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Practical and scalable data systems for ML/AIl analytics

Inspired by relational database systems principles

Exploit insights from learning theory and optimization theory
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Why am | here to speak?
Modeling-related DL Delusions

Systems-related DL Delusions
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Their prior hand-tuned physics-based features + RandomForest: 76%
Our best 1-D CNN-LSTM: 92%!

Q: How did we achieve such a high lift?

Model selection exploration throughput

Secret Sauce:

Existing DL systems’ parallelism was a poor fit!




My friends, the reason | am here today.
Is to bust many DL delusions and to slay.
DL practices so abysmal.

DL systems so dismal.

They even turned my hair gray!
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Modeling-related DL Delusions
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ML (Test) Error = Bias + Variance + Bayes Noise

Complexity of feature space Discriminability
& Model complexity of examples
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Model selection is inevitable!

Configuring data representation, neural
architecture, and hyper-parameters is how one
navigates Bias-Variance-Noise tradeoff space




Model Selection on our Data
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Model Selection on our Data

2 values each: time windows, 2Xx-4x network capacity; interpolation
# layers, learning rate, L2 regularizer regime is hard to reach; much slower!
Z_00.20- Z_U .
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Number of Epochs
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Abysmal State of Model Sel. IRL
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Question 2)
Did you optimize your hyperparameters? %
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Question 3) OMG!! Is ML/Al even a “science” gnymore?!

If yes, how did you tune them?
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But it makes for... a lot of fun! :)

ML/AI @
types \\‘

"Yay, my fancy new model beats the
baselines by a huge margin!”

"Properly tune all
hyperparameters first”

https://datasystemsfun.tumblr.com/
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Poor Model Sel. = Squander Labeled Data!
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Model selection is oft ignored by DL types.
In the worlds of ML, systems, DB, all stripes.
Are they deluded or just lazy?

Or just marketing like crazy?

Boy, for sure they are living stereotypes!




How to Avoid Modeling Delusion # 1:
Perform rigorous and repeatable model selection
to optimize task-specific B-V-N tradeoffs
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|Is Automated ML the Savior?!

AutoML heuristics are indeed useful.  But they are very easy to abuse.

\

YEAH AoL tuned But we burned $1mil
EVERYTHING for us! for just 1 modell
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How to Avoid Modeling Delusion # 2:
Hybrid human-in-the-loop + AutoML specification
to rein in resource bloat
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Is Transfer Learning the Savior?!

Model hubs, HuggingFace, etc. indeed help democratize SOTA DL
But the world is far, far bigger than just a few NLP or image tasks!
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Is Transfer Learning the Savior?!

Model hubs, HuggingFace, etc. indeed help democratize SOTA DL
But the world is far, far bigger than just a few NLP or image tasks!

Q: What does Transfer Learning have to do with model selection?

Er, literally everything!
Pre-trained models are seeds for featurization, fine-tuning, etc.
Raises Bias, reduces Variance; in overall mix test error drops
Multimodal models have bespoke task-specific B-V-N tradeoffs

18




How to Avoid Modeling Delusion # 3:
Treat transfer learning rigorously as another part
of model selection




But training so many models is painful!
DL USER TO DL SYSTEM:

imgflip.com
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Systems-related DL Delusions



So many DL Systems are so poor at scaling.
One wonders why there is so much failing.
Boring wasteful execution.

Is not really a scaling solution.

Against DL Systems | will now start railing.




Boring Wasteful Execution at Scale

Q: How do almost all DL Systems scale model selection today?
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Boring Wasteful Execution at Scale

Q: How do almost all DL Systems scale model selection today?

Task Parallelism: Data Parallelism:
Config 1 Config2  Config3 1 worker Servers| % 1 config 2
oo® %o 8% | per config / 1 '\aic atime ,,
D D oH | .- o | e ||
D1 Dy D3
Worker 1 Worker 2 Worker 3 Worker 1  Worker 2 Worker 3
Ray, Google Vizier, Dask, Horovod, Parameter Server,

Celery, ASHA, Determined Petuum AutoDist :)
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Boring Wasteful Execution at Scale

Q: How do almost all DL Systems scale model selection today?

