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ABSTRACT

Deep learning (DL) has revolutionized unstructured data analytics.
But in most cases, DL needs massive labeled datasets and large
compute clusters, which hinders its adoption. These limitations can
be overcome using a popular paradigm called deep transfer learning
(DTL). With DTL, one adapts a pre-trained DL model instead of
training a model from scratch. Thus, DTL reduces the massive
training data and compute requirements to train a model. During
adaptation, a common practice is to freeze most pre-trained model
parts and adapt only the remaining. Since no single adaptation
scheme is universally the best, one often evaluates several schemes,
which is also called model selection.

We also observed that data labeling for DTL is seldom a one-
off process. One often updates their labeled data intermittently by
adding new labeled data and performs model selection to evalu-
ate the accuracy of the trained models. Today, one executes this
workload by performing computations for the entire pre-trained
model and repeats it for every model selection cycle. This approach
results in redundant computations in frozen model parts and causes
usability and system inefficiency issues.

In this work, we reimagine DTL model selection in the presence
of frozen layers as an instance of multi-query optimization and
propose two optimizations that reduce redundant computations
and training overheads.We implement our optimizations into a data
system called Nautilus. Experiments with end-to-end workloads
on benchmark datasets show that Nautilus reduces DTL model
selection runtimes by up to 5X compared to the current practice.
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1 INTRODUCTION

Deep learning (DL) achieves near-human accuracy for many im-
age and language analytic tasks. Its success is mainly driven by
how it extracts a hierarchy of relevant parameterized features from
raw data, with the parameters learned automatically during train-
ing [22]. These parameters are grouped into layers, and each layer
captures a different level of abstraction about the data, from generic
ones to specific ones [34, 43, 62, 77]. But, DL has a major bottleneck:
model training is expensive. In many cases, it needs large training
datasets (e.g., millions of records) and incurs high compute costs
(e.g., days to weeks of GPU time). This hinders DL adoption, espe-
cially in low-resource settings. These bottlenecks can be overcome
using a popular paradigm called deep transfer learning (DTL).

Example Use Case: Consider a data scientist tasked to develop a
named entity recognition model to identify disease entities from
clinical text. She is provided a large unlabeled clinical text dataset.
For this task, she decides to adopt the DTL paradigm. She downloads
a pre-trained model (e.g., BERT [18]) from a model hub [1], removes
the last few layers in the model, and adds few new layers on top of
it. She also freezes most of the pre-trained layers and trains only
the new layers and the final few layers of the pre-trained model.
She explores several freezing schemes and training hyperparameter
values (e.g., learning rates) to find the model with the best accuracy.

DTL leverages the fact that most of the features learned by a DL
model when trained on a large dataset like Wikipedia are general
enough to be reused in other similar settings.While both pre-trained
and newly added layer parameters can be trained, one can freeze the
parameters frommost pre-trained layers as they are generic enough
to be directly reused [18, 38, 54, 64]. This approach also reduces
the chances of model overfitting [46, 64] and the compute costs as
computations needed to update the frozen layers can be avoided.
However, different freezing schemes and training hyperparameters
can lead to different model accuracies. Hence, model selection is
unavoidable for DTL. Overall, DTL significantly reduces the labeled
data requirements (e.g., from millions to few thousand).

Even though DTL significantly reduces the large training data
requirement, it does not eliminate it. Often, practitioners create
training datasets by manually labeling the data. We also observed
that in many domain applications, data labeling is seldom a one-
off process [6, 9, 48, 68]. Practitioners often update the training
dataset intermittently by labeling new data and evaluate the model
accuracy to ensure that they have labeled a sufficient amount of
data to train a model that meets their target accuracy.
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Figure 1: (A) Human labeler labels batches of most informative data. (B) A pre-trained model is adapted for a target task. (C)

Our approach for optimized DTL model selection performs materialization and model fusion optimizations. (D) Contrasting

the current practice and our approach on different trade-off spaces.

Example Use Case (Continued): To create the labeled dataset
for training, our data scientist adopts the active learning paradigm
(AL) [48, 68]. AL operates in cycles. Each cycle, she labels a new
batch of data and trains the model on all the labeled data up to
that cycle. The model trained in the current cycle is used to sample
the most informative data for the next cycle using some sampling
technique (e.g., uncertainty, diversity [68]). Figure 1 (A, B) presents
an illustration of her workflow.

AL is an emerging paradigm that focuses on reducing data label-
ing efforts and it too requires periodic model selection. However,
AL is not the only paradigm that requires periodic model selec-
tion during data labeling. For example, other popular data labeling
approaches–such as simple manual annotation, crowd workers
(e.g., SageMaker Ground Truth [67]), and programmatic supervi-
sion [59]–may also require periodic model selection to evaluate the
benefit of labeling more data on model accuracy.

1.1 Current Practice and Inefficiencies

Today, one executes the DTL workload by training a DL model with
frozen layers as it is and repeats the process for all model selection
cycles [15, 48]. This leads to incurring redundant computations in
frozen layers as they are repeatedly invoked with the same inputs to
generate the same output. We identify three types of redundancies:

• Redundancies across training epochs: DLmodel training is it-
erative. Each iteration, also called an epoch, reads the full dataset
and feeds it through the layers. This leads to redundant compu-
tations across training epochs.

• Redundancies across models: Practitioners have to perform
model selection where they explore several different layer freez-
ing schemes and training hyperparameters (e.g., learning rate,
batch size). Thus, a model selection workload can contain models
that share frozen layers. Independently training them leads to
redundant computations across models.

• Redundancies across model selection cycles: Model selec-
tion is repeated for every new snapshot of training data. This
leads to redundant computations across model selection cycles.

Overall, these redundancies are problematic, at least for three
main reasons. First, they increase the model selection runtimes

and impede human productivity. Human labelers may have to wait
longer until model selection completes to proceed to the next data
labeling cycle. Second, they lead to higher monetary costs, espe-
cially in pay-as-you-go environments in the cloud. Third, they also
lead to significantly higher energy consumption and associated
environmental issues, which are expected to further amplify by the
wide adoption of DL in many domains [7].

1.2 Our Proposed Approach

In this work, we use a database-inspired lens to formalize, opti-
mize, and accelerate the DTL model selection in the presence of
frozen layers. We reimagine DTL model selection as a novel in-
stance of multi-query optimization (MQO) [66] and perform two
data management-inspired optimizations:

• Materialization Optimization: We materialize intermediate
layer outputs from a chosen set of frozen layers on the first time
they are computed and avoid repeated recomputations. However,
the size of the intermediate layer outputs can be orders of mag-
nitude (even up to 100X) larger than the input data, and it may
not be possible to materialize all frozen layers due to storage
constraints [24]. Even if it is possible to materialize all frozen lay-
ers, it may be the case that some outputs can be computed faster
using others instead of loading them. Therefore, the challenge
is to pick an optimal set of frozen layers that can reduce model
selection runtimes subject to a storage budget as shown in Fig-
ure 1 (D). This optimization is an instance of view selection being
combined with MQO to optimize DL workloads [13]. By doing
so, we reduce all three types of computational redundancies.

• Model Fusion Optimization: Even after the materialization
optimization, there can be remaining frozen layers shared among
models in the workload. Thus, we propose model fusion opti-
mization, which is inspired by pipelined multi-query execution
in relational query processing [17]. It builds on top of our materi-
alization optimization and reduces the redundant computations
by fusing multiple models and eliminating frozen common sub-
expressions in the models. It also amortizes model training over-
heads and I/O overheads [47]. However, excessive model fusion
can increase the runtime memory footprint and cause workload
crashes. The challenge is to pick an optimal set of models to be
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fused, such that it reduces model selection runtimes subject to a
runtime memory budget as shown in Figure 1 (D).

Our optimization techniques are orthogonal to the data label-
ing scheme used. Thus, we can support all kinds of data labeling
schemes–such as active learning, simple manual labeling, crowd
workers, and programmatic supervision–in a unified manner.

