Saturn for other scheduling objectives,

and handle autoscaling clusters and dynamic job re-configurations.

ACKNOWLEDGMENTS

This work was supported by a Meta Research Fellowship, an NSF

CAREER grant, and gifts from VMWare. The content is solely the

responsibility of the authors and does not necessarily represent the

views of any of these organizations.

723

REFERENCES
[1] 2020. State-of-the-Art Language Modeling Using Megatron on the NVIDIA A100

GPU. https://developer.nvidia.com/blog/language-modeling-using-megatron-
a100-gpu/.

[2] 2021. Fully Sharded Data Parallel: faster AI training with fewer GPUs. https:
//engineering.fb.com/2021/07/15/open-source/fsdp/.

[3] 2023. nvidia-smi (1) User’s Manual.
[4] Accessed May 24, 2023. 2023 State of Data + AI. https://www.databricks.com/

sites/default/files/2023-05/databricks-2023-state-of-data-report.pdf
[5] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard,
Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg,
Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul
Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.
2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems.
https://www.tensorflow.org/ Software available from tensorflow.org.

[6] Akashdeep, Karanjeet Kahlon, and Harish Kumars. 2014. Survey of scheduling
algorithms in IEEE 802.16 PMP networks. Egyptian Informatics Journal 15 (03
2014). https://doi.org/10.1016/j.eij.2013.12.001

[7] FairScale authors. 2021. FairScale: A general purpose modular PyTorch library for
high performance and large scale training. https://github.com/facebookresearch/
fairscale.

[8] James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter
optimization. Journal of machine learning research 13, 2 (2012).

[9] Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, Erik Brynjolfsson, Shyamal Buch, Dallas Card, Rodrigo Castellon,
Niladri Chatterji, Annie Chen, Kathleen Creel, Jared Quincy Davis, Dora Dem-
szky, Chris Donahue, Moussa Doumbouya, Esin Durmus, Stefano Ermon, John
Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor Gale, Lauren
Gillespie, Karan Goel, Noah Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu,
Jing Huang, Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth
Karamcheti, Geoff Keeling, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark
Krass, Ranjay Krishna, Rohith Kuditipudi, Ananya Kumar, Faisal Ladhak, Mina
Lee, Tony Lee, Jure Leskovec, Isabelle Levent, Xiang Lisa Li, Xuechen Li, Tengyu
Ma, Ali Malik, Christopher D. Manning, Suvir Mirchandani, Eric Mitchell, Zanele
Munyikwa, Suraj Nair, Avanika Narayan, Deepak Narayanan, Ben Newman,
Allen Nie, Juan Carlos Niebles, Hamed Nilforoshan, Julian Nyarko, Giray Ogut,
Laurel Orr, Isabel Papadimitriou, Joon Sung Park, Chris Piech, Eva Portelance,
Christopher Potts, Aditi Raghunathan, Rob Reich, Hongyu Ren, Frieda Rong,
Yusuf Roohani, Camilo Ruiz, Jack Ryan, Christopher Ré, Dorsa Sadigh, Shiori
Sagawa, Keshav Santhanam, Andy Shih, Krishnan Srinivasan, Alex Tamkin, Ro-
han Taori, Armin W. Thomas, Florian Tramèr, Rose E. Wang, William Wang,
Bohan Wu, Jiajun Wu, Yuhuai Wu, Sang Michael Xie, Michihiro Yasunaga, Ji-
axuan You, Matei Zaharia, Michael Zhang, Tianyi Zhang, Xikun Zhang, Yuhui
Zhang, Lucia Zheng, Kaitlyn Zhou, and Percy Liang. 2022. On the Opportunities
and Risks of Foundation Models. arXiv:2108.07258 [cs.LG]

[10] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan,
Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan,
Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter,
Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin
Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot Learners.
https://doi.org/10.48550/ARXIV.2005.14165

[11] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training Deep
Nets with Sublinear Memory Cost. https://doi.org/10.48550/ARXIV.1604.06174

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-
agenet: A large-scale hierarchical image database. In 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 248ś255.

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.
https://doi.org/10.48550/ARXIV.1810.04805

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn,
Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer,
Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. 2020. An
Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
https://doi.org/10.48550/ARXIV.2010.11929

[15] William Fedus, Barret Zoph, and Noam Shazeer. 2021. Switch transformers:
Scaling to trillion parameter models with simple and efficient sparsity.