Task Parallelism: Data Parallelism:
Config1  Config2  Config3 1 worker Servers| % 1 config 2
x;. g:. AR f' at a time L.
per contig / 1 \ e
oo® co® oo®
D D D _ _ .
—Dq— D D3 —
Worker 1  Worker 2 Worker 3

Worker 1 Worker 2 Worker 3

+ High throughput model selection + High data scalability
+ Best SGD accuracy — Low throughput model selection

— Low data scalability; wastes memory/ — Ultra-high communication costs

storage (copy) or network (remote read)
23




Enter Hybrid Parallelism for Scaling
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Cerebro: Model Hopper Parallelism

SGD is robust to data ordering randomness
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Cerebro: Model Hopper Parallelism

SGD is robust to data ordering randomness

Shuffle and shard dataset
Run n DNNs on n workers

| DNN1 5e
g |

@)
|=shlj=s}|
<

= DNN 4

f :

< | =D+

https://adalabucsd.github.io/cerebro.html

Worker 2

Worker 3

Epoch 1.1 starts in parallel

DNN 2 &o®

D>7H |

25




Cerebro: Model Hopper Parallelism

SGD is robust to data ordering randomness

Shuffle and shard dataset Epoch 1.1 starts in parallel
Run n DNNs on n workers

Worker 1

Worker 4

https://adalabucsd.github.io/cerebro.html

25




Cerebro: Model Hopper Parallelism

SGD is robust to data ordering randomness

Shuffle and shard dataset Epoch 1.1 starts in parallel
Run n DNNs on n workers
| DNN4 “| DNN1 =%
S o s o |
= | DNN3 | DNN2 &P
<J|==C2 S|EED:H |

https://adalabucsd.github.io/cerebro.html

25




Cerebro: Model Hopper Parallelism

SGD is robust to data ordering randomness
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Cerebro: Model Hopper Parallelism

SGD is robust to data ordering randomness
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Cerebro: Model Hopper Parallelism

SGD is robust to data ordering randomness

Shuffle and shard dataset Epoch 1.2 starts in parallel
Run n DNNs on n workers

| DNN4 “| DNN1 =%
Each model keeps “hopping” across iz == |
shards until it sees all of D = [ B o
Strong theoretical guarantees: =| DNN3 | DNN2 goe
1. Equivalent to sequential SGD ][==ry 5| |

2. Hits lower bound on comm. cost

https://adalabucsd.github.io/cerebro.html
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Lots More in Cerebro!

Suite of new hybrid parallelism schemes for genuine scalability
on all possible axes: data sizes, tasks, groups, model sizes, etc.
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Lots More in Cerebro!

Suite of new hybrid parallelism schemes for genuine scalability
on all possible axes: data sizes, tasks, groups, model sizes, etc.
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Hybrid parallelism scales so much better.
[t may even become a new trend setter.
Data, tasks, models—all are on.

Boring scaling now be gone.

Free DL systems from every scaling fetter!




How to Avoid Systems Delusion # 1:
DL Systems need hybrid parallelism to scale well
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Beware Cloud Whales’ Col!

Cloud computing indeed democratizes access to resources
But pay-as-you-go is a double-edged sword!
Cloud Whales feast on money of enterprises, small Web firms, etc.

Q: How to ensure DL systems design optimizes resources holistically?

In the RDBMS world, query optimization is at the heart of
holistic resource efficiency that helps reduce costs

We are bringing the analog of that to scalable DL Systems in Cerebro!

https://adalabucsd.github.io/cerebro.html
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Just throw more machines, says a greedy sneer.
Money or energy concerns, who cares dear?
Cloud Whales hunger for ka-ching.

Optimizing systems ain’t a thing.

But we see through their folly—and jeer!




How to Avoid Systems Delusion # 2:
DL Systems need query optimization to raise
overall resource efficiency and reduce costs




My Terrific Advisees Driving Cerebro

Supun Nakandala Yuhao Zhang Kabir Nagrecha
PhD PhD & MS BS -> PhD

https://ADALabUCSD.github.io
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https://ADALabUCSD.github.10

arunkk@eng.ucsd.edu

github.com/ADALabUCSD y @ TweetAtAKK

aws Google vmware

FFFFFFFFFFF
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Wake up and smell the coffee!

How to Avoid Modeling Delusion # 1:
Perform rigorous and repeatable model selection to tune task-specific B-V-N tradeoffs

How to Avoid Modeling Delusion # 2:
Hybrid human-in-the-loop + AutoML specification to rein in resource bloat

How to Avoid Modeling Delusion # 3:
Treat transfer learning rigorously as another part of model selection

How to Avoid Systems Delusion # 1:
DL Systems need hybrid parallelism to scale well

How to Avoid Systems Delusion # 2:
DL Systems need query optimization to raise overall resource efficiency and reduce costs
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