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Abstract
Data analytics applications today often require processing heteroge-
neous data from different data models, including relational, graph,
and text data, for more holistic analytics. While query optimization
for single data models, especially relational data, has been studied
for decades, there is surprisingly little work on query optimization
for cross-model data analytics. Cross-model query optimization can
benefit from the long line of prior work in query optimization in
the relational realm, wherein cost-based and/or machine learning-
based (ML-based) optimizers are common. Both approaches require
a large and diverse set of query workloads to measure, tune, and
evaluate a query optimizer. To the best of our knowledge, there are
still no large public cross-model benchmark workloads, a significant
obstacle for systems researchers in this space. In this paper, we take a
step toward filling this research gap by generating new query work-
loads spanning relational and graph data, which are ubiquitous in
analytics applications. Our approach leverages large language mod-
els (LLMs) via different prompting strategies to generate queries
and proposes new rule-based post-processing methods to ensure
query correctness. We evaluate the pros and cons of each strategy
and perform an in-depth analysis by categorizing the syntactic and
semantic errors of the generated queries. So far, we have produced
over 4000 correct cross-model queries, the largest set ever. Our code,
prompts, data, and query workloads will all be released publicly.
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1 Introduction
Analytics over heterogeneous datasets spanning various data mod-
els (e.g., relational, graph, text) from different sources are increas-
ingly common in fields like social sciences [14, 19] and cybersecu-
rity [10–12]. Prior work shows that single data model stores may
be inefficient for cross-model applications [16, 21]. To mitigate this,
recent research on so-called polystore systems has introduced a
middleware layer over different "unistore" DBMSs. This approach
delegates parts of queries to suitable unistores, avoiding the need
to transform and store different data types in a single store while
leveraging each unistore’s strengths.

Polystores support cross-model queries spanning data models, but
optimizing these queries remains a research challenge. The absence
of a public large cross-model query benchmark hinders progress in
polystore research. Inspired by the impact of benchmarks like TPC-
H on relational DBMSs, this exploratory paper takes a step toward
developing a cross-model benchmark for relational and graph models.

1.1 Challenges
Generating large and diverse query workloads is crucial for evalu-
ating polystore query optimizers, whether cost-based or ML-based.
And specifically, ML-based optimizers require extensive training
datasets. While this problem of query workload generation is al-
ready challenging for just RDBMSs, it is even more compounded for
cross-model applications due to additional data models. To the best
of our knowledge, there is no public large query workload for cross
relational-graph analytics. A possible solution is to adapt relational
benchmarks like TPC-H to create a cross-model benchmark, but
these lack the complex relationships among entity tables needed
for graph-oriented analytics.

Thus, we modify a popular graph benchmark, LDBC1, which
includes complex relationships among node entities and multiple
node properties for each of the 14 entities. Figure 1 shows the
original graph schema with hidden node properties for brevity. We
place relationship data in the graph store and node property data in
relational tables to create a cross-model schema shown in Figure 2.

To produce cross-model queries, we could modify LDBC graph
queries (Cypher) to generate a mix of Cypher and SQL. However,
the LDBC benchmark has only 22 queries. Worse, not all suitable
for cross-model analytics as they do not need relational-style ca-
pabilities. A lot more cross-model queries need to be generated.
The queries should be diverse enough, spanning different levels of
complexity on both the SQL side and Cypher side. So, we cannot
just use a small template and modify its predicates, an approach
taken by prior SQL-generating methodologies such as Lero [22].

1https://ldbcouncil.org/benchmarks/snb-bi/
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Figure 1: LDBC Graph Dataset.