[16] Ian J. Goodfellow, Yoshua Bengio, and Aaron C. Courville. 2016. Deep Learning.
MIT Press. http://www.deeplearningbook.org/

[17] Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeongjae Jeon,
Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019. Tiresias: A {GPU}
cluster manager for distributed deep learning. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). 485ś500.

[18] Arpan Gujarati, Reza Karimi, Safya Alzayat, Wei Hao, Antoine Kaufmann, Ymir
Vigfusson, and JonathanMace. 2020. Serving DNNs like Clockwork: Performance
Predictability from the Bottom Up. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association, 443ś462.
https://www.usenix.org/conference/osdi20/presentation/gujarati

[19] Gurobi Optimization, LLC. 2022. Gurobi Optimizer Reference Manual. https:
//www.gurobi.com

[20] Gurobi Optimization, LLC. 2022. Mixed Integer Programming Ba-
sics. https://www.gurobi.com/resources/mixed-integer-programming-mip-
a-primer-on-the-basics/

[21] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko Borisov, Liang Dong,
Fatma Bilgen Cetin, and Shivnath Babu. 2011. Starfish: A Self-tuning System for
Big Data Analytics.. In Cidr, Vol. 11. 261ś272.

[22] Chien-Chin Huang, Gu Jin, and Jinyang Li. 2020. SwapAdvisor: Push Deep Learn-
ing Beyond the GPU Memory Limit via Smart Swapping. In Proceedings of the
Twenty Fifth International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS) (Virtual).

[23] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao
Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng
Chen. 2018. GPipe: Efficient Training of Giant Neural Networks using Pipeline
Parallelism. https://doi.org/10.48550/ARXIV.1811.06965

[24] Myeongjae Jeon, Shivaram Venkataraman, Amar Phanishayee, unjie Qian, Wen-
cong Xiao, and Fan Yang. 2019. Analysis of Large-Scale Multi-Tenant GPU
Clusters for DNN Training Workloads. , 14 pages.

[25] Zhihao Jia, Matei Zaharia, and Alex Aiken. 2018. Beyond Data and Model
Parallelism for Deep Neural Networks. https://doi.org/10.48550/ARXIV.1807.
05358

[26] Chiheon Kim, Heungsub Lee, Myungryong Jeong, Woonhyuk Baek, Boogeon
Yoon, Ildoo Kim, Sungbin Lim, and Sungwoong Kim. 2020. torchgpipe: On-the-fly
Pipeline Parallelism for Training Giant Models. https://doi.org/10.48550/ARXIV.
2004.09910

[27] Arun Kumar, Robert McCann, Jeffrey Naughton, and Jignesh M Patel. 2016.
Model selection management systems: The next frontier of advanced analytics.
ACM SIGMOD Record 44, 4 (2016), 17ś22.

[28] Arun Kumar, Supun Nakandala, Yuhao Zhang, Side Li, Advitya Gemawat, and
Kabir Nagrecha. 2021. Cerebro: A Layered Data Platform for Scalable Deep Learn-
ing. In 11th Annual Conference on Innovative Data Systems Research (CIDR’21).

[29] Fan Lai, Yinwei Dai, Harsha V. Madhyastha, and Mosharaf Chowdhury. 2023.
ModelKeeper: Accelerating DNN Training via Automated Training Warmup.
In 20th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 23). USENIX Association, Boston, MA, 769ś785. https://www.usenix.org/
conference/nsdi23/presentation/lai-fan

[30] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina Gonina, Moritz Hardt,
Benjamin Recht, and Ameet Talwalkar. 2018. A System for Massively Parallel
Hyperparameter Tuning. (2018). https://doi.org/10.48550/ARXIV.1810.05934

[31] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet
Talwalkar. 2016. Efficient Hyperparameter Optimization and Infinitely Many
Armed Bandits. CoRR abs/1603.06560 (2016). arXiv:1603.06560 http://arxiv.org/
abs/1603.06560

[32] Mu Li, Li Zhou, Zichao Yang, Aaron Li, Fei Xia, David G Andersen, and Alexander
Smola. 2013. Parameter server for distributed machine learning. In Big learning
NIPS workshop, Vol. 6.