We implement our techniques into a system we call Nautilus.
It runs on top of the popular DL libraries Keras and TensorFlow [4].
Nautilus is tailored to limited-resource settings such as work-
stations and personal computers, which cover a vast majority of
DTL use cases [48]. Nautilus provides easy-to-use APIs to specify
the DTL workload over evolving training data and optimizes DTL
model selection. We evaluate Nautilus empirically on five work-
loads, including one from an influential NLP publication [18], on
two benchmark ML datasets: CoNLL [73] and Malaria [58]. Nau-
tilus avoids many compute redundancies and significantly reduces
training and I/O overheads, enabling up to 5X reduction in model
selection runtimes. Thus, Nautilus significantly reduces system
resource costs and also improves human productivity (i.e., less
waiting time between model selection cycles) for DTL workloads.
Overall, this paper makes the following contributions:
• To the best of our knowledge, this is the first paper to formal-
ize and optimize deep transfer learning (DTL) workloads over
evolving training data from a data management standpoint.

• We reimagine iterative training of DL models with frozen layers
as a new instance of MQO and present a materialization opti-
mization technique to reduce redundant computations of DTL
workloads.

• We present model fusion optimization, which builds on top our
materialization optimization, to further reduce redundant com-
putations and model training overheads of DTL workloads.

• We implement our ideas into a data system called Nautilus and
perform an extensive empirical evaluation using 5 end-to-end
workloads on two benchmark ML datasets. Nautilus reduces
DTL model selection runtimes by up to 80% in some cases.

Outline: Section 2 presents some background, formalizes the work-
load, and explains our assumptions. Section 3 provides an overview
of Nautilus and implementation details. Section 4 dives into the
system optimizations. Section 5 presents the experiments. We dis-
cuss related work in Section 6 and conclude in Section 7.

2 BACKGROUND AND PRELIMINARIES

We start with a brief background on DL model training, which is
needed to understand our system optimizations. We then present
the formal problem description and list our assumptions. The nota-
tion used is explained in Table 1.

2.1 Background on DL Model Training

DL models are DAG structured graphs. A node in the graph is also
called a layer and a layer takes in one or more input tensors and pro-
duces an output tensor. Most layers also have trainable parameters,
and they are trained using a combination of two techniques: mini-
batch stochastic gradient descent (SGD) and back-propagation.

Table 1: Notation used in Section 2

Symbol Description

M = (L,E) A DL model with L layers and E edges.
f (l) f (l) = True/False. Function indicating layer l is frozen

during model training.
m(l) m(l) = True/False. Function indicating layer l is mate-

rializable.
ϕ Set of training hyperparameters.
Q Q = {(M1,ϕi ), . . . , (Mn ,ϕn )}. Set of model and train-

ing hyperparameter pairs.
D Labeled dataset. Dk corresponds to the dataset snap-

shot at time k . Dtrain
k and Dvalid

k are training and vali-
dation splits of Dk , respectively.

д(M,ϕ,D) д(M,ϕ,D). Training function that takes in aM , ϕ, and
D. After training M using ϕ on Dtrain, returns the
model accuracy on Dvalid .

∆L+,∆L− Added (∆L+) or removed (∆L−) layers.
∆E+,∆E− Added (∆E+) or removed (∆E−) edges.
∆D+k New labeled data for the model selection cycle k .

Mini-batch SGD:Mini-batch SGD is an iterative numerical opti-
mization method, which performs multiple passes over the data
using small data batches called mini-batches. A single pass is also
called an epoch of training. In an epoch, SGD randomly samples
mini-batches and estimates loss gradients (e.g., cross-entropy loss
[22]) with respect to all the trainable model parameters. During
training, the parameters are iteratively updated using the gradients.

Back-propagation: Loss gradients in SGD are calculated using
the back-propagation technique. It leverages the DAG structure of
the model and the chain rule of differentiation to efficiently cal-
culate the gradients. For every mini-batch, it first calculates all
intermediate layer and the model outputs. It then calculates the
mini-batch training loss using the model outputs and the target la-
bels/values. These two steps are collectively called the forward-pass
of training. After the forward-pass, back-propagation calculates
the loss gradient with respect to the model outputs and traverses
backward from the model output layers towards the model input
layers. Along its path, it propagates the loss gradient through the
layers. The loss gradient with respect to the inputs of a layer, also
called the input gradients, is calculated using the loss gradient with
respect to the output of that layer. Back-propagation also calculates
the loss gradients with respect to the unfrozen layer parameters,
also called the parameter gradients, and uses them to update the
trainable parameters. This second pass of going backward is called
the backward-pass of training.

For more technical details on SGD and back-propagation tech-
niques, we refer the reader to [22, 25].

2.2 Definitions and Data Model

We start by defining some terms and notation to formalize the DTL
workload. We will use these terms in the rest of this paper.
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Definition 2.1. A layer is a function l that takes a list of input
tensors t1, t2, . . . , tm (m ≥ 1) of fixed shape and outputs a tensor
t ′ = l(t1, t2, . . . , tm ) of potentially different, but fixed shape. A list of
tensors t1, t2, . . . , tm are said to be shape-compatible with l iff their
shapes conform to what l expects for its inputs.

Definition 2.2. AmodelM = (L,E) is a directed acyclic graph
(DAG) of layers L = l1, . . . , ln and edges E between the layers.

Definition 2.3. A layer l is frozen if its learnable parameters are
not updated during training. A layer with no learnable parameters is
also frozen. f (l) is a function that indicates a layer l is frozen or not.

Frozen layers incur redundant computations. However, a frozen
layer that has a non-frozen ancestor doesn’t incur redundant com-
putations. Thus, we introduce the notion of a materializable layer
to identify layers that will contribute to redundant computations.

Definition 2.4. A layer l is materializable if it’s a model in-
put layer (i.e., l ∈ I ) or is a frozen layer with all its parent layers
being materializable. m(l) is a function that indicates a layer l is
materializable or not.

2.3 Workload Formalization

We are given a candidate set of model and training hyperparameter
pairs Q = {(Mi ,ϕi ) : i ∈ 1 . . .n}. Each candidate model Mi is
adapted from a source pre-trained model Msrc = (Lsrc,Esrc) and
its pre-trained layers are frozen according to some scheme. We
assume that we have access to a model training function that trains
a candidate modelMi using hyperparameters ϕi on a training split
ofDtrain

k and returns validation accuracy on a validation splitDvalid
k .

We represent this model training function as д(Mi ,ϕi ,Dk ). We then
perform model selection to find the best candidate model based on
validation accuracy and repeat it whenever the dataset snapshot
changes fromDk toDk+1. More precisely, we describe the workload
as follows:

∀Dk ∈ {D0,D1, . . . } :
argmax
(Mi ,ϕi )∈Q

д(Mi ,ϕi ,Dk ) (1)

Mi =(Li ,Ei )

Li = ∆L+ ∪ (Lsrc − ∆L
−), Ei = ∆E+ ∪ (Esrc − ∆E

−)
(2)

∆E+ ⊆ (∆L+ × ∆L+) ∪ (Lsrc × ∆L
+)

∪ (∆L+ × Lsrc) ∪ (Lsrc × Lsrc)
(3)

Dk+1 = Dk ∪ ∆D+k (4)

Equation 1 captures the model selection step. Equation 2 captures
the structure of a candidate modelMi , which is obtained by adding
a new set of layers ∆L+ and edges ∆E+ toMsrc and removing a set of
existing layers ∆L−(⊂ Lsrc) and edges ∆E−(⊆ Esrc) fromMsrc , while
ensuring the DAG structure and the shape compatibility of all layer
inputs. Equation 3 captures the structure of ∆E+, which has four
different types of edges based on the originating and terminating
layer type. Finally, Equation 4 captures how the next labeled data
snapshot Dk+1 is obtained by adding a new set of labeled data
records ∆D+k to the current snapshot Dk .

