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Background: Hip-worn accelerometers are commonly used, but data processed using the 100 counts per minute cut point do not
accurately measure sitting patterns. We developed and validated a model to accurately classify sitting and sitting patterns using
hip-worn accelerometer data from a wide age range of older adults. Methods: Deep learning models were trained with 30-Hz
triaxial hip-worn accelerometer data as inputs and activPAL sitting/nonsitting events as ground truth. Data from 981 adults aged
35–99 years from cohorts in two continents were used to train the model, which we call CHAP-Adult (Convolutional Neural
Network Hip Accelerometer Posture-Adult). Validation was conducted among 419 randomly selected adults not included in
model training.Results:Mean errors (activPAL −CHAP-Adult) and 95% limits of agreement were: sedentary time −10.5 (−63.0,
42.0) min/day, breaks in sedentary time 1.9 (−9.2, 12.9) breaks/day, mean bout duration −0.6 (−4.0, 2.7) min, usual bout duration
−1.4 (−8.3, 5.4) min, alpha .00 (−.04, .04), and time in ≥30-min bouts −15.1 (−84.3, 54.1) min/day. Respective mean (and
absolute) percent errors were: −2.0% (4.0%), −4.7% (12.2%), 4.1% (11.6%), −4.4% (9.6%), 0.0% (1.4%), and 5.4% (9.6%).
Pearson’s correlations were: .96, .92, .86, .92, .78, and .96. Error was generally consistent across age, gender, and body mass
index groups with the largest deviations observed for those with body mass index ≥30 kg/m2. Conclusions:Overall, these strong
validation results indicate CHAP-Adult represents a significant advancement in the ambulatory measurement of sitting and sitting
patterns using hip-worn accelerometers. Pending external validation, it could be widely applied to data from around the world to
extend understanding of the epidemiology and health consequences of sitting.
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Time spent sitting increases risk of developing major chronic
diseases and is associated with multiple adverse health outcomes
(Dempsey et al., 2020; Katzmarzyk et al., 2019; Saunders et al.,
2020). Sitting is most often operationalized as amount of time
accumulated during a day or week. However, emerging epidemio-
logic and experimental evidence shows that the temporal pattern of
accumulating sitting time in a comparatively prolonged versus more
interrupted manner (henceforth referred to as sitting patterns;
Tremblay et al., 2017) is also important to public health inquiry
(Bellettiere et al., 2017; Diaz et al., 2016; Dunstan et al., 2012;
Hartman et al., 2018; Healy et al., 2011; Owen et al., 2020; Saunders
et al., 2018). The mounting evidence has led several national and
international public health guideline development committees to call
for more research on the topic, both to establish its importance in
chronic disease etiology and subsequently to support development of

quantitative public health recommendations (Dempsey et al., 2020;
Katzmarzyk et al., 2019; Saunders et al., 2020).

Accurate, scalable measurement of sitting time and sitting
patterns is critically needed to inform future iterations of public
health guidelines. Most prospective cohorts (Wijndaele et al.,
2015) have used hip-worn accelerometers and processed the
data using the 100 counts per minute (cpm) cut point (Migueles
et al., 2017). However, this method has low accuracy for measuring
posture and postural transitions (Barreira et al., 2015) and conse-
quently leads to low-quality measures of sitting patterns. The
estimated percent error in measuring sitting patterns using the
100 cpm is evident across age groups, and ranges from 40% to over
300% depending on the sedentary metric being used (Bellettiere
et al., 2021; Carlson et al., 2019). The degree of misclassification
generated by this cut point classification leaves some uncertainty
around quantitative recommendations for sitting patterns. A few
large cohorts (Stamatakis et al., 2020) use devices worn on the
thigh that are optimized and often programmed specifically to
detect posture and can accurately measure both sitting time and
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sitting patterns when compared with direct observation (Lyden
et al., 2012). However, data from these studies are limited, and the
pool of available information regarding sitting patterns could be
rapidly expanded by developing new data processing methods for
hip-worn accelerometer data to generate measures of sitting patterns
that converge with estimates from thigh-worn devices. The appli-
cation of these new processing methods to both newly collected hip-
worn accelerometer data and the large amount of archival data could
produce accurate and homogenous norms and risk estimates related
to sitting patterns and health, both of which are needed to generate
quantitative public health recommendations.

