
Towards Model-based Pricing for Machine Learning
in a Data Marketplace

Lingjiao Chen
1

Paraschos Koutris
1

Arun Kumar
2

1
University of Wisconsin-Madison

2
University of California, San Diego

{lchen, paris}@cs.wisc.edu, arunkk@eng.ucsd.edu

ABSTRACT
Data analytics using machine learning (ML) has become

ubiquitous in science, business intelligence, journalism and

many other domains. While a lot of work focuses on reduc-

ing the training cost, inference runtime and storage cost of

ML models, little work studies how to reduce the cost of

data acquisition, which potentially leads to a loss of sellers’

revenue and buyers’ affordability and efficiency. In this pa-

per, we propose a model-based pricing (MBP) framework,

which instead of pricing the data, directly prices ML model

instances. We first formally describe the desired properties

of the MBP framework, with a focus on avoiding arbitrage.

Next, we show a concrete realization of the MBP framework

via a noise injection approach, which provably satisfies the

desired formal properties. Based on the proposed framework,

we then provide algorithmic solutions on how the seller can

assign prices to models under different market scenarios

(such as to maximize revenue). Finally, we conduct extensive

experiments, which validate that the MBP framework can

provide high revenue to the seller, high affordability to the

buyer, and also operate on low runtime cost.

CCS CONCEPTS
• Information systems→Datamanagement systems; •
Computingmethodologies→Machine learning; •The-
ory of computation→ Algorithmic game theory and mech-

anism design;

KEYWORDS
Machine Learning, Pricing, Data Market, Mechanism Design

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06.

https://doi.org/10.1145/3299869.3300078

ACM Reference Format:
Lingjiao Chen, Paraschos Koutris, Arun Kumar. 2019. Towards

Model-based Pricing for Machine Learning in a Data Marketplace.

In 2019 International Conference on Management of Data (SIGMOD

’19), June 30-July 5, 2019, Amsterdam, Netherlands. ACM, New York,

NY, USA, 18 pages. https://doi.org/10.1145/3299869.3300078

1 INTRODUCTION
Data analytics using machine learning (ML) is an integral

part of science, business intelligence, journalism, and many

other domains. Research and industrial efforts have largely

focused on performance, scalability and integration of ML

with data management systems [17, 30, 44]. However, limited

research so far has studied the cost of acquiring data for ML-

based data analytics.

Users often buy rich structured (relational) data to train

their ML models, either directly through companies (e.g.,

Bloomberg, Twitter), or through data markets (e.g., BDEX [1],

Qlik [2]). Such datasets are often very expensive due to the

immense effort that goes into collecting, integrating, and

cleaning them. Existing pricing schemes either force users

to buy the whole dataset or support simplistic pricing mech-

anisms, without any awareness of the ML task downstream

(e.g., the dataset is used to train a predictive model). This

means that valuable datasets may not be affordable to poten-

tial buyers with limited budgets, and also that data sellers

operate in an inefficient market, where they do not maximize

their revenue. Simplistic pricing schemes may also create

undesirable arbitrage opportunities, where the desired data

can be acquired by combining data fragments that together

cost a cheaper price. Thus, as [18] also points out, there is a

need to transition from markets that sell only data to markets

that can directly sell ML models as well.

Model-based Pricing. In this paper, we take a first step to-

wards the long-term vision of creating a marketplace for

selling and buying ML models, by presenting a formal and

practical fine-grained pricing framework for machine learning

over relational data. Our key observation is that, instead of

selling raw data to the buyers, the market can directly sellML

model instances with different accuracy options. The price

then depends on the accuracy of the model purchased, and

https://doi.org/10.1145/3299869.3300078
https://doi.org/10.1145/3299869.3300078

BSeller

Dataset ML Optimize

SLAs

1. Model, Error Preferences

Broker

2. Price-Error Curve

Value Curve
for D

Dataset D for Sale
Error

Va
lu
e

CA Buyer

Market Research Curves
Demand Curve

for D

Error

D
em

an
d

3. Budget, Payment

4. Model Instance

Price-Error
Curve

Error

Pr
ic
e

Figure 1: Model-based pricing market setup. (A) The seller is the agent who wants to sell ML model instances
trained on their commercially valuable dataset D. (B) The broker is the agent that mediates the sale for a set of
supported ML models and gets a cut from the seller for each sale. (C) The buyer is the agent interested in buying
a ML model instance trained on D.

not the underlying dataset. Since the price is based on the

model, we call our framework model-based pricing (MBP).

A high level view of MBP is demonstrated in Figure 1. The

data market involves three agents, namely, the seller who

provides the datasets, the buyer who is interested in buying

ML model instances, and the broker (market) who interacts

between the seller and the buyer. First, the seller and/or the

broker perform market research to ascertain curves repre-

senting demand and value for theMLmodel instances among

potential buyers. These curves plot demand and value as

a function of the error/accuracy of the ML model trained.

The broker uses the market research information to build

price-error curves that are presented to the buyer. The buyer

specifies a desired price or error budget and pays the bro-

ker, who computes an appropriate ML model instance, and

returns it to the buyer.

Example 1. Alice is a journalist studying the relation-

ship between demographics and economic indicators for an

upcoming article. She wants to test how predictive some

demographic features are of the average annual household

income. Datasets with such information exist online, but

they are expensive and exceed Alice’s budget. In this sce-

nario, a data marketplace with MBP would allow Alice to be

charged only based on her ML task and desired accuracy. In

particular, a linear regression model instance with a square

loss might be sufficient for Alice’s purposes.

Example 2 Bob is a business analyst who wants to study

if a social media message is related to his own company. The

data is available but expensive (e.g., Twitter’s GNIP API [3]

enables users to pay for aggregate data about an audience,

which is a set of users with the same age, location, etc). In

such cases, MBP can not only help Bob achieve trade-off

between model accuracy and budget constraints, but also

increase the market size and thus profit of the data sellers.

Desiderata and Challenges. Achieving the MBP frame-

work is a technically challenging task, from both a theoreti-

cal and practical point of view. First, in order to guarantee

affordability, the MBP framework must allow buyers with

different budgets to buy model instances with different accu-

racy guarantees. Second, the model instance generation and

pricing should be performed efficiently, since model train-

ing is typically time-consuming. Third, the MBP framework

must prevent arbitrage opportunities, where a buyer can

combine model instances of low accuracy and low price to

obtain a high accuracy instance for a cheaper price than the

one provided by the market. For example, an instance with

high accuracy should always be at least as expensive as an

instance with lower accuracy. Finally, the MBP framework

must provide capabilities for the broker/buyer to assign the

prices such that their revenue is maximized.

Our Solution. Our key technical contribution is a simple

and efficient noise-injection mechanism that realizes an MBP

framework with formal guarantees. Specifically, the broker

first trains the optimal model instance, which is a one-time

cost. When a buyer requests a model instance, the broker

adds random Gaussian noise to the optimal model and re-

turns it to the buyer. Our proposed mechanism avoids train-

ing a model instance from scratch and is able to achieve real

time interaction. We show that the error of the ML model

instance (when certain properties are satisfied by the error

function) is a monotone function of the variance of the noise

injected in the model.

The pricing mechanism charges a price according to the

variance of the noise injected to the model instance. Adding

noise with low variance implies a model instance with ex-

pected low error and thus high price, while noise with high

variance results in an instance with expected larger error and

low price. This enables the buyer to either choose cheaper but

less accurate instances or more accurate yet more expensive

ones. Essentially, our mechanism provides different versions

of the desired ML model of varying quality, in analogy to

the notion of versioning in information selling [41].

Our proposed MBP mechanism comes with a concise char-

acterization of when a pricing function is provably arbitrage-

free. In the main theoretical result of this paper, we show that

a pricing function is arbitrage-free if and only if the price of

a (randomized) model instance is monotone increasing and

subadditive with respect to the inverse of the variance.

For revenue maximization, we establish a formal optimiza-

tion framework based on the buyer’s value and demand

curves. We show that the optimization is a computationally

hard problem even under a simple revenue model. To address

this intractability, we present a novel method of relaxing the

subadditive constraints, leading to polynomial time algo-

rithms with provable approximation guarantees. Central to

the revenue maximization problem is the problem of interpo-

lating a monotone and subadditive function through given

points, which could be of independent interest.

Finally, we prototype the MBP framework in standalone

MATLAB, which is popular for ML-based analytics (but note

that our framework is generic and applicable in other set-

tings as well). We present an extensive empirical evaluation

using both real and synthetic datasets. Our experiments val-

idate that MBP always attains the highest revenue and pro-

vides the highest buyer affordability compared to the existing

naive solutions, while simultaneously guaranteeing protec-

tion against arbitrage. We also show that our revenue max-

imization solution for price setting is orders of magnitude

faster than brute-force search, while empirically achieving a

revenue with negligible gap to the optimal revenue.

Summary of Contributions. In summary, this paper makes

the following contributions.

• To the best of our knowledge, this is the first paper on

a formal framework of ML-aware model-based pricing.

We identify and formally characterize important prop-

erties, such as arbitrage freeness, that such a frame-

work should satisfy.

• We propose a concrete MBP mechanism via a noise

injection approach, and establish a concise characteri-

zation of the desired properties of a pricing function.

• We develop a revenue optimization framework that

finds the optimal prices with the desired properties

as constraints. Although it is a computationally hard

problem, we provide an approximate solution which

gives a pricing function with provably high revenue.

• Finally, extensive experiments validate that our pro-

posed solution provides high revenue for the seller,

large affordability ratio and thus accessibility for the

buyer, and fast runtime for the broker.

Outline. Section 2 presents the problem setup and back-

ground. Section 3 introduces the MBP framework and rele-

vant desiderata. In Section 4, we provide a concrete realiza-

tion of the MBP framework through the noise injection ap-

proach. Section 5 studies the revenue optimization problem

and Section 6 presents the implementation and experimental

evaluation. We conclude in Section 7. All missing proofs are

left to the Appendix.

2 RELATEDWORK
In this section, we discuss related work on data pricing and

machine learning.

Pricing Relational Queries. The problem of pricing rela-

tional data has received a lot of attention recently. The pric-

ing schemes currently supported in data markets are typ-

ically simplistic: a buyer can either buy the whole dataset

for some fixed price, or ask simple queries and be priced

according to the number of output tuples. A recent line

of work [5, 19–21, 25, 29, 39] has formally studied pricing

schemes for assigning prices to relational queries, a setting

called query-based pricing (QBP). In QBP, we are given a

dataset D and a query Q , and the goal is to assign a price

p(Q,D) based on the information disclosed by the query an-

swer. Central to it is the notion of arbitrage. Intuitively, when-

ever queryQ1 discloses more information than queryQ2, we

want to ensure that p(Q1) ≥ p(Q2); otherwise, the buyer has

an arbitrage opportunity to purchase the desired information

for a lesser price. To formalize information disclosure, QBP

uses the mathematical tool of query determinacy [34, 35].

At first glance, MBP seems similar to QBP. For relational

queries, the price is for the information released by the query

output, while for ML analytics, the price is for the informa-

tion released by the model. However, there are fundamental

differences: for relational queries, the buyer obtains a deter-

ministic answer, while forML analytics, themodel is typically

computed in an non-deterministic way. Also, in MBP, we en-

able the buyer to specify an accuracy constraint to control

the predictive power of the model instance they buy.

Markets for ML. While several ML systems [4, 6, 26, 38]

have been developed to reduce the computational cost of

trainingMLmodels, there has been little attention to markets

for ML until recently [18, 23]. [23] develops a market via

block chain technology to allow exchange and purchasing

of ML models. [18] points out the importance of creating

markets for ML applications. MBP can be viewed as the first

foray into how we should build such markets.