Graph Schema
Nodes property: Relationships:
Country: id
City: id
Place: id
Organisation: id
University: id
Company: id
TagClass: id
Tag: id
Forum: id
Person: id
Post: id
Comment: id
Message: id

Place-[IS_PART_OF]->Place
TagClass-[IS_SUBCLASS_OF]->TagClass
Organisation-[IS_LOCATED_IN]->Place
Tag-[HAS_TYPE]->TagClass
Comment-[HAS_CREATOR]->Person
Comment-[IS_LOCATED_IN]->Country
Comment-[REPLY_OF]->Comment
Comment-[REPLY_OF]->Post
Forum-[CONTAINER_OF]->Post
Forum-[HAS_MEMBER]->Person
Forum-[HAS_MODERATOR]->Person
Forum-[HAS_TAG]->Tag
........

Relation Schema
Country <id, name>
City <id, name>
Place <id, name>
Organisation <id, name>
University <id, name>
Company <id, name>
TagClass <id, name>
Tag <id, name>
Forum <id, title, creationDate>
Person <id, firstName, lastName, gender, ...>
Post <id, creationDate, content, length>
Comment <id, creationDate, content, length>
Message <id, creationDate, content, length>

Figure 2: Schema of Modified Data.

1.2 Our Contributions
In this exploratory paper, we address the above challenges by lever-
aging recent large language models (LLMs) that have been shown
to have remarkable text-to-SQL translation performance [3, 6, 15]
and potential in data augmentation [13, 18, 20]. We explore how
to prompt LLMs to develop and standardize a cross-model query
benchmark spanning SQL and Cypher queries. We explore three
different prompting strategies presenting the database schemas differ-
ently to the LLM. Table 1 illustrates these strategies, and Section 2
explains them in more detail. We find the strategy utilizing a virtual
graph view for cross-model data works best. We propose a mech-
anism to automatically categorize, verify, and correct some errors
in LLM-generated queries and a post-processing procedure to auto-
matically rewrite generated Cypher queries into cross-model queries.
Using our approach, we produced over 4000 correct queries, the
largest set for such cross-model applications. All our code, prompts,
data, and generated queries will be made public on GitHub to spur
further research and optimize polystore systems.

1.3 Related work
Polystore systems and workloads. Many existing polystore sys-
tems lack a large set of workloads for development or evaluation.
Myria [17] and CloudMdsQL [7] evaluate on two multi-model ana-
lytical workloads. BigDAWG [4, 5] and RHEEM [1, 8] evaluate on
three workloads. ESTOCADA [2] evaluates on 50 queries gener-
ated from 25 templates, the largest set of cross-model workloads to
date. However, ESTOCADA focuses on relational, JSON, and tex-
tual data, lacking graph data or queries. Currently, no large cross
relational-graph analytics benchmark is available.

SQL Query Workload Augmentation.While there are some
benchmarks for SQL, they are small, e.g., JOB [9] has 100 queries,
and TPC-H has 22. To expand the query set, methods like Lero [22]
generate 1000 queries from these benchmarks by adding or modify-
ing predicates. However, these generated queries often lack diver-
sity and may result in identical query plans, reducing their utility.

LLMs for data augmentation. There are several studies on text-
to-SQL generation using LLMs [3, 6, 15]. In other domains, LLMs
have been utilized for data augmentation for tasks like Chinese dia-
logue–level dependency parsing [20], multilingual commonsense
reasoning [18] and event extraction in natural language process-
ing [13], where available data is limited. However, to the best of our
knowledge, there are no existing studies using LLMs to generate or
augment a large set of queries for even single data model.

2 Strategies for query generation
For tractability purposes, in this initial work we focus on one class
of cross-model queries: one Cypher query followed by an SQL query
using the Cypher result as a table. We explore 3 different ways to
use LLMs for generating queries by altering how database schema
is given in the prompt. Table 1 lists the strategies; Figure 3 lists
their corresponding prompts.