(A) (B) (C) (D)

MiMs

Source model layers


Newly added target

model layers

Frozen source layers

Removed source 
layers

Newly added target 
model edges
Removed source 
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Figure 2: Transfer learning approaches. (A) SourcemodelMS .

(B) Feature transfer. (C) Fine-tuning. (D) Adapter training.

2.4 Popular Transfer Learning Approaches

We found three transfer learning approaches that are popular among
practitioners: features transfer, adapter training, and fine-tuning.
They can be treated as special cases of our general workload for-
malization that impose specific structural properties on the newly
added edges ∆E+ and the layer freezing scheme.

• Feature Transfer: In this approach, one freezes all layers in Lsrc
(i.e., f (l) = True, ∀l ∈ Lsrc) and restricts ∆E+ to only contain
edges between newly added layers or edges from a source model
layer to a newly added layer (i.e., ∆E+ ⊆ (∆L+ × ∆L+) ∪ (Lsrc ×
∆L+)). Common practice is to add new layers on top of the penul-
timate layer, any other top-level layer, or a collection of top-level
layers inMsrc [18]. The structure of an exampleMi that uses the
feature transfer approach is shown in Figure 2 (B).

• Fine-Tuning: This approach is similar to feature transfer but
there is at least one pre-trained layer l in the adapted model that
is unfrozen (i.e., f (l) = False). Parameters of all such layers along
with the parameters of the newly added layers ∆L+ are learned
during training [18]. While one can unfreeze all layers in Msrc ,
researchers have shown that freezing most of the lower-level
layers inMsrc and fine-tuning only the top few layers can achieve
similar results to fine-tuning all layers [38]. This also avoids the
risk of pre-trained information inMsrc getting overwritten due to
overfitting, which can easily happen in transfer learning settings
with limited training data [46, 64]. The structure of an example
Mi which uses the fine-tuning approach is shown in Figure 2 (C).

• Adapter Training: In this approach, one freezes most of the
layers in Lsrc , but not necessarily all (i.e., f (l) = True, ∃l ∈ Lsrc).
However, ∆E+ can be more general with having edges between
newly added layers, edges going from source model layers to
newly added layers, and also edges going fromnewly added layers
to source model layers (i.e., E+ ∩ (L+ × Lsrc)  ϕ). The common
practice is to add small bottleneck layers called adapters between
the layers ofMsrc [31, 55, 60]. While one can add adapters to all
layers inMsrc , researchers have shown that adding adapters only
to the top-level layers can be as effective as adding adapters to
all the layers [63]. The structure of an example Mi which uses
the adapter training approach is shown in Figure 2 (D).
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Model Selection for Popular Approaches: Model selection is
unavoidable for any DL model training as one has to tune the train-
ing hyperparameters like batch size, regularization, learning rate,
and number of training epochs. In addition to the above common
training hyperparameters, popular transfer learning approaches
also need additional architectural tuning. For example, feature trans-
fer needs exploring features from several layers or layer combina-
tions. Fine-tuning needs exploring different layer freezing schemes
(e.g., up to which layer to freeze?). Adapter training also needs
exploring different adapters and adapter placement schemes (e.g.,
to which layers to add adapters?). It has been shown that all these
approaches can be equally competitive for a wide variety of transfer
learning tasks [54, 64]. Thus, practitioners need to explore multiple
approaches before picking the best one for their given task.

2.5 Assumptions and Limitations

For tractability, we make the following simplifying assumptions.

• We assume that the model selection workload specification is
fixed and is repeated for all model selection cycles. This approach
can support both grid and random search-based model selection,
which covers an overwhelming majority of practical and research
DTL workloads [10]. Evolving model selection workloads can be
supported by rerunning the optimization and updating themateri-
alized layers, but that adds more implementation complexity–we
leave such an extension to future work.

• We also assume that the layer freezing scheme used for adapting
the source modelMsrc is also fixed throughout the entire model
training. However, few dynamic layer freezing schemes have
also been proposed in the literature [16, 19, 32]. We leave adding
support for these layer freezing schemes to future work.

• Our workload formalization is tailored to DAG-structured models
(i.e., model graphs with no cycles). However, there is a family
of DL models called recurrent DL models that does have cycles.
Nautilus can support recurrent models by unraveling them in
time and transforming them into a non-recurrent DL model.

• Some DL models, especially in computer vision applications,
contain random data augmentations such as random cropping
and flipping in their pre-processing steps [53, 69]. Nautilus cur-
rently does not explicitly handle data augmentation. However,
data augmentation can be supported in Nautilus by first materi-
alizing an augmented dataset instead of on-the-fly augmentation.
We leave it to future work to extend Nautilus to support data
augmentation.

3 SYSTEM OVERVIEW

We implement Nautilus on top of TensorFlow and Keras libraries.
Nautilus optimizes DTL model selection. It has 5 main compo-
nents: API, Profiler, Optimizer, Materializer, and Trainer. Figure 3
presents the architecture of Nautilus. Next, we provide details
on Nautilus’s components.

• API: Nautilus’s API is inspired by libraries like Scikit-Learn
and Keras. Users create a model selection object by specifying a
parameter search space and a user-defined model initialization
function. The model initialization function encapsulates the logic

Nautilus

Profiler Optimizer MaterializerTrainer

API

DL Training Framework

GridSearch(…) .fit(train_data, val_data)

materialize 

intermediate 


outputs

invoke model

 selection

invoke model

profiling

generate optimized 
model train plan

profile

info

optimized

model train


plan

Figure 3: High-level architecture of Nautilus and the inter-

actions between system components. fit(...) method is called

for every model selection cycle.

to interpret the search parameter values. It takes in an instance
of parameter values ϕi and returns a Keras model ready to be
trained. Thus, Nautilus can support both architectural tuning
parameters (e.g., which layers to add, prune, or freeze) and train-
ing hyperparameters (e.g., learning rate) in a unified manner.
Users can also override the default system config values used by
the optimizer. These include storage and runtimememory budget,
expected maximum number of training records, disk throughput,
and compute throughput values. Users initiate model selection
by calling the fit(...) method and passing a batch of training and
validation data. It is called for every model selection cycle.

• Profiler: When a user initializes a workload, Nautilus inter-
nally invokes its Profiler. Profiler invokes the user-defined model
initialization function to initialize all models, profiles them, and
finally stores the initialized model checkpoints on disk. Model
checkpoints are artifacts consisting ofmodel architecture, weights,
and the optimizer. They capture all the details that the DL frame-
work needs to train the model. For profiling, it uses the fea-
tures available in TensorFlow. The profiling information includes
shapes of all intermediate output tensors and the forward-pass
layer compute costs in FLOPs.

• Optimizer: The optimizer takes in the profiling information and
system configuration values and generates an optimized model
training plan. The optimized plan combines both our material-
ization and model fusion optimizations. Due to the model fusion
optimization, an optimized plan can correspond to more than one
model in the original model selection workload. It then generates
the model checkpoints for the optimized model training plan by
reading the original model checkpoints and stores the new model
checkpoints on disk. It also creates a model checkpoint that is
used to generate the outputs of the chosen materialized layers.
We discuss system optimizations in more detail in Section 4.

• Materializer: When a user initiates a model selection step by
passing a new batch of labeled data, the API calls the Material-
izer to update both the labeled dataset and outputs of chosen
materialized layers. TheMaterializer reads the output materializa-
tion model checkpoint, generates the intermediate outputs, and
stores them on disk. One could also store the outputs in DRAM.
However, their size can be significant (e.g., 10s of GBs) and can
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Table 2: Additional Notation used in Section 4

Symbol Description

I , O Input (I ) and output (O) layers in modelM .
U , V Materializable (U ) and materialized (V ) layers

in modelM .
Bdisk , Bmem Disk storage budget (Bdisk) and runtime mem-

ory budget (Bmem).
Mopt Optimal reuse plan model forM .
ccomp(l), cload (l) Functions for estimating the computation cost

and data load cost of layer l .
sdisk(l), smem(l) Functions for estimating the storage usage and

runtime memory usage of layer l .
C(M) Training cost of modelM .
smem(M) Peak memory usage for training modelM .
q(l ,M) q(l ,M) = is a function indicating the layer l is

pruned, present and computed, or present and
loaded (i.e., l ∈ I ) inM .

r Expected maximum training data records.

exhaust DRAM. Also, DL models are often compute-intensive,
and I/O overheads can be mitigated by prefetching. Thus, if there
is excess DRAM available, we rely on the OS disk cache to cache
the intermediate outputs.