ML over Relational Data.We focus on standard supervised

ML for relational/structured data, specifically, classification

and regression. We are given a dataset table D with n labeled

examples and d features. The target (label) is denoted Y ,
while the feature vector is denoted X . The labeled examples

are independently and identically distributed (IID) samples

from some underlying (hidden) distribution that produces

the data, P[X,Y]. An ML model is simply a mathematical

model to approximate P in some intuitive manner. An ML

model instance is a specific instance of that ML model that

corresponds to some prediction function f : DX → DY . The

set of functions learnable (representable) by an ML model is

called its hypothesis space. The predictive power of a model

instance is often evaluated using standard scores such as hold-

out test error [12]. There are hundreds of ML models [33];

some of the most popular ones are Naive Bayes and General-

ized Linear Models (GLMs). These models are popular mainly

due to their interpretability, speed, and extensive systems

support. Thus, we primarily focus on such models.

Private Query Release via Noise Injection. From a techni-

cal perspective, our framework shares the idea of injecting

noise with many previous studies for private query release

[7, 10, 11, 13, 15, 16, 27, 27, 28, 31, 37, 40, 42, 43]. A large por-

tion of previous studies focuses on releasing private query

results to a single user for various purposes, including re-

lational queries [10, 15, 43], data mining [11, 16], statistical

queries [13, 32], and machine learning models [7, 8, 37, 40],

just to name a few. To ensure privacy while releasing data to

multiple users, a few studies [27, 42] propose creating differ-

ent query versions by carefully adding different noise. Similar

to our approach, [28] proposes to inject different levels of

noise to an ML model. Their goal is to maximize the pri-

vacy while satisfying different model accuracy requirements,

whereas our target is to achieve a balance between accuracy

and price in a market. In addition, almost all of those noise

injection approaches require complex model noise manage-

ment and do not relate the noisy models to their prediction

accuracy in the context of a market.

As our mechanism injects noise, there are some inter-

esting connections between our framework and different

privacy. For example, if the Gaussian mechanism is applied,

then arbitrage-freeness may imply certain connections of

the privacy between different model instances. Due to space

constraint, we leave in-depth analysis to future work.

To the best of our knowledge, this is the first work that

studies how to release ML models via noise injection in a

market which quantitatively and formally connects accuracy

with noise and price.

3 MODEL-BASED PRICING FRAMEWORK
In this section, we introduce the framework of model-based

pricing (MBP), and then outline some basic properties that

our framework must satisfy. We summarize the notations

used throughout this paper in Table 1.

3.1 Market Setup and Agents
Our framework involves three types of agents that interact in

the setting of a data marketplace: the seller, the broker and the

buyer. We now introduce our market setup involving these

agents and their interactions, as well as the notation and

assumptions we use. Figure 1 illustrates the market setup.

Seller. The seller provides the dataset D for sale, and it is

given as a pair (Dtrain,Dtest), wherein Dtrain is called the train

set (for obtaining model instances) and Dtest is the test set.

Table 1: Notations.

Symbol Meaning

D/Dtrain/Dtest dataset/train set/test set

n0/n1/n2 number of samples in D/Dtrain/Dtest

d number of features

x/y feature vector/target value (label)

M/m a set of ML models/a specific model

H/h hypothesis space/some hypothesis

λ(·, ·)/ϵ(·, ·) error function for training/testing

h∗λ(D) optimal model instance w.r.t. λ on D

δ noise control parameter (NCP)

Wδ distribution generated by δ

w ∼Wδ random variable generated byWδ

K(·, ·) randomized noise mechanism

ˆhδλ (D) model generated via K(h∗λ(D),w)

pϵ,λ(δ ,D) price of the model instance
ˆhδλ (D)

p̄(x) price of the model instance
ˆh1/x
λ (D)

This train-test split is standard in ML practice [12]. For sim-

plicity of exposition, we express a row in D as a labeled

example of the form z = (x,y), where x = z[X] is the feature
vector and y = z[Y] is the target.

Broker. The broker specifies a menu of ML models M she

can support (e.g., logistic regression for classification and

least squares for regression), along with the corresponding

hypothesis spaces Hm for eachm ∈ M. For now, fix an ML

model, i.e., the hypothesis space H . An error (loss) function

λ(h,D) measures the goodness of a hypothesis h ∈ H on

Dtrain and returns a real number in [0,∞). Given D and the

error function λ, let h∗λ(D) = arg minh∈H λ(h,D) denote the
optimal model instance, i.e., the model instance that obtains

the smallest error on the training dataset w.r.t. λ. We also

define another error function ϵ that can operate on either

Dtest or Dtrain, based on the buyer’s preference. We use D
with both the error functions, with the convention that λ
operates on Dtrain and ϵ on Dtest or Dtrain.

In general, ϵ can be different from λ because that may

be more meaningful from an ML accuracy standpoint. In

particular, in this paper, we focus on the following types of

ML models and their associated error functions. Formally,

we focus on λ that is strictly convex. In particular, for classifi-

cation, this covers the popular logistic regression and linear

SVM model (with L2 regularization). For regression with

a real-valued target, this covers the popular least squares

linear regression model. We think it is reasonable to focus on

these well-understood ML models and leave more complex

ML models and error functions to future work. However, we

emphasize that our market setup, our analyses of the prop-

erties of the pricing functions, and the revenue optimization

are all generic and applicable to any ML model. For ϵ , we
use both the same loss function as λ and the commonly used

misclassification rate error function for classification models.

Table 2 summaries those notations.

ML model Error Function(s)
For λ; (y, x) from train set Dtrain

Lin. reg.

∑
(y,x)(y −wT x)2 [+µ∥w ∥2]

Log. reg.

∑
(y,x) loд(1 + e

−ywT x) [+µ∥w ∥2]

L2 Lin. SVM

∑
(y,x)max(1,−ywT x) + µ∥w ∥2

For ϵ ; (y, x) from test set Dtest or train set Dtrain

Lin. reg. Same as λ
Log. reg.

Same as λ;
∑

(y,x) 1y=(wT x>0)
L2 Lin. SVM

Table 2: ML models in M and associated error func-
tions. [·] indicates optional regularization. All errors
are typically averaged by the number of examples
used.
The broker releases a model instance through a random-

ized mechanism K that enables them to trade off ML error

for the price the model instance is sold for. This is a key

novel technical capability in our market setup that enables

model-based pricing in contrast to flat pricing. This mech-

anism enables us to realize versioning in the context of ML,

in analogy to the versioning of digital information goods in

micro-economics literature [41].

Specifically,K uses a set of parametrized probability distri-

butions {Wδ | δ ∈ R+}. Given a dataset D, an error function

λ and a noise control parameter (NCP) δ , the broker first

computes the optimal model instance h∗λ(D). Then, they sam-

plew ∼ Wδ and output a noisy version of the optimal model,

ˆhδλ (D) = K(h∗λ(D),w). The NCP δ will be used as a knob to

control the amount of noise added, and in turn, the price

of the model instance sold. We will discuss more about the

noise addition mechanism’s desiderata shortly, but first, we

explain the other agent in our setup.

Buyer. The buyer specifies an ML modelm ∈ M they are

interested in learning overD, alongwith their preferences for
the error functions λ and ϵ to use from among the ones the

broker supports. After a set of interactions with the broker,

whichwill be explained shortly, the buyer obtains an instance

ofm that satisfies their price and/or error constraints.

3.2 Agent Interaction Models
Having introduced the three agents in our framework, we

now explain how the market operates. Figure 1 illustrates

our market setup and the interactions between the seller and

broker, as well as between the broker and the buyer.

Broker-Seller Interaction Model. Apart from providing D,
the seller workswith the broker to determine the pricing func-

tion p for a given ML model. The pricing function does not

depend solely on the released model instance
ˆhδλ (D). Instead,

it depends on D, the NCP δ , and the two error functions λ, ϵ .
Hence, we express the pricing function as pϵ,λ(δ ,D) ∈ [0,∞).

The desirable properties of a pricing function, how to set

them to maximize revenue for the seller but still satisfy po-

tential customers and run a feasible market, and how to

compute them efficiently are all core technical challenges

that we address later in this paper.

In the context of the interaction model, the broker is able

to set the pricing functions based on two curves provided

by the seller based on their market research about D. These
curves, illustrated in Figure 2(a), tell the broker how much

value potential customers attach to model errors in terms of

monetary worth (value curve) and how much demand there

is in the market for different model errors (demand curve).

Defining and using these curves as inputs for optimizing

pricing is standard practice in micro-economics for data

markets such as the sale of digital videos [14].

Given the demand and value curves as a function of some

error function, the broker first transforms them to demand

and value curves as a function of the inverse NCP, as shown

in Figure 2(b). Then, the broker computes the revenue max-

imizing pricing function as a function of the inverse NCP

(Figure 2(c)) – we defer discussion of the revenue optimiza-

tion problem till Section 5.

Broker-Buyer Interaction Model. The buyer-broker inter-
action has four steps, as illustrated by Figure 1(C). First, the

buyer specifies the ML model they are interested in (H) and

the two error functions λ, ϵ corresponding to that model.

For instance, these could be the log loss for logistic regres-

sion training but the zero-one classification error for testing.

Second, the broker computes a curve that plots the price

together with the expected error for every NCP δ , given by

E∼Wδ

[
ϵ
(

ˆhδλ (D),D
)]
. This curve shows to the buyer the pos-

sible price points of the different versions of this model.

For the third step, the buyer has three options. First, she

can specify a particular point on the curve (i.e. a price-error

combination); since we know that δ behaves monotonically

w.r.t. the expected error, the broker can find the unique δ ∗

that corresponds to that point, and obtains
ˆhδ

∗

λ (D). The sec-
ond option is that the buyer specifies an error budget ϵ̂ . The
broker then solves the following optimization problem:

δ ∗ = arg min

δ
pϵ,λ (δ ,D)

s.t. E∼Wδ

[
ϵ
(

ˆhδλ (D),D
)]

≤ ϵ̂

(d)

Error Curve

Transformation
(a) (b) (c)

…

…

Revenue

Optimization

Error Curve

Transformation

Figure 2: End-to-end model based pricing. The seller first provides the broker with the buyer value and demand
curve via market research. The broker then obtains the curve v.r.t the inverse NCP via some error transformation,
computes the pricing function via revenue optimization, and then returns a pricing curve to the buyers based on
different error functions λ, ϵ .

The third and final option for the buyer is to specify a price

budget p̂ to the broker. The broker then solves

δ ∗ = arg min

δ
E∼Wδ

[
ϵ
(

ˆhδλ (D),D
)]

s.t. pϵ (δ ,D) ≤ p̂

The third step is for the buyer to pay the price of pϵ,λ (δ
∗,D)

to the broker. In the final step of this interaction, the broker

gives the obtained model instance
ˆhδ

∗

λ (D) to the buyer.

Restrictions on the RandomizedMechanism. Themecha-

nismK used by the broker needs to satisfy certain properties

to enable us to reason about the market’s behavior and en-

sure it is “well-behaved” (a property we will define shortly).

In particular, in this paper, we only consider randomized

mechanisms that satisfy the following two conditions.

• K is unbiased, which means that:

Ew∼Wδ

[
K(h∗λ(D),w)

]
= h∗λ(D)

In simple terms, the model instance sold after adding

noise is the same as the optimal model instance in

expectation. Only the NCP δ controls how much noise

is added.

• The parameter δ behaves monotonically w.r.t. the ex-

pected error,

δ1 ≤ δ2 ⇔ E
[
ϵ
(

ˆhδ1

λ (D),D
)]

≤ E
[
ϵ
(

ˆhδ2

λ (D),D
)]

That is, by increasing the NCP δ we strictly increase

the expected error as well, and vice versa. Its feasibility

depends on the exact ϵ used. As we show later, this

assumption is reasonable for many scenarios and lets

us provide formal guarantees on the market’s behavior.