Strategy 1 (S1) uses the actual graph and relation schema (Fig-
ure 2), and asks the LLM to generate random cross-model queries.
Figure 4 (a) shows an example output with a Cypher and an SQL
query. The advantage is that the generated queries are cross-model
queries that can be directly used on the underlying stores. How-
ever, the output tokens have redundant information. For example,
the node property city.id from Cypher RETURN clause and the
cityId column of relation ge in the SQL SELECT clause refer to the
same property and appear twice. Additionally, SQL queries often
include many tokens related to joins. This can be costly if a large
number of queries are generated, as token-based pricing is common
for LLM APIs. Moreover, it is not straightforward to automatically
verify the correctness of the generated queries, as both queries on
different stores need to be verified. The SQL query uses the result
from the Cypher query, so the relational store’s planner cannot
evaluate the SQL query without first running the Cypher query
and storing the result as a relation in relational store.

S2 uses a virtual graph view and asks the LLM to generate purely
Cypher queries. In the virtual graph schema, all relation columns
are expressed as the corresponding node’s properties. The output
is much more concise than that of the S1, as shown in Figure 4 (b),
since it hides the joins between nodes and relations, and extracted
properties only appear once in the RETURN clause. We conducted
an initial experiment to generate 100 queries using Strategies 1 and
2, and the average number of tokens for these queries were 42 and
91, respectively. It is also easier to evaluate the correctness of the
generated queries, as only one type of query needs to be checked.
We can use graph store planners, such as Neo4j, to evaluate the
query without running it. However, a post-processing procedure
is needed to rewrite each pure Cypher query into a cross-model
query with a Cypher query followed by an SQL query.

S3 uses an integrated virtual relational view and asks the LLM
to generate purely SQL queries. The graph can be expressed by
several relations, with node properties added as columns to the
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Table 1: Comparison of Different Strategies
Database schema Pros Cons

Strategy 1 (S1) Both data models No query rewriting needed More expensive due to longer token lengths
Verification is more complex

Strategy 2 (S2) Virtual graph schema # of output tokens is about half
Verification is easy Simple and deterministic post-processing

Strategy 3 (S3) Virtual relation schema Same as Strategy 2 Post-processing is more complex than Strategy 2

Use an integrated relation view to represent a dataset with both relations and a
graph, the relationship in graph are represented as tables. Create a set of sql
queries on this virtual relational schema: 
<entity_table_schema>, <relationship_table_schema>

Prompt 1

Prompt 2

Prompt 3

Given graph schema and relational schema, relations and graph nodes
referring to the same entity can be joined by id. Generate a cross model
workload with a cypher query followed by a sql query which joins graph nodes
with relations. Cypher query result can be stored as a relation, then the relation
can be joined with other relations in the sql query:
<graph_schema>, <relation_schema>

Given graph data schema, generate Cypher queries that explore complex
queries with path traversals and filter conditions on multiple node properties.
Use placeholders $param for values in the predicates; Return node properties
or aggregated values. <graph_schema>

Figure 3: Prompts of Different Strategies.

MATCH (p:Person)-[:LIKES]->(comment:Comment)-[:HAS_TAG]->(tag:Tag) 
MATCH (p)-[:IS_LOCATED_IN]->(city:City) 
WHERE tag.name = $param AND city.name = $param 
RETURN p.firstName, p.lastName, comment.content;

MATCH (person:Person)-[r:WORK_AT|STUDY_AT]->(org:Organisation),
(org)-[:IS_LOCATED_IN]->(city:City)
RETURN person.id AS personId, org.id AS orgId, org.name AS orgName,
city.id AS cityId, city.name AS cityName, TYPE(r) as relationType;

SELECT ge.personId, p.firstName, p.lastName, p.email, ge.orgId, ge.orgName,
ge.cityId, c.name AS cityName, ge.relationType
FROM graph_employment ge JOIN Person p ON ge.personId = p.id JOIN
Organisation o ON ge.orgId = o.id JOIN City c ON ge.cityId = c.id;

(a) Example output from Strategy 1

(b) Example output from Strategy 2

Figure 4: Example Output from Different Strategies.

corresponding entity tables, and each type of relationship can be
viewed as a table with start node IDs and end node IDs as two
columns. Like S2, it saves cost by producing more concise outputs
but requires a post-processing step.