Our research group has recently demonstrated that deep
learning models can be used to improve the utility of hip-worn
monitors (Greenwood-Hickman et al., 2021). Using a combined
Convolutional Neural Network (CNN) + bidirectional long short-
termmemory network (BiLSTM) model architecture in a sample of
older adults, we developed a novel method for predicting sitting
postures from hip-worn accelerometer data (e.g., ActiGraph) in
older adults by training against concurrently thigh-worn activPAL
inclinometers. This algorithm, which we named CHAP (CNN Hip
Accelerometer Posture), substantially out-performed previous,
widely used data processing methods (e.g., 100 cpm cut point
based method) in older adults (≥65 years), achieving 93% agree-
ment in predicted minute-level posture (i.e., sitting vs. upright/
nonsitting) and 83% sensitivity for detecting sit to stand postural
transitions (Greenwood-Hickman et al., 2021). CHAP was trained
for use in an older adult population, but norms and risk estimates
for sitting patterns and how they relate to health are needed across
the age spectrum. Especially since many existing cohort studies
that collect accelerometer data include younger, middle-aged, and
older adults. Therefore, accurate posture classification is needed
across a broader age range. Ideally, a single postural detection
algorithm could be used to make accurate predictions for all adults.

Building on CHAP to fashion a procedure suitable for adults of a
broader age range, we created the CHAP-Adult algorithm by training
a new and more generalizable CNN+BiLSTM model using data
from adults across a broader age range (35–99 years). We leveraged
data from participants of two cohort studies who concurrently wore
ActiGraph and activPAL accelerometers for up to 7 dayswhile going
about their usual (i.e., free living) behavior patterns (N = 1,397).
(Healy et al., 2015; Rosenberg et al., 2020) The objective of this
study was to assess the validity and reliability of CHAP-Adult,
which we did using a separate, randomly selected validation sample
of 419 adults. We also assessed reliability and validity separately by
subgroups of age, gender, and body mass index (BMI).

Methods

Participants

Data for this study come from two distinct studies among adults
who concurrently wore an activPAL on their thigh and an Acti-
Graph GT3X+ on their hip: the Australian Diabetes, Obesity, and
Lifestyle study (AusDiab) and the Adult Changes in Thought
(ACT) study.

The AusDiab is a population-based epidemiologic cohort that
initially enrolled adults aged 25 years and older throughout Aus-
tralia. The original complex survey sampling methods were previ-
ously published (Dunstan et al., 2002). In brief, three data collection
points (1999–2000, 2004–2005, and 2011–2012) were undertaken
with each assessment including questionnaires and biomedical

assessments conducted at a local testing site. Of the 11,247 adults
who completed the baseline assessment in 1999–2000, 4,562
(all ≥ 35 years) attended one of 46 testing centers across Australia
in the 2011–2012 follow-up (Tanamas et al., 2013). From this
group, a subsample of 1,014 ambulatory community-living parti-
cipants were invited to join an ancillary activity monitor study,
described in detail elsewhere (Healy et al., 2015). Participants were
asked to wear the activPAL3™ (thigh) and the ActiGraph GT3X+
(hip) for seven consecutive days, with the ActiGraph removed for
sleeping and the activPAL worn continuously. Of those ap-
proached, 77% (n = 782) provided informed written consent and
participated. Protocols for the study were approved by the Alfred
Health Human Ethics Committee (project no. 39/11).

The ACT began in 1994 as an ongoing longitudinal cohort
study investigating risk factors for the development of dementia
and a wide range of cognitive and noncognitive factors of healthy
aging. ACT recruited adults aged over 65 years randomly sampled
from the King County membership of Group Health Cooperative of
Puget Sound (now Kaiser Permanente Washington). As of 2005,
ACT continually replaced participants who have died, were lost to
follow-up, or who were diagnosed with dementia, in order to
maintain a consistent enrollment of approximately 2,000 partici-
pants. Study participants attend biennial assessment visits. Begin-
ning with biennial visits in April 2016, ACT participants were
invited to participate in an activity monitor substudy (ACT-AM).
Those who consented were invited to wear an ActiGraph GT3X+
accelerometer on the hip (ActiGraph LLC), an activPALmicro3 on
the thigh (PAL Technologies), or, if willing, both continuously for
seven consecutive days. Participants were excluded fromACT-AM
if they were wheelchair bound, or receiving hospice or care for a
critical illness, or resided in a nursing home, or, if memory
problems became evident during testing. In total, 1,211 ACT
participants provided written informed consent to participate in
ACT-AM and wore at least one device. Details on the ACT-AM
cohort were published elsewhere (Rosenberg et al., 2020) and
protocols for the study were approved by the Kaiser Permanente
Washington Institutional Review Board.