We now present three concrete examples of how our

model-based pricing framework operates based on the ex-

amples introduced in Section 1.

Example 1. Suppose Alice obtains a schema (ID, Aдe , Sex ,
Heiдht , AnnualIncome). Her first goal is “learning” the aver-
age annual income from a certain region (denoted by D). The
hypothesis spaceH is just R. The error functions can be sim-

ply defined as λ(h,D) = (h − x̄)2, where x̄ is the true column

average from Dtrain, and similarly for ϵ on Dtrain. One possible

randomized mechanism for adding noise is K1(h
∗
λ(D),w) =

h∗λ(D) +w , where w ∼ U [−δ ,δ], i.e., a uniform random dis-

tribution. Yet another possible mechanism is K2(h
∗
λ(D),w) =

h∗λ(D) ·w , wherew ∼ U [1−δ , 1+δ]. Both of these randomized

mechanisms satisfy the two restrictions listed earlier.

Example 2. Her second goal is to learn a least squares linear

regression model to predict the income based on the features

(age, sex, and height). The hypothesis space H is the set of all

hyperplanes h ∈ Rd (where d = 4). The error function λ is the

least squares loss defined on the training subset, i.e.,

λ(h,D) =
1

2|Dtrain |

∑
zi ∈Dtrain

(
hT xi − yi

)
2

.

The error function ϵ is the same as above, except on the test

subset Dtest of D. Given the optimal model instance h∗λ(D),
one randomized mechanism for adding noise is as follows.

Let Wδ = N(0,δ 2) be the standard d-dimensional normal

(Gaussian) distribution with mean 0 and variance δ 2
. The noise

addition mechanism is K(h∗ϵ (D),w) = h∗ϵ (D) + w Thus, we

simply add Gaussian noise (of different magnitudes) indepen-

dently to each co-efficient of the optimal model instance and

return it to the buyer. Another possible mechanism is to sample

noise from a zero-mean Laplace distribution. Both randomized

mechanisms satisfy the two restrictions listed earlier.

Example 3. Following the example in the introduction, sup-

pose that Bob and the seller agree with a standard word em-

bedding approach that maps each Twitter message to a (sparse)

vector in a high dimensional space Rd . Then, a standard lo-

gistic regression model is applied to determine if a message

(embedded to a real vector) is related to Bob’s company. Both

the error function λ and ϵ are then

1

2|Dtrain |

∑
zi ∈Dtrain

log

(
1 + e−yih

T xi
)
.

Various noise injection approaches can be used for this example

scenario as well.

3.3 Pricing Function Desiderata
We now return to the concept of the pricing functions men-

tioned earlier when explaining the broker-seller interaction

model. For the market to be able to work, these pricing

functions need to satisfy a set of desiderata that provide

some guarantees to both the seller and the buyer. In a sense,

these guarantees act as the service-level agreement (SLA)

for model-based pricing. In particular, we want the pricing

functions to satisfy the following requirements.

Non-negativity. Clearly, the pricing function has to be non-

negative, since the buyer should not be able to make money

from the broker by obtaining an ML model instance.

Definition 1. A pricing function pϵ,λ is non-negative in
dataset D iff for every parameter δ (of K),

pϵ,λ(δ ,D) ≥ 0.

Error Monotonicity. Next, we want to make sure that if for

a parameter δ1, we obtain a smaller (or equal) expected error

than for a parameter δ2, then the price is larger (or equal) for

the former model instance. Otherwise, a buyer that wants to

buy a model instance with the smaller error can purchase it

for a smaller price. This situation is illustrated in Figure 3.

The formal definition is as follows.

Definition 2. A pricing function pϵ,λ is error-monotone

in dataset D if for every parameters δ1,δ2,

E
[
ϵ(ˆhδ1

λ (D),D)
]
≤ E

[
ϵ(ˆhδ2

λ (D),D)
]

implies that

pϵ,λ(δ1,D) ≥ pϵ,λ(δ2,D).

Error monotonicity implies that whenever we have two pa-

rametersδ1,δ2 such thatE
[
ϵ(ˆhδ1

λ (D),D)
]
= E

[
ϵ(ˆhδ2

λ (D),D)
]
,

then the pricesmust be equal aswell, i.e.pϵ,λ(δ1,D) = pϵ,λ(δ2,D).
Hence, the error monotonicity property implies that the price

does not depend on the actual parameter δ of the mechanism,

but on the error that this parameter induces.

Arbitrage-freeness. The final property is arbitrage-freeness.

We first explain the importance of this property intuitively.

Suppose a buyer wants to buy one model instance with a

Error

Pr
ic

e

No Error Monotonicity

Error

Pr
ic

e

With Error Monotonicty

Region of Arbitrage

A B

Figure 3: The pricing function on the left has error
monotonicity. The one on the right does not, which
leads to arbitrage situations. Point A has both a lower
price and lower error than B. Thus, buyers are un-
likely to pick B; indeed, the entire shaded region
shown is useless for the seller, since they lose some
potential revenue.

small error but large price. Suppose further she also buys

more of such model instances at different prices, the sum of

all of which is lower than that of the desired single model

instance. Meanwhile, suppose she is able to “combine” the lat-

ter set of model instances to construct a new model instance

with an error smaller than the originally desired single model

instance. In this case, she would rather just buy the latter

set of model instances instead of the original model instance

to get an error lower than what the market is set up for.

Such a situation is called arbitrage. For the market to work

well, we need to ensure that it is arbitrage-free, i.e., situations

such as these do not happen (or are extremely unlikely). This

intuition is captured formally by the following definitions.

Definition 3 (k-Arbitrage). We say that a pricing func-

tion pϵ,λ exhibits k-arbitrage in dataset D if there exist pa-

rameters δ0,δ1,δ2, · · · ,δk , and a function д : Hk → H such

that

(1)

∑k
i=1

pϵ,λ(δi ,D) < pϵ,λ(δ0,D), and

(2) E
[
ϵ(˜h,D)

]
≤ E

[
ϵ(ˆhδ0

λ (D),D)
]
, where

˜h is the model

˜h = д(ˆhδ1

λ (D), ˆhδ2

λ (D), . . . , ˆhδkλ (D)) s.t. E
[

˜h
]
= h∗λ(D).

Here, a buyer wants to combine model instances to obtain

a new instance which is unbiased and has a much smaller

error. This is similar to minimizing the variance while main-

taining a zero bias in anML context. Note that being unbiased

is the only constraint on the power of the buyer, and there

is no limit on the computational power of the buyer.

Definition 4 (Arbitrage-free). A pricing function pϵ,λ
is arbitrage-free in dataset D iff it does not exhibit k-arbitrage
for any k ∈ N+.

Not surprisingly, arbitrage-freeness implies that the pric-

ing function is also error monotone:

Lemma 1. If a pricing function pϵ,λ is arbitrage-free in

dataset D, then it is also error-monotone in D.

Definition 5. We say that a pricing function pϵ,λ is well-

behaved in dataset D iff it is non-negative and arbitrage-free.

3.4 Scope and Limitations
As a first step towards a formal framework for a model-based

data market, this paper focuses on the setting of supervised

learning with a fixed hypothesis space using a fixed set of fea-

tures and a strictly convex model objective. This covers a range

of models including linear regression, logistic regression and

linear support vector machines with 2-norm regularizers.

Yet, non-convex models such as neural networks are out of

scope, and feature/model selection is excluded as well.

We leave the extension of our framework to include such

capabilities as future work. For instance, to enable feature

selection, the market has to consider which feature combi-

nations become available to the buyers, as well as consider

arbitrage situations where models learned from different

feature sets are combined together to form more accurate

models. Since feature selection is a challenging problem (e.g.,

adding more features does not necessarily imply a better

model), it may be infeasible to formally characterize how

model combinations behave in such a setting. Instead, we

would need to weaken the arbitrage-free guarantees, and

aim for approximate or probabilistic guarantees. The same

challenges occur when a buyer can choose to purchase from

multiple hypothesis spaces. In such cases, transfer learning

techniques [36] can also be useful to measure how much

information is shared across different hypothesis spaces.

4 NOISY MODEL GENERATION
So far we have presented a general framework for pricing ML

models, and the interactions between the three agents. In this

section, we describe a concrete instantiation of this frame-

work, and present specific mechanisms for noise addition

and price computation.

4.1 The Gaussian Mechanism
Let us fix a hypothesis spaceH , such that model instances in

H are vectors in Rd .1 Wewill focus on a specific randomized

mechanism, denotedKG , which uses additive Gaussian noise.

In particular, define Wδ = N(0, (δ/d) · Id), for any δ ∈ R+.
Here 0 is the d-dimensional vector with all 0 entries, and Id
is the identity matrix with dimensions d × d .

Given the two error functions ϵ, λ, a datasetD and a param-

eter δ , the Gaussian mechanism first computes the optimal

model h∗λ(D) for the given error function λ and dataset D,
samples a vector w ∼ Wδ , and finally outputs h∗λ(D) + w .

1
For simplicity, we assume that the dimension of the models equals to the

number of features d , but note that our framework works in general even

if they are not equal.

Optimal model instance vector
1.2 -3.1 0.5 0.1 -2.3 7.2 -0.9 5.5

 -dimensional
Gaussian Distribution

Random noise vector

Model instance for buyer

0.1 0.2 -0.1 0 0.1 0.3 0 -0.2

1.3 -2.9 0.4 0.1 -2.2 7.5 -0.9 5.3

Mean:

Covariance:

0d⇥1

�

d
Id⇥d

d

Random

sample

+

=

Figure 4: TheGaussianMechanism for adding random
noise to an optimal model instance.

This is illustrated in Figure 4. Formally:

KG (h
∗
λ(D),w) = h∗λ(D) +w, w ∼ N(0, (δ/d) · Id) (1)

Lemma 2. KG is an unbiased randomized mechanism.

We next analyze the Gaussian mechanismKG . Let us first

consider a particular instantiation of the error function ϵ , the

square loss, defined as ϵs (h,D) ≜

h − h∗λ(D)

2

2

. For square

loss, we can show that the parameter δ is exactly equal to the

expected error of the mechanism (and hence the parameter

δ behaves monotonically w.r.t. the expected error).

Lemma 3. Let λ,D, and ˆhδλ (D) = KG (h
∗
λ(D),w). Then:

E
[
ϵs

(
ˆhδλ (D),D

)]
= δ

We can show that other types of error functions behave

monotonically w.r.t. the expected error (and thus δ).

Theorem 4. Let ϵ be convex as a function of the model

instance h. Let ˆhδλ (D) = KG (h
∗
λ(D),w). Then, for any two

parameters δ1,δ2, we have

E
[
ϵ(ˆhδ1

λ (D),D)
]
≥ E

[
ϵ(ˆhδ2

λ (D),D)
]

if and only if δ1 ≥ δ2. If ϵ is additionally strictly convex, the

above holds with strict inequality (>).

4.2 Arbitrage for the Gaussian Mechanism
We now turn our attention to the pricing function that cor-

responds to the Gaussian mechanism. We show the central

theoretical result of this paper, which gives us a concise char-

acterization of an arbitrage-free pricing function when we

use the Gaussian mechanism.

Theorem 5. Let D be a dataset, and λ be an error func-

tion. A pricing function pϵs ,λ is arbitrage free for the Gaussian

mechanismKG if and only if the following two conditions hold

for every δ1,δ2,δ3:

(1) If 1/δ1 = 1/δ2 + 1/δ3, then

pϵs ,λ(δ1,D) ≤ pϵs ,λ(δ2,D) + pϵs ,λ(δ3,D).

(2) If δ1 ≤ δ2, then pϵs ,λ(δ1,D) ≥ pϵs ,λ(δ2,D).

Theorem 5 indicates that if the two conditions hold, the

buyer is not able to recover the noise or the model by paying

less. This is because all noise is generated independently, and

therefore the Cramer-Rao Lower Bound (which we use in

the proof) puts a statistical limit on how much information

can be released. If a buyer was able to recover the noise or

true model exactly, this would have contradicted the bound.

Theorem 5 also tells us that arbitrage-freeness is equiv-

alent to the function p̄(x) = pϵs ,λ(1/x ,D) being subadditive
and monotone over its domain. Hence, we have a concise

criterion to check for the arbitrage freeness property.

Although the square loss gives us a compact theoretical

characterization of arbitrage-freeness, it is not typically used

to measure the error of the model instance returned to the

user. However, in the case where ϵ is a strictly convex func-

tion, we can still characterize arbitrage-freeness by applying

Theorem 4. Indeed, as a corollary of Theorem 4, if ϵ is strictly
convex, there exists a bijection between the expected error

and the parameter δ . Thus, there exists a function ϕ, which
we call the error-inverse of ϵ , such that:

δ = ϕ
(
E
[
ϵ(ˆhδλ (D),D)

])
Combining the above insight with Theorem 5, one can

easily obtain the following result.

Theorem 6. Let D be a dataset, and λ, ϵ be error functions.

Suppose that ϵ is strictly convex, and let ϕ be its error-inverse.

A pricing function pϵ,λ is arbitrage free for the Gaussian mech-

anism KG if and only if the function p̄(x) = pϵ,λ(1/ϕ(x),D)
is monotone and subadditive.

In other words, arbitrage-freeness is still characterized

through monotonicity and subadditivity once we view the

pricing function through the transformation of the inverse

map ϕ. A natural question here is how one can compute

the error inverse ϕ of a given ϵ . In general, we can always

compute ϕ empirically, but in several cases it is possible to

compute it analytically.

5 REVENUE OPTIMIZATION
So far we have introduced the Gaussian mechanism to offer

for sale noisy ML models to the buyer, and showed a simple

characterization of when a pricing function is arbitrage-free

under this mechanism. In this section, we will study the

question of how to assign arbitrage-free prices to maximize

the seller’s revenue.

In this section, we fix a dataset D, the two error functions

ϵ (strictly convex) and λ, and consider only the Gaussian

mechanism KG . Instead of dealing directly with the pricing

function pϵ,λ , it will be more convenient to express the price

as p̂(x) = pϵ,λ(1/ϕ(x),D), where ϕ is the error-inverse of ϵ .
Now we describe two specific scenarios of price setting,

and then provide a general formalism that captures both.

Price Interpolation. Suppose that the seller wants to set the
pricing function such that it takes specific prices for a set of

parameters. In particular, the seller provides n price points

of the form (aj , Pj), where aj is a parameter value, and Pj
is its desired price. The goal is to find an arbitrage-free and

non-negative pricing function such that the values p̂(aj) are
as close as possible to Pj .

We can capture the above setting by solving the problem of

finding an arbitrage-free and non-negative pricing function

that maximizes the following objective:

Tpi(x1, . . . ,xn) = −

n∑
j=1

ℓ(x j , Pj)

where x j = p̂(aj). Here, ℓ(x ,y) can be any loss function such

that ℓ(x ,y) ≥ 0 and ℓ(x ,y) = 0 if and only if x = y. For
example, we can choose ℓ(x ,y) = |x − y |, or also ℓ(x ,y) =
(x − y)2, in which case we obtain the functions T∞

pi
and T 2

pi

respectively.

Revenue Maximization from Buyer Valuations. Assume

that the buyers who are interested in buying a model with

parameter x have a valuation vx for this model. This implies

that they will buy the model only if p̂(x) ≤ vx . Moreover,

we can capture "how many" buyers are interested in the

particular model with parameter aj through a parameter bj .
In this setting, the profit of the seller setting the price at

p̂(aj) = x is bjx · 1x ≤vj , where 1x ≤vj is an indicator variable

that takes value 1 if x ≤ vj , otherwise 0.
Suppose that the seller through market research has ob-

tained the values vj ,bj for n of these parameters (which

correspond to the demand and value curves in Figure 2(a)).

We can capture this setting by solving the problem of find-

ing an arbitrage-free and non-negative pricing function that

maximizes the following objective:

Tbv(x1, . . . ,xn) =
n∑
j=1

bjx j · 1x j ≤vj

where again x j = p̂(aj).

We can capture both scenarios by a general optimization

problem. Specifically, n parameter points {a1, . . . ,an} and an
objective function T are given. The goal is to find a function

p̂ that maximizes the quantity T (p̂(a1), . . . , p̂(an)) such that

p̂ is a well-behaved pricing function, i.e., it is arbitrage-free

and non-negative. Formally, we want to solve the following

optimization problem:

maxp̂ T (p̂(a1), . . . , p̂(an))

subject to p̂(x + y) ≤ p̂(x) + p̂(y), x ,y ≥ 0

p̂(y) ≥ p̂(x), y ≥ x ≥ 0

p̂(x) ≥ 0, x ≥ 0

(2)

(a) (b) (c) (d) (e)

Arbitrage Missing RevenueMissing Revenue Approx OptimizedRevenue Optimized

Co-NP-hard Poly Runtime

225
300250

300

Figure 5: Illustrating example of revenue optimization. Consider a revenue maximization problem with 4 points.
a1 = 1,a2 = 2,a3 = 3,a4 = 4,b1 = b2 = b3 = b4 = 0.25,v1 = 100,v2 = 150,v3 = 280,v4 = 350. (a) sets all prices equal to the
valuation, but it has arbitrage issue. (b) and (c) use constant and linear pricing functions, respectively. They avoid
arbitrage, but they lose revenue. (d) gives the revenue-optimal pricing function, which is coNP-hard to compute. (e)
is the proposed pricing function that approximates the optimal revenue well while it can be efficiently computed.

The first two constraints in (2) capture the subadditivity

and monotonicity constraints that result from the arbitrage-

freeness requirement. The third constraint corresponds to

the non-negative requirement. Observe that the above opti-

mization problem is not over a set of variables, but over the

space of all functions p̂.

5.1 Hardness Results
We now study the computational complexity of solving the

optimization problem (2). We will show that the problem is

intractable for all objective functions Tbv,T
∞
pi
,T 2

pi
. To show

this hardness result, we first consider a decision problem

that we call subadditive interpolation.

Definition 6 (subadditive interpolation). Given as

input a set of points {(aj , Pj)}
n
j=1

, where aj , Pj are non-negative

rational numbers, does there exists a function p̂ that (i) is
positive, monotone and subadditive, and (ii) ensures p̂(aj) = Pj .

We show in the Appendix that subadditive interpola-

tion is a computationally hard problem.

Theorem 7. The problem subadditive interpolation is

coNP-hard.

Equipped with Theorem 7, we can show that the other

optimization problems are also hard. Suppose that the objec-

tive function T has a unique maximizer, (θ1, . . . ,θn). Then,
the optimization problem (2) will return the maximum value

of T if and only if for every j = 1, . . . ,n we have p̂(aj) = θ j .
We can use this observation to prove the following result:

Corollary 7.1. The optimization problem (2) with objec-

tive functions any of {Tbv,T
∞
pi
,T 2

pi
} is coNP-hard.

5.2 Approximating Subadditivity
In order to overcome the hardness of the original optimiza-

tion problem (2), we seek to approximately solve it by modi-

fying the subadditivity constraint. In particular, we replace

the subadditive constraints p̂(x + y) ≤ p̂(x) + p̂(y) by the

constraints q̂(x)/x ≥ q̂(y)/y for every 0 < x ≤ y. In other

words, we want to find q̂ such that q̂(x)/x is a decreasing

function of x . The reformulated optimization problem is as

follows:

maxq̂ T (q̂(a1), . . . , q̂(an))

subject to q̂(y)/y ≤ q̂(x)/x , y ≥ x > 0

q̂(y) ≥ q̂(x), y ≥ x ≥ 0

q̂(x) ≥ 0, x ≥ 0

(3)

It is easy to show that for any feasible solution q̂ of (3),

the pricing function p̂(x) = q̂(x) is also a feasible solution

of (2) and hence q̂ is a well-behaved pricing function as well.

Lemma 8. Any pricing function q̂ that satisfies the con-

straints of (3) is arbitrage-free and non-negative.

Approximation Guarantees. We can show that for any

pricing function p̂ that is a feasible solution of (2), we can

find a feasible solution q̂ of (3) that is not too far away from

p̂. We will use this fact later to show that our approximation

does not lose too much from the optimal objective value.

More precisely:

Lemma 9. Let p̂ be a feasible solution of (2). Then, there

exists a feasible solution q̂ of (3) such that for every x > 0:

p̂(x)/2 ≤ q̂(x) ≤ p̂(x)

From Functions to Variables. Problem (3) is still over the

space of all possible functions. However, it turns out that we

can equivalently rewrite it so that it searches over variables

instead of functions. The key observation is that we only

need to find the values of the function q̂ for the n parameter

points a1, . . . ,an . In particular, consider

maxz T (z1, . . . , zn)

subject to zj/aj ≤ zi/ai , aj ≥ ai

zj ≥ zi , aj ≥ ai

zj ≥ 0, 1 ≤ j ≤ n

(4)

The next proposition tells us that the two formulations

are essentially equivalent. In particular, if z∗ is an optimal

solution for (4), then we can use it to construct an optimal so-

lution q̂ for (3). function that goes through the points (ai , zi).

Proposition 1. For every feasible solution of (3), there

exists a feasible solution of (4) with the same value of the

objective function, and vice versa.

We conclude this section by providing an example of the

construction of the approximate optimization program.

Example 4. Consider the revenue maximization problem

with parameters as given in Figure 5. In this scenario, the

optimization problem 4 can be written as follows:

max Tbv(z1, z2, z3, z4)

subject to z1 ≥ z2/2 ≥ z3/3 ≥ z4/4

z4 ≥ z3 ≥ z2 ≥ z1 ≥ 0

5.3 Algorithms for Revenue Optimization
In this section, we show how to leverage the approximate op-

timization problem (4) in order to obtain efficient algorithms

with some approximation guarantees. The advantage of (4)

is that it is an optimization problem with linear constraints.

Depending on the objective function T , this problem can be

tractable. For example, if T is concave, then (4) is a linear

program with a concave objective function, which can be

solved in polynomial time.

We will focus on the two problems we introduced before:

price interpolation, and revenue maximization from buyer

valuations.

Price Interpolation. It is easy to see that both objective func-
tions T∞

pi
,T 2

pi
are concave. This implies immediately that (4)

with the above two objective functions can be solved in poly-

nomial time.

We next show that we can also obtain an (additive) approx-

imation guarantee. For this, we need the following general

result:

Proposition 2. LetCMPB ,CSA be the optimal values of (4)

and (2) respectively. Further let the objective functionT (z1, . . . , zn) =∑n
i=1

Ti (zi), where each Ti is concave and non-positive. Then,

CSA +
∑
i

Ti (0)/2 ≤ CMBP ≤ CSA

We can apply the above proposition for the objective func-

tion T∞
pi
: this implies that the optimal value of the approxi-

mate solution will be at most (
∑

j Pj)/2 away from the opti-

mal solution. Similarly, we can obtain an additive approxi-

mation guarantee of (
∑

j P
2

j)/2 for T 2

pi
.

Revenue Maximization from Buyer Valuations. In con-

trast to price interpolation, Tbv is not a concave function.

However, it turns out that (4) can still be solved in polyno-

mial time, and moreover, that the optimal solution is within

a constant factor of the optimal solution of (2). Indeed:

Table 3: Dataset Statistics.

Task DataSet n1 n2 d

Regression

Simulated1 7500000 2500000 20

YearMSD 386509 128836 90

CASP 34298 11433 9

Classification

Simulated2 7500000 2500000 20

CovType 435759 145253 54

SUSY 3750000 1250000 18

Proposition 3. LetCMPB ,CSA be the optimal values of (4)

and (2) respectively under the objective function Tbv. Then,

CSA/2 ≤ CMBP ≤ CSA

To solve the optimization problem (4), we resort to dy-

namic programming. We defer to all the details in the Ap-

pendix; our result can be stated as follows.

Theorem 10. There exists a dynamic programming algo-

rithm that computes the optimal solution of (4) with objective

function Tbv in running time O(n2).

6 EXPERIMENTS
The goal of the experimental section is three-fold: (i) validate
that the ML model accuracy/error is monotone with respect

to the inverse of the noise control parameter 1/NCP (which

is the variance of the Gaussian noise), (ii) show that the

MBP framework can generate more revenue for the sellers,

while more buyers have access to purchasing ML models,

and (iii) demonstrate that our algorithms run much faster

than a naive brute-force search for the revenue optimization

problem, while still providing near-optimal revenue.

Experimental Setup. All experiments were run on a ma-

chine with 4 Intel i5-6600 3.3 GHz cores, 16 GB RAM, and

500 GB disk with Ubuntu 14.04 LTS as the OS. We have

prototyped the MBP framework in Matlab 2017b.

6.1 Expected Error to 1/NCP
Transformation

The first question is whether it is true that the expectedmodel

accuracy/error behaves always monotonically as a function

of 1/NCP, i.e., the inverse of the noise control parameter. In

Section 4, Theorem 4 gives a positive answer for the case of

strictly convex error function. Here we present an empirical

study on different error functions.

We use six datasets that are summarized in Table 3. The

first three datasets, Simulated1, YearMSD, and CASP are for

the regression task (Linear Regression), while the next three

0 50 100
1/NCP

100

E
xp

ec
te

d
 E

rr
o

r
(S

q
u

ar
e

L
o

ss
)

0 50 100
1/NCP

100

120

140
160

0 50 100
1/NCP

100

0 50 100
1/NCP

0.4

0.6

0.8
1

E
xp

ec
te

d
 E

rr
o

r
(L

o
g

is
ti

c
L

o
ss

)

0 50 100
1/NCP

0.25

0.3

0.35

0 50 100
1/NCP

0.5

0.55

0.6
0.65

0 50 100
1/NCP

0.1

0.2

0.3

E
xp

ec
te

d
 E

rr
o

r
(0

-1
 L

o
ss

)

0 50 100
1/NCP

0.08

0.1

0.12

0.14

0 50 100
1/NCP

0.22

0.24

0.26
0.28
0.3

Figure 6: Error Transformation Curve. All errors are
measured on the testing datasets. The first row cor-
responds to the square loss for Simulated1, YearMSD,
andCASP, respectively. The second row represents the
logistic loss, while the third row shows the 0/1 classi-
fication erro for Simulated2, CovType, and SUSY.

datasets, Simulated2, CovType and SUSY are for the classi-

fication task (Logistic Regression). The feature vectors of

the dataset Simulated1 and Simulated2 are generated from

a normal distribution. The target values of Simulated1 are

simply the inner product of the feature vectors and a hyper-

plane vector. The label value of a data point from Simulated2

is 1 with probability 0.95 if it is above a given hyperplane,

and 0 otherwise. The other datasets are all from the UCI ma-

chine learning repository [9]. For each value of the NCP, we

generate 2000 random models, each of which is equal to the

optimal model plus an independently randomly generated

vector with the same variance.

As shown in Figure 6, the testing error decreases as 1/NCP

increases. This verifies that there is a monotone mapping

and hence the error transformation is feasible. Interestingly,

even when the error is not strictly convex, such as the 0/1

error, the expected error still decreases as 1/NCP increases.

This might be because all model instances are trained and

tested on a relatively large datasets and thus have good gen-

eralization error. Thus, the 0/1 classification error can be

well approximated by the strictly convex loss function.

In the following part of the experiments, we will focus

on the parameter 1/NCP, which is monotone with and thus

represents the expected error.

6.2 Revenue and Affordability Gain
Next we study the benefits of our proposedMBP approach on

the seller’s revenue and buyer’s affordability ratio (fraction

20 40 60 80 100
1/NCP

0

20

40

60

80

100

B
u

ye
r

V
al

u
e

0

0.02

0.04
0.05

0.07

0.09

B
u

ye
r

D
is

tr
ib

u
ti

o
n

(a)

20 40 60 80 100
1/NCP

0

20

40

60

80

100

B
u

ye
r

V
al

u
e

0

0.02

0.04
0.05

0.07

0.09

B
u

ye
r

D
is

tr
ib

u
ti

o
n

(b)

20 40 60 80 100
1/NCP

0

20

40

60

80

100

P
ri

ce

MBP
Lin
MaxC
MedC
OptC

(c)

20 40 60 80 100
1/NCP

0

20

40

60

80

100

P
ri

ce

MBP
Lin
MaxC
MedC
OptC

(d)

33.6x 37.0x

2.1x

1.4x

MBP Lin MaxCMedCOptC
0

10

20

30

40

R
ev

en
u

e

(e)

1.2x

81.2x

1.9x
1.7x

MBP Lin MaxCMedCOptC
0

20

40

60

80

R
ev

en
u

e

(f)

59.9x 121.1x

1.9x
2.3x

MBP Lin MaxCMedCOptC
0

0.5

1

A
ff

o
rd

ab
ili

ty
 R

at
io

(g)

1.0x

121.1x

1.9x

1.3x

MBP Lin MaxCMedCOptC
0

0.5

1

A
ff

o
rd

ab
ili

ty
 R

at
io

(h)

Figure 7: Revenue and Affordability Gain. The buyer
distribution is fixed and we vary the buyer value
curve.

of the buyers that can afford to buy a model instance) com-

pared to other approaches of pricing ML models. Consider

the setting of revenue maximization from buyer valuations

as described in Section 5, i.e., a buyer would pay for a model

instance if and only if the price is less than the buyer’s valu-

ations. We compare MBP with four pricing approaches, all

of which obtain well-behaved pricing functions.

• Lin, the linear approach, uses a linear interpolation
of the smallest and largest value in the buyer’s value

curve to set the price.

• MaxC sets a single price to all instances, using the

highest value in the buyer’s value curve.

• MedC sets a single price to all instances such that at

least half of the buyers afford to buy an instance.

20 40 60 80 100
1/NCP

0

100

B
u

ye
r

V
al

u
e

0

0.02
0.03

0.05
0.06

0.08

B
u

ye
r

D
is

tr
ib

u
ti

o
n

(a)

20 40 60 80 100
1/NCP

0

100

B
u

ye
r

V
al

u
e

0

0.02

0.04
0.05

0.07

0.09

B
u

ye
r

D
is

tr
ib

u
ti

o
n

(b)

20 40 60 80 100
1/NCP

0

20

40

60

80

100

P
ri

ce

MBP
Lin
MaxC
MedC
OptC

(c)

20 40 60 80 100
1/NCP

0

20

40

60

80

100

P
ri

ce

MBP
Lin
MaxC
MedC
OptC

(d)

1.8x

39.0x

1.8x

1.4x

MBP Lin MaxCMedCOptC
0

20

40

60

R
ev

en
u

e

(e)

1.6x

54.7x

2.2x

1.4x

MBP Lin MaxCMedCOptC
0

20

40

60

R
ev

en
u

e

(f)

1.9x

82.0x

1.5x

1.1x

MBP Lin MaxCMedCOptC
0

0.5

1

A
ff

o
rd

ab
ili

ty
 R

at
io

(g)

1.3x

96.0x

1.5x
1.8x

MBP Lin MaxCMedCOptC
0

0.5

1

A
ff

o
rd

ab
ili

ty
 R

at
io

(h)

Figure 8: Revenue and Affordability Gain. We fix the
buyer valuation and vary the buyer distribution.

• OptC sets a single price to all instances, using the one

that maximizes the seller’s profit.

Figure 7 and 8 show the results under different buyer value

and demand curves, respectively. Overall, MBP can achieve

up to 81.2x revenue gains and up to 121.1x affordability gains

compared to the four baseline approaches.

We first fix the buyer distribution and vary the buyer val-

uation. As shown in Figure 7(a), when the value curve is

convex, MBP obtains significantly more revenue and afford-

ability compared to the linear approach. This is because the

linear approach misses the opportunities to sell model in-

stances to buyers interested in buying model instances with

medium accuracy. When the buyer curve becomes concave

as shown in Figure 7(b), the other approaches lose more

revenue, since they set a single price, and cannot accord-

ingly change the price for different buyers. Meanwhile, MBP

achieves the largest revenue gains and affordability, as a con-

cave function is also a subadditive function and thus MBP

can match exactly the value curve.

Next, we fix the buyer value curve and vary the demand

curve. As shown in Figure 8, when most of the buyers are

interested in buying model instances with medium accuracy,

MBP tends to produce a price function that ties close to the

price for model instance with medium accuracy. When most

buyers are interested in buying extremely low and extremely

high accurate model instances, MBP can accordingly change

the price function to follow the different requirement. As

shown in Figure 8(c) and 8(d), none of the other methods is

able to capture this. The ability to adjust to different buyer

valuations and distribution curves explains why MBP can

achieve the largest revenue gain and affordability ratio.

6.3 Runtime Performance
Finally, we present experimental results on the runtime per-

formance of the revenue optimization algorithms under MBP.

Fixing the buyer curve, we vary the number of pricing points

and compare the runtime and revenue gains of our MBP

proposed, versus the optimal yet expensive optimal algo-

rithm MILP (a multiple-integer-linear programming based

approach) as well as all the other four baseline methods.

Figures 9 and 10 present how the runtime, revenue, and

affordability ratio vary as the buyer distribution and value

curve change. Overall, MBP is always more than several

orders of magnitude faster than the naive MILP. This is be-

cause MILP requires solving integer linear programming

exponentially many times. Since MBP is an algorithm re-

quiring only quadratic runtime, its runtime is much smaller.

While other naive pricing methods are slightly faster than

MBP due to their simplicity, they almost always suffer from

either reduced revenue gains or reduced affordability ratio,

or both.

Finally, as shown in Figures 9(g), 9(h), 10(g) and 10(h),

while MILP and MBP do not explicitly optimize the afford-

ability ratio, they almost always produce a pricing curve with

highest affordability ratio. This is because, informally speak-

ing, optimizing revenue can be achieved by selling models to

as many as possible buyers, which implicitly optimizes the

affordability ratio. Nonetheless, there are a few cases (such as

Figure 10(h)), where MedC has slightly higher affordability

ratio since it explicitly optimizes it.

7 CONCLUSION AND FUTUREWORK
In this work, we initiate the formal study of data markets

that sell directly ML models to buyers. We propose a model-

based pricing (MBP) framework, which instead of pricing

20 40 60 80 100
1/NCP

0

50

100

B
u

ye
r

V
al

u
e

0

0.03

0.07

0.1

0.14

0.17

B
u

ye
r

D
is

tr
ib

u
ti

o
n

(a)

20 40 60 80 100
1/NCP

0

50

100

B
u

ye
r

V
al

u
e

0

0.03

0.07

0.1

0.14

0.17

B
u

ye
r

D
is

tr
ib

u
ti

o
n

(b)

0 5 10
Number of Price Values

10 -6

10 -3

10 0

10 3

10 6

R
u

n
ti

m
e

(s
)

MBP
Lin
MaxC
MedC
OptC
MILP

(c)

0 5 10
Number of Price Values

10 -6

10 -3

10 0

10 3

10 6
R

u
n

ti
m

e
(s

)
MBP
Lin
MaxC
MedC
OptC
MILP

(d)

0 5 10
Number of Price Values

0

10

20

30

R
ev

en
u

e

MBP
Lin
MaxC
MedC
OptC
MILP

(e)

0 5 10
Number of Price Values

0

20

40

60

R
ev

en
u

e

MBP
Lin
MaxC
MedC
OptC
MILP

(f)

0 5 10
Number of Price Values

0

0.5

1

A
ff

o
rd

ab
ili

ty
 R

at
io

MBP
Lin
MaxC
MedC
OptC
MILP

(g)

0 5 10
Number of Price Values

0

0.5

1

A
ff

o
rd

ab
ili

ty
 R

at
io

MBP
Lin
MaxC
MedC
OptC
MILP

(h)

Figure 9: Runtime performance of MBP. We fix the
buyer distribution and vary buyer valuation.

the data, directly prices ML model instances. We show that

a concrete realization of the MBP framework via a random

noise injection approach provably satisfies several desired

formal properties, including preventing arbitrage opportu-

nities. Based on the proposed framework, we then provide

algorithmic solutions on how sellers can assign prices to

models under different market scenarios (such as to maxi-

mize revenue). Extensive experiments validate that the MBP

framework can provide high revenue to the sellers and high

affordability to the buyers with low runtime cost.

There are several other exciting directions for future work.

First, more complex ML models such as Bayesian networks

and artificial neural networks, are also frequently used. Non-

relational data (images, text, etc.) might require complex

feature extraction, possibly implicitly within an ML model

20 40 60 80 100
1/NCP

0

100

B
u

ye
r

V
al

u
e

0

0.03

0.06

0.1

0.13

0.16

B
u

ye
r

D
is

tr
ib

u
ti

o
n

(a)

20 40 60 80 100
1/NCP

0

100

B
u

ye
r

V
al

u
e

0

0.03

0.07

0.1

0.14

0.17

B
u

ye
r

D
is

tr
ib

u
ti

o
n

(b)

0 5 10
Number of Price Values

10 -6

10 -3

10 0

10 3

10 6

R
u

n
ti

m
e

(s
)

MBP
Lin
MaxC
MedC
OptC
MILP

(c)

0 5 10
Number of Price Values

10 -6

10 -3

10 0

10 3

10 6

R
u

n
ti

m
e

(s
)

MBP
Lin
MaxC
MedC
OptC
MILP

(d)

0 5 10
Number of Price Values

0

20

40

R
ev

en
u

e

MBP
Lin
MaxC
MedC
OptC
MILP

(e)

0 5 10
Number of Price Values

0

20

40

R
ev

en
u

e

MBP
Lin
MaxC
MedC
OptC
MILP

(f)

0 5 10
Number of Price Values

0

0.5

1

A
ff

o
rd

ab
ili

ty
 R

at
io

MBP
Lin
MaxC
MedC
OptC
MILP

(g)

0 5 10
Number of Price Values

0

0.5

1

A
ff

o
rd

ab
ili

ty
 R

at
io

MBP
Lin
MaxC
MedC
OptC
MILP

(h)

Figure 10: Runtime performance ofMBP.We fix buyer
value and vary buyer distribution.

(as in deep learning [24]). Second, we assumed that buy-

ers know which ML model/hypothesis they want. This is a

reasonable starting point because most existing cloud ML

platforms assume the buyer picks the ML model. But in prac-

tice, users often performmodel selection and explore different

ML models [12, 33] and refine their choices iteratively [22].

Handling complex models and feature/model selections can

be challenging, as it may require a revised arbitrage-freeness

notion based on probabilistic guarantee and is left to future

work. Third, in many cases data comes with privacy con-

straints, and therefore integrating model-based pricing with

data privacy is also a core future challenge. Finally, more

complicated buyer models as well as trade-offs between rev-

enue and fairness can be further explored in the revenue

optimization.

ACKNOWLEDGEMENT
Thiswork is partially supported by the University ofWisconsin-

Madison Office of the Vice Chancellor for Research and Grad-

uate Education with funding from the Wisconsin Alumni

Research Foundation, a gift from Google and a Google PhD

Fellowship. We thank Jeffrey Naughton and Xi Wu for in-

valuable discussions and feedback on earlier drafts of this

paper.

REFERENCES
[1] [n. d.]. Big Data Exchange. www.bigdataexchange.com.

[2] [n. d.]. QLik Data Market. www.qlik.com/us/products/qlik-data-

market.

[3] [n. d.]. Twitter GNIP Audience API. gnip.com/insights/audience.

[4] Martín Abadi et al. 2016. TensorFlow: Large-Scale Machine Learning

on Heterogeneous Distributed Systems. CoRR abs/1603.04467 (2016).

[5] Magdalena Balazinska et al. 2011. Data Markets in the Cloud: An

Opportunity for the Database Community. In PVLDB.

[6] Matthias Boehm et al. 2016. SystemML: Declarative Machine Learning

on Spark. In PVLDB.

[7] Kamalika Chaudhuri and Claire Monteleoni. 2008. Privacy-preserving

logistic regression. In NIPS.

[8] Yan Chen et al. 2018. Is my model any good: differentially private

regression diagnostics. Knowl. Inf. Syst. (2018).

[9] Dua Dheeru and Efi Karra Taniskidou. 2017. UCI Machine Learning

Repository. http://archive.ics.uci.edu/ml

[10] Cynthia Dwork and Aaron Roth. 2014. The Algorithmic Foundations

of Differential Privacy. Foundations and Trends in Theoretical Computer

Science 9, 3-4 (2014).

[11] Arik Friedman and Assaf Schuster. 2010. Data mining with differential

privacy. In KDD.

[12] Jerome H. Friedman et al. 2001. The Elements of Statistical Learning:

Data mining, Inference, and Prediction. Springer-Verlag.

[13] Joseph Geumlek, Shuang Song, and Kamalika Chaudhuri. 2017. Renyi

Differential Privacy Mechanisms for Posterior Sampling. In NIPS.

[14] Mankiw Gregory. 2008. Principles of Microeconomics (5nd ed.).

[15] Michael Hay et al. 2010. Boosting the Accuracy of Differentially Private

Histograms Through Consistency. PVLDB (2010).

[16] Michael Hay, Liudmila Elagina, and Gerome Miklau. 2017. Differen-

tially Private Rank Aggregation. In ICDM.

[17] Joseph M. Hellerstein et al. 2012. The MADlib Analytics Library or

MAD Skills, the SQL. In VLDB.

[18] Michael Jordan. 2018. Artificial Intelligence: The Revolution Has

Not Happened Yet. https://medium.com/@mijordan3/artificial-

intelligence-the-revolution-hasnt-happened-yet-5e1d5812e1e7.

[19] Paraschos Koutris et al. 2012. Query-based data pricing. In PODS.

[20] Paraschos Koutris et al. 2012. QueryMarket Demonstration: Pricing

for Online Data Markets. In PVLDB.

[21] Paraschos Koutris et al. 2013. Toward Practical Query Pricing with

QueryMarket. In SIGMOD.

[22] Arun Kumar et al. 2015. Model Selection Management Systems: The

Next Frontier of Advanced Analytics. SIGMOD Record (2015).

[23] A. Besir Kurtulmus and Kenny Daniel. 2018. Trustless Machine Learn-

ing Contracts; Evaluating and Exchanging Machine Learning Models

on the Ethereum Blockchain. CoRR abs/1802.10185 (2018).

[24] Yann LeCun et al. 2015. Deep Learning. Nature (2015).

[25] Chao Li and Gerome Miklau. 2012. Pricing Aggregate Queries in a

Data Marketplace. InWebDB.

[26] Xupeng Li et al. 2017. MLog: Towards Declarative In-DatabaseMachine

Learning. In PVLDB.

[27] Yaping Li et al. 2011. Enabling Multi-level Trust in Privacy Preserving

Data Mining. CoRR abs/1104.0459 (2011).

[28] Katrina Ligett et al. 2017. Accuracy First: Selecting a Differential

Privacy Level for Accuracy Constrained ERM. In NIPS.

[29] Bing-Rong Lin and Daniel Kifer. 2014. On Arbitrage-free Pricing for

General Data Queries. In PVLDB.

[30] Yucheng Low et al. 2010. GraphLab: A New Framework For Parallel

Machine Learning. In UAI.

[31] Ashwin Machanavajjhala et al. 2017. Differential Privacy in the Wild:

A Tutorial on Current Practices & Open Challenges. In SIGMOD.

[32] Ryan McKenna et al. 2018. Optimizing error of high-dimensional

statistical queries under differential privacy. PVLDB (2018).

[33] Tom M. Mitchell. 1997. Machine Learning. McGraw Hill.

[34] Alan Nash et al. 2007. Determinacy and Rewriting of Conjunctive

Queries Using Views: A Progress Report. In ICDT.

[35] Alan Nash et al. 2010. Views and Queries: Determinacy and Rewriting.

ACM Trans. Database Syst. (2010).

[36] Sinno Jialin Pan and Qiang Yang. 2010. A Survey on Transfer Learning.

IEEE Trans. Knowl. Data Eng. 22, 10 (2010), 1345–1359. https://doi.org/

10.1109/TKDE.2009.191

[37] Nicolas Papernot et al. 2016. Towards the Science of Security and

Privacy in Machine Learning. CoRR (2016).

[38] Neoklis Polyzotis et al. 2017. Data Management Challenges in Produc-

tion Machine Learning. In SIGMOD.

[39] Aaron Roth. 2017. Pricing Information (and its Implications): Technical

Perspective. Commun. ACM (2017).

[40] Anand D. Sarwate and Kamalika Chaudhuri. 2013. Signal Process-

ing and Machine Learning with Differential Privacy: Algorithms and

Challenges for Continuous Data. IEEE Signal Process. Mag. (2013).

[41] Carl Shapiro and Hal R. Varian. 1998. Versioning: The Smart Way to

Sell Information. Harvard Business Review (1998).

[42] Xiaokui Xiao, Yufei Tao, and Minghua Chen. 2009. Optimal Random

Perturbation at Multiple Privacy Levels. PVLDB (2009).

[43] Xiaokui Xiao, Guozhang Wang, and Johannes Gehrke. 2011. Differen-

tial Privacy via Wavelet Transforms. IEEE TKDE (2011).

[44] Ce Zhang et al. 2014. Materialization Optimizations for Feature Selec-

tion Workloads. In SIGMOD.

A MISSING PROOFS
Proof of Lemma 1 . Suppose thatpϵ,λ is not error-monotone

in D. This implies that there exist parameters δ1,δ2 such

that E
[
ϵ(ˆhδ1

λ (D),D)
]
≤ E

[
ϵ(ˆhδ2

λ (D),D)
]
and pϵ,λ(δ1,D) <

pϵ,λ(δ2,D). It is easy to see that in this case pϵ,λ exhibits

1-arbitrage, since we can simply pick the function д to be the

identity function. Thus, pϵ,λ cannot be arbitrage-free. □

Proof of Lemma 2. Indeed, we have E
[
KG (h

∗
λ(D),w)

]
=

E
[
h∗λ(D) +w

]
= h∗λ(D) + E [w] = h∗λ(D), where the last

equality comes from the fact that the Gaussian noise we add

has mean 0 in every dimension. □

Proof of Lemma 3. E
[
ϵs

(
ˆhδλ (D),D

)]
= E

 ˆhδλ (D) − h∗λ(D)

2

2

= E
[
∥w ∥2

2

]
=
∑p

i=1
E
[
w2

i

]
= δ finishes the proof. □

Proof of Theorem 4. Wewill use the following property

of a strictly convex function ϵ . For every x ,y ∈ Rp ,

ϵ(x + σ1y) + ϵ(x − σ1y) > ϵ(x + σ2y) + ϵ(x − σ2y)

www.bigdataexchange.com
www.qlik.com/us/products/qlik-data-market
www.qlik.com/us/products/qlik-data-market
gnip.com/insights/audience
http://archive.ics.uci.edu/ml
https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-yet-5e1d5812e1e7
https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-yet-5e1d5812e1e7
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1109/TKDE.2009.191

if and only if σ1 > σ2, where σ1,σ2 are scalars. To prove the

above property, we apply the definition of strict convexity

twice with t = 1

2
(1 +

σ2

σ1

) when σ1 > σ2

tϵ(x + σ1y) + (1 − t)ϵ(x − σ1y) > ϵ(x + σ2y)

(1 − t)ϵ(x + σ1y) + tϵ(x − σ1y) > ϵ(x − σ2y)

and then sum up the two inequalities. The "if" part is a result

of symmetry. Let h∗ = h∗λ(D), and w1,w2 the two Gauss-

ian noise vectors. We can now compute the expectations

by E
[
ϵ(ˆhδ1

λ (D),D)
]
− E

[
ϵ(ˆhδ2

λ (D),D)
]
= E [ϵ(h∗ +w1)] −

E [ϵ(h∗ +w2)] =
∫ +∞
−∞

1√
2π
(ϵ(h∗+δ1y)−ϵ(h

∗ + δ2y))e
− 1

2
y2

dy =∫ +∞
0

1√
2π
(ϵ(h∗ + δ1y) + ϵ(h∗ − δ1y) − ϵ(h∗ + δ2y) − ϵ(h∗ −

δ2y))e
− 1

2
y2

dy, where the last equality comes from splitting

the interval [−∞,+∞] to two smaller intervals, [−∞, 0] and
[0,+∞] and then changing the sign of y in the first term. It

is now easy to see that the above quantity is strictly positive

if and only if δ1 > δ2. □

Proof of Theorem 5. We next prove the two directions

of the theorem.

(=⇒) Suppose that the pricing function pϵs ,λ is arbitrage

free. Then, by Lemma 1 the pricing function is also error-

monotone inD, so condition (2) holds. To show that condition

(1) holds as well, consider parameters δ1,δ2,δ3 such that

1/δ1 = 1/δ2 + 1/δ3 and

pϵs ,λ(δ1,D) > pϵs ,λ(δ2,D) + pϵs ,λ(δ3,D).

We will show in this case that the pricing function violates

k-arbitrage for k = 2. We define the following function д

that combines two models: д(ˆhδ2

λ (D), ˆhδ3

λ (D)) = δ1

δ2

· ˆhδ2

λ (D) +
δ1

δ3

· ˆhδ3

λ (D). Now, observe that: ˜h = д(ˆhδ2

λ (D), ˆhδ3

λ (D)) = δ1

δ2

·

(h∗λ(D)+w2)+
δ1

δ3

·(h∗λ(D)+w3) = h
∗
λ(D)+

δ1

δ2

·w2+
δ1

δ3

·w3. Hence,

we can compute the expectation E
[
ϵs (˜h,D)

]
=

δ 2

1

δ 2

2

·E
[
w2

2

]
+

δ 2

1

δ 2

3

· E
[
w2

3

]
= δ 2

1

(
1

δ2

+ 1

δ3

)
= δ1 = E

[
ϵs (ˆhδ1

λ (D),D)
]
, and

therefore, the pricing function indeed violates 2-arbitrage, a

contradiction.

(⇐=)We now show the opposite direction of the theorem, i.e.,

that conditions (1) and (2) imply arbitrage freeness. To show

this, we will use the Cramér-Rao inequality, which provides

a lower bound on the variance of an unbiased estimator of a

deterministic parameter. To apply the inequality, notice that

the function д in the definition of k-arbitrage is essentially
an estimator of the optimal model h∗λ(D). Hence, for any

function д and
˜h = д(ˆhδ1

λ (D), ˆhδ2

λ (D), . . . , ˆhδkλ (D)), we have:

E
[
ϵs (˜h,D)

]
≥

1∑k
j=1

1

δj

(5)

Suppose that the pricing function pϵs ,λ exhibits 1-arbitrage.

Then, there must exist parameters δ1,δ2 with pϵs ,λ(δ1,D) <

pϵs ,λ(δ2,D), and a functionд that returns amodel
˜h = д(ˆhδ1

λ (D))

with E
[
ϵs (˜h,D)

]
≤ E

[
ϵs (ˆhδ2

λ (D),D)
]
= δ2. However, Eq. (5)

implies that E
[
ϵs (˜h,D)

]
≥ δ1. Thus, we obtain δ1 ≤ δ2,

which makes condition (2) false. Next, suppose that the

pricing function exhibits k-arbitrage for k ≥ 2. Using the

same argument as above, we can show that there exist pa-

rameters δ0,δ1, . . . ,δk such that: (i) 1/δ0 =
∑k

j=1
1/δ j ; and

(ii)

∑k
j=1

pϵs ,λ(δ j ,D) < pϵs ,λ(δ0,D). We will show that the

above 2 properties imply that condition (1) is false by con-

tradiction. Assume that condition (1) is true, and also that

1/δ0 =
∑k

j=1
1/δ j . For j = 1, . . . ,k − 1, let us define ∆j

such that 1/∆j =
∑k
c=j+1

1/δc . Observe that 1/δ0 = 1/δ1 +

1/∆1, and also 1/∆j = 1/δ j+1 + 1/∆j+1. Then, we can write:

pϵs ,λ(δ0,D) ≤ pϵs ,λ(δ1,D) + pϵs ,λ(∆1,D) ≤ pϵs ,λ(δ1,D) +

pϵs ,λ(δ2,D) + pϵs ,λ(∆2,D) ≤ · · · ≤
∑k

j=1
pϵs ,λ(δ j ,D). This

contradicts the second property, and hence condition (1)

must be false. □

Proof of Theorem 7. Wewill prove the theorem by show-

ing a reduction from the unbounded subset-sum problem.

In this problem, we are given as input a set of positive in-

tegers {w1,w2, . . . ,wn}, and a positive number K . We then

want to decide whether there exist non-negative integers

ki such that

∑n
i=1

kiwi = K . In other words, we are ask-

ing whether we can achieve sum K using each wi zero or

more times. It is known that unbounded subset-sum isNP-

hard. Consider an instance of the unbounded subset-sum

problem, with positive integers {w1,w2, . . . ,wn}, and a pos-

itive number K . Without any loss of generality, suppose that

w1 < w2 < · · · < wn < K . We now construct an instance

for price interpolation as follows: let Pj = aj = w j for

j = 1, . . . ,n, and an+1 = K , Pn+1 = K + 1/2. We will prove

that there exists a subadditive and monotone function that

interpolates the points (aj , Pj) if and only if there exists no

(unbounded) subset sum with value K .
⇒ For the first direction, suppose that there exists an un-

bounded subset sumwith valueK . In other words, there exist
positive integers kj such that

∑n
j=1

kjw j = K . For the sake of
contradiction, suppose that we can interpolate a subadditive

and monotone function p̂. Then we have: K + 1/2 = Pn+1 =

p̂(K) = p̂
(∑n

j=1
kjw j

)
≤

∑n
j=1

kjp̂(w j) =
∑n

j=1
kjw j = K

which is a contradiction.

⇐ For the reverse direction, suppose that there exists no

unbounded subset sumK ; wewill show that we can construct

a subadditive and monotone function f that interpolates

the (n + 1) points. For every x ≥ 0, define µ(x) to be the

smallest possible unbounded subset sum that is at least x .
Notice that µ(x) ≥ x for every x ≥ 0. Then, we define

f (x) = min{µ(x),K + 1/2}. It is straightforward to see that

f (x) is monotone by construction. We next show that f
interpolates the points. Indeed, for j = 1, . . . ,n, we have

that µ(aj) = aj < K + 1/2 (since aj by itself gives a sum

of aj), and hence f (aj) = aj . For j = n + 1, observe that by

our starting assumption there is no sum of K , and hence

µ(an+1) ≥ K + 1, which implies that f (an+1) = K + 1/2.

Finally, we show that f is a subadditive function. Let x ,y ≥ 0.

If µ(x) ≥ K+1 then, f (x)+ f (y) ≥ f (x) = K+1/2 ≥ f (x+y).
A symmetric argument holds if µ(y) ≥ K + 1. Now, suppose

that µ(x), µ(y) ≤ K . Then, there exists kj ,k
′
j such that f (x) =∑n

j=1
kjw j and f (y) =

∑n
j=1

k ′
jw j . Now we have: x + y ≤

f (x) + f (y) =
∑n

j=1
kjw j +

∑n
j=1

k ′
jw j =

∑n
j=1

(kj + k ′
j)w j

Hence, if we pick k ′′
j = kj + k

′
j , we obtain a subset sum that

is at least x + y. We can then write: f (x + y) ≤ µ(x + y) ≤∑n
j=1

(kj +k
′
j)w j = f (x)+ f (y). This concludes our proof. □

Proof of Corollary 7.1. Observe that the objective func-

tions T∞
pi
,T 2

pi
are maximized if and only if x j = Pj for j =

1, . . . ,n. Hence, we can reduce subadditive interpolation

to (2). Similarly, the objective functions Tbv is maximized at

the unique point where x j = vj , i.e. the price at aj equals
the valuation vj . Hence, we can reduce subadditive in-

terpolation to the revenue maximization with buyer val-

uations problem by setting vj = Pj and bj = 1 for every

j = 1, . . . ,n. □

Proof of Lemma 8. Let q̂ be a feasible solution to (3). We

will show that q̂ satisfies the subadditivity condition as well.

Let x ,y > 0. Since q̂ satisfies the constraints in (3), we

have
q̂(x)
x ≥

q̂(x+y)
x+y and

q̂(y)
y ≥

q̂(x+y)
x+y . Thus: q̂(x) + q̂(y) ≥

x
x+y q̂(x + y) +

y
x+y q̂(x + y) = q̂(x + y). which concludes the

proof. □

Proof of Lemma 9. Let p̂ be a feasible solution of (2). We

construct a function q̂ such that for every x > 0: q̂(x) = x ·

min0<y≤x {p̂(y)/y}. We first show that q̂ is a feasible solution

of (3). Note that q̂ is positive. Consider 0 < x ≤ x ′
. Then we

have: q̂(x)/x = min0<y≤x {p̂(y)/y} ≥ min0<y≤x ′{p̂(y)/y} =
q̂(x ′)/x ′. To show that q̂(x) ≤ q̂(x ′), let ym = argmin

0<y≤x ′

{p̂(y)/y}. Ifym ≤ x , we havemin0<y≤x {p̂(y)/y} =min0<y≤x ′

{p̂(y)/y}, and the desired result comes from x ≤ x ′
. Other-

wise, if ym > x , we have: q̂(x) = x · min0<y≤x {p̂(y)/y} ≤

p̂(x) ≤ p̂(ym) = ym{p̂(ym)/ym} ≤ x ′
min0<y≤x ′{p̂(y)/y} =

q̂(x ′). Finally, we show that p̂(x)/2 ≤ q̂(x) ≤ p̂(x) for every
x > 0. We have already shown that q̂(x) ≤ p̂(x). For the
first inequality, let as beforeym = argmin

0<y≤x {p̂(y)/y} and

define ∆ = x/ym ≥ 1. If ∆ = 1, then q̂(x) = p̂(x), so the result
holds trivially. So, assume that ∆ > 1. The key observation is

that p̂(x) = p̂(ym∆) ≤ p̂(ym ⌈∆⌉) ≤ ⌈∆⌉p̂(ym) where the sec-
ond inequality holds from the subadditivity constraint for p̂.
Thus we have: q̂(x) = x{p̂(ym)/ym} ≥ ∆

⌈∆⌉ p̂(x) ≥
∆

∆+1
p̂(x) >

p̂(x)/2 where the last inequality follows from the fact that

∆ > 1. This concludes the proof. □

Proof of Proposition 1. Let p̂ be a feasible solution of (3)
of objective valueM . It is immediate that xi = p̂(ai) is a fea-
sible solution for (4) with the same objective value.

For the opposite direction, suppose that x is a feasible

solution to problem (4) with value M . Without any loss of

generality, assume that a1 ≤ a2 ≤ · · · ≤ an . Let us de-
fine p̂ to be a piecewise linear function such that: p̂(x) =
x j+1

aj+1

x , x ∈ [0,a1]

x j +
x j+1−x j
aj+1−aj

(x − aj), x ∈ [aj ,aj+1]

xn , x ∈ [an ,∞)

. It is easy to see that

p̂ is non-negative, and that for every i = 1, . . . ,n we have

p̂(ai) = xi . Additionally, p̂ is monotone, since it is a piecewise

linear function where x1 ≤ x2 ≤ · · · ≤ xn . Finally, we show
that for any y ≥ x > 0 we have p̂(y)/y ≤ p̂(x)/x .

First, assume that x ,y are in the same interval [a,b] of the
piecewise linear function (which takes values xa ,xb). Since
in this interval we have p̂(x) = xa +

xb−xa
b−a (x − a), we want

to equivalently show that:

xa
x
+
xb − xa
b − a

(
1 −

a

x

)
≥

xa
y
+
xb − xa
b − a

(
1 −

a

y

)
⇔

bxa − axb
x

≥
bxa − axb

y
⇔ (y − x)(bxa − axb) ≥ 0

The last inequality holds because y ≥ x , and also xa/a ≥

xb/b (which follows from the constraints).

Now, if x ,y are not in the same interval, assume that x
falls in the i-th interval [ai ,ai+1], and y in the j-th interval

[aj ,aj+1], where j ≥ i . Thenwe have: p̂(x)/x ≥ p̂(ai+1)/ai+1 ≥

p̂(ai+2)/ai+2 ≥ · · · ≥ p̂(aj)/aj ≥ p̂(y)/y. The first inequality
comes from the fact that x ,ai+1 are in the same interval, the

last from the fact that y,aj are in the same interval, and all

the intermediate inequalities from the constraints in (4). □

Proof of Proposition 2. Let p̂∗ denote the optimal so-

lution of (2) with optimal value CSA, and x∗ the optimal

solution of (4) with optimal valueCMBP . From Proposition 3,

there exists a solution q̂∗ of (3) that achieves the same value

CMBP . From Lemma 8, we obtain that q̂∗ is also a solution

to (2), and hence it must be that CMBP ≤ CSA. Addition-

ally, Lemma 9 tells us that there exists q̃ that is a feasible

solution of (3) such that for every x > 0, p̂∗(x)/2 ≤ q̃(x) ≤
p̂∗(x). If C ′

is the objective value for q̃, we then have that

C ′ ≤ CMBP . We next show that C ′ ≥ CSA +
∑

j Tj (0)/2.

We first claim that for every x , i , we have that Ti (q̃(x)) ≥

min{Ti (p̂
∗(x),Ti (p̂

∗(x)/2)}. Indeed, suppose that this is not

true. Then, since p̂∗(x)/2 ≤ q̃(x) ≤ p̂∗(x), there exists λ ∈

[0, 1] such that q̃(x) = λp̂∗(x)/2 + (1 − λ)p̂∗(x). By the con-

cavity of Ti , we now have Ti (q̃(x)) = Ti (λp̂
∗(x)/2 + (1 −

λ)p̂∗(x)) ≥ λTi (p̂
∗(x)/2) + (1 − λ)Ti (p̂

∗(x)) > λTi (q̃(x)) +

(1 − λ)Ti (q̃(x)) = Ti (q̃(x)) which is a contradiction. Next, we

bound Ti (p̂
∗(x)/2) as follows using concavity: Ti (p̂

∗(x)/2) =

Ti (p̂
∗(x)/2 + 0/2) ≥ Ti (p̂

∗(x))/2 +Ti (0)/2. So we have:

Ti (q̃(x)) ≥ min{Ti (p̂
∗(x),Ti (p̂

∗(x))/2 +Ti (0)/2}

≥ min{Ti (p̂
∗(x),Ti (p̂

∗(x)) +Ti (0)/2}

= Ti (p̂
∗(x)) +Ti (0)/2

where the last inequality follows from the fact thatTi is non-
positive. Finally, by C ′ =

∑n
j=1

Tj (q̃(aj)) ≥
∑n

j=1
Tj (p̂

∗(aj)) +∑n
j=1

Tj (0)/2 = CSA +
∑n

j=1
Tj (0)/2, we finish the proof. □

Proof of Proposition 3. Let p̂∗ denote the optimal so-

lution of (2) with optimal value CSA, and x∗ the optimal

solution of (4) with optimal valueCMBP . From Proposition 3,

there exists a solution q̂∗ of (3) that achieves the same value

CMBP . From Lemma 8, q̂∗ is also a solution to (2), and hence

CMBP ≤ CSA. Additionally, Lemma 9 implies that ∃q̃ that is

a feasible solution of (3) such that for every x > 0, p̂∗(x)/2 ≤

q̃(x) ≤ p̂∗(x). If C ′
is the objective value for q̃, we then have

that C ′ ≤ CMBP . We next show that C ′ ≥ CSA/2. First, no-

tice that q̃(x) ≤ p̂∗(x) implies that for every j: 1q̃(aj)≤vj ≥

1p̂∗(aj)≤vj . Now we can write: C ′ = дbv(q̃(a1), . . . , q̃(an)) =∑n
j=1

bjq̃(aj)·1q̃(aj)≤vj ≥
∑n

j=1
bjq̃(aj)·1p̂∗(aj)≤vj ≥

1

2

∑n
j=1

bjp̂
∗(aj)·

1p̂∗(aj)≤vj = CSA/2 where the last inequality comes from the

fact that p̂∗(x)/2 ≤ q̃(x). This concludes the proof. □

Proof of Theorem 10. We prove this theorem by con-

structing an algorithm based on dynamic programming that

optimally solves (4) with objective function Tbv.
Suppose that we are given as input the parameters vj ,bj

that correspond to point aj for j = 1, . . . ,n. Assume that

a1 ≤ a2 ≤ · · · ≤ an and v1 ≤ v2 ≤ · · · ≤ vn (i.e., the

valuations of the buyers are monotone w.r.t. the error). Let

s(k,∆) denote the optimum solution for the subproblem with

points j = k, . . . ,n, with the restriction that for every j ≥ k
we have sj (k,∆)/aj ≤ ∆. Denote by OPT (k,∆) the objective
value of this optimum solution. Observe that the optimum

solution for the initial problem is s(1,+∞), with optimum

value OPT (1,+∞). We will provide a recursive formula to

computeOPT (k,∆) for any k,∆. Our first observation is that

for k = n, we can easily compute the optimum solution via

sn(n,∆) = min{vn ,∆an},OPT (n,∆) = bn · sn(n,∆). This fol-
lows from that it is always more profitable to assign a higher

price, as long as it is under the valuation vn . To compute the

recursive formula for s(k,∆), we need a few more lemmas.

Lemma 11. For every k , sk (k,∆) ≥ min{vk ,∆ak }.

Proof. Suppose not; we will then show that we can obtain

a solution with a larger objective value. Let ℓ ≥ k be the

largest index such that sℓ(k,∆) = sk (k,∆). Clearly we have

that sk (k,∆) = sk+1(k,∆) = . . . , sℓ(k,∆). Since sk (k,∆) < vk
and vk ≤ vk+1 ≤ · · · ≤ vℓ , we must have that sj (k,∆) < vj

for every j = k, . . . , ℓ. Similarly, since sk (k,∆) < ∆ak and

ak ≤ ak+1 ≤ · · · ≤ aℓ , we must have that sj (k,∆) < ∆aj for

every j = k, . . . , ℓ. Let ϵ = min
ℓ
j=k

min{vk ,∆ak }
sj (k,∆)

> 1. Define

s ′(k,∆) such that for j = k, . . . , ℓwe have s ′j (k,∆) = ϵ ·s(k,∆),
and for j > ℓ it remains the same. It is easy to see that the

resulting solution is feasible, and also produces a strictly

greater revenue, a contradiction. □

Lemma 12. Let k < n. If ak∆ ≤ vk , then:

sk (k,∆) = ∆ak , sj (k,∆) = sj (k + 1,∆), j > k

OPT (k,∆) = bk∆ak +OPT (k + 1,∆)

Proof. From Lemma 11, we have that sk (k,∆) ≥ ∆ak .
But it must also be that sk (k,∆) ≤ ∆ak , thus the only opti-

mal solution is sk (k,∆) = ∆ak . Also, since (∆ak)/ak = ∆ ≥

sj (k + 1,∆)/ak+1, the weakened subadditive constraint is sat-

isfied. Finally, we have sk+1(k + 1,∆) ≥ min{∆ak+1,vk+1} ≥

min{∆ak ,vk } = ∆ak , which implies monotonicity. □

Lemma 13. Let k < n. If ak∆ > vk , define

s ′k (k,∆) = vk , s
′
j (k,∆) = sj (k + 1,vk/ak), j > k

s ′′k (k,∆) = sk+1(k + 1,∆)
ak
ak+1

, s ′′j (k,∆) = sj (k + 1,∆), j > k

with optimum values respectively

OPT ′(k,∆) = bkvk +OPT (k + 1,vk/ak)

OPT ′′(k,∆) = OPT (k + 1,∆)

Then,OPT (k,∆) is the maximum between the two options, and

s(k,∆) is the solution that achieves the maximum.

Proof. From Lemma 11, we have sk (k,∆) ≥ vk . The
first option examines what will happen if we set sk (k,∆) =
vk , where we will obtain a profit of bkvk from this price

point. If sk (k,∆) > vk , then we get 0 revenue from this

point. Also, the higher the price, the more revenue is ex-

tracted from the remaining points until we reach ∆ak . It is
straightforward to see that the weakened subadditive con-

straint is satisfied in both cases. We now show the same

for monotonicity as well. For the first option, since vk ≤

vk+1 and vk = (vk/ak)ak ≤ (vk/ak)ak+1, we have vk ≤

min{vk+1, (vk/ak)ak+1} ≤ sk+1(k +1,vk/ak). For the second
option, monotonicity follows from that ak ≤ ak+1. □

We can now use the recursive formulas from the two lem-

mas above to obtain an efficient dynamic programming algo-

rithm. The key observation is that we only need to consider

(n+1) values of ∆, since from the recurrence relations, ∆ can

only take values from the set {v1/a1,v2/a2, . . . ,vn/an ,+∞}.

The dynamic programming algorithm will first compute

s(n,∆), for the (n + 1) values of ∆, and then iteratively com-

pute s(k,∆) for k = n − 1,n − 2, . . . , 1. The final solution

will be s(1,+∞). Since we have n iterations, each of which

computes (n+1) subproblems, the total runtime isO(n2). □

	Abstract
	1 Introduction
	2 Related Work
	3 Model-based Pricing Framework
	3.1 Market Setup and Agents
	3.2 Agent Interaction Models
	3.3 Pricing Function Desiderata
	3.4 Scope and Limitations

	4 Noisy Model Generation
	4.1 The Gaussian Mechanism
	4.2 Arbitrage for the Gaussian Mechanism

	5 Revenue Optimization
	5.1 Hardness Results
	5.2 Approximating Subadditivity
	5.3 Algorithms for Revenue Optimization

	6 Experiments
	6.1 Expected Error to 1/NCP Transformation
	6.2 Revenue and Affordability Gain
	6.3 Runtime Performance

	7 Conclusion and Future Work
	References
	A Missing Proofs

