
SpeakQL: Towards Speech-driven Multimodal
Querying of Structured Data
Vraj Shah, Side Li, Arun Kumar, Lawrence Saul

University of California, San Diego

{vps002,s7li,arunkk,saul}@eng.ucsd.edu

ABSTRACT
Speech-driven querying is becoming popular in new device

environments such as smartphones, tablets, and even con-

versational assistants. However, such querying is largely

restricted to natural language. Typed SQL remains the gold

standard for sophisticated structured querying although it

is painful in many environments, which restricts when and

how users consume their data. In this work, we propose

to bridge this gap by designing a speech-driven querying

system and interface for structured data we call SpeakQL.

We support a practically useful subset of regular SQL and

allow users to query in any domain with novel touch/speech

based human-in-the-loop correction mechanisms. Automatic

speech recognition (ASR) introduces myriad forms of errors

in transcriptions, presenting us with a technical challenge.

We exploit our observations of SQL’s properties, its grammar,

and the queried database to build a modular architecture. We

present the first dataset of spoken SQL queries and a generic

approach to generate them for any arbitrary schema. Our

experiments show that SpeakQL can automatically correct

a large fraction of errors in ASR transcriptions. User stud-

ies show that SpeakQL can help users specify SQL queries

significantly faster with a speedup of average 2.7x and up

to 6.7x compared to typing on a tablet device. SpeakQL also

reduces the user effort in specifying queries by a factor of

average 10x and up to 60x compared to raw typing effort.

ACM Reference Format:
Vraj Shah, Side Li, Arun Kumar, Lawrence Saul. 2020. SpeakQL:

Towards Speech-driven Multimodal Querying of Structured Data.

In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (SIGMOD’20), June 14–19, 2020, Portland,
OR, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.

1145/3318464.3389777

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00

https://doi.org/10.1145/3318464.3389777

Database
AdministratorsLay users

AnalystsNurse
Informaticists

C-suite
users

SQL Expertise

Typed/Spoken
NLIs

SpeakQL
Regular console or
sophisticated tools

Low High

Figure 1: Contrasting SpeakQL’s goals with current
NLIs and other sophisticated tools in terms of SQL ex-
pertise of users.

1 INTRODUCTION
Structured data querying is practiced by users in many do-

mains such as enterprise,Web, and healthcare. Typing queries

in SQL is the gold standard for such querying. Many works

have looked into creating new query interfaces that low-

ers the barrier to type SQL. They offer new types of query-

ing modalities such as visual [4, 40], touch-based [13, 25],

typed natural language interfaces (NLIs) [20], and even bidi-

rectional conversations [21]. This allows users to query on

constrained environments such as tablets, smartphones, and

even conversational assistants without specifying any SQL.

However, what is missing from the prior work is a speech-

driven interface for regular SQL or other structured querying.

One might ask: Why dictate structured queries and not just
use NLIs or visual tools? Many prior works assume there exist

only two kinds of users: SQL wizards such as database ad-

ministrators (DBAs), who use consoles or other sophisticated

tools, or non-technical lay users, who use NLIs. This is a false

dichotomy. As Figure 1 shows, there are many users who are

comfortable with basic SQL and are mostly read-only data

consumers such as business analysts, nurse informaticists,

and managers. The SQL knowledge of such users is ignored

by visual or NLI research. We conduct an interview study

with 26 SQL users belonging to 17 different sectors to under-

stand how a spoken structured querying interface can bridge

such crucial gaps in querying capabilities. We summarize

the key lessons from the study below and discuss it in depth

in the technical report [31].

Lessons from interview studies. We find that most users

in industry compose ad hoc queries over arbitrary tables and

desire unambiguous response to their queries. In addition,

consumers such as analysts and informaticists often desire

anytime and anywhere access to their data, say via mobile

https://doi.org/10.1145/3318464.3389777
https://doi.org/10.1145/3318464.3389777
https://doi.org/10.1145/3318464.3389777

Type of Errors Ground truth token ASR transcription

Homophony (Keywords/
Special Characters to Literals)

sum some

Homophony (Literals to
Keywords/Special Characters)

fromdate from date

Unbounded vocabulary for Literals
CUSTID_1729A custody _ 1 7 2 9 8

table_123 table _ 1 2 3

Splitting of numbers into
multiple tokens

45412 45000 412

Erroneously transcribed dates 1991-05-07 may 07 90 91

Table 1: Illustration of different types of errors made
by Automatic Speech Recognition engine (ASR).

platforms such as tablets and smartphones. Even SQL expert

DevOps DBAs sometime desire off-hour on-the-go access

to their data. However, as quoted by many users, typing

SQL is really painful in such constrained settings. Having a

speech-driven SQL interface that leverages both speech and

potentially also the touch capabilities of such platforms can

help speed up their query specification.

Comparison against NLI. One might still wonder: Why
can not these users query their data using spoken NLIs rather
than dictating SQL? SQL offers advantages that many data

professionals find useful. SQL is already a structured English

query language. Key to its appeal is query sophistication, lack

of ambiguity due to its context-free grammar (CFG), and suc-

cinctness. In contrast, NLIs are primarily aimed at lay users

and not necessarily professionals who manage structured

data. We discuss this comparison in the tech report [31].

Thus, instead of forcing all users to only use NLIs, we pur-

sue an exploratory research agenda that is complementary

to NLI research and existing touch-based or visual interfaces.

We study how to make spoken querying effective and effi-

cient without losing SQL’s benefits. In this work, we build a

speech-driven querying system for a subset of SQL which

we call SpeakQL. Since current NLIs are increasingly relying

on keywords and structured interactions[1, 20], we believe

our lessons can potentially also improve NLIs in future.

Desiderata. (1) Support regular SQL with a tractable subset

of the CFG, although our architecture and methods should

be applicable to any SQL query in general. (2) Leverage an

existing modern state-of-the-art ASR technology instead

of reinventing the wheel. (3) Support any database schema

in any application domain. (4) Support speech-first query

specification and speech-driven and potentially touch-driven

query correction on a screen display. Overall, we desire an

open-domain, speech-driven, and multimodal querying sys-

tem for regular SQL wherein users can dictate the query and

perform interactive correction using touch and/or speech.

Technical Challenges. Unlike regular English speech, SQL

speech gives rise to interesting novel challenges: (1) ASR

introduces myriad forms of errors when transcribing that

confound different elements of the query, as illustrated by

several examples in Table 1. (2) It is impossible for ASR to

recognize tokens not present in its vocabulary. Such “out-

of-vocabulary" tokens are more likely in SQL than natural

English because SQL queries can have infinite varieties of

literals, e.g. CUSTID_1729A. A single token from SQL’s per-

spective might get split by ASR into many tokens. We call

this the unbounded vocabulary problem, and it is a central

technical challenge for SpeakQL. Note that this problem has

not been solved even for spoken NLIs such as Alexa, which

typically responds “I’m sorry, I don’t understand the ques-

tion" every time an out-of-vocabulary token arises. Thus, we

believe addressing this problem may benefit spoken NLIs too.

(3) Achieving real-time efficiency for an interactive interface

is yet another technical challenge.

System Architecture. To tackle the above challenges, we

make a crucial design decision: decompose the problem of

correcting ASR transcription errors into two tasks: structure
determination and literal determination. Structure determi-

nation delivers a syntactically correct SQL structure where

literals are masked out with placeholder variables. Literal

determination identifies the literals for the variables. This

architectural decoupling lets us effectively tackle the un-

bounded vocabulary problem. If the transcription generated

by SpeakQL is still incorrect, users can correct it interactively

with speech/touch-based mechanisms in our novel interface.

Technical Contributions. Our key technical contributions
are as follows. (1) For structure determination, we exploit the

rich structure of SQL using its CFG to generate many possi-

ble SQL structures and index them with tries. We propose a

similarity search algorithmwith a SQL-specific weighted edit

distance metric to identify the closest structure. (2) For lit-

eral determination, we exploit our characterization of ASR’s

errors on SQL queries to create a literal voting algorithm

that uses the phonetic information about database instances

being queried to fill in the correct literals. (3) We create an in-

teractive query interface with a novel “SQL Keyboard" and a

clause-level dictation functionality tomake our interfacemul-

timodal and more amenable to speech- and touch-friendly

corrections. For instance, to reduce cognitive load of users

when dictating a longer query, we allow users to specify

queries at a clause-level.

Overall, the key novelty of our system lies in synthesizing

and innovating upon techniques from disparate literatures

such as database systems, natural language processing, infor-

mation retrieval, and human-computer interaction to build

an end-to-end system that satisfies our desiderata. We adapt

these techniques to the context of spoken SQL based on the

syntactic and semantic properties of SQL queries.

Spoken SQL Query

Select Salary
From Employees
Where Name
Equals John

Automatic
Speech

Recognition
(ASR) Engine

ASR Output(s)

Select Sales From
Employers wear
name equals Jon

Structure
Determination

SQL Grammar
SplChar Handling

Select V1
From V2
Where
V3 = “V4”

Literal
Determination

Syntactically
Correct SQL

Database Metadata

Phonetic Representation:
Table/attribute names,

Attribute values

Filled Literal
Placeholders

Interactive Query Display

Interactive
Query Correction

Clause Level
dictation

Select Salary

From Employees

Where Name = “Jon”

SQL
Keyboard

Figure 2: End-to-end Architecture of SpeakQL [11]. We show an example of a simple spoken SQL query, and how
it gets converted to a query displayed on a screen, which the user can correct interactively.

Experimental Evaluation. We first explain why the exist-

ing datasets are not enough for spoken querying and we

create the first dataset of spoken SQL queries using real-

world database schemas. Using several accuracy metrics we

show that SpeakQL can automatically correct large propor-

tions of errors in the ASR transcriptions. For example, we

see a substantial average lift of 21% in Word Recall Rate.

SpeakQL achieves almost real-time latency and through user

studies, we show that SpeakQL allows users to compose

queries significantly faster, achieving a speedup of average

2.7x and up to 6.7x compared to typing on a tablet. More-

over, the user touch effort to specify and/or correct the query

goes down by a factor of average 10x and up to 60x com-

pared to raw typing. We then evaluate SpeakQL against

state-of-the-art NLIs with typed and speech inputs on two

large-scale datasets containing pairs of natural language and

SQL queries: WikiSQL [39] and Spider [38]. Our evaluation

shows that SpeakQL achieves significantly higher accuracy

than state-of-the-art NLIs adapted for speech input. e.g., lift

of 50% in execution accuracy on WikiSQL.

Overall, the contributions of this paper are as follows:

• To the best of our knowledge, this is the first paper to

present an end-to-end speech-driven system for making

spoken SQL querying effective and efficient.

• Wepropose a similarity search algorithm based onweighted

edit distances and a literal voting algorithm based on pho-

netic representation for effective structure and literal de-

termination, respectively.

• We propose a novel interface using SQL Keyboard and

clause-level dictation functionality that makes correction

and speech-driven querying easier in touch environments.

• We present the first public dataset of spoken SQL queries.

Our data generation process is scalable and applies to any

arbitrary database schema.

• We demonstrate through quantitative evaluation on real-

word database schemas that SpeakQL can automatically

correct a large portion of errors in ASR transcriptions.

Moreover, our user studies shows that SpeakQL helps sig-

nificantly reduce user time and effort in SQL specification.

2 SYSTEM ARCHITECTURE
Modern ASR engines powered by deep neural networks have

become the state-of-the-art for any industrial strength appli-

cation. Hence, to avoid replicating the engineering efforts in

creating a SQL-specific ASR, we exploit an existing ASR tech-

nology. This decision allows us to focus on issues concerning

only SQL as described below.

First, unlike regular English, there are only three types of

tokens that arises in SQL: Keywords, Special Characters (“Spl-
Char"), and Literals. SQL Keywords (such as SELECT, FROM
etc.) and SplChars (such as * = etc.) have a finite set of ele-

ments that occurs only from the SQL grammar [7]. A literal

can either be a table name, an attribute name or an attribute

value. Table names and attribute names have a finite vo-

cabulary but the attribute value can be any value from the

database or any generic value. Hence, the domain size of the

Literals would likely be infinite.

Second, the ASR engine can fail in several interesting ways

when transcribing as shown in Table 1. Due to homophones,

ASR might convert Literals into Keywords or SplChars and

vice versa. Even a single-token transcription might be com-

pletely wrong because the token is simply not present in

ASR’s vocabulary. Worse still, ASR might split a token like

CUSTID_1729A into a series of tokens in the transcription

output, possibly intermixed with Keywords and SplChars.

These observations related to SQL suggest that a correctly

recognized set of Keywords and SplChars can help us deliver

the correct SQL structure. Correct structure combined with

the correct Literals can give us the correct valid query. Based

on this observation, we make an important architectural

design decision to decouple structure determination from

literal determination. This decoupling is a critical design deci-
sion that helps us tackle the unbounded vocabulary problem.

We present the complete four-component end-to-end system

in Figure 2 and the components are described below. We

presented an initial version of this architecture in [11].

ASR Engine. This component processes the recorded spo-

ken SQL query to obtain a transcription output. ASR con-

sists of two major components: acoustic model and language

model. The acoustic model captures the representation of

sounds for words, and the language model captures both

vocabulary and the sequence of utterances that the appli-

cation is likely to use. We utilize Azure’s Custom Speech

Service to create a custom language model by training on

the dataset of spoken SQL queries (explained in 6.1). For the

acoustic model, we use Microsoft’s state-of-the-art search

and dictation model. For the dictated query in Figure 2, the

result returned by ASR engine could be select sales from
employers wear first name equals Jon.

Structure Determination. This component processes the

ASR output to obtain a syntactically correct SQL statement

with numbered placeholder variables for Literals, while Key-

words and SplChars are fixed. We propose a similarity search

algorithm with a SQL-specific weighted edit distance metric

that leverages SQL’s CFG to deliver a syntactically correct

SQL structure. In our running example, the detected struc-

ture is Select x1 From x2 Where x3 = x4. Here, the
Keywords and SplChars are retained, while the Literals are

shown as placeholder items x1, x2, x3 and x4. We dive into

Structure Determination in depth in Section 3.

Literal Determination. The Literal Determination com-

ponent finds a ranked list of Literals for each placeholder

variable using both the raw ASR output and a pre-computed

phonetic representation of the database being queried. For ex-

ample, variable x1 is replaced as a top k list of attribute names.

Phonetically, among all the attribute names, Salary is the
closest to Sales, and thus, x1 would be bound to Salary.
This component is explained in depth in Section 4.

Interactive Display. We present a single SQL statement to

the user. Even with our query correction techniques, some

tokens in the transcription may be incorrect, especially for

Literals not in the ASR vocabulary (“out-of-vocabulary" Lit-

erals). Thus, we support user-in-the-loop interactive query

correction through speech or touch-based mechanisms. The

user can re-dictate queries at the clause level or make use

of a novel SQL keyboard tailored to reduce their correction

effort. Section 5 explains the interface in depth.

3 STRUCTURE DETERMINATION
We now discuss the challenges of structure determination

and present our algorithms to tackle them. The goal of this

component is to get a syntactically correct SQL statement

given ASR transcription. Figure 3 presents its architecture.

Supported SQL Subset. We currently support a subset of

regular SQL DML that is meaningful and practically useful

for spoken data retrieval and analysis. This subset includes

Select-Project-Join-Aggregation (SPJA) queries along with

LIMIT and ORDER BY, one level nested queries, without any
limits on the number of joins or aggregates, as well as on pred-

icates. We do not currently support queries belonging to SQL

SplChar Handling
+ Literal Masking

Search
Engine

Structure
Generator

SQL
Grammar

SQL
Structures

ASR
Transcription

Indexer

Syntactically
Correct SQL

Index Offline

Processed
Transcription

Figure 3: Structure Determination component’s archi-
tecture.

DDL. We use the production rules of SELECT statements of

standard SQL in Backus-Naur Form [7]. This subset already

allows many structurally sophisticated retrieval and analy-

sis queries that may arise in speech-driven environments.

That said, we do plan to systematically expand our subset to

offer more SQL functionalities in future work. In contrast,

note that some NLIs impose much more stringent structural

restrictions. For instance, the state-of-the-art NLI on the

WikiSQL dataset [17, 39] allows queries over only one table

and with only one aggregate. In addition, the task on Spider

dataset does not involve generating condition values [38].

We provide the full grammar in the technical report [31].

3.1 SplChar Handling and Literal Masking
We create a dictionary of the supported SQL Keywords and

SplChars, namely, KeywordDict and SplCharDict as below:

KeywordDict: Select, From, Where, Order By, Group By, Nat-
ural Join, And, Or, Not, Limit, Between, In, Sum, Count, Max,
Avg, Min
SplCharDict: * = < > () . ,

ASR often fails to correctly transcribe SplChars and pro-

duces the output in words. For example, < becomes “less
than". Thus, we replace the substrings in the transcription

output (TransOut) with the corresponding SplChars. Then,

we mask out all tokens in the transcribed text that are not in

KeywordDict or SplCharDict with a placeholder variable.

In our running example, the masked out transcription output

(MaskOut) is SELECT x1 FROM x2 x3 x4 = x5.

3.2 Structure Generator
This offline component uses the production rules in the gram-

mar recursively to generate a sequence of tokens, which is a

string representing a SQL ground truth structure. Since the

number of tokens that can be generated is infinite, we restrict

the string to a maximum of 50 tokens. This leads to genera-

tion of roughly 1.6M ground truth structures. Our basic idea

is to compare MaskOut with these generated ground truth

structures and select the one with minimum edit distance.

Thus, the knowledge of the grammar lets us effectively invert
the traditional approach of parsing strings to extract structure.
We found that parsing is an overkill for our setting, since the

grammar for spoken queries is more compact than the full

grammar of SQL. Furthermore, the myriad forms of errors

ASR introduces (Table 1) means deterministic parsing will

almost always fail. Early on, we also tried a probabilistic CFG

and probabilistic parsing but it turned out to be impractical

because configuring all the probabilities correctly is tricky

and parsing was slower.

3.3 Indexer
Comparing TransOut with every ground truth string will be

too slow as we want our system to have a real-time latency.

Thus, we index the generated ground truth strings such

that only a small subset needs to be retrieved by the Search

Engine to be compared against TransOut. A challenge is

that the number of strings to index is large. But we observe
that there is a lot of redundancy, since many strings share
prefixes. This observation leads us to consider a trie structure

to index all strings. A path from root to leaf node represents

a string from the ground truth structures. Every node in the

path represents a token in the string. Thus, tries not only

save memory but can also save computations with respect

to common prefixes. The computations can be saved further

by making the search engine more aware of the length of

strings in the trie as we will explain in Section 3.4. Hence,

packing all strings into a single trie leads to a higher latency.

Since latency is a major concern for us, we trade off memory

to reduce latency by storing many tries, one per structure

length. We have 50 disjoint tries in all.

3.4 Search Engine
Given MaskOut, the search engine aims to find the closest

matching structure by comparing against the ground truth

strings from the index based on edit distance. There are many

variants of edit distance that differs in the set of operations

involved. We use a weighted longest common subsequence

edit distance [26], which allows only insertion and deletion

operations at the token level.

Typically, all operations in an edit distance function are

equally weighted. But we introduce a twist in our setting

based on a key observation of ASR outputs. We find that

ASR is far more likely to correctly recognize Keywords than

Literals, with SplChars falling in the middle. Thus, we assign

differentweights to these three kinds of tokens.We assign the

highest weight𝑊𝐾 to Keywords, next highest𝑊𝑆 to SplChars,

and lowest𝑊𝐿 to Literals. We set𝑊𝐾 = 1.2,𝑊𝑆 = 1.1 and

𝑊𝐿 = 1. One could set these weights differently by training

an ML model, but we find that the exact weight values are

not that important; it is the ordering that matters. Thus, the

fixed weights suffice for our purpose.

Denote the source string as 𝑎 = 𝑎1𝑎2...𝑎𝑛 and target string

as 𝑏 = 𝑏1𝑏2...𝑏𝑚 . Let 𝑑𝑝 denote a matrix with𝑚 + 1 columns

and 𝑛 + 1 rows, and 𝑑𝑝 (𝑖, 𝑗) be the edit distance between the

prefix 𝑎1𝑎2...𝑎𝑖 and 𝑏1𝑏2...𝑏 𝑗 . Algorithm 1 shows the dynamic

program to compute this matrix. We observe that comput-

ing dp(i,j) requires only the previous column (DpPrvCol)

Algorithm 1 Dynamic Programming Algorithm

1: if token in KeywordDict then𝑊𝑡𝑜𝑘𝑒𝑛 = 𝑊𝐾

2: else if token in SplCharDict then𝑊𝑡𝑜𝑘𝑒𝑛 = 𝑊𝑆

3: else𝑊𝑡𝑜𝑘𝑒𝑛 = 𝑊𝐿

4: dp(i,0) = i for 0 ≤ i ≤ n; dp(0,j) = j for 0 ≤ j ≤ m
5: if a(i) == b(j) then dp(i,j) = dp(i-1,j-1) = DpPrvCol(row-1)
6: else dp(i,j) = min(𝑊𝑡𝑜𝑘𝑒𝑛+dp(i-1,j), 𝑊𝑡𝑜𝑘𝑒𝑛+dp(i,j-1))
7: DpPrvCol(row) = dp(i,j-1)
8: DpCurCol(row-1) = dp(i-1,j)
9: insertCost = DpPrvCol(row) + 𝑊𝑡𝑜𝑘𝑒𝑛

10: deleteCost = DpCurCol(row-1) + 𝑊𝑡𝑜𝑘𝑒𝑛

and current column (DpCurCol). Moreover, if for a node 𝑛,

min(DpCurCol) > MinEditDist, thenwe can stop exploring
it further. We now present an optimization that can reduce

the computational cost of searching over our index.

Bidirectional Bounds. Recall that our index has many tries,

which means searching could become slow if we do it naively.

Thus, we now present a simple optimization that prunes out

most of the tries without altering the search output. Our

intuition is to bound the edit distance from both below and

above. Given two strings of length𝑚 and 𝑛 (without loss of

generality,𝑚 > 𝑛), the lowest edit distance is obtained with

𝑚 − 𝑛 deletes. Similarly, highest edit distance is obtained

with𝑚 deletes and 𝑛 inserts. This leads us to the following:

Proposition 1. Given two query structures with𝑚 and 𝑛

tokens, their edit distance 𝑑 satisfies the following bounds:

|𝑚 − 𝑛 | ·𝑊𝐿 ≤ 𝑑 ≤ |𝑚 + 𝑛 | ·𝑊𝐾 .

Here, the lower bound denotes the best case scenario with

|𝑚 − 𝑛 | deletes and minimum possible weight of𝑊𝐿 . The

upper bound denotes the worst case scenario with m deletes,

n inserts and maximum possible weight of𝑊𝐾 . To illustrate

how our bounds could be useful, we present an illustrative

example in the technical report [31].

Overall SearchAlgorithm.Ourmain idea is to skip searches

on tries that are pruned by our bidirectional bounds in Propo-

sition 1. For the tries that are not pruned, we recursively

traverse every children of the root node. At every node, we

use the dynamic program to calculate edit distance with

TransOut. When we reach a leaf node and see that the edit

distance with current node is less than MinEditDist, then
we update MinEditDist and the corresponding structure.

This algorithm does not affect accuracy, i.e., it returns the

same string as searching over all the tries. Its worst case time

complexity is𝑂 (𝑝𝑘𝑛), where 𝑛 is the length of the TransOut,
𝑝 is the number of nodes in the largest trie, and 𝑘 is the num-

ber of tries. The space complexity is 𝑂 (𝑝𝑘). The complete

search procedure along with the proofs of the complexity

analysis can be found in our technical report. We also study

two additional accuracy-latency tradeoff algorithms that fur-

ther reduce runtime by trading off some accuracy, which can

be found in our tech report [31]. Note that we do not use the

approximation techniques by default in SpeakQL, but users

can choose to enable them, if they want even lower latency.

4 LITERAL DETERMINATION
The goal of this component is to “fill in" the values for the

placeholder variables in the syntactically correct SQL struc-

ture delivered by the Structure Determination component.

Literals can be table names, attribute names, or attribute

values. Table names and attribute names are from a finite

domain determined by the database schema but the vocab-

ulary size of attribute values can be infinite. This presents

a challenge to this component because the most prominent

information that it can use to identify a literal for any place-

holder variable is the raw ASR transcription output. This

transcription is typically erroneous and unusable directly

because ASR can either split the out-of-vocabulary tokens

into a series of tokens, incorrectly transcribe it, or simply

not transcribe it at all. Even for in-vocabulary tokens, ASR

is bound to make mistakes due to homophones (see Table 1).

These observations about how ASR fails helps us to identify

two crucial design decisions for Literal Determination.

1. Leveraging phonetic representation. In contrast to

string-based similarity search, a similarity search on a pre-

computed phonetic representation of the existing Literals

in the database can help us disambiguate the words from

TransOut that sound similar. This motivates us to exploit a

phonetic algorithm called Metaphone that utilizes 16 con-

sonant sounds describing a large number of sounds used in

many English words. We use it to build a dictionary for in-

dexing the table names, attribute names, and attribute values

(only strings, excluding numbers or dates) based on their

English pronounciation. For example, phonetic representa-

tions of table names Employees and Salaries are given by

EMPLYS and SLRS respectively.

2. Handling out-of-vocabulary tokens. Literal Determi-

nation has to be made aware of the splitting of tokens (out-of-

vocabulary fromASR’s perspective) into sub-tokens so that it

can decide when and how to merge them. Figure 4 shows the

workflow of this component with TableNames= {Employees
(EMPLYS),Salaries (SLRS)} and AttributeNames ={First-
Name(FRSTNM), LastName(LSTNM)}. The inputs are TransOut
and best structure (BestStruct) obtained from the Structure

Determination. As output, we want to map a literal each to

every placeholder variable in BestStruct. To do so, we first
identify the type of the placeholder variable (table name,

attribute name, or attribute value). This lets us reduce the

number of Literals to consider for a placeholder. We denote

the set containing relevant Literals for a placeholder variable

by set 𝐵. Next, we use TransOut to identify what exactly

was spoken for Literals. We segment TransOut to identify a

set of possible tokens to consider and form set 𝐴. Finally, we

identify the most phonetically similar literal by computing

edit distance between the phonetic representations of the

two sets 𝐴 and 𝐵. The algorithm pseudocode can be found

𝑥1 → 𝐴
𝑥2 → 𝑇

TransOut: SELECT first name FROM employers
BestStruct: SELECT x1 FROM x2

Category
Assignment

𝐴 = 𝑓𝑖𝑟𝑠𝑡, 𝑛𝑎𝑚𝑒, 𝑓𝑖𝑟𝑠𝑡𝑛𝑎𝑚𝑒
𝐵 = 𝐹𝑖𝑟𝑠𝑡𝑁𝑎𝑚𝑒, 𝐿𝑎𝑠𝑡𝑁𝑎𝑚𝑒

first
name

firstname

FirstName

LastName

𝐴 = 𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑟𝑠
𝐵 = 𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠, 𝑆𝑎𝑙𝑎𝑟𝑖𝑒𝑠

employers
Employees

Salaries

TransOut
Segmentation

Literal Assignment

𝑥1

𝑥2

x1: FirstName

x2: Employees

Figure 4: Literal Determination component example

in our technical report [31]. Its worst-case time complexity

is 𝑂 (𝑛2𝑚), where 𝑛 is the length of TransOut and𝑚 is the

domain size of Literals. The space complexity is 𝑂 (𝑛2 +𝑚).
4.1 Category Assignment
We constrain the space of possible Literals to consider for any

given placeholder variable in BestStruct. Each variable can

be a table name (type = T), an attribute name (category type =

A) or an attribute value (type = V). We assign a category type

to the placeholder variable using SQL grammar. In Figure

4, the category assigned to x2 is type T, and x1 is type A.
Given a placeholder variable in BestStruct, we retrieve the
phonetic representation of the relevant Literals. For example,

if the placeholder variable is of type T, then the set 𝐵 of

phonetic representations for all the table names is returned.

4.2 Transcription Output Segmentation
We now determine the exact literal to “fill in" a placeholder.

This requires using TransOut to identify transcribed tokens

for Literals. We segment TransOut such that only relevant

tokens are retrieved to be compared against set 𝐵 items. For

a placeholder in BestStruct, we first identify a window

in TransOut where the literal is likely to be found. In our

example, the window for x1 starts at token first and ends

at token name. We then enumerate all the possible substrings

(phonetic representation) of Literals occurring in the window

in set𝐴. For variable x1,𝐴 = {first,name,firstname} and
𝐵 is the set of attribute names.

4.3 Literal Assignment
As the final step, we retrieve the most likely literal for a

placeholder variable by comparing the enumerated strings

in set 𝐴 and relevant Literals in set 𝐵. The comparison is

based on the character level edit distance of the strings in

phonetic representation. Our algorithm is given below.

(1) For an item 𝑎 in set 𝐴, compute pairwise edit distance

with every item in set 𝐵. (2) Pick an item 𝑏 ∈ 𝐵 that has least

edit distance. Hence, 𝑎 has so-called “voted" for 𝑏. (3) Repeat

this process of voting for every item 𝑎 ∈ 𝐴.
We return the literal with the maximum number of votes.

We fetch top 𝑘 Literals overall for each placeholder variable.

The ties in votes are resolved in lexicographical order. In

our running example, the returned literal for the variable x1
is FirstName, while for x2 is Employees. We present many

examples of this step in our tech report [31].

A B
Figure 5: SpeakQL Interface [32]. (A) The Interactive Display showing the dictated query after being processed by
the SpeakQL engine, as well as the touch-based editing functionalities and clause-level redictation capabilty. (B)
Our simple SQL keyboard designed for touch-based editing of the rendered query string.

5 INTERFACE
Figure 5(A) shows our interface. We demonstrated our inter-

face at [32]. This interface allows users to dictate SQL query

and interactively correct it, if the transcribed query is erro-

neous. Such interactive query correction can be performed

using both touch/click and speech. The “Record" button at

the bottom right allows the user to dictate the entire query

in one go. At the same time, the interface allows the user to

dictate or correct (through re-dictation) the queries at the

clause level (using record button to the left of each clause).

For example, the user can choose to dictate only the SELECT
clause or WHERE clause. We find from user study (Section

6.4) that this clause-level functionality helps users in reduc-

ing their cognitive load while speaking significantly. Such a

design makes our interface more speech-friendly.

Figure 5(B) shows the novel “SQL Keyboard" that consists

of entire lists of SQL Keywords, table names, and attribute

names. Since attribute values (including dates) can be poten-

tially infinite, they cannot be seen in a list view. But the user

can type with the help of an auto complete feature. Dates can

be specified easily with the help of a scrollable date picker.

Our keyboard design allows for a quick in-place editing of

stray incorrect tokens, present anywhere in the SQL query

string. We find from user study (Section 6.4) that such a de-

sign makes our interface more correction-friendly. In the

worst case, if our system fails to identify the correct query

structure and/or Literals, the user can type one token, mul-

tiple tokens, or the whole query from scratch in the query

display box, or redictate the clauses or the whole query again.

Thus, overall, SpeakQL’s novel multimodal query interface

allows users to easily mix speech-driven query specification

with speech/touch interactive query correction.

6 EXPERIMENTAL EVALUATION
We now present a thorough empirical evaluation of SpeakQL.

We first present the new dataset of spoken SQL queries. We

define the accuracy metrics and evaluate SpeakQL end-to-

end on them. We then present our findings from actual user

studies with SpeakQL. Next, we dive deeper into evaluat-

ing SpeakQL’s components. Finally, we compare SpeakQL

against NLIs on two existing large-scale datasets.

6.1 New Dataset for Spoken SQL
Whyare existing datasets not enough?The existing large-
scale datasets created for NLIs such as Spider [38] and Wik-

iSQL [39] are not directly tailored towards evaluating a spo-

ken querying system. This is because the major difficulty

metric for spoken querying and typed querying are different.

The difficulty for typed NLI lies in inferring join paths and

building nested queries [9, 10]. While for spoken querying,

the difficulty metric is the number of tokens in the query. For

instance, even a natural language query with 50 tokens can

be very simple for a typed NLI but not necessarily for a spo-

ken NLI. Conversely, a short query with many joins may be

simple for SpeakQL but very hard for an NLI.We confirm this

observation by comparing SpeakQL against state-of-the-art

NLIs on Spider and WikiSQL datasets in tech report [31].

Procedure to generate dataset on arbitrary schema. To
the best of our knowledge, there are no publicly available

datasets for spoken SQL queries. Hence, we create our own

dataset using a scalable procedure described below.

1. We use two publicly available database schemas: Em-

ployees Sample Database from MySQL [2] and the Yelp

Dataset [8]. We get the table names, attribute names,
and attribute values in each database.

Metric

Top 1 Top 5

Employees Yelp Employees Yelp

Train Test Test Train Test Test

KPR 0.99 0.98 0.94 0.99 0.99 0.98

SPR 0.99 0.98 0.98 0.99 0.99 0.99

LPR 0.92 0.85 0.72 0.97 0.93 0.81

WPR 0.95 0.91 0.81 0.98 0.96 0.9

KRR 0.99 0.97 0.95 0.99 0.99 0.99

SRR 0.98 0.98 0.98 0.99 0.99 0.99

LRR 0.88 0.8 0.64 0.95 0.91 0.69

WRR 0.92 0.88 0.78 0.96 0.95 0.82

Table 2: End-to-end mean accuracy metrics on real
data for query string corrected by SpeakQL.

2. Use our SQL subset’s CFG to generate a random structure

(e.g., SELECT x1 FROM x2 WHERE x3 = x4).
3. Identify the category type of each literal placeholder vari-

ables from section 4.1 (e.g {x2} ∈ tablenames; {x1,x3} ∈
attributenames; {x4} ∈ attributevalues).
4. Replace the placeholder variables with the literal belong-

ing to its respective category type randomly. We first bind

the table names, followed by the attribute names, and
finally, attribute values.
5. Repeat the steps 2, 3 and 4 until we get a dataset of 1250 SQL

queries (750 for training and 500 for testing) from Employees

and 500 SQL queries from the Yelp dataset (for testing). We

use the 750 training queries from the Employees database

to customize our ASR engine, Azure’s Custom Speech API.

We are also interested in testing the generalizabilty of our

approach to new database schemas. Hence, we do not include

queries from Yelp database for customizing the API.

6. Use Amazon Polly speech synthesis API to generate spo-

ken SQL queries from these queries in text. Amazon Polly

offers voices of 8 different US English speakers with natu-

rally sounding voices. We found that voice output is of high

quality even for Literals. We sampled and heard a few queries

to verify this. Especially for dates, we found that Polly auto

converts format ‘month-date-year’ to spoken dates. Polly

also allow us to vary several aspects of speech, such as pro-

nunciation, volume, pitch, and speed rate of spoken queries.

Note that our procedure for data generation applies to

any arbitrary schema where tablenames, attributenames
and attributevalues are user-pluggable. Since the steps

2, 3 and 4 of the above procedure can be repeated for infin-

itely many times, the procedure is scalable. We make all our

dataset publicly available on our project webpage [5].

6.2 Metrics
For evaluating accuracy, we first tokenize a query text to

obtain a multiset of tokens (Keywords, SplChars, and Lit-

erals). We then compare the multiset A of the reference

C
D

F

B

C
D

F

Token Edit Distance Time (in sec)

A

ASR only

SpeakQL

Figure 6: (A) Evaluation of SpeakQL on Token Edit Dis-
tance (B) Runtime of SpeakQL.

query (ground truth SQL query) with the multiset B of the

hypothesis query (transcription output from SpeakQL). We

use the following error metrics: Keyword Precision Rate

(𝐾𝑃𝑅), SplChar Precision Rate (𝑆𝑃𝑅), Literals Precision Rate

(𝐿𝑃𝑅), Word Precision Rate (𝑊𝑃𝑅), Keyword Recall Rate

(𝐾𝑅𝑅), SplChar Recall Rate (𝑆𝑅𝑅), Literals Recall Rate (𝐿𝑅𝑅)

and Word Recall Rate (𝑊𝑅𝑅). For example,𝑊𝑃𝑅 =
|𝐴∩𝐵 |
|𝐵 | ,

𝑊𝑅𝑅 =
|𝐴∩𝐵 |
|𝐴 | , and the rest are defined similarly. Any incor-

rectly transcribed token will result in loss of accuracy and

will force users to spend time and effort correcting it. Thus,

we are also interested in finding out how far the output gen-

erated by SpeakQL is from the ground truth. For this purpose,

we include one more accuracy metric: Token Edit Distance

(TED), which allows for only insertion and deletion of tokens

between the reference query and the hypothesis query. The

latency is evaluated with running time in seconds.

6.3 End-to-End Evaluation
Experimental Setup. All objective experiments were run

on a commodity laptopwith 16GB RAM andWindows 10.We

use Cloudlab OpenStack profile with Ubuntu16.04 and 256GB

RAM for running backend server during user studies [28].

Results.Table 2 reports themean accuracymetrics for queries

on the Employees and Yelp database. For additional insights,

we present both top 1 outputs and “best of" top 5 outputs.

We present the CDF of the accuracy metrics in the tech re-

port [31]. We see that with SpeakQL, we achieve almost

maximum possible precision and recall (mean of roughly

0.98) for Keywords and SplChars on both Employees train

and test dataset. Even for Literals, the accuracy improves

significantly on both databases compared to ASR. In addi-

tion, on Yelp, the precision and recall are considerably high.

Since ASR is customized on the training data from Employ-

ees, SpeakQL is more likely to correctly detect its schema

Literals than for other schemas. Hence, on Yelp, the fraction

of relevant tokens successfully retrieved is less. This leads

to a lower recall rate (mean of 0.64) for Literals.

Figure 6(A) shows the CDF of TED on the Employees test

set. TED is a surrogate for the amount of effort (touches) that

the user needs when correcting a query. Higher TED means

more user effort. Almost 90% of the queries have TED of less

Query Number

Sp
ee

d
u

p
 in

 T
im

e

R
ed

u
ct

io
n

 in
 E

ff
o

rt
s

Query Number

A

B

Simple Queries Complex Queries

q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 q11 q12

Median time
to completion

17 34.4 36.4 40 40.5 31.6 143 165.3 160.9 120 62.5 119.7

Median units
of effort

5 13 7 5 8 8 37 43 19 49 14 43

C

Figure 7: Simple queries are marked from 1 to 6 and the rest are complex. (A) Speedup in time to completion for
queries using SpeakQL vs raw typing (B) Reduction in units of efforts for queries composed with SpeakQL vs raw
typing (C) Median time to completion and units of effort for queries composed with SpeakQL.

than 6. Hence, from the user end, correcting most queries

require only a handful of touches. Figure 6(B) shows the CDF

of latency of SpeakQL. We notice that for almost 90% of the

queries on Employees, the runtime is well within 2 seconds

and only 1% of the queries took more than 5 seconds.

6.4 User Study
Setup.We choose a tablet device with 2GB RAM and 1.6GHz

processor for the user study. We prioritize users and queries

on the tablet to get more confidence for our results. Thus,

we leave study with phones to future work. Since typing on

phones can be even harder, the study with a tablet would

give a lower bound on the benefits of our system. We con-

ducted a preliminary user study that helped us learn several

key lessons in making our interface more speech-friendly

and correction-friendly. We describe the pilot study and the

lessons learned in our technical report [31].

Actual User Study. We conduct user study with 15 partici-

pants where the recruitment was conducted through a short

SQL quiz. Each participant is first made familiar with our

interface through an introductory video [6]. Each participant

composes 12 queries (𝑞1 to 𝑞12) on a browser-based SpeakQL

interface on the tablet given the natural language descrip-

tion of the query along with the schema. We compare two

conditions for specifying the query with a within-subjects

design. In the first condition, the participant has access to our

SpeakQL interface that allows them to dictate the SQL query

and perform interactive correction. In the second condition,

the participant types the SQL query from scratch with no

access to our interface. We record the time to complete the

query for both the conditions. Also, we log every interaction

of the user with our system, i.e., the number of corrections

and re-dictation attempts. We evaluate our system using 180

data points (15 participants, 12 queries).

Study Design. The queries were divided into two segments:

simple and complex. We define simple queries as those with
less than 20 tokens; the rest are considered complex. Thus,
composing a complex query imposes a higher cognitive load

relative to a simple query. Participant 𝑝1 was asked to speak

query 𝑞1 first and type 𝑞1 next. 𝑝1 will then type 𝑞2 first and

dictate 𝑞2 next. We alternate this order across the 12 queries.

Similarly, this order is alternated across participants, i.e., 𝑝2
will type query 𝑞1 first and dictate 𝑞1 next. This design lets us

account for the interleaving of thinking and speaking/typing

when constructing SQL queries and reduce the bias caused

by a reduced thinking time when re-specifying the same

query in a different condition (typing or speaking).

Results. Figure 7 shows the median time to completion with

SpeakQL, median units of efforts spent on our interface,

speedup in time to completion (i.e., time to completion of

typing vs time to completion of SpeakQL), and reduction in

efforts for the 12 queries. The queries from 1-6 are simple and
the rest are complex. Units of effort is defined as number of

touches/clicks (including keyboard strokes) or dictation/re-

dictation attempts made when composing a query. The main

takeaways are given below.

(1) Plot A shows that SpeakQL leads to significantly higher

speedup in time to completion compared to raw typing. The

speedup is higher for complex queries (average of 2.9x) than

the simple ones (average of 2.4x).
(2) Plot B shows that SpeakQL leads to significantly less units

of effort than raw typing. The average reduction factor is

12x and 7.5x for simple and complex queries respectively.

(3) From table Cwe notice that themedian time to completion

and units of effort for the complex queries is considerably

higher than the simple ones, which is expected.

Hypothesis Tests. Hypothesis tests shows that the time to

complete a query, the time spent editing a query, and the

total units of efforts with SpeakQL is statistically significantly

lower than than the typing condition. We discuss the tests

in depth in our technical report [31].

6.5 Component-level Drill Down
Structure Determination Evaluation. We evaluate the

structures returned by this component relative to the ground

truth structure. Figure 8(A) shows the CDF of TED for the

Employees test set queries. The correct structure is deliv-

ered for about 86% of the queries. We report the CDF of this

component’s latency in the tech report [31].

Literal Determination Evaluation. Figure 8(B) presents
the CDF of recall rates for table names, attribute names, and

CD
F

Token Edit Distance

A

CD
F

Recall Rate

Table Name
Attribute Name
Attribute Value

B

Figure 8: (A) StructureDetermination component eval-
uation on Token Edit Distance (TED) (B) Literal Deter-
mination component evaluation. CDF of Recall Rates
for different Literal types.

attribute values. We see that recall rates for table names and

attribute names are considerably high, with a mean of 0.90

and 0.83, respectively. But for attribute values, recall rate is

low (mean of 0.68). To see why this is the case, we present

the CDF of edit distance for different type of attribute values

with the ground truth in the technical report [31].

6.6 Comparison with NLIs
We compare SpeakQL against state-of-the-art NLIs with

typed and speech inputs on two large-scale human-annotated

datasets containing pairs of natural language and SQL queries:

Spider [38] and WikiSQL [39]. We find that the accuracy of

NLIs decreases significantly when queries are speech-based

than typing-based due to a variety of errors in the transcrip-

tion. Moreover, we observe that SpeakQL achieves signifi-

cantly higher accuracy than the state-of-the-art NLIs with

speech inputs. For instance, lift of 50% in execution accu-

racy on WikiSQL. We present the complete evaluation and

additional insights in the tech report [31].

7 RELATEDWORK
Speech-drivenQuerying Systems. Speech recognition for
data querying has been explored in some prior systems. Nu-

ance’s Dragon Naturally Speaking allows users to query

using spoken commands to retrieve the text content of a doc-

ument [3]. Several systems such as Google’s Search by Voice

[30, 33] and Microsoft’s Model M [41] have explored the

possibility of searching by voice. Conversational assistants

such as Alexa, Google Home, Cortana, and Siri allow users to

query over only an application-specific knowledge bases and

not over an arbitrary database. In contrast, SpeakQL allows

users to interact with structured data using spoken queries

over any arbitrary database schema.

Other Non-typing Query Interfaces. Query Interfaces

that help non-technical users explore relational databases

have been studied for several decades. There has been a

stream of research on visual interfaces [4, 15, 40]. Tabular

tools such as [40] allow users to query by example, [4] allows

users to create drag-and-drop based interfaces, and keyword-

search based interfaces such as [15] help users formulate

SQL queries by giving query suggestions. More recently,

non-keyboard based touch interfaces [13, 18, 24, 25, 35] have

received attention because of the potentially lower user ef-

fort to provide input. At the user level, almost all of these

query interfaces obviate the need to type SQL. This rich body

of prior work inspired our touch-based multimodal interface

for query correction that augments spoken input. But unlike

these tools, our first version of SpeakQL does not aim to

obviate SQL but rather embraces and exploits its persistent

popularity among data professionals.

Natural Language Interfaces. There is a long line of work
on NLIs for databases in order to allow layman users to ask

questions in natural lanuage [16, 17, 21, 29, 34, 36–39]. NLIs

are orthogonal to this paper’s focus. Inspired from regular

human to human conversations, Echoquery [21] is designed

as a conversational NLI in form of an Alexa skill. Although,

this system certainly enables non-experts to query data easily

and directly, ASR can cause a series of errors and would

restrict users from specifying “hard" queries. In addition,

such a system might impose a higher cognitive load [23, 27]

on users when a large query result is returned; a screen

mitigates such issues, e.g., as in the Echo Show.

Natural Language Processing (NLP). Recent work in NLP
community has emphasized the fact that incorporating lin-

guistic structure can help prune the space of generated queries

and thus help in avoiding the NLU problem [12, 14, 19, 22, 39].

This recent trend of incorporating structural knowledge into

the modeling offers a form of validation for our approach of

directly exploiting rich structure of SQL using its grammar.

8 CONCLUSIONS AND FUTUREWORK
We pursue an exploratory research direction on speech-

driven query interfaces that is complementary to NLIs and

visual interfaces. Inspired by our conversations with diverse

data querying professionals, we build the first end-to-end

multimodal querying system for a practical subset of SQL

that combines speech and touch interactions. Our empiri-

cal findings suggest that SpeakQL achieves significant im-

provements over ASR on all accuracy metrics. Through user

studies, we show that our system helps users to speed up

their SQL query specification process. As for future work,

we would like to modify SQL itself to make it more speech-

friendly. Our empirical results show that Literals are the

biggest bottleneck for accuracy. Hence, we plan to rewrite

our SQL subset’s CFG in a manner that focuses more on

literals and de-emphasizes structure.

Acknowledgments. This material is based upon work sup-

ported in part by the National Science Foundation under

Grant No. IIS-1816701. We thank the members of UC San

Diego’s Database Lab and Ndapa Nakashole for their feed-

back on this work.

REFERENCES
[1] Accessed April 12, 2020. Alexa commands. https://www.cnet.com/

how-to/amazon-echo-the-complete-list-of-alexa-commands.

[2] Accessed April 12, 2020. MySQL Employees Sample Database. Avail-

able from https://dev.mysql.com/doc/employee/en/.

[3] Accessed April 12, 2020. Nuance’s Dragon Speech Recognition. https:

//www.nuance.com/dragon.html.

[4] Accessed April 12, 2020. Oracle SQL Developer. blogs.oracle.com/smb/

what-is-visual-builder-and-why-is-it-important-for-your-business.

[5] Accessed April 12, 2020. SpeakQL Project Webpage. https://adalabucsd.
github.io/speakql.

[6] Accessed April 12, 2020. SpeakQL: Towards Speech-driven Multimodal
Querying of Structured Data (Tutorial Video). https://youtu.be/KsgNo-
CkE8Y.

[7] Accessed April 12, 2020. SQL Grammar. http://forcedotcom.github.io/

phoenix.

[8] Accessed April 12, 2020. Yelp Database. Available from https://www.

kaggle.com/yelp-dataset/yelp-dataset.

[9] Christopher Baik, HV Jagadish, and Yunyao Li. 2019. Bridging the

Semantic Gap with SQL Query Logs in Natural Language Interfaces

to Databases. In 2019 IEEE 35th International Conference on Data Engi-
neering (ICDE). IEEE, 374–385.

[10] Fuat Basik, Benjamin Hättasch, Amir Ilkhechi, Arif Usta, Shekar Ra-

maswamy, Prasetya Utama, Nathaniel Weir, Carsten Binnig, and Ugur

Cetintemel. 2018. DBPal: A Learned NL-Interface for Databases. In

Proceedings of the 2018 International Conference on Management of
Data (SIGMOD ’18). ACM, New York, NY, USA, 1765–1768. https:

//doi.org/10.1145/3183713.3193562

[11] Dharmil Chandarana, Vraj Shah, Arun Kumar, and Lawrence Saul.

2017. SpeakQL: Towards Speech-driven Multi-modal Querying. In

Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics,
HILDA@SIGMOD 2017, Chicago, IL, USA, May 14, 2017. ACM, 11:1–11:6.

https://doi.org/10.1145/3077257.3077264

[12] Trevor Cohn, Cong Duy VuHoang, Ekaterina Vymolova, Kaisheng Yao,

Chris Dyer, and Gholamreza Haffari. 2016. Incorporating Structural

Alignment Biases into an Attentional Neural Translation Model. arXiv
preprint arXiv:1601.01085 (2016).

[13] Andrew Crotty, Alex Galakatos, Emanuel Zgraggen, Carsten Binnig,

and Tim Kraska. 2015. Vizdom: Interactive Analytics Through Pen

and Touch. Proceedings of VLDB Endowment 8, 12 (2015), 2024–2027.
https://doi.org/10.14778/2824032.2824127

[14] Chris Dyer, Adhiguna Kuncoro, Miguel Ballesteros, and Noah A

Smith. 2016. Recurrent Neural Network Grammars. arXiv preprint
arXiv:1602.07776 (2016).

[15] Ju Fan, Guoliang Li, and Lizhu Zhou. 2011. Interactive SQL Query Sug-

gestion: Making Databases User-friendly. In Data Engineering (ICDE),
2011 IEEE 27th International Conference on. IEEE, 351–362.

[16] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu,

and Dongmei Zhang. 2019. Towards Complex Text-to-SQL in Cross-

Domain Database with Intermediate Representation. arXiv preprint
arXiv:1905.08205 (2019).

[17] Wonseok Hwang, Jinyeung Yim, Seunghyun Park, and Minjoon Seo.

2019. A Comprehensive Exploration on WikiSQL with Table-Aware

Word Contextualization. arXiv preprint arXiv:1902.01069 (2019).
[18] Stratos Idreos and Erietta Liarou. 2013. dbTouch: Analytics at your

Fingertips. In CIDR 2013, Sixth Biennial Conference on Innovative Data
Systems Research, Asilomar, CA, USA, January 6-9, 2013, Online Pro-
ceedings. www.cidrdb.org. http://cidrdb.org/cidr2013/Papers/CIDR13_

Paper13.pdf

[19] Yoon Kim, Carl Denton, Luong Hoang, and Alexander M Rush. 2017.

Structured Attention Networks. arXiv preprint arXiv:1702.00887 (2017).

[20] Fei Li and HV Jagadish. 2014. Constructing an Interactive Natural

Language Interface for Relational Databases. Proceedings of the VLDB
Endowment 8, 1 (2014), 73–84.

[21] Gabriel Lyons, Vinh Tran, Carsten Binnig, Ugur Cetintemel, and Tim

Kraska. 2016. Making the Case for Query-by-Voice with EchoQuery.

In Proceedings of the 2016 International Conference on Management of
Data. ACM, 2129–2132.

[22] Diego Marcheggiani and Ivan Titov. 2017. Encoding Sentences with

Graph Convolutional Networks for Semantic Role Labeling. In Pro-
ceedings of the 2017 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2017, Copenhagen, Denmark, Septem-
ber 9-11, 2017. Association for Computational Linguistics, 1506–1515.

https://doi.org/10.18653/v1/d17-1159

[23] George AMiller. 1956. The Magical Number Seven, Plus or Minus Two:

Some Limits on our Capacity for Processing Information. Psychological
review 63, 2 (1956), 81.

[24] Arnab Nandi. 2013. Querying Without Keyboards. In Proceedings of
the biennial Conference on Innovative Data Systems Research (CIDR).

[25] Arnab Nandi, Lilong Jiang, and Michael Mandel. 2013. Gestural Query

Specification. Proceedings of the VLDB Endowment 7, 4 (2013), 289–300.
[26] Saul B Needleman and Christian D Wunsch. 1970. A General Method

Applicable to the Search for Similarities in the Amino Acid Sequence

of Two Proteins. Journal of molecular biology 48, 3 (1970), 443–453.

[27] T. V. Raman. 1998. Audio System for Technical Readings. Lecture Notes
in Computer Science, Vol. 1410. Springer. https://doi.org/10.1007/

BFb0054977

[28] Robert Ricci, Eric Eide, and CloudLab Team. 2014. Introducing Cloud-

Lab: Scientific Infrastructure for Advancing Cloud Architectures and

Applications. ; login:: the magazine of USENIX & SAGE 39, 6 (2014),

36–38.

[29] Diptikalyan Saha, Avrilia Floratou, Karthik Sankaranarayanan,

Umar Farooq Minhas, Ashish R Mittal, and Fatma Özcan. 2016.

ATHENA: an Ontology-driven System for Natural Language Querying

over Relational Data Stores. Proceedings of the VLDB Endowment 9, 12
(2016), 1209–1220.

[30] Johan Schalkwyk, Doug Beeferman, Françoise Beaufays, Bill Byrne,

Ciprian Chelba, Mike Cohen, Maryam Kamvar, and Brian Strope. 2010.

“Your word is my command”: Google Search by Voice: A Case Study.

In Advances in speech recognition. Springer, 61–90.
[31] Vraj Shah, Side Li, Arun Kumar, and Lawrence Saul. Accessed April 12,

2020. SpeakQL: Towards Speech-driven Multimodal Querying of Struc-
tured Data. https://adalabucsd.github.io/papers/TR_2020_SpeakQL.

pdf.

[32] Vraj Shah, Side Li, Kevin Yang, Arun Kumar, and Lawrence Saul. 2019.

Demonstration of SpeakQL: Speech-driven Multimodal Querying of

Structured Data. In Proceedings of the 2019 International Conference on
Management of Data. 2001–2004.

[33] Jiulong Shan, Genqing Wu, Zhihong Hu, Xiliu Tang, Martin Jansche,

and Pedro J Moreno. 2010. Search by Voice in Mandarin Chinese. In

Eleventh Annual Conference of the International Speech Communication
Association. 354–357.

[34] Alkis Simitsis, Georgia Koutrika, and Yannis Ioannidis. 2008. Précis:

from Unstructured Keywords as Queries to Structured Databases as

Answers. The VLDB Journal—The International Journal on Very Large
Data Bases 17, 1 (2008), 117–149.

[35] Pawel Terlecki, Fei Xu,Marianne Shaw, Valeri Kim, and RichardWesley.

2015. On Improving User Response Times in Tableau. In Proceedings
of the 2015 ACM SIGMOD International Conference on Management of
Data. ACM, 1695–1706.

[36] Xiaojun Xu, Chang Liu, and Dawn Song. 2017. SqlNet: Generating

Structured Queries from Natural Language without Reinforcement

Learning. arXiv preprint arXiv:1711.04436 (2017).

https://www.cnet.com/how-to/amazon-echo-the-complete-list-of-alexa-commands
https://www.cnet.com/how-to/amazon-echo-the-complete-list-of-alexa-commands
https://dev.mysql.com/doc/employee/en/
https://www.nuance.com/dragon.html
https://www.nuance.com/dragon.html
blogs.oracle.com/smb/what-is-visual-builder-and-why-is-it-important-for-your-business
blogs.oracle.com/smb/what-is-visual-builder-and-why-is-it-important-for-your-business
https://adalabucsd.github.io/speakql
https://adalabucsd.github.io/speakql
https://youtu.be/KsgNo-CkE8Y
https://youtu.be/KsgNo-CkE8Y
http://forcedotcom.github.io/phoenix
http://forcedotcom.github.io/phoenix
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://doi.org/10.1145/3183713.3193562
https://doi.org/10.1145/3183713.3193562
https://doi.org/10.1145/3077257.3077264
https://doi.org/10.14778/2824032.2824127
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper13.pdf
http://cidrdb.org/cidr2013/Papers/CIDR13_Paper13.pdf
https://doi.org/10.18653/v1/d17-1159
https://doi.org/10.1007/BFb0054977
https://doi.org/10.1007/BFb0054977
https://adalabucsd.github.io/papers/TR_2020_SpeakQL.pdf
https://adalabucsd.github.io/papers/TR_2020_SpeakQL.pdf

[37] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig.

2017. SQLizer: Query Synthesis from Natural Language. Proceedings
of the ACM on Programming Languages 1, OOPSLA (2017), 63:1–63:26.

[38] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang,

Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin

Zhang, and Dragomir Radev. 2018. Spider: A Large-Scale Human-

Labeled Dataset for Complex and Cross-Domain Semantic Parsing and

Text-to-SQL Task. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, Brussels, Belgium, October 31

- November 4, 2018. 3911–3921.
[39] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL:

Generating Structured Queries from Natural Language using Rein-

forcement Learning. arXiv preprint arXiv:1709.00103 (2017).
[40] Moshé M. Zloof. 1975. Query by Example. In National Computer

Conference and Exposition.
[41] Geoffrey Zweig and Shuangyu Chang. 2011. Personalizing Model M

for Voice-Search. In Twelfth Annual Conference of the International
Speech Communication Association. ISCA, 609–612.

	Abstract
	1 Introduction
	2 System Architecture
	3 Structure Determination
	3.1 SplChar Handling and Literal Masking
	3.2 Structure Generator
	3.3 Indexer
	3.4 Search Engine

	4 Literal Determination
	4.1 Category Assignment
	4.2 Transcription Output Segmentation
	4.3 Literal Assignment

	5 Interface
	6 Experimental Evaluation
	6.1 New Dataset for Spoken SQL
	6.2 Metrics
	6.3 End-to-End Evaluation
	6.4 User Study
	6.5 Component-level Drill Down
	6.6 Comparison with NLIs

	7 Related Work
	8 Conclusions and Future Work
	References