Data Processing

ActiGraph data originally collected at 30 Hz from both studies were
obtained so that identical data processing methods could be applied.
The 30-Hz data were subsequently converted to 1-min epochs using
ActiLife software. ActiGraph nonwear was detected using the
commonly used (Migueles et al., 2017) Choi algorithm applied
to vector magnitude cpm using a 90-min window, 30-min stream-
frame, and 2-min tolerance (Choi et al., 2011, 2012). For each night
of device wear, participants completed sleep logs and the resulting
data were used to identify in-bed and out-of-bed time. The activPAL
data were processed using PALbatch (version 7.2.32; PAL Tech-
nologies, original VANE algorithm) with the default 10-s minimum
sitting/upright period and converted to event level files. The activ-
PAL “sitting/lying” events are referred to hereinafter as “sitting.”
ActiGraph and activPAL data were then plotted together with sleep
log and nonwear data using heat maps (Greenwood-Hickman et al.,
2021) that were then visually inspected by trained analysts.

Inclusion Criteria for This Training and Validation
Study

Figure 1 shows a STROBE diagram detailing participant allocation
into the training and validation subsamples. Analyses excluded any
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time either device was not worn or the person was in bed, and no
exclusions were made based on minimum wear time. A total of 51
(6.5%) participants from AusDiab and 231 (19.1%) from ACT did
not have concurrently worn devices and were excluded from the
analyses. Because ACT participants could choose to wear a single
device, this exclusion rate is higher for ACT participants. Data
were visually inspected for all AusDiab and ACT participants who
wore both devices. In some cases, there was evidence that the
devices gradually fell out of sync with each other in a phenomenon
called time drift (Steel et al., 2019), possibly due to malfunction or
different internal clocks (see the supplemental digital content in
Greenwood-Hickman et al., 2021, for an example and description
of drift). This occurred in 38 AusDiab participants and 271 ACT
participants, with differential time drift rates possibly due to
different internal clocks used in the activPAL3™ and the activPAL
micro. To ensure that our prediction algorithm used the most
accurate and optimal criterion data, we excluded samples with
time drift for training and for validation.

Data from the resulting 688 AusDiab and 709 ACT partici-
pants were then randomly assigned within each cohort to the for-
training data set (70%) or the for-validation data set (30%). To
ensure model accuracy was not biased by overfitting that occurs
when the model is trained and validated using the same data, the
team who trained the CHAP-Adult algorithm used only the for-
training data set and had no access to the for-validation data set.

Sitting Time, Prolonged Sitting Time, Breaks
in Sitting, and Sitting Accumulation

Total sitting time was measured as the average number of minutes
per day sitting. There is no agreed-upon metric for measuring
sitting patterns, so we present validation results for postural
transitions, prolonged sitting time, and three common pattern
indicators based on the duration of sitting bouts. Time spent in
≥30-min bouts (herein termed prolonged sitting) was computed as
the average minutes per day spent in bouts ≥30 min. The number of

breaks in sitting (sometimes termed sit–stand transitions, or inter-
ruptions) is approximately equal to the number of sitting bouts and
the number of nonsitting bouts. For convenience, in this study we
have used the term “number of breaks” and report the average
number of sitting bouts per day. Mean sitting bout duration was
computed as the arithmetic mean of all sitting bout durations in
minutes. Using procedures outlined by Chastin and Granat (2010)
and Chastin et al. (2015), we calculated usual bout duration (in
minutes) via nonlinear regression, and alpha (see Supplementary
Methods [available online] for equations). Alpha is a unitless
parameter that indicates how steep the distribution of bout duration
is, which is assumed to be power–law (see Supplemental Figure 1
in Bellettiere et al., 2017). Unlike mean and usual bout duration,
higher values of alpha indicate a more interrupted sitting pattern.
All measures were based on strict bouts that contained only sitting
and did not include modified bouts with a tolerance for upright
behaviors.

The CNN+BiLSTM Model and Training

Details of the machine learning architecture and training proce-
dures have been previously published (Greenwood-Hickman
et al., 2021; Nakandala et al., 2021). Briefly, the input data
(raw triaxial 30-Hz ActiGraph data) and the ground truth data
(activPAL event-level data classified as sitting or not sitting
using majority rules for each epoch) during awake wear time
were split into 10-s nonoverlapping windows. Features in the
ActiGraph data that could differentiate sitting from not sitting
were automatically learned using a CNN model. These features
were then input into a BiLSTM to learn the features required to
recognize temporal patterns that could further distinguish sitting
from not sitting. This network was specifically designed to
identify the timing of transitioning from sitting to not sitting.
The CHAP-Adult algorithm was trained by first separating each
person in the for-training data set into two randomly selected
groups, a training group (n = 782) and a test group (n = 196). The

Figure 1 — STROBE diagram for data used to train and validate the CHAP-Adult algorithm. ACT =Adult Changes in Thought study;
AusDiab =Australian Diabetes, Obesity, and Lifestyle study; CHAP =Convolutional Neural Network Hip Accelerometer Posture.
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for-validation data set was not used during this process. During
training, data from the training group were fed into the CNN+
BiLSTM model, classifying each 10-s window of ActiGraph
data as sitting or not sitting. Next, these predicted classifications
were compared with the true labels of the time-matched activ-
PAL data and the learnable parameters of the CNN+BiLSTM
model were updated to maximize the accuracy of the predicted
classifications using neural network training methods. This
process was repeated for several iterations until the model
achieved a good classification accuracy. Model selection was
then performed to find the best model configuration. Several
models with different hyperparameter (i.e., nonlearnable model
parameters) values were trained on the training group and the
model that had the highest accuracy on the test set was chosen,
and ultimately dubbed CHAP-Adult. Finally, CHAP-Adult was
applied to the for-validation sample and then the processed data
were used to compute the five sitting pattern metrics.

