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ABSTRACT

As machine learning (ML), artificial intelligence (AI), and Data
Science grow in practical importance, a large part of the ML/AI soft-
ware industry claims to have built tools and platforms to automate
the entire workflow of ML. That includes vexing problems of data
preparation (prep), studied intensively by the database (DB) com-
munity for decades, with basically no resolution so far. Such claims
by the ML/AI industry face a stunning lack of scientific scrutiny
from the DB and ML research worlds, largely due to the lack of
meaningful, large, and objective benchmarks. As such tools rapidly
gain adoption among enterprises and other customers, this panel
will debate whether the new ML/AI industry is basically selling
“snake oil” to such users, how to evolve away from the status quo
by instituting meaningful new benchmarks, creating new partner-
ships between industry and academia for this, and other pressing
questions in this important arena. We aim to spur vigorous conver-
sations that will hopefully lead to genuine new cures for an age-old
affliction in Data Science.
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1 THE NEW DATA PREP BATTLEFIELD

For almost 30 years, the DB / data management community has
intensively studied the vexing pains of data integration, cleaning,
and transformation. This research has largely been in the contexts
of RDBMSs, SQL-oriented business intelligence (BI), and knowledge
base construction. But as the emerging interdisciplinary field of
Data Science gains prominence, the massive pain of such data
“grunt work” in the context of machine learning (ML) and artificial
intelligence (AI) applications has taken center stage [9].

Surveys show data scientists spend large amounts of time (e.g.,
45% [3], 60% [4], or worse!) on data grunt work, often loosely dubbed
data preparation (prep). Sadly, the DB community’s tools and tech-
niques, primarily logic-based, have failed to improve the lives of
most data scientists. To paraphrase Ihab Ilyas, a leading expert in
data cleaning research: “decades of research, tons of papers, but
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very little success in practical adoption” summarizes the state of
affairs [10].

Naturally, new lines of research use different vantage points: a
human-in-the-loop self-service approach (e.g., Tableau Prep and
Trifacta), automation using ML/deep learning models, automation
using program synthesis techniques, and various hybrid approaches.
But out in the ML/AI marketplace a new breed of “end-to-end” Auto-
mated ML (AutoML) platforms are promising the moon with almost
no scrutiny or participation from the DB world: the entire workflow
from raw data to ML model will be automated, including data prep!
Examples include Salesforce Einstein, Alteryx, DataRobot, H20
Driverless Al and emerging tools from the cloud “whales”

Such platforms are rapidly growing in adoption among small-
and-medium enterprises [9]. For instance, Salesforce Einstein alone
is apparently used on “hundreds of thousands of datasets” by enter-
prises [1]. Such customers either cannot afford data scientists (e.g.,
small city governments) or they use such tools for first-cut proofs
of concept. Alas, there is no objective data on how “good” these
tools are, especially on data prep. The ML and data mining worlds
have studied to death the automation of the ML algorithmics part of
the pipeline via so-called “AutoML heuristics” for feature engineer-
ing/extraction, hyperparameter tuning, and algorithm/architecture
selection [8]. But the implications of how data prep automation
and its failures affect end-to-end AutoML pipelines are shockingly
ill-understood.

The above status quo has led to serious questions being raised
many researchers and practitioners on whether enterprise and other
customers are being sold effectively “snake oil” by much of this
newly ascendant ML/AI industry [2, 11, 20, 22]. How to evolve away
from this abysmal status quo? As David Patterson famously put it:
“benchmarks shape a field ...good ones accelerate progress ...bad
ones help sales” [13]. Both the DB and ML communities have long
studied and valued benchmarks: TPC and ImageNet revolutionized
the RDBMS and ML worlds, respectively. Yet, curiously no such
benchmarks of renown exist for automated data prep, certainly not
in this fast-growing Data Science arena, although some exist for the
ML algorithmics part of the pipeline [12, 19]. All this poses many
urgent questions for the DB research community:

(1) Is the ML/AI industry basically selling “snake oil,” especially
on the automation of data prep in so-called AutoML plat-
forms? What kinds of users in terms of technical and/or
domain expertise can reliably benefit from such tools?

(2) Why is the DB research community mostly slumbering in
this fast-growing Data Science arena in contrast to its con-
tinued obsession with traditional SQL analytics and BI appli-
cations? Which parts of this space can learn from the long
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history of prior work, including failed ideas, in the DB world
for various kinds of users?