• Trainer: The Trainer trains the models on the labeled train-
ing dataset according to the optimizer-generated training plan
and saves the trained model parameters on disk. It extends the
model training feature in Keras to support training a model with
multiple optimizers with each optimizer operating on a sepa-
rate trainable branch of a model. This feature is needed for our
model fusion optimization, which we discuss in more detail in
Section 4.3. Finally, the Trainer returns the model that has the
best validation accuracy back to the user.
In the current version, the Trainer supports single-node model

training with or without GPU support. If multiple GPUs are avail-
able, the Trainer can also train models in data-parallel manner.
We have focused on supporting DL models that fit in single-
node/device memory during training (i.e., DRAM for CPU train-
ing and GPU’s memory for GPU training) as many practical DTL
applications operate in low-resource settings. Furthermore, the
runtime memory usage of DL models is significantly reduced by
pre-trained layer freezing, making most DTL models trainable
on single-node/device memory. We discuss more details about
runtime memory usage in Section 4.3.3.

4 SYSTEM OPTIMIZATIONS

We first introduce the notion of multi-model graph, the core data
structure used by our optimizations. We then dive into more details
of our optimizations. We conclude the section by characterizing
the attainable theoretical speedups. Table 2 presents the additional
notation used in this section.

4.1 Multi-Model Graph

We create an information graph composed of all candidate models
in a model selection workload, which we call a multi-model graph.
It is inspired by the AND view graph in relational multi-query
optimization [27]. But we adapt it to the DL model selection context
by leveraging the properties of DL models and training. Next, we
define some helper terms and formalize the multi-model graph.

Definition 4.1. An expression for a layer l in a model M is a
DAG of layers with model input layers I as sources and l as the sink.

Definition 4.2. An expression is a materializable expression,
iff the sink layer of the corresponding DAG is materializable.

Definition 4.3. Two layers li and lj are said to be identical, i.e.,
li ≡ lj , if both of them are of same type, have identical configuration
values, and identical trainable parameter values. Two expressions ei
and ej are said to be identical, i.e., ei ≡ ej , if both of them have the
same DAG structure and all corresponding layer pairs are identical.

Definition 4.4. A model M = (L,E) is called a multi-model
graph for the models M1,M2, . . . ,Mn , iff for every output layer of
everyMi , there is an expression inM that is identical to the expression
ofMi ’s corresponding output layer.

Constructing the Multi-Model Graph: For a model selection
workload with a set of models M1,M2, . . . ,Mn , we construct the
multi-model graph M by merging all the materializable identical
sub-expressions in them. If layer l in model Mi is materializable
(i.e., l ∈ Ui ), the corresponding layer l in the multi-modelM is also
materializable (i.e., l ∈ U ), and vice-versa. Only the materializable
layers in the multi-model need to be considered for materialization
(i.e., V ⊆ U ). We use 4 metrics to capture the runtime and layer
output characteristics of all layers inM . They can be obtained by
profiling the original models in the workload. We represent these
values normalized for a single training record. They include:
• ccomp(l), which captures the layer computation cost in terms of
floating-point operations (FLOPS). It includes both the forward-
and backward-pass computation costs. The forward cost can be
directly obtained from the profiling information. However, pro-
filing information provided by DL frameworks often does not
include backward-pass cost. Hence, as per the standard prac-
tice [5, 25], we use the forward cost to estimate the backward
cost. For a trainable (i.e., not frozen) layer, we set it to thrice the
number of forward-pass FLOPs to account for forward-pass, in-
put gradient, and parameter gradient computations. For a frozen
but not materializable layer, we set it to twice the number of
forward-pass FLOPs to account for both forward and input gra-
dient computations. For a materializable layer, we set it to the
forward-pass FLOPs as there is no back-propagation happening.

• sdisk(l), which captures the layer output size on disk in Bytes.
We estimate it using the output tensor dimensions and data type.

• cload (l), which captures the layer output loading cost from

disk in terms of missed compute FLOPs. We calculate it by first
estimating the disk read time and multiplying it by the FLOPs
throughput of the system. We ignore the data transfer time from
DRAM to GPU memory as disk load time dominates the total
time. Both compute throughput and disk read speed affect cload (l).
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We use pre-configured values for them, which match the charac-
teristics of the available hardware.

• smem(l), which captures the layer output size in memory in
Bytes.We estimate it using the output tensor dimensions and data
type, similar to the on-disk output size. However, for a composite
layer that consists of several basic layers (e.g., a transformer layer
composed of several dense, addition, and layer normalization
layers [75]), we estimate it by summing the size of all child layer
output tensors. We treat composite layers differently to account
for all the intermediate output tensors that the backward-pass
may need. We explain this in more detail in Section 4.3.3.

4.2 Materialization Optimization

We formally present our materialization optimization problem and
present a mixed-integer linear programming-based solution.

4.2.1 Materialization Optimization Problem. Our goal is to
find an optimal set of intermediate layer outputs to materialize sub-
ject to a storage constraint. Given a set of such layers, we rewrite the
model graphs to reuse these intermediate outputs during training.
We assume that the model selection workload is fixed and repeated
for all model selection cycles. Thus, we focus on materialization
optimization for a single model selection cycle. Intermediate layer
materialization incurs compute and I/O costs. However, it is amor-
tized by the iterative DL model training costs, which get further
amplified by multiple candidate models and multiple model selec-
tion cycles. Therefore, we ignore the computation and I/O costs
for materializing the chosen layers and optimize for minimizing
the total model training time. We estimate the storage footprint
using a pre-configured maximum number of records r and reuse
the obtained optimal materialization plan for all model selection
cycles until the training dataset size reaches that limit. We explain
how we relax the max training records constraint in Section 4.2.3.

Let M = (L,E) be the multi-model graph for the set of models
{Mi = (Li ,Ei ) : ∀i ∈ 1, . . . ,n}.U is the set of materializable layers
in M and V is the optimal set of materialized layers (V ⊆ U ). Ii
and Oi are the input and output layers of Mi , respectively. C(M)
is a function that estimates the training cost of model M (for one
input record in FLOPs) and q(l ,M) is a function that indicates the
presence of layer l in modelM . We first introduce the notion of an
optimal reuse plan model that captures how we should rewrite a
model graph to reuse the materialized layer outputs in V and then
explain how we find V .

Definition 4.5. Mopt
i is called the optimal reuse plan model

forMi , iff

(1) It has the same output layers asMi (i.e., O
opt
i = Oi ).

(2) Every layer l inM
opt
i is also inMi (i.e., L

opt
i ⊆ Li ).

(3) For every layer l inM
opt
i , parents of l inM

opt
i are same as its

parents inMi ; or l is in V (i.e., l ∈ V ).
(4) Has the lowest training costC(Mopt

i ) out of all such candidates.

TrainingMopt
i is equivalent to trainingMi as both perform log-

ically equivalent operations. Mopt
i can be obtained from Mi =

(Li ,Ei ) by taking one of the following three actions for every layer

Materialized layer

Different valid reuse plan model options

Materializable layer Trainable layer

Original Model

Figure 4: Different valid reuse plan model options for a

model with materializable layers.

l ∈ Li : (1) pruning i.e., q(l ,M
opt
i ) = pruned, (2) retaining and com-

puting i.e., q(l ,Mopt
i ) = computed, and (3) retaining and loading as

an input i.e., q(l ,Mopt
i ) = loaded. Figure 4 shows an example model

graph and several valid reuse plan models. We estimate the training
cost of an optimal reuse plan model C(Mopt

i ) by summing all layer
compute costs and input loading costs as follows:

C(M
opt
i ) =


l ∈Li

1{q(l ,M
opt
i ) = computed} · ccomp(l)

+1{q(l ,M
opt
i ) = loaded} · cload (l)

(5)

Equation 5 makes the simplifying assumption that layer compu-
tations and input loadings do not overlap during training. However,
DL model training operates in pipelined fashion on mini-batches
of training data, and it may be possible to hide some of the data
load costs by pre-fetching the data. Nevertheless, our formulation
provides a reasonable upper bound for the total model training cost
that is sufficient for our purpose.