Statistical Methods

Participant characteristics were summarized for each cohort and for
the for-training and for-validation groups and compared between
groups with two-sample t tests (continuous variables) or chi-square
tests (categorical variables). Validation statistics were calculated
and reported only from the for-validation data set. To assess how
well CHAP-Adult predicted each instance of sitting versus not
sitting at the 10-s epoch, sensitivity, specificity, positive predictive
value (PPV), and negative predictive value were computed sepa-
rately for each individual, then summarized using boxplots (Fig-
ure 2). To assess how well CHAP-Adult captured the timing of
postural transitions, for each individual separately, we used the
transition pairing method (Hibbing et al., 2020) to pair activPAL-

labeled transitions and CHAP-Adult-labeled transitions, with a 1-
min lag time tolerance. From these matches sensitivity (fraction of
activPAL transitions matched to a CHAP-Adult transition) and
PPV (fraction of CHAP-Adult transitions matched to an activPAL
transition) were calculated and summarized using boxplots
(Figure 2). Agreement between activPAL and CHAP-Adult mea-
sures was assessed for sitting time, prolonged sitting time, breaks in
sitting, and sitting accumulation by computing mean error with
95% limits of agreement, percent error, absolute mean error, mean
absolute percent error (MAPE), Pearson correlation coefficient,
and the Lin’s (1989) concordance correlation coefficient. Agree-
ment was assessed for overall and also reported within subgroups
based on age (35–49, 50–64, and ≥65 years), sex (male and
female), and BMI (<30 and ≥30 kg/m2).

Results

Overall, ages ranged from 35 to 90+ years old in the combined
ACT and AusDiab data set. Most participants were women (58.5%
of ACT and 56.3% of AusDiab), and approximately 23% had a
BMI ≥30 kg/m2 (Table 1). There were notably more adults with
high school education or less in AusDiab (29.6%) than in ACT
(8.7%). There was no evidence of randomization failure or imbal-
anced data sets, with no meaningful differences on measured
variables between the for-training and for-validation data sets.

When applied to the for-validation data set, the CHAP-Adult
algorithm correctly classified as sitting an average (SD) of 95.3%
(4.7%) of the activPAL sitting time (sensitivity), while the algo-
rithm correctly classified 89.8% (8.1%) of activPAL not sitting
(specificity). On average 93.5% (6.0%) of the predicted sitting
instances and 92.2% (8.4%) of predicted nonsitting instances were
correct (PPV and negative predictive value respectively). To

Figure 2 — Accuracy metrics for sitting (a) and postural transitions (b) for CHAP-Adult using the ACT and AusDiab combined for-validation sample
(n = 419). ACT =Adult Changes in Thought study; AusDiab =Australian Diabetes, Obesity, and Lifestyle study; CHAP =Convolutional Neural Network
Hip Accelerometer Posture.
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accurately measure sitting patterns, it is critical to get the timing
of postural transitions correct as well as the total number. An
average of 74.4% (10.2%) of the activPAL transitions were
detected within a 1-min window by CHAP-Adult (sensitivity)
and 77.6% (12.4%) of the transitions that CHAP-Adult predicted
were true postural transitions recorded on the activPAL within a
1-min window (PPV).

The estimates of sitting, prolonged sitting, breaks in sitting,
and sitting patterns produced using CHAP-Adult correlated
strongly with those derived from the activPAL, with Pearson’s
correlations (r) ranging between .78 and .96. Correlations were
lower for alpha (r = .78) and the number of breaks per day (r = .86)
than for total sitting time (r = .96), time spent in prolonged
(≥30 min) sitting bouts (r = .96), usual bout duration (r = .92),
and mean bout duration (r = .92). Concordance correlation coeffi-
cients were nearly identical to the Pearson’s correlations.

There was good agreement in sitting time, prolonged sitting
time, breaks in sitting, and sitting patterns (Table 2), with MAPE
<5% for total sitting time and alpha, between 5% and 10% for
prolonged sitting time and usual bout duration, and only slightly
higher than 10% for mean bout duration and postural transitions.
Mean differences (activPAL − CHAP-Adult) were also modest,

ranging from 0% to 5.4% of the activPAL value, and indicating
on average a small amount of overestimation of total sitting time,
mean bout duration, usual bout duration, and prolonged sitting time
and underestimation of postural transitions.