(3) What is the analogue of ImageNet and TPC for data prep in
Data Science? There has been a lot of talk in the DB world
on benchmark datasets for data prep, e.g., on blogs [21] and
at NSF meetings [17] but nothing concrete yet. Why? What
are the roadblocks involved and how to tackle them? Or is
the DB community just full of “hot air” on benchmarks?

(4) How to incentivize DB researchers, ML researchers, and in-
dustry to work together on instituting such rigorous Data
Science benchmarks and not just keep publishing narrow,
“algorithmically novel,” and often glib “delta” papers? Like-
wise how to incentivize the ML/AI industry to take such
benchmarks seriously?

(5) Are human-in-the-loop approaches overrated in this space
given the massive scale and low-expertise target user base
of AutoML platforms? Does this approach not violate the
promise of “end-to-end” automation? Or was this promise
a pipe dream all along? Is it even possible to “benchmark”
human-in-the-loop approaches in scientifically valid and
reproducible manners?

(6) Many AutoML platforms use ad hoc and brittle rule-based
heuristics for automating data prep. How promising are
ML/deep learning and/or program synthesis techniques to
supplant such heuristics? What are the challenges involved
and how to tackle them? How to assess their real-world
effectiveness and robustness, including the impact of their
failures on downstream AutoML heuristics and enforcement
of emerging criteria such as fairness of ML predictions?

2 PANELISTS

Felix Naumann. Hasso Plattner Institute and University of Pots-
dam.

Bio: He works on prep for file ingestion and has recently surveyed
commercial data prep tools [6].

Rationale: Perspectives from his research and community organiza-
tion; as PC co-chair for VLDB’21, along with Luna, he introduced
the Benchmarks dimension to VLDB’s scope and started the Scal-
able Data Science Research category.

Thab Ilyas. Inductiv (based on HoloClean [14] and acquired by
Apple), Tamr, and University of Waterloo.

Bio: He works on logic-based methods and ML methods for data
prep and has product experience in enterprise data software.
Rationale: Perspectives from his research and his companies’ cus-
tomers.

Joseph Hellerstein. Trifacta and University of California, Berke-
ley.

Bio: He works on human-in-the-loop and program synthesis meth-
ods for data prep, has worked on platforms for enterprise ML
(Apache MADIib [7]), and has product experience in enterprise
data software.

Rationale: Perspectives from his research and his company’s cus-
tomers.

Sarah Catanzaro. Amplify Partners.

Bio: She invests in and advises high-potential startups in machine
intelligence, data management, and distributed systems. She has
also defined data strategy and led data science teams at startups
and in the defense/intelligence sector.

Rationale: Perspectives bridging the worlds of research and industry,
including through investments in data/AlI software startups and
interactions with their customers.

Xin Luna Dong. Amazon.

Bio: She works on ML/deep learning methods for data prep and has
product experience in knowledge extraction, integration, cleaning,
and mining across both Google and Amazon.

Rationale: Perspectives from her research and from major Web
companies; as PC co-chair for VLDB 21, along with Felix, she intro-
duced the Benchmarks dimension to VLDB’s scope and started the
Scalable Data Science Research category.

3 PANEL CHAIR

Bio snippet relevant for this panel: Arun’s main research interests
are in data management and systems for ML/AI analytics, focusing
on issues of usability, scalability, and resource efficiency. Along
with his PhD advisee, Vraj Shah, and other students, his recent
work on the “ML Data Prep Zoo” is creating new labeled datasets
and benchmarks for data prep automation [15, 16]. Google is ex-
ploring adoption of models from that work for the TensorFlow
Extended platform. He has given invited talks on this effort at a
joint seminar organized by the University of Wisconsin-Madison
and Microsoft [18] and to Google Cloud (BigQuery and AutoML
teams).

Panel chair experience: He moderated an acclaimed, provocative,
and educational panel discussion at the SIGMOD Workshop on
Data Management for End-to-End Machine Learning (DEEM) in
2018, also on the intersection of the DB and ML areas [10].

Community organization: He is an Associate Editor for VLDB’s
Scalable Data Science Research category [5], both in its inaugural
year of 2021 and in 2022. He helped shape its rationale and criteria.
He co-organized the SIGMOD DEEM Workshop in 2018.
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