With the optimal reuse plan model Mopt
i and its training cost

C(M
opt
i ) defined, the materialization optimization problem can be

formally expressed as follows:

argmin
V ,M opt

i ∀i ∈{1, ...,n }

n
i=1

C(M
opt
i ) · r · epochs(ϕi ) (6)

subject to: 
l ∈V

s(l) · r ≤ Bdisk (7)

Equation 6 minimizes the total model training time. The model
training time of a single modelMi is estimated by multiplying the
training cost of the corresponding optimal reuse plan modelMopt

i ,
the maximum number of training records r , and the number of
training epochs epochs(ϕi ). epochs(ϕi ) is a training hyperparam-
eter provided by the user. Equation 7 ensures that the materialized
layer outputs do not exhaust the disk storage budget Bdisk .

4.2.2 Mixed Integer Linear Programming Formulation. We
present a mixed-integer linear programming (MILP) formulation of
the materialization optimization problem. To our knowledge, this
is the first time an MILP formulation is used for materialization
optimization in a DL systems context, although it has been previ-
ously used in other data management contexts [14]. Applying MILP
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techniques to this problem is possible because of our multi-model
graph formalization, which we generate by leveraging the DAG
nature and the presence of frozen layers in DL model graphs.

Let li, j be the jth layer of ith model Mi = (Li ,Ei ) in the multi-
modelM . uk is the kth layer of the set of materializable layersU in
M . We introduce three sets of binary indicator variables X , Y , and
Z as follows:

for all i ∈ {1, . . . ,n}, j ∈ {1, . . . , |Li |}, k ∈ {1, . . . , |U |}

(a) Xi, j = 1{q(lj ,M
opt
i )  pruned}

(b) Yi, j = 1{q(lj ,M
opt
i ) = computed}

(c) Zk = 1{uk ∈ V }

(8)

Xi, j indicates whether the jth layer ofMi is present inM
opt
i . Yi, j

indicates whether the jth layer ofMi is computed inMopt
i . Xi, j and

Yi, j collectively determine q(li, j ,M
opt
i ). Zk indicates whether the

materializable layer uk ofM is materialized. With these indicator
variables defined, the MILP-based approach for the materialization
optimization problem can be expressed as follows:

argmin
X ,Y ,Z


∀ i, j


Xi, j · cload (li, j )

+Yi, j · (ccomp(li, j ) − cload (li, j ))

· r · epochs(ϕi )

(9)

subject to:
(a) li, j ∈ O =⇒ Xi, j ≥ 1, ∀i, j
(b) Xi, j − Yi, j ≥ 0, ∀i, j
(c)


li,k ∈ parents(li, j )

Xi,k − Yi, j ≥ 0, ∀i, j

(d) uk ≡ li, j =⇒ Xi, j − Yi, j ≤ Zk , ∀i, j,k
(e)


uk ∈U

Zk · sdisk(uk ) · r ≤ Bdisk

(10)

Equation 9 is equivalent to the optimization objective presented
in Equation 6. Equation 10 (a) ensures that output layers of all
models are not pruned and avoids the trivial solution where all
layers are pruned. Equation 10 (b) ensures a computed layer is not
pruned and Equation 10 (c) ensures parents of a computed layer are
also not pruned. Equation 10 (d) ensures that only the materialized
layers are loaded from the disk and Equation 10 (e) ensures that
the cumulative size of the materialized layers does not exhaust the
storage budget, which is equivalent to Equation 7.

Given the above, a straightforward approach to optimization is
to use an MILP solver like Gurobi [28]. Z indicates the materialized
layers and X and Y can be used to construct the optimal reuse
plan models. If disk storage budget is not a critical resource, Z may
contain materialized layers that do not get used in reuse plan mod-
els. Such layers can be discarded using a post-processing step. It
can be shown that the above materialization optimization problem
is NP-hard using a reduction from the known NP-hard Knapsack
problem [36, 76]. However, we found that an MILP solver-based
approach finds the optimal solution within a short execution time
(e.g., few 10s of seconds) at the scale of practical DTL model selec-
tion workload sizes. We provide more details on MILP execution
time in Section 5.3.

Algorithm 1 : FuseModels(Q,Bmem,V )

1: Q ′ = {(Mi ,M
opt
i ,ϕi )| ∀i ∈ [1, . . . , |Q |]}

2: while there are not-considered fusible model pairs in Q ′ do
3: P = {(i, j)|all not-considered fusible model pair indices}
4: Mi, j ←multi-model forMi andMj ,∀(i, j) ∈ P
5: M

opt
i, j ←optimal reuse plan model forMi, j , ∀(i, j) ∈ P

6: ci, j ← C(M
opt
i ) +C(M

opt
j ) −C(M

opt
i, j ),∀(i, j) ∈ P

7: i∗, j∗ ← argmax
(i, j)∈P

ci, j , such that smem(M
opt
i, j ) ≤ Bmem

8: Q ′ ← Q ′ ∪ {(Mi∗, j∗ ,M
opt
i∗, j∗
,ϕi∗ ∪ ϕ j∗ )}

9: Q ′ ← Q ′ \ {(Mi∗ ,M
opt
i∗
,ϕi∗ ), (Mj∗ ,M

opt
j∗
,ϕ j∗ )}

10: end while

11: return {(Mi ,ϕi )| ∀i ∈ 1, . . . , |Q ′ |}

4.2.3 Incremental Feature Materialization. For a new batch
of labeled data, we materialize it and also incrementally update the
outputs of the chosen materialized layers. We repeat this until the
pre-configured maximum number of training records r is reached.
When we reach the maximum number of training records, we use
an exponential backoff scheme with a factor of 2 to update r (i,e.,
r ← 2 × r ). We then rerun the materialization optimization to find
a new set of materialized layers and materialize them. Overall, our
exponential backoff scheme to update r provides a good balance
between materialization overheads and storage wastage.

4.3 Model Fusion Optimization

In model fusion, we partition the set of models into groups such
that the fused models corresponding to the partitions reduce the
redundant computations with the highest margin while ensuring
the runtime memory budget Bmem is not exhausted. We first explain
our approach for finding such a partitioning. We then explain how
to adapt the optimal reuse plan model for the fused model setting
and also explain how we estimate fused model memory footprint.

4.3.1 Partitioning the Set of Models. We leverage the pipelin-
ing nature of the mini-batch SGD training method to train a fused
model, which operates on one mini-batch at a time. We also en-
sure that all models in a partition have the same training batch
size. Otherwise, they cannot be fused during training. Given such a
partition, we create the multi-model for the partition and find the
optimal reuse plan model. Multi-model creation will fuse only the
materializable layers that do not require any training. Therefore,
the training optimizer for the fused model’s reuse plan model can be
represented as the set of optimizers from the source models where
each optimizer operates on the corresponding trainable branch.

However, finding the optimal partitioning requires considering
all candidate partitions (i.e., all possible model groupings), which
is exponential in the number of models in the model selection
workload. Furthermore, the training cost (C(Mopt )) and the peak
runtime memory usage (smem(M

opt )) of the optimal reuse plan
model for each partition’s multi-model is not available in constant
time. Thus, we use a greedy heuristic that only considers pair of
models to be fused at a time. The high-level approach is presented
in the FuseModels procedure of Algorithm 1.
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Figure 5: (A) A candidate partition containing two source models and the corresponding optimal reuse-plan model. (B) Aug-

menting reuse plan model with nodes to represent the backward-pass of training. (C) Topological traversal-based live tensor

analysis for the model graph shown in (B).