Validation results in each population subgroup (Table 3 and
Supplementary Table S1 [available online]) resembled those for
the overall for-validation sample with consistently high correlations
and reasonably modest error that was similar though not identical in
each subgroup. For example, BMI-stratified Pearson’s correlations
were: total sitting time, r<30 kg/m2 = .96 and r≥30 kg/m2 = .95; breaks in
sitting time, r<30 kg/m2 = .88 and r≥30 kg/m2 = .79; and mean bout
duration, r<30 kg/m2 = .95 and r≥30 kg/m2 = .88, with MAPEs ranging
from 3.7% to 16.7% across the different sedentary pattern metrics.
Importantly, across age categories, Pearson’s correlations were ≥.95
for total sitting time, ≥.82 for breaks in sitting time, and ≥.9 for mean
bout duration, with MAPEs ranging from 3.5% to 13.9% for these
sedentary pattern metrics across age categories. Error across age
categories was larger for usual bout duration MAPE35–49 = 5.8%,
MAPE50–64 = 6.4%, and MAPE≥65 = 11.6% and for prolonged sit-
ting MAPE35–49 = 7.3%, MAPE50–64 = 8.6%, and MAPE≥65 =
10.4%, although remaining relatively low with Pearson’s correla-
tions ranging between .90 and .99.

Table 2 Validity and Reliability of Sitting and Sitting Pattern Metrics Derived From Data Processed Using
CHAP-Adult Among 419 Adults From the Combined ACT and AusDiab For-Validation Sample

Total sitting
time (min/day)

Mean bout
duration (min)

Number of breaks
in sitting time

Usual bout
duration (min) Alpha

Time spent in
bouts ≥30 min

(min/day)

AP, mean (SD) 532.7 (118.7) 12.7 (5.9) 46.7 (14) 31.8 (15.5) 1.32 (0.04) 278.9 (127.8)

CHAP, mean (SD) 543.2 (116.4) 13.3 (5.9) 44.9 (12.7) 33.2 (17.1) 1.32 (0.04) 294 (133.9)

Person-level
agreement

Mean errora (PE) −10.5 (−2.0%) −0.6 (−4.7%) 1.9 (4.1%) −1.4 (−4.4%) 0.0001 (0.0%) −15.1 (−5.4%)

95% LoA −63, 42 −4, 2.7 −9.2, 12.9 −8.3, 5.4 −0.04, 0.04 −84.3, 54.1

Mean absolute
error (MAPE)

21.1 (4.0%) 1.5 (12.2%) 5.4 (11.6%) 3.0 (9.6%) 0.02 (1.4%) 26.7 (9.6%)

Pearson
correlation

.96 (.95, .97) .92 (.91, .94) .86 (.83, .88) .92 (.91, .94) .78 (.74, .81) .96 (.96, .97)

Concordance
correlation

.96 (.95, .96) .92 (.9, .93) .85 (.82, .87) .91 (.9, .93) .78 (.74, .82) .96 (.95, .96)

Note. ACT =Adult Changes in Thought study; AP = activPAL; AusDiab =Australian Diabetes, Obesity, and Lifestyle study; CHAP =Convolutional Neural NetworkHip
Accelerometer Posture; LoA = limit of agreement; MAPE =mean absolute percent error; PE = percent error which was computed as the mean error/AP.
aMean error =AP – CHAP-Adult.

Table 1 Participant Characteristics of the AusDiab and ACT Samples, and the Combined AusDiab and ACT
Samples Used to Train and Test (For-Training) and to Validate (For-Validation) CHAP-Adult

ACT AusDiaba For-training For-validation

n 709 693 981 421

Age, mean (SD) 76.70 (6.52) 58.31 (10.43) 67.70 (12.67) 67.40 (12.60)

Male, n (%) 294 (41.5) 303 (43.7) 416 (42.4) 181 (43.0)

BMI ≥30 kg/m2, n (%) 157 (22.6) 172 (24.8) 241 (24.9) 88 (21.1)

Education—Secondary schoolb or less, n (%) 62 (8.7) 204 (29.6) 191 (19.5) 75 (17.9)

Note. ACT =Adult Changes in Thought study; AusDiab =Australian Diabetes, Obesity, and Lifestyle study; BMI = body mass index; CHAP =Convolutional Neural
Network Hip Accelerometer Posture.
aData from five participants who were not included in the training process due to unusable accelerometer data. bSecondary school includes high school.
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Discussion