Given the many cons of S1, we use a virtual integrated view
in the prompt. Between Strategies 2 and 3, we pick the former
due to two reasons. First, the post-processing for S3 is much more
complex–it needs to understand the entire logic of the query to
extract the join graph between tables and then translate the join
graph into paths on the graph data, which is hard to automate.
Second, it is hard for LLMs to generate SQL queries that translate
into certain path patterns. For example, variable-length paths need
to be expressed using recursive SQL queries, which are large and
cumbersome. Unless explicitly specified in the prompt, it is not
common to find this pattern in the generated SQL queries.

Figure 5 shows the whole workflow of using Strategy 2. We use
the LLM to generate a set of Cypher queries on the virtual graph
view. Then the queries will be verified or corrected (Section 3). Each
correct query will be rewritten into a Cypher query + an SQL query
on the real cross-model dataset (Section 4).

LLM 

Virtual Graph View 

Automated
Verification/
Correction

Manual
Verification

Query
Decomposition
and Rewritting

Relation

Graph

Data Stores

Figure 5: Workloads Generation Framework with Strategy 2.

3 Verification and Correction of LLM-generated
queries

To verify the Cypher queries generated with Strategy 2, we trans-
form and store all data, including relations, in Neo4j, a graph data-
base, subject to the virtual graph view.We ask Neo4j to run EXPLAIN
on each query; it generates an estimated plan and output cardinality
without executing the query. Using that information, we categorize
all queries into 6 main classes, as listed in Table 2.

If there is a syntax error when running explain <query>, the
query is categorized as Category 2 (C2). Queries without syntax
errors are further examined for semantic errors, whichmay result in
no output being returned. For syntax-correct queries, we assess the
estimated output cardinality. If the cardinality is relatively large, the
query is likely semantically correct and is placed in Category 1 (C1).
For queries with a small estimated output cardinality, we observed
common semantic mistakes:

• Some edge/node types do not exist in the graph (C3).
• The edge type exists, but should not exist between the two
nodes it connects (C4).

• The edge direction between two nodes is incorrect (C5).
Queries may fall into multiple categories among C3-C5 if they
exhibit multiple types of semantic errors. If small estimated car-
dinality queries do not exhibit any of the above errors, they are
placed in an unspecified category (C6). For C5, if the queries only
have this type of semantic error, we wrote a program to correct the
edge directions. After fixing the directions, we run EXPLAIN on the
new query; if the new estimated cardinality is relatively large, the
query is placed in subcategory C5.2. Otherwise, it is placed in C5.3.
Queries in C5.3 are included in C6 for further observation. There
are 406 queries in C5.2, meaning they are semantic correct after
fixing the direction errors.

LLM-generated queries are automatically categorized by our
program. Queries in C6 are then manually checked and put into
several sub-categories. Some queries (C6.2) return an aggregated
value, resulting in an estimated cardinality of 1, which is below
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Table 2: Categories of LLMs-generated Queries
Descriptions of Categories # Queries Sub-categories
C1: Syntax and semantic correct 3695

C2: Syntax error 12 C2.1: non existing functions; C2.2: not using specified separators for queries;
C2.3: reuse variable name in one match clause; C2.4: others

C3: Non-existing edge/node type 6
C4:Wrong edge type for specific nodes 37

C5: Wrong edge directions 436
C5.1: also in C3 or C4, no correction for them
C5.2: not in C3/C4; fall in C1 after fixing the directions (406)
C5.3: not in C3/C4; have small estimated cardinality even after fixing

C6: Unspecified 234

C6.1: Inaccurate estimation of Neo4j’s planner
C6.2: Aggregation function such as count(*) returned (11)
C6.3: Incompatible functions for some data types
C6.4: Predicates are too selective

our threshold for semantic error-free queries, but these queries are
semantically correct. All queries in C2, C5.2, and C6.2 are selected
as the final set of correct queries. Out of the 4,390 generated queries,
a total of 4,112 (∼ 94%) are correct.