FuseModels takes in a set of model and training hyperparameter
pairsQ , runtime memory budget Bmem, set of materialized layersV ,
and returns a set of fused model and training hyperparameter pairs.
For every modelMi inQ , we first find the optimal reuse plan model
M

opt
i that reuses materialized intermediate layers in V and create

a new set Q ′ containing (Mi , M
opt
i , ϕi ) triples. P is the set of all

possible model pairs wherein both models have the same training
batch size. For every candidate model pair indices (i, j) in P , we
create the multi-modelMi, j and find the optimal reuse plan model
M

opt
i, j . We explain how we find the optimal reuse plan modelMopt

i, j
given V in Section 4.3.2. We also estimate the runtime memory
usage smem(M

opt
i, j ) and ensure that it does not exceed the runtime

memory budget Bmem. Details on how we estimate smem(M
opt
i, j ) are

provided in Section 4.3.3. From the fusible model pairs, we pick the
pair that will result in the highest cost reduction. We add the fused
model back to Q ′ and remove the source modelsMi andMj from
Q ′. The training hyperparameters for a fused model are derived
by combining source hyperparameters ϕi and ϕ j . We repeat this
process until there are no more fusible models.

4.3.2 Optimal Plan Given a Set of Materialized Layers. The
optimal reuse plan modelMopt

i, j for a fused modelMi, j that reuses
materialized layersV can be found by adapting the MILP presented
in Section 4.2.2. The main difference here is that the set of ma-
terialized layers is already determined. Thus, we no longer need
the indicator variable Z (Equation 8 (c)) and also remove the con-
straints (d) and (e) in Equation 10. We use {Mi, j } as the set of input
models. In this case, the multi-model M corresponding to the set
of input models will be the same as the input model Mi, j . After
the optimization,Mopt

i, j can be obtained from the resulting indicator
variable values X and Y . While most MILP problems are NP-hard,
it has been shown that the resulting MILP problem can be solved
in PTIME via a reduction to the Max-Flow problem [76].

4.3.3 Estimating Peak Runtime Memory Usage. Estimating
the peak runtimememory usage of training aDLmodel is a challeng-
ing task as it depends on various factors including both workload-
and system-specific. One could estimate peak runtime memory
usage of a model by actually running the model and observing the
memory usage. However, our model fusion optimization evaluates
many model candidates, which is in the order of O(n3) where n is
the number of source models. Estimating memory usage at runtime

would require creating checkpoints for many potential fused mod-
els and running them, which could add massive overheads. Thus,
we decided to use an analytical model to estimate peak runtime
memory usage. We found that our analytical model is accurate
enough to avoid any out-of-memory workload crashes at runtime.

We identity three main types of memory usage that dominate
the overall usage: (1) memory to store the parameter tensors, (2)
workspace memory for performing layer operations, and (3) mem-
ory to store the layer outputs needed for back-propagation. We
calculate the first type by using the dimensions and data types of
the parameter tensors. The second type depends on the DL system.
We rely on the user to set a value for this (e.g., 1GB). The third type
depends on both the model architecture and the DL system and it
often dominates the overall memory usage. Next, we discuss more
details on how we estimate it.

The backward-pass of DL training needs access to the layer out-
put tensors generated during the forward-pass. For example, the
backward-pass operation of linear algebra-based layers such as
Dense and Convolutional layers need access to the forward-pass
layer input to calculate the parameter gradient. Some non-linear
transformation layers like ReLU need access to layer output to calcu-
late the input gradient. And some other non-linear transformation
layers like MaxPooling need access to both layer input and output
to calculate the input gradient. Thus, the DL systemwill accumulate
layer output tensors during the forward-pass and gradually release
them during the backward-pass. However, the exact order by which
output tensors are accumulated and released is determined by the
specific order by which layer operations are performed and also
on how aggressively memory is allocated and deallocated by the
DL system. Popular DL frameworks like TensorFlow and PyTorch
execute operations in a topological order [57, 72].

We estimate the memory needed for storing layer output tensors
by performing a topological traversal-based live tensor analysis.
We augment the optimal reuse plan of the fused model by adding
nodes needed to represent the backward-pass. We also add a node
to represent the loss computation and add edges between every
output layer and the new loss node. This loss node is responsible for
calculating the loss for all trainable model branches using the corre-
sponding optimizer. It also ensures that our fused model adheres to
the two-phase (i.e., forward and backward) training template sup-
ported by DL systems. For every non-materializable layer li , we add
a node l ′i to represent the backward-pass computation of that layer.
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We set smem(l
′
i ) to be same as smem(li ). We treat all backward-pass

computations uniformly and add edge dependencies as follows:

• Output from the forward-pass layer by adding (li , l ′i ) edge.
• Input(s) to the forward-pass layer by adding {(lp , l ′i ) : ∀lp ∈
parent(li )} edges.
• Backward-pass output gradient(s) from the child layers by
adding {(l ′s , l ′i ) : ∀ls ∈ child(li )} edges.

Figure 5 (A) presents an example candidate partition containing
two source models from the model selection workload and the cor-
responding reuse plan model. The reuse plan model is obtained by
performing both our materialization and model fusion optimiza-
tions. Notice that each model’s trainable layers are in a separate
branch.We then augment the reuse planmodel with nodes and edge
dependencies needed to represent the backward-pass as shown in
Figure 5 (B). To estimate peak runtime memory for storing layer
outputs, we perform a topological traversal over the created graph
structure while keeping track of the live output tensors. The output
tensor size of layer l for a single training record is given by smem(l).
The order by which each node is visited during the topological tra-
versal is denoted in the figure. Figure 5 (C) presents the live tensor
analysis. When processing a node, we assume all its inputs and
output tensors are live. We release a tensor if it is not needed for
the current or future nodes. For example, as highlighted in Figure 5
(B), when processing the loss node, the l1 output tensor is not live
as it is not used by any node that is yet to be visited.

Notice that there might be more than one possible topological
order and as a result, the order used by our analysis may differ
from the order used by the training framework. However, for any
topological traversal order, we can claim that the maximum number
of live tensors is only one more than the number of live tensors
needed when processing the loss node. This is because the loss
node acts as a barrier needing the entire forward-pass to be com-
pleted before starting the backward-pass. Overall, we found that
our approach can provide reasonable memory usage upper bounds
that are sufficient for our model fusion optimization.

4.4 Theoretical Speedups

We define the theoretical speedup as the ratio between the total
training cost of all model layers and the total training cost of only
the non-materializable (i.e., m(l) = False) model layers, as per
Equation 11. It assumes complete avoidance of computational re-
dundancies without accounting for data movement overheads. It
will be equivalent to the speedup achieved by our materialization
optimization in the hypothetical case of zero load cost and a disk
storage budget to materialize all materializable layers.

 |Q |
i=1


l ∈Li ccomp(l) · epochs(ϕi ) |Q |

i=1

l ∈Li 1[m(l) = False] · ccomp(l) · epochs(ϕi )

(11)

5 EXPERIMENTAL EVALUATION

We now present an extensive empirical evaluation seeking to an-
swer the following questions. (1) How does Nautilus compare
with current practice and other baselines on runtimes, accuracy,

and resource utilization? (2) How much Nautilus’s optimizations
contribute to the overall runtime reductions?

Datasets:We use two benchmark datasets: CoNLL-2003 [73] and
Malaria [58]. CoNLL-2003 is a text dataset and the prediction task
is named entity recognition. Malaria is an image dataset and the
prediction task is identifying Malaria from blood cell images. For
CoNLL-2003 and Malaria, we have unlabeled data pools of sizes
10,000 and 8,000 records, respectively.

Workloads:We run 5 end-to-end workloads covering feature trans-
fer, fine-tuning, and adapter training. Table 3 summarizes the trans-
fer learning and the model selection configuration values of the
workloads. Feature transfer workloads (FTR-*) use BERT-base as
the source model. FTR-1 explores 6 feature transfer strategies that
are same as the ones reported in [18]. FTR-2 and FTR-1 explore 4
and 1 transfer strategies, respectively. The fine-tuning workload
FTU uses the popular computer vision model ResNet-50 [30] and
we vary the number of fine-tuned residual layer blocks from the
top. The adapter training workload ATR also uses the BERT-base
model. We use Houlsby [31] type adapters and vary the number
of layers with adapters from the top. For FTR-* workloads we add
a new transformer layer on top of the extracted features. For all
workloads, we add a new Softmax classification layer on top of the
last hidden layer. FTR-* and ATR workloads use the CoNLL-2003
dataset; FTU workload uses the Malaria dataset.

For all workloads, we generate the labeled dataset iteratively.
For each cycle, we label 500 records with a 400/100 train/validation
split, perform model selection on all labeled data up to that point,
and repeat the process for 10 cycles. We simulate the human labeler
by programmatically releasing the labels.

Experimental Setup: We use a machine with 32 GB RAM, Intel
i7 3.40GHz CPU, 1TB SSD, and NVIDIA Titan X GPU with 12 GB
memory. It runs Ubuntu 18.04 with TensorFlow version 2.4, CUDA
version 11.0, and cuDNN version 7.5. For our optimizer, we set the
disk read throughput to 500 MB/s and the compute throughput to
6 TFLOP/s, which is 50% of the theoretical FLOPS rate of the Titan
X GPU. These hardware settings are configurable by the user. We
report average of 3 runtimes with 95% confidence intervals.

5.1 End-to-End Runtimes

Model Selection Time:We first evaluate the total model selection
time for 4 different approaches. This enables us to isolate Nau-
tilus’s ability to reduce DTL model selection runtimes, which is
independent of the data labeling approach and the labeling time.
The four approaches that we evaluate are Current Practice, MAT-
ALL, Nautilus, and FLOPs Optimal. Current Practice is the naive
baseline, which trains unmodified models independently and re-
peats the process for all cycles. It incurs the highest level of redun-
dancies.MAT-ALL is a strong baseline that materializes all material-
izable layers and uses them during training, irrespective of whether
it is efficient to compute them rather than loading them. Note
thatMAT-ALL needs parts of our code from Nautilus. Nautilus is
our optimizer-picked plan, which performs both our materialization
and model fusion optimizations. We execute it with a disk storage
budget (Bdisk ) of 25 GBs and a runtime memory budget (Bmem ) of

Session 7: Data Management for ML 1 SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

515



Table 3: Model selection configurations of workloads.

Workload
Tuning Parameters

# Models
Transfer Learning Approach Batch Size Learning Rate Epochs

FTR-1 Feature Transfer from: {embedding, second last hidden, last hidden, sum last 4
hidden, concat last 4 hidden, sum all hidden}

{16, 32} {5, 3, 2} ×10−5 {5} 36

FTR-2 Feature Transfer from: {second last hidden, last hidden, sum last 4 hidden, concat
last 4 hidden}

{16, 32} {5, 3, 2} ×10−5 {5} 24

FTR-3 Feature Transfer from: {concat last 4 hidden} {16, 32} {5, 3, 2} ×10−5 {5, 10} 12
ATR Adapter Training for: {last hidden, last 2 hidden, last 3 hidden, last 4 hidden} {16, 32} {5, 3, 2} ×10−5 {5} 24
FTU Fine-tuning : {last 3 hidden, last 6 hidden, last 9 hidden, last 12 hidden} {16, 32} {5, 3, 2} ×10−5 {5} 24
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Figure 6: (A) Total model selection time. (B) Model selection time breakdown by model selection cycle for FTR-2 (only the odd

numbered model selection cycles are shown due to space constraints). (C) Total time for FTR-2 including data labeling time.

10 GBs. FLOPs Optimal is calculated by dividing the Current Practice
time by the theoretical speedup. Figure 6 presents the results.

Nautilus offers significant speedups with the highest speedup
of 5.2X seen on FTR-2. The highest speedup for MAT-ALL is also
for FTR-2, which is 2.7X. In all cases,Nautilus outperforms theMAT-
ALL baseline. In the worst case, MAT-ALL is 48% slower than Nau-
tilus for the FTR-2 workload.MAT-ALL is slower thanNautilus be-
cause it incurs higher IO overheads due to reading all layers, even
though the machine used has fast SSDs. Nautilus selectively loads
some layers only as needed and recomputes the remaining to reduce
the overall runtimes. One can also allocate more DRAM memory,
materialize all layers in DRAM forMAT-ALL, and access with a small
load cost. But this will be resource-inefficient and will likely cost
more for a user due to Pareto tradeoffs. In contrast,Nautilus pushes
the cost versus performance Pareto frontier to achieve higher effi-
ciency at lower resource costs. We performed a cost estimation for
executing the FTR-1workload with 10,000 records using the Google
cloud computing cost calculator [23] and found that Nautilus can
reduce the workload cost by 43% (0.97 $/hr for MAT-ALL vs. 0.55
$/hr for Nautilus). Nautilus will incur less cost mainly because
it will incur less DRAM cost.

In all cases,Nautilus achieves slightly better or competitive run-
times to the FLOPs Optimal runtime. This is because Nautilus sig-
nificantly amortizes the training and I/O overheads, which are not
accounted for in the FLOPS reduction-based theoretical speedup
calculation. Also, Nautilus’s speedups vary based on the char-
acteristics of the workload. For example, speedups are generally
higher for FTR-* workloads compared to ATR or FTU, as the latter

workloads have more trainable layers with unavoidable compu-
tations. Also, absolute runtimes are lower for the FTU compared
to other workloads, as the former uses a less compute-intensive
model. Overall, Nautilus reduces DTL model selection runtimes
substantially for all workloads.

Model Selection Time Breakdown: Figure 6 (B) presents the
model selection time breakdown by model selection cycle. Current
Practice and Nautilus take 2.7 and 4.4 minutes to initialize the
workload, respectively. By drilling into the workload initialization
time, we found that Nautilus spends 63% of time creating the
original model checkpoints, which is also performed by the Current
Practice. Additionally, Nautilus spends 12% time profiling the orig-
inal models, 3% time generating the optimized plan, and 21% time
generating model checkpoints for the optimized plan. Nautilus’s
speedups are slightly lower in the early cycles compared to the later
ones. This is because the later cycles have more training data, and
the effect of fixed overheads is less pronounced in them. If there
are no reuse opportunities, Nautilus will incur a one-time cost for
model profiling and running the optimizer, which is less than 1% of
the total workload runtime of Current Practice.

Total Workload Time: Finally, we evaluate the total workload
time for the FTR-2 workload for different data labeling runtime
values. The CoNLL-2003 dataset used for the FTR-2 workload has
20 words per record on average. Hence, we vary the labeling time
per data record between 0.5 seconds and 8 seconds. The 0.5 sec-
onds case can be considered as a multi-labeler scenario (e.g., cloud
labelers); 8 seconds scenario can be considered as a single-labeler
scenario. For the 0.5 seconds scenario,Nautilus achieves a speedup
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(A) (B)

Figure 7: FTR-2 learning curves with (A) zero and (B) 4 sec-

onds/label data labeling cost values.

Figure 8: Model selection time with and without MAT
and FUSE optimizations.

of 3.9X compared to the Current Practice. For the 8 seconds sce-
nario, Nautilus’s speedup reduces to 1.5X, as higher data labeling
time dominates the overall workload time.

5.2 Accuracy

Both Current Practice and Nautilus perform logically equivalent
SGD training. Thus, they both should achieve the same statisti-
cal efficiency. To validate this, we plot the best model’s validation
accuracy against the elapsed model selection time for the FTR-2
workload. Figure 7 (A) presents the results. We see that both ap-
proaches achieve very similar validation accuracies after every
model selection cycle. However, Nautilus achieves them 5X faster.
We repeat the experiment with a data labeling time of 4 seconds/la-
bel and plot the best validation accuracy against elapsed total time
as shown in Figure 7 (B). In this case, Nautilus is 2X faster.