Our findings demonstrate the CHAP-Adult algorithm can provide
accurate classification of sitting and sitting patterns for men and
women over a wide range of adult ages, expanding on our previous
successful work with the CNN and BiLSTM model architecture in
older adults (Greenwood-Hickman et al., 2021). The algorithm
performed well at distinguishing sitting from not sitting (mean
balanced accuracy = 93% ± 5%) and detected 74% ± 10% of pos-
tural transitions. Consequently, the measures derived using this
algorithm displayed good validity not only for total sitting time

(MAPE = 4%) but also for breaks in sitting time (MAPE = 11.6%),
prolonged sitting time (MAPE = 9.6%), and sitting accumulation
patterns (MAPE = 1%–12%), which have historically been more
difficult to capture accurately. Agreement metrics were consistent
across age, gender, and BMI subgroups, with mean error approxi-
mately three times lower than when metrics are computed using the
common 100 cpm data processing method (discussed below).
Overall, CHAP-Adult, a single algorithm that can be used to detect
sitting behaviors across a wide range of adult age groups, repre-
sents a significant advancement in the ambulatory measurement of
sitting and sitting patterns using hip-worn monitors. If validity in an

Table 3 AgreementMetrics for Total Sedentary Time, Breaks in Sitting, andMeanBout Duration Derived FromData
Processed Using CHAP-Adult Among 419 Adults From the Combined ACT and AusDiab For-Validation Sample by
Age, Gender, and BMI

AP mean (SD)
Mean errora

(95% LoA)
Percent
errorb

Mean absolute
error (MAPE)

Pearson
correlation

Concordance
correlation

Total sitting time (min/day)

Age

35–49 451.4 (113.6) 4.2 (−44.4, 52.8) 0.9% 18.7 (3.5%) .98 (.95, .99) .98 (.95, .99)

50–64 491.6 (109.2) −3.2 (−63.2, 56.8) −0.6% 20.6 (3.9%) .96 (.94, .97) .96 (.94, .97)

65+ 562.0 (113.1) −15.8 (−68.3, 36.8) −2.7% 21.7 (4.1%) .95 (.94, .96) .94 (.93, .95)

Gender

Women 518.6 (121.4) −13.2 (−68.7, 42.3) −2.5% 22.9 (4.3%) .96 (.95, .97) .95 (.94, .96)

Men 551.4 (112.7) −6.9 (−54.7, 40.8) −1.2% 18.7 (3.5%) .96 (.95, .97) .96 (.94, .97)

BMI (kg/m2)

<30 521.8 (113.5) −9.4 (−58.7, 39.8) −1.8% 19.7 (3.7%) .96 (.95, .97) .96 (.95, .97)

≥30 568.4 (128.4) −15.5 (−91.5, 60.5) −2.7% 26.6 (5.0%) .95 (.92, .97) .94 (.91, .96)

Breaks in sitting (no. per day)

Age

35–49 51.2 (10.4) 1.8 (−10.2, 13.8) 3.7% 5.0 (10.6%) .83 (.69, .91) .82 (.67, .90)

50–64 52.7 (14.1) 2.5 (−13.2, 18.2) 4.9% 6.5 (13.8%) .82 (.75, .87) .81 (.74, .86)

65+ 43.5 (13.3) 1.6 (−9.5, 12.8) 3.9% 5.0 (10.7%) .87 (.83, .89) .85 (.81, .88)

Gender

Women 46.9 (12.8) 1.6 (−10.0, 13.1) 3.4% 5.4 (11.6%) .84 (.79, .87) .83 (.78, .86)

Men 46.6 (15.5) 2.4 (−9.3, 14.0) 5.3% 5.4 (11.5%) .89 (.86, .92) .87 (.83, .90)

BMI (kg/m2)

<30 48.3 (14.1) 2.6 (−7.8, 13.0) 5.7% 5.3 (11.4%) .88 (.85, .90) .86 (.83, .88)

≥30 41.2 (12.2) −0.6 (−15.1, 14.0) −1.4% 5.5 (11.8%) .79 (.70, .86) .79 (.70, .86)

Mean bout duration (min)

Age

35–49 9.1 (2.9) −0.3 (−2.8, 2.1) −3.6% 1.0 (7.5%) .92 (.84, .96) .91 (.83, .95)

50–64 9.9 (3.3) −0.6 (−3.7, 2.4) −5.9% 1.2 (9.7%) .90 (.86, .93) .88 (.83, .92)

65+ 14.4 (6.4) −0.7 (−4.4, 3.0) −4.6% 1.8 (13.9%) .91 (.89, .93) .90 (.88, .92)

Gender

Women 11.9 (4.8) −0.7 (−4.0, 2.6) −5.2% 1.5 (11.7%) .89 (.87, .92) .88 (.85, .91)