4 Post-processing: Query Decomposition and
Rewriting

We apply a post-processing procedure to rewrite the correct Cypher
queries on the virtual view to queries on the real schema. For brevity,
we skip the detailed algorithm and provide a succinct summary.
Our algorithm takes a Cypher query 𝑄 and a map that stores the
properties that are in tables but not in the graph for each node type.

𝑄 is parsed into individual clauses; each is processed differently
and helps form different parts of the SQL query:

• MATCH or WHERE Clause: Labels for variables in MATCH
clause are identified. For each predicate, if the variable’s property
is not in graph, then the predicate is removed from this clause
and added to the SQL WHERE clause instead. The variable is
added to a join list ( 𝑗𝑜𝑖𝑛𝑉𝑎𝑟𝐿𝑖𝑠𝑡 ) that keeps track of variables
needed to be joined with tables in SQL queries.

• WITH Clause: All variables in 𝑗𝑜𝑖𝑛𝑉𝑎𝑟𝐿𝑖𝑠𝑡 are added there.
• RETURN Clause: Each returned value is added to the SELECT
clause of the SQL query. If a returned value uses a property not in
graph, the return clause is changed to return ID and the variable
is added to 𝑗𝑜𝑖𝑛𝑉𝑎𝑟𝐿𝑖𝑠𝑡 . If a returned value is an aggregation
function on a variable, the return clause is also changed to return
its ID, and all other returned values in the original RETURN
clause are added to the SQL GROUP BY clause. For variables in
𝑗𝑜𝑖𝑛𝑉𝑎𝑟𝐿𝑖𝑠𝑡 , their IDs are added to the RETURN clause, and they
are joined with corresponding tables on ID in the SQL WHERE
clause and these tables are added to SQFROM clause.

5 Analysis on the cross-model queries
For the LLM, we evaluated Llama3 and OpenAI’s GPT-4o. We found
that GPT-4o generates the most error-free queries with varying
complexities. Cypher queries typically match a path pattern from
the graph, and we use path length as an evaluation metric of com-
plexity. For SQL queries, we use the number of tables involved as
a metric. Each model was used to generate 100 queries. Llama3
had a correct rate of only 73%, while GPT-4o had a rate of 95%.
We rewrote correct queries to Cypher and SQL queries on the real

Table 3: Simple Statistics of Cross-model Queries
(a) Path Length Distribution of Cypher Queries

Path length 0 1 2 3 4 5 6 Variable
# queries 6 77 1926 1131 113 7 3 846

(b) Number of Tables Selected from of SQL Queries

# tables 0 1 2 3 4 5 6
# queries 4 210 1061 2107 679 47 1

schema. For Llama3, 79% of Cypher queries matched a path with
a length of 2, and 100% of the SQL queries involved 2 or 3 tables.
GPT-4o performed better in terms of variety: the lengths of fixed-
length paths ranged from 0 to 6 and the number of tables in SQL
queries ranged from 0 to 5.

Thus we used GPT-4o to generate more queries. In each request,
we ask it to generate 10 Cypher queries, continuing the requests
until we reach our budget limit ($6). After verification and cor-
rection, 4,112 out of 4,390 generated queries were correct; then
a post-processing procedure was applied to obtain cross-model
queries. Table 3 shows some summary statistics on the complexity
of the cross-model queries.

Three queries with corner cases can not be processed by our
current algorithm. Among the remaining queries, 6 Cypher queries
had empty paths and 4 SQL queries did not involve any table. These
10 queries are not cross-model queries as they only query one data
model. The remaining 4,099 queries are cross-model queries.

6 Conclusion and Ongoing Work
In this exploratory paper, we take a step toward generating a new
large cross-model query benchmark spanning relational and graph
data by leveraging state-of-the-art LLMs. In ongoing work, we are
designing a query diversity metric to ensure the benchmark stresses
different aspects of the underlying data systems, such as graph
algorithms in the graph query. We will also use our benchmark
to study new cross-model query optimization methods, including
new deep learning-based approaches that were hitherto impossible
without a large query workload like this.
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