5.3 Drill-Down Analysis

Contribution of Our Optimizations: We run the end-to-end
workloads using Nautilus but disable either the materialization
(MAT OPT ) or the model fusion (FUSE OPT ) optimization. Figure 8
presents the results. For all cases except ATR, running Nautilus
w/o FUSE OPT causes more slowdown than running w/o MAT OPT.
The highest slowdown for Nautilus w/o FUSE OPT is for FTR-1,
which is 54.7%; for w/o MAT OPT, it is for FTR-3, which is 31.2%.
For FTU, Nautilus’s runtime does not change w/o MAT OPT. This
is because ResNet-50 is a less compute-intensive model and Nau-
tilus computes all materializable layers instead of loading them.
In 4 out of 5 end-to-end experiments, FUSE OPT contributes more
than the MAT OPT. But combining both optimizations achieves
even lower runtimes. The benefits of each optimization vary based
on workload and hardware characteristics.

Figure 9: Model selection time for different number of mod-

els with and without MAT and FUSE optimizations.

(A) MAT OPT (B) FUSE OPT
Equivalent to 

Current Practice

Equivalent to Current

 Practice

Figure 10: FTR-2model selection time using (A)MATOPT vs.

storage budget and (B) FUSE OPT vs. memory budget.

We also run an experiment where we vary the number of models
in the model selection workload. For this, we use FTR-2 and fix the
feature transfer strategy to the concatenation of the last four layers,
fix the batch size to 16, and vary the number of explored learning
rates. Figure 9 presents the results. When the number of models is
less than or equal to 2, running Nautilus w/o MAT OPT causes
more slowdown than running it w/o FUSE OPT. However, when the
number of models increases, running w/o FUSE OPT causes more
slowdown. With more models, FUSE OPT has more opportunities
to avoid redundant computations and amortize training and I/O
overheads. Also, with only 1 model, FUSE OPT doesn’t give any
benefits as there are no opportunities for model fusion.

Finally, we run FTR-2 by only using MAT OPT or FUSE OPT, and
vary the disk storage budget Bdisk and runtime memory budget
Bmem , respectively. Running MAT OPT with a Bdisk of 0 GBs is
equivalent to the Current Practice. Running FUSE OPT with a Bmem
of 2 GBs is also equivalent to the Current Practice as it does not
fuse any models. For FUSE OPT we also ensure that the training
process does not consume more than the allocated Bmem from
the available GPU memory. Thus, this experiment also shows that
our memory estimation approach is capable of avoiding workload
crashes due to out-of-memory errors. As Bdisk is increased, MAT
OPT runtime decreases and plateaus after 7.5 GBs where it achieves
2.6X speedup compared to the Current Practice. As the Bmem is
increased, FUSE OPT runtime also decreases and plateaus after 8
GBs where it achieves a 4.0X speedup. Nautilus combines the
benefits of both optimizations and achieves the lowest runtimes.

System Resources Utilization: We evaluate the GPU utilization
and cumulative disk reads/writes for executing the FTR-2. Figure 11
presents the results. Nautilus yields a higher average GPU utiliza-
tion of 66% compared to the 57% of Current Practice. It also performs
4.3X fewer disk writes and 11.8X fewer disk reads. This is because
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(A) Current Practice (B) Nautilus

Figure 11: Average GPU utilization and cumulative disk

reads and writes for executing the FTR-2.

Current Practice checkpoints the entire original model after every
model training, which is around 400-500MBs. But most of the pa-
rameters in them are frozen parameters and do not need repeated
checkpointing. In contrast, Nautilus checkpoints modified model
graphs with most frozen parameters pruned. Writing less amount
of data also helps with better page caching for the reads.

6 RELATEDWORK

Nautilus bakes in our techniques on materialization and fusion,
which is a first in the ML systems literature. Applying these tech-
niques to optimize the DTL model selection is only possible because
of our careful formalization of this problem as a data management
problem (Section 2 & 4.1). Next, we summarize the related work
and explain how Nautilus differs or extends them.

Materialization Optimizations:Our work is inspired by the long
line of work on reusing intermediates to optimizeMLworkloads [45,
50, 56, 71, 74, 76, 78, 79], but ours is the first to apply it to optimize
DTL over evolving training data. Prior work in Vista system [50]
also uses feature materialization to optimize DL feature transfer-
based multi-modal analytics. However, it supports only linear DL
model graphs and features extracted from only one layer at a time.
Also, Vista’s focus is on training classical ML models (e.g., linear re-
gression) on the extracted features from a fixed dataset and not DTL
over evolving data. Nautilus generalizes Vista in 3 dimensions. It
supports 1) DAG structured DL model graphs with arbitrary fea-
ture compositions, 2) evolving labeled datasets, and 3) all 3 popular
transfer learning paradigms. Intermediate feature materialization
is also used in AutoFreeze [45] to optimize the fine-tuning of a
single BERT model. Nautilus supports arbitrary DL models, all
popular transfer learning paradigms, and also model selection.

Nautilus’s cost model-based materialization optimization ex-
tends the optimal reuse plan formulation in Helix system [76].
Specifically, we represent models in a DTL model selection work-
load using an optimizable graph structure called multi-model graph
and jointly solve the materialized intermediate output selection
and the reuse plan generation in a single MILP formulation.

Joint Model Training Optimizations: Nautilus’s model fusion
is a form of common sub-expression elimination (CSE). CSE is
also used in several other systems to eliminate redundant data
pre-processing steps [26, 44, 52, 80]. Nautilus extends this to also
eliminate redundancies in materializable layers. However, existing

systems require the user to select the set of models to fuse [52, 80],
adopt a trial-and-error approach [44] to find the set of models, or
trains each source model in a separate GPU [26]. Nautilus uses
profiling information to estimate fused model memory footprint
and automatically picks an optimal set of models to fuse.

DL Model Selection: Several systems have been proposed to op-
timize DL model selection [2, 21, 41, 42, 51, 70, 81]. However, the
focus of all these systems is on utilizing the parallelism available
in a cluster to scale the DL model selection. In contrast, the focus
of Nautilus is on DL model selection in low-resource settings such
as workstations or PCs. Also, Nautilus focuses on the human-in-
the-loop setting with iteratively generated labeled data.

Nautilus supports two popular model selection procedures:
grid and random search, which cover an overwhelming majority of
model selection applications [10]. However, there are other more
complex model selection procedures proposed in the literature [8,
33, 39, 40]. We leave adding support for them to future work.

Other DL System Optimizations: Various other techniques can
be also used to optimize DTL. They include operator fusion [3, 11],
hybrid parallel execution [35], layer batching [44, 52, 80], model
compression [29], and model distilling [65]. They are complemen-
tary to the optimizations performed by Nautilus since they mainly
optimize lower-level operator execution. There also exist systems
that support training larger than GPU memory models [12, 37, 49,
61]. They are complementary to our work and can be combined
with Nautilus to train or fuse larger models.

Nautilus’s runtime memory estimation operates at a higher
level that is independent of the exact memory allocation/deallo-
cation behavior of the underlying DL system. However, one can
also try to mimic the exact behavior and obtain improved memory
usage estimates as in [20]. Nevertheless, our approach provides
reasonable upper-bounds sufficient for our requirement.

7 CONCLUSIONS AND FUTUREWORK

Deep transfer learning (DTL) is a crucial paradigm for democra-
tizing deep learning. Yet, the current practice of executing DTL
workloads faces significant usability and resource inefficiency is-
sues. In this work, we formalize the DTL workload from a data
management standpoint and enable two multi-query optimization-
inspired optimizations: materialization optimization and model
fusion optimization. We implement our optimizations in a data
system we call Nautilus. Nautilus reduces DTL model selection
runtimes by even up to 80% and significantly improves usability
and resource usage. As for future work, we plan to expand the
model adaptation schemes supported in Nautilus to include more
complex model selection and layer freezing schemes.
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