Men 13.6 (7.0) −0.6 (−4.2, 3.0) −4.3% 1.6 (12.8%) .94 (.92, .95) .93 (.91, .95)

BMI (kg/m2)

<30 11.9 (5.3) −0.8 (−3.7, 2.0) −6.6% 1.4 (10.9%) .95 (.94, .96) .93 (.92, .95)

≥30 15.3 (7.2) 0.1 (−5.1, 5.2) 0.3% 2.1 (16.7%) .88 (.82, .92) .86 (.80, .91)

Note. Sample size per category—Age: 35–49 = 36, 50–64 = 118, and ≥65 = 265; gender: women = 239 and men = 180; BMI: <30 kg/m2 = 328 and ≥30 kg/m2 = 88.
ACT =Adult Changes in Thought study; AP = activPAL; AusDiab =Australian Diabetes, Obesity, and Lifestyle study; BMI = body mass index; CHAP =Convolutional
Neural Network Hip Accelerometer Posture; LOA = limit of agreement; MAPE =mean absolute percent error.
aMean error =AP – CHAP-Adult. bPercent error was computed as the mean error divided by the AP mean. This is included to contextualize the magnitude of the observed
error.
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external adult population can also be demonstrated, it would be
suitable for extracting valid measures from the numerous historic
studies that have collected raw triaxial hip-worn acceleration data
(Wijndaele et al., 2015), and could extend our understanding of the
epidemiology and health consequences of sitting.

Comparison With Extant Literature

Sedentary behavior, by definition, is waking time spent sitting or
reclining with energy expenditure below 1.5 metabolic equivalents
(Tremblay et al., 2017). While hip-worn ActiGraph devices cannot
accurately distinguish posture, estimates of total time per day spent
sedentary using the most common 100 cpm data processingmethod
are typically close to the estimates of sitting time derived from
direct observation or activPAL—with mean errors from several
studies across a wide age range of adults ranging from 5% to 20%
(Aguilar-Farías et al., 2014; Bellettiere et al., 2021; Koster et al.,
2016; Kuster et al., 2020; Lyden et al., 2012). This mean error can
be further reduced to 2%–3% by increasing the cut point used to
classify time as sedentary to 200 cpm (Aguilar-Farías et al., 2014;
Koster et al., 2016), or by implementing either the Kuster algorithm
(4% error; Kuster et al., 2020), the original CHAP (0% error;
Greenwood-Hickman et al., 2021), or CHAP-Adult (2% error).The
similar error rates mean that many of these data processing methods
would provide similar results, on average, for measuring total
sitting time.

Measuring sitting patterns, on the other hand, has been noto-
riously challenging. Primary because it is predicated on the accu-
rate identification of breaks between sitting or reclining and being
upright, which happen rapidly and relatively infrequently in real
life. Accordingly, hip-worn accelerometer data processed using the
100 cpm method have historically overestimated the frequency of
sit–stand transitions (also known as breaks in sedentary behavior)
in younger (Barreira et al., 2015; Lyden et al., 2017), middle-aged
(Kuster et al., 2020), and older (Bellettiere et al., 2021) adults with
mean error ranging from 63% to 99%. There are two primary
sources of error using hip-worn accelerometers processed using the
100 cpm cut point: (a) long sitting bouts are artificially broken by
seated movement such as fidgeting and wiggling; and (b) standing
without ambulation gets misclassified as sitting, and then any
subsequent stepping while already standing is incorrectly regis-
tered as a “sitting break.” Both sources of error stem from an
inability to distinguish posture when relying solely on the acceler-
ometer signal from vertical acceleration at the hip. To more
accurately assess posture using data from hip-worn devices, Kuster
et al. (2020) trained a random forest machine learning algorithm
(using ground truth data from the activPAL) using 26 predefined
signal features from hip-worn ActiGraph data as inputs (Kuster
et al., 2020). This algorithm reduced error in the number of sit–
stand transitions to just 18%, thereby improving the accuracy of
sitting pattern measurement. Notably, the deep learning character-
istics of CNN, adopted by our CHAP models, automatically
determine signal features, thus obviating the need to define a priori
features. Furthermore, adding BiLSTM models to the CNN archi-
tecture leverages the concept that when predicting human behavior
(i.e., here, transitions from one posture to the next), modeling the
behavior that occurred directly before and after the behavior aligns
the prediction process with theoretical models of behavior.(Hovell
et al., 2009) This also effectively leverages the within-person
correlated data to improve prediction accuracy. This advancement
resulted in CHAP-Adult reducing error in the number of breaks to
4%. Importantly, the low error for estimating the number of breaks

using CHAP-Adult was consistent across age, gender, and BMI,
demonstrating consistent performance across subgroups of adults.

