
Demonstration of Nimbus: Model-based Pricing for
Machine Learning in a Data Marketplace

Lingjiao Chen
1
Hongyi Wang

1
Leshang Chen

2
Paraschos Koutris

1
Arun Kumar

3

1
University of Wisconsin-Madison

2
University of Pennsylvania

3
University of California, San Diego

{lchen, paris, hongyiwang}@cs.wisc.edu, leshangc@seas.upenn.edu, arunkk@eng.ucsd.edu

ABSTRACT
Various domains such as business intelligence and journalism

have made many achievements with help of data analytics

based on machine learning (ML). While a lot of work has

studied how to reduce the cost of training, storing, and de-

ploying ML models, there is little work on eliminating the

data collection and purchase cost. Existing data markets pro-

vide only simplistic mechanism allowing the sale of fixed

datasets with fixed price, which potentially hurts not only

ML model availability to buyers with limited budget, but

market expansion and thus sellers’ revenue as well. In this

work, we demonstrate Nimbus, a data market framework for

ML model exchange. Instead of pricing data, Nimbus prices
MLmodels directly, which we callmodel-based pricing (MBP).

Through interactive interfaces, the audience can play the role

of sellers to vend their own ML models with different price

requirements, as well as the role of buyers to purchase ML

model instances with different accuracy/budget constraints.

We will further demonstrate how much gain of sellers’ rev-

enue and buyers’ affordability Nimbus can achieve with low

runtime cost via both real time and offline results.

CCS CONCEPTS
• Information systems→Datamanagement systems; •
Computingmethodologies→Machine learning; •The-
ory of computation→ Algorithmic game theory and mech-
anism design;

KEYWORDS
Machine Learning, Pricing, Data Market, Mechanism Design

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3320231

ACM Reference Format:
Lingjiao Chen, Hongyi Wang, Leshang Chen, Paraschos Koutris,

Arun Kumar. 2019. Demonstration of Nimbus: Model-based Pricing

for Machine Learning in a Data Marketplace. In 2019 International
Conference on Management of Data (SIGMOD ’19), June 30-July 5,
2019, Amsterdam, Netherlands. ACM, New York, NY, USA, 4 pages.

https://doi.org/10.1145/3299869.3320231

1 INTRODUCTION
Various domains such as business intelligence and journalism

have made many achievements with help of data analytics

based on machine learning (ML). Research and industrial

efforts have largely focused on performance, scalability and

integration of ML with data management systems [5, 7, 8].

However, limited research so far has studied the cost of acquir-
ing data for ML-based data analytics. Structured (relational)
data are often purchased to train ML models, either directly

through companies (e.g., Bloomberg, Twitter), or through

data markets (e.g., BDEX [1], Qlik [3]). Such datasets are typi-

cally expensive due to the immense effort to collect, integrate

and clean them. Existing pricing schemes either force users

to buy the whole dataset or support simplistic pricing mech-

anisms, without any awareness of the ML task downstream.

This means that valuable datasets may not be affordable to

potential buyers with limited budgets, and also that data

sellers operate in an inefficient market, where they do not

maximize their revenue. Simplistic pricing schemes may also

create undesirable arbitrage opportunities, where the de-

sired data can be acquired by combining data fragments that

together cost a cheaper price.

Example. Consider Alice, a journalist studying the relation-

ship between demographics and economic indicators for

an article. She wants to test how predictive some demo-

graphic features are of the average annual household in-

come. Datasets with such information exist online, but they

are expensive and exceed Alice’s budget. In this scenario, if

datasets are sold with fixed price, then Alice will not be able

to obtain them, and the sellers cannot get revenue as well. If

a data marketplace allows Alice to be charged only based on

her ML task and desired accuracy, then both Alice and the

sellers will be happy. In particular, a linear regression model

https://doi.org/10.1145/3299869.3320231
https://doi.org/10.1145/3299869.3320231

BSeller

Dataset ML Optimize

SLAs

1. Model, Error Preferences

Broker

2. Price-Error Curve

Value Curve
for D

Dataset D for Sale
Error

Va
lu
e

CA Buyer

Market Research Curves
Demand Curve

for D

Error

D
em

an
d

3. Budget, Payment

4. Model Instance

Price-Error
Curve

Error

Pr
ic
e

Figure 1: Nimbus market setup. (A) The seller is the agent who wants to sell ML model instances trained on their
commercially valuable dataset D. (B) The broker is the agent that mediates the sale for a set of supported ML
models and gets a cut from the seller. (C) The buyer is the agent interested in buying a ML model instance.

instance with a square loss might be sufficient for Alice’s

purposes and cheap enough for Alice to purchase.

Nimbus: AModel-based Pricing Framework. In this work,
we demonstrate Nimbus, a model-based pricing framework

which establishes a marketplace for selling and buying ML

models over relational data. The key observation is that,

instead of selling raw data to the buyers, the market can

directly sell ML model instances with different accuracy op-

tions. Since the price is based on the model, we call this

model-based pricing (MBP)[4, 6].

A high level view of Nimbus is demonstrated in Figure 1.

The data market involves three agents, namely, the seller who
provides the datasets, the buyer who is interested in buying

ML model instances, and the broker (market) who interacts

between them. First, the seller and/or the broker perform

market research to ascertain curves representing demand and

value for the ML model instances among potential buyers.

These curves plot demand and value as a function of the

error/accuracy of the ML model trained. The broker uses

the market research information to build price-error curves

that are presented to the buyer. The buyer specifies a desired

price or error budget and pays the broker, who computes an

appropriate ML model instance, and returns it to the buyer.