[33] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala.
2020. PyTorch Distributed: Experiences on Accelerating Data Parallel Training.
https://doi.org/10.48550/ARXIV.2006.15704

[34] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao Zhang, Dawn
Song, and Ion Stoica. 2021. TeraPipe: Token-Level Pipeline Parallelism for
Training Large-Scale Language Models. https://doi.org/10.48550/ARXIV.2102.
07988

[35] Yiheng Liu, Tianle Han, Siyuan Ma, Jiayue Zhang, Yuanyuan Yang, Jiaming
Tian, Hao He, Antong Li, Mengshen He, Zhengliang Liu, Zihao Wu, Dajiang
Zhu, Xiang Li, Ning Qiang, Dingang Shen, Tianming Liu, and Bao Ge. 2023.
Summary of ChatGPT/GPT-4 Research and Perspective Towards the Future of
Large Language Models. arXiv:2304.01852 [cs.CL]

[36] Yujing Ma, Florin Rusu, Kesheng Wu, and Alexander Sim. 2021. Adaptive Elastic
Training for Sparse Deep Learning on Heterogeneous Multi-GPU Servers. https:
//doi.org/10.48550/ARXIV.2110.07029

[37] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram Venkatara-
man, Aditya Akella, Amar Phanishayee, and Shuchi Chawla. 2020. Themis: Fair
and efficient {GPU} cluster scheduling. In 17th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 20). 289ś304.

724

https://developer.nvidia.com/blog/language-modeling-using-megatron-a100-gpu/
https://developer.nvidia.com/blog/language-modeling-using-megatron-a100-gpu/
https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://engineering.fb.com/2021/07/15/open-source/fsdp/
https://www.databricks.com/sites/default/files/2023-05/databricks-2023-state-of-data-report.pdf
https://www.databricks.com/sites/default/files/2023-05/databricks-2023-state-of-data-report.pdf
https://www.tensorflow.org/
https://doi.org/10.1016/j.eij.2013.12.001
https://github.com/facebookresearch/fairscale
https://github.com/facebookresearch/fairscale
https://arxiv.org/abs/2108.07258
https://doi.org/10.48550/ARXIV.2005.14165
https://doi.org/10.48550/ARXIV.1604.06174
https://doi.org/10.48550/ARXIV.1810.04805
https://doi.org/10.48550/ARXIV.2010.11929
http://www.deeplearningbook.org/
https://www.usenix.org/conference/osdi20/presentation/gujarati
https://www.gurobi.com
https://www.gurobi.com
https://www.gurobi.com/resources/mixed-integer-programming-mip-a-primer-on-the-basics/
https://www.gurobi.com/resources/mixed-integer-programming-mip-a-primer-on-the-basics/
https://doi.org/10.48550/ARXIV.1811.06965
https://doi.org/10.48550/ARXIV.1807.05358
https://doi.org/10.48550/ARXIV.1807.05358
https://doi.org/10.48550/ARXIV.2004.09910
https://doi.org/10.48550/ARXIV.2004.09910
https://www.usenix.org/conference/nsdi23/presentation/lai-fan
https://www.usenix.org/conference/nsdi23/presentation/lai-fan
https://doi.org/10.48550/ARXIV.1810.05934
https://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1603.06560
http://arxiv.org/abs/1603.06560
https://doi.org/10.48550/ARXIV.2006.15704
https://doi.org/10.48550/ARXIV.2102.07988
https://doi.org/10.48550/ARXIV.2102.07988
https://arxiv.org/abs/2304.01852
https://doi.org/10.48550/ARXIV.2110.07029
https://doi.org/10.48550/ARXIV.2110.07029

[38] Chen Meng, Minmin Sun, Jun Yang, Minghui Qiu, and Yang Gu. 2017. Training
deeper models by GPU memory optimization on TensorFlow. In Proc. of ML
Systems Workshop in NIPS, Vol. 7.

[39] Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. 2016.
Pointer Sentinel Mixture Models. https://doi.org/10.48550/ARXIV.1609.07843

[40] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Ion Stoica. 2017. Ray: ADistributed Framework for EmergingAI Applications.
https://doi.org/10.48550/ARXIV.1712.05889

[41] Kabir Nagrecha. 2021. Model-Parallel Model Selection for Deep Learning Systems.
In Proceedings of the 2021 International Conference on Management of Data. ACM.
https://doi.org/10.1145/3448016.3450571

[42] Kabir Nagrecha. 2023. Systems for Parallel and Distributed Large-Model Deep
Learning Training.

[43] Kabir Nagrecha and Arun Kumar. 2023. Tech Report of Saturn: An Optimized
Data System for Multi-Large Model Deep Learning. https://adalabucsd.github.
io/papers/TR_2023_Saturn.pdf

[44] Kabir Nagrecha, Lingyi Liu, Pablo Delgado, and Prasanna Padmanabhan. 2023.
InTune: Reinforcement Learning-based Data Pipeline Optimization for Deep
Recommendation Models. arXiv:2308.08500 [cs.IR]

[45] Deepak Narayanan, Keshav Santhanam, Fiodar Kazhamiaka, Amar Phanishayee,
and Matei Zaharia. 2020. Heterogeneity-Aware Cluster Scheduling Policies for
Deep Learning Workloads. https://doi.org/10.48550/ARXIV.2008.09213

[46] Deepak Narayanan, Keshav Santhanam, and Matei Zaharia. 2018. Accelerating
model search with model batching. In 1st Conference on Systems and Machine
Learning (SysML), SysML, Vol. 18.

[47] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia
Cherniavskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr
Kondratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill
Jia, Liang Xiong, and Misha Smelyanskiy. 2019. Deep Learning Recommen-
dation Model for Personalization and Recommendation Systems. https:
//doi.org/10.48550/ARXIV.1906.00091

[48] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanxiong Guo. 2018.
Optimus: an efficient dynamic resource scheduler for deep learning clusters. In
Proceedings of the Thirteenth EuroSys Conference. 1ś14.

[49] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, Chen Meng, and Wei Lin.
2019. DL2: A Deep Learning-driven Scheduler for Deep Learning Clusters.
https://doi.org/10.48550/ARXIV.1909.06040

[50] Hang Qi, Evan R Sparks, and Ameet Talwalkar. 2016. Paleo: A performance
model for deep neural networks. (2016).

[51] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie Neiswanger,
Qirong Ho, Hao Zhang, Gregory R Ganger, and Eric P Xing. 2021. Pollux:
Co-adaptive cluster scheduling for goodput-optimized deep learning. In 15th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
21).

[52] Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya
Sutskever. 2019. Language Models are Unsupervised Multitask Learners. (2019).

[53] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2019. ZeRO:
Memory Optimizations Toward Training Trillion Parameter Models. https:
//doi.org/10.48550/ARXIV.1910.02054

[54] Jeff Rasley, Yuxiong He, Feng Yan, Olatunji Ruwase, and Rodrigo Fonseca. 2017.
HyperDrive: Exploring Hyperparameters with POP Scheduling. In Proceedings
of the 18th ACM/IFIP/USENIX Middleware Conference (Las Vegas, Nevada) (Mid-
dleware ’17). Association for Computing Machinery, New York, NY, USA, 1ś13.
https://doi.org/10.1145/3135974.3135994

[55] Alexander Renz-Wieland, Rainer Gemulla, Zoi Kaoudi, and Volker Markl. 2022.
NuPS: A Parameter Server for Machine Learning with Non-Uniform Parameter
Access. In Proceedings of the 2022 International Conference on Management of
Data. ACM. https://doi.org/10.1145/3514221.3517860

[56] Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. 2011. Efficient autoscaling
in the cloud using predictive models for workload forecasting. In 2011 IEEE 4th
International Conference on Cloud Computing. IEEE, 500ś507.

[57] Alexander Sergeev and Mike Del Balso. 2018. Horovod: fast and easy distributed
deep learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).

[58] Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper,
and Bryan Catanzaro. 2019. Megatron-LM: Training Multi-Billion Parameter
Language Models Using Model Parallelism. https://doi.org/10.48550/ARXIV.
1909.08053

[59] Nimit S. Sohoni, Christopher R. Aberger, Megan Leszczynski, Jian Zhang, and
Christopher Ré. 2019. Low-Memory Neural Network Training: A Technical
Report. https://doi.org/10.48550/ARXIV.1904.10631

[60] Alan Tucker. 1994. Applied combinatorics. John Wiley & Sons, Inc.
[61] Colin Unger, Zhihao Jia, Wei Wu, Sina Lin, Mandeep Baines, Carlos Efrain Quin-

tero Narvaez, Vinay Ramakrishnaiah, Nirmal Prajapati, Pat McCormick, Ja-
maludin Mohd-Yusof, et al. 2022. Unity: Accelerating {DNN} Training Through
Joint Optimization of Algebraic Transformations and Parallelization. In 16th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 22).
267ś284.

[62] Dana Van Aken, Andrew Pavlo, Geoffrey J. Gordon, and Bohan Zhang. 2017.
Automatic Database Management System Tuning Through Large-Scale Machine
Learning. In Proceedings of the 2017 ACM International Conference on Management
of Data (Chicago, Illinois, USA) (SIGMOD ’17). Association for ComputingMachin-
ery, New York, NY, USA, 1009ś1024. https://doi.org/10.1145/3035918.3064029

[63] Ben Wang and Aran Komatsuzaki. 2021. GPT-J-6B: A 6 Billion Parameter Autore-
gressive Language Model. https://github.com/kingoflolz/mesh-transformer-jax.

[64] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-
langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu,
Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest,
and Alexander M. Rush. 2019. HuggingFace’s Transformers: State-of-the-art
Natural Language Processing. https://doi.org/10.48550/ARXIV.1910.03771

[65] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Sivathanu,
Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng, Hanyu Zhao, Quanlu
Zhang, et al. 2018. Gandiva: Introspective cluster scheduling for deep learning.
In 13th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 18). 595ś610.

[66] Wencong Xiao, Shiru Ren, Yong Li, Yang Zhang, Pengyang Hou, Zhi Li, Yihui
Feng, Wei Lin, and Yangqing Jia. 2020. {AntMan}: Dynamic Scaling on {GPU}
Clusters for Deep Learning. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). 533ś548.

[67] Bowen Yang, Jian Zhang, Jonathan Li, Christopher Ré, Christopher R. Aberger,
and Christopher De Sa. 2020. PipeMare: Asynchronous Pipeline Parallel DNN
Training. arXiv:1910.05124 [cs.DC]

[68] Hao Zhang, Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang,
Zhiting Hu, Jinliang Wei, Pengtao Xie, and Eric P Xing. 2017. Poseidon: An
efficient communication architecture for distributed deep learning on {GPU}
clusters. In 2017 USENIX Annual Technical Conference (USENIX ATC 17). 181ś193.

[69] Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yan-
ping Huang, Yida Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E.
Gonzalez, and Ion Stoica. 2022. Alpa: Automating Inter- and Intra-Operator Paral-
lelism for DistributedDeep Learning. https://doi.org/10.48550/ARXIV.2201.12023

725

https://doi.org/10.48550/ARXIV.1609.07843
https://doi.org/10.48550/ARXIV.1712.05889
https://doi.org/10.1145/3448016.3450571
https://adalabucsd.github.io/papers/TR_2023_Saturn.pdf
https://adalabucsd.github.io/papers/TR_2023_Saturn.pdf
https://arxiv.org/abs/2308.08500
https://doi.org/10.48550/ARXIV.2008.09213
https://doi.org/10.48550/ARXIV.1906.00091
https://doi.org/10.48550/ARXIV.1906.00091
https://doi.org/10.48550/ARXIV.1909.06040
https://doi.org/10.48550/ARXIV.1910.02054
https://doi.org/10.48550/ARXIV.1910.02054
https://doi.org/10.1145/3135974.3135994
https://doi.org/10.1145/3514221.3517860
https://doi.org/10.48550/ARXIV.1909.08053
https://doi.org/10.48550/ARXIV.1909.08053
https://doi.org/10.48550/ARXIV.1904.10631
https://doi.org/10.1145/3035918.3064029
https://github.com/kingoflolz/mesh-transformer-jax
https://doi.org/10.48550/ARXIV.1910.03771
https://arxiv.org/abs/1910.05124
https://doi.org/10.48550/ARXIV.2201.12023

	Abstract
	1 Introduction
	1.1 Prior Art and Their Limitations
	1.2 System Desiderata
	1.3 Our Proposed Approach

	2 Background and Preliminaries
	3 System Overview
	3.1 Workload Specification
	3.2 Performance Estimation
	3.3 Joint Optimizer and Executor
	3.4 Current Limitations

	4 SPASE Joint Optimizer
	4.1 Problem Basics
	4.2 MILP Formulation
	4.3 Simulation-based Comparisons
	4.4 Introspection

	5 Experimental Evaluation
	5.1 End-to-End Results
	5.2 Joint Optimization Evaluation
	5.3 Drilldown Analyses

	6 Related Work
	7 Conclusions and Future Work
	Acknowledgments
	References