The Public Health Implications of CHAP-Adult

The U.S. Physical Activity Guideline Advisory Committee and the
World Health Organization Sedentary Behavior Guideline Com-
mittee recognized heterogeneity across studies in the measurement
of bout lengths and breaks in sedentary time as an “important area
of future research” and a reason for the lack of evidence regarding
how bouts and breaks in sedentary behavior are related to health
outcomes (Dempsey et al., 2020; Katzmarzyk et al., 2019). CHAP-
Adult was intentionally designed to fill these gaps in two ways: first
by being trained and validated among community-living adults
from two continents across a wide age range (35–99 years); and
second by being designed for application to a very common
accelerometer and wear protocol (hip-worn ActiGraph GT3X+)
for free-living physical behavior measurement (Wijndaele et al.,
2015). With CHAP-Adult, many large epidemiologic cohorts that
use either hip-worn GT3X+ or thigh-worn activPAL acceler-
ometers can produce estimates of sitting patterns that are in
high agreement. This broad applicability will enable consistent
and accurate estimates that will help the field of sedentary behavior
epidemiology generate norms for sitting patterns. It will also
facilitate generation of estimates of the health risks associated
with sitting patterns from various, heterogenous cohorts around the
world—estimates that can more easily be harmonized for meta-
analytic purposes since they would be generated using the same
pretrained model (CHAP-Adult). Finally, it is our hope that this
widespread availability of accurate data on sitting patterns will spur
rigorous investigation of how sitting patterns and total sitting
volume are jointly and independently associated with health.
Ultimately, the new data generated using CHAP-Adult can there-
fore help the field progress toward specific quantitative (time
based) recommendations that include a threshold for limiting
sitting time and recommendations regarding how sitting can be
broken up throughout the day.

Strengths and Limitations

CHAP-Adult was trained using 30-Hz data from the triaxial
ActiGraph GT3X+ as inputs and activPAL-classified postures as
the ground truth, both set up strengths and limitations. Use of
triaxial data preclude the application of this pretrained algorithm to
data collected using uniaxial accelerometers, limiting applicability,
although new deep learning algorithms could be developed for
uniaxial accelerometer data streams, provided a large volume of
raw acceleration data as well as data from a concurrent ground truth
assessment were also available. We also are unsure how well
CHAP-Adult will work with triaxial data collected using other
devices that collect raw acceleration data (e.g., GENEActiv and
Axivity), but we suspect it would perform well as long as a similar
wear protocol was followed. CHAP-Adult was not designed for use
with data from wrist-worn accelerometers; new algorithms are
needed for wrist-based devices. While the activPAL is highly
accurate for measuring sitting and sit–stand transitions compared
with direct observation (Lyden et al., 2012), it is not without error.
Thus, we have shown convergent and concurrent validity, but
future work should also look at criterion validity. However, the
error in using this ambulatory monitor must be viewed against
the benefits of including a large and diverse sample from the United
States and Australia, and measuring physical behavior during
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free-living environments for an average of 7 days. This greatly
enhances the utility and therefore the potential impact of CHAP-
Adult. Other limitations are that we could not assess specificity and
negative predictive value for transitions because the class is highly
imbalanced and the validation metrics would be artificially inflated.
This algorithm was also developed using data on adults ≥35 years of
age, and future similar studies among children and younger adults
are warranted. Analyses did not consider clustering or stratification
from the multiple cohorts or within cohorts (e.g., AusDiab stratified
multistage sampling), however, since this validation is concerned
with pairwise comparisons, the impact on the validation metrics is
likely negligible.

Conclusions

The CHAP-Adult is a pretrained deep learning algorithm that
leverages CNN and BiLSTM architecture to classify sitting and
postural transitions in adults over a wide age range. Our validation
results demonstrate that CHAP-Adult produces estimates of sitting
time and sitting patterns that are highly convergent with the activ-
PAL, and does so within subgroups based on age, gender, and BMI.
Additional external validation is needed to increase confidence in
these findings. Ultimately, we will measure the success of CHAP-
Adult by how often it is applied to data around the world. Applica-
tion to data collected in many established and emerging national and
international cohort studies will more strongly position the field of
sedentary behavior epidemiology to establish scientifically sound
population and subgroup sitting norms and determine how sitting
and sitting patterns may be causally related to adverse health out-
comes. Better identification of sitting patterns will also enable more
accurate classification of the types of activities used to break up
sitting (Blankenship et al., 2021), which is an emerging area of
public health inquiry. Ultimately, widespread use of CHAP-Adult
could generate data that contribute to national and international
quantitative (as distinct from current broadly qualitative) recom-
mendations for sitting and sitting patterns.

Open-sourced code and detailed vignettes for implementing
CHAP-Adult are available at the following website: https://
adalabucsd.github.io/DeepPostures/.
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