Summary of Contributions. In summary, this work makes

the following contributions.

• We demonstrate how Nimbus enables sellers to set

different price requirements and buyers to put various

ML model accuracy and budget constraints.

• We design and implement a concrete version of Nim-
bus, including a back-end focusing on model gener-

ation and price calculation, and front-end for sellers

and buyers to interact with the data market.

• We empirically demonstrate the benefits of Nimbus
compared to naive pricing approaches. In particular,

running on both offline and real time data, Nimbus can
maintain high seller revenue, large buyer affordability

as well as low runtime cost.

Outline. Section 2 introduces the MBP framework and rele-

vant desiderata. Section 3 presents Nimbus’s functionality

and implementation details. In Section 4, we study the appli-

cable scenarios of Nimbus. We conclude in Section 5.

2 MODEL-BASED PRICING
In this section, we introduce the framework of model-based

pricing (MBP), outline properties it satisfies and provide an

instance of our framework that satisfies all the properties.

2.1 Market Setup and Agents
Our framework involves three types of agents that interact

in a data marketplace: the seller, the broker and the buyer.
Agents. The seller provides the dataset D for sale. W.L.O.G,

we let z = (x,y) be a labeled example in D, where x andy are

the feature vector and label, respectively. The broker supplies

a menu of ML models, such as linear regression, logistic

regression, and support vector machines. Let λ, ϵ denote

the error function used for training and testing datasets,

respectively. Fixing an ML model H from the model set, the

broker releases model instances h ∈ H by a randomized

mechanism K . More specifically, let h∗λ(D) be the optimal

model instance in the selected ML model/hypothesis space

H and {Wδ |δ ∈ R+} be a set of probability distributions.

Given a dataset D, an error function λ, and a noise control

parameter δ , the broker samples a random variable w ∈

Wδ , and releases a model instance hδλ (D) = K(h∗λ(D),w).

The buyer specifies a model instance he/she is interested in

learning over the dataset, with a particular accuracy and/or

budget requirement, among the model instances provided

by the broker.

Interactions. There are two types of interactions, namely,

seller-broker and buyer-broker interactions. In seller-broker

interaction, the seller helps the broker determine the ML

models to sell, and specify requirements for the price associ-

ated with each model instance. In buyer-broker interaction,

the buyer first provides the broker which models he/she is

interested in buying. The broker then provides information

about that particular model, such as a price accuracy curve.

After obtaining the buyer’s choice of model instance, hδλ (D),
the broker computes its associated price pϵ,δ (δ ,D). Finally,
the buyer pays for the price and acquire the model instance.

2.2 Pricing Function Desiderata
For the market to work, the pricing function pϵ,λ needs to

satisfy a set of desiderata that provide some guarantees to

both the seller and the buyer. In a sense, these guarantees act

as the service-level agreement (SLA) for MBP. In particular,

we want them to satisfy the following requirements.

Non-negativity. Clearly, the pricing function has to be non-
negative, since the buyer should not be able to make money

from the broker by obtaining an ML model instance.

Error Monotonicity. Next, if for a parameter δ1, we obtain
an expected error smaller than for a parameter δ2, then the

price should be larger for the former model instance. Oth-

erwise, a buyer may have no incentive to buy the former

instance. The formal definition is as follows.

Definition 1. A pricing function pϵ,λ is error-monotone

in dataset D if for every parameters δ1,δ2, E
[
ϵ(ˆhδ1λ (D),D)

]
≤ E

[
ϵ(ˆhδ2λ (D),D)

]
implies that pϵ,λ(δ1,D) ≥ pϵ,λ(δ2,D).

The error monotonicity property implies that the price

does not depend on the actual parameter δ of the mechanism,

but on the error that this parameter induces.

Arbitrage-freeness. The final property is arbitrage-freeness.
Suppose a buyer wants to buy one model instance with a

small error but large price. Suppose further she also buys

more of such model instances at different prices, the sum of

all of which is lower than that of the desired single model

instance. Meanwhile, suppose she is able to “combine” the lat-

ter set of model instances to construct a new model instance

with an error smaller than the originally desired single model

instance. In this case, she would rather just buy the latter set

of model instances instead of the original model instance to

get an error lower than what the market is set up for. Such a

situation is called arbitrage. For the market to work well, we

need to ensure that it is arbitrage-free, i.e., situations such as

these do not happen (or are extremely unlikely).

Definition 2 (k-Arbitrage). We say that a pricing func-
tion pϵ,λ exhibits k-arbitrage in dataset D if there exist δ0, δ1,
δ2,· · · , δk , and a function д : Hk → H such that

(1)

∑k
i=1 pϵ,λ(δi ,D) < pϵ,λ(δ0,D), and

(2) E
[
ϵ(˜h,D)

]
≤ E

[
ϵ(ˆhδ0λ (D),D)

]
, where ˜h is the model

˜h = д(ˆhδ1λ (D), ˆhδ2λ (D), . . . , ˆhδkλ (D)) s.t. E
[
˜h
]
= h∗λ(D).

Thus, we say a pricing function pϵ,λ is arbitrage-free in
dataset D iff it does not exhibit k-arbitrage for any k ∈ N+.

2.3 Gaussian Mechanism: A Concrete
Instance

For the rest of this paper, we will focus on the Gaussianmech-

anism, a concrete instance. Given a hypothesis spaceH such

that each h ∈ H can be represented by a d-dimensional

vector, the Gaussian mechanism, denoted KG , generates a

model instance by adding independent Gaussian noise to the

optimal model. Formally, KG (h
∗
λ(D),w) = h∗λ(D) +w, w ∼

N(0, (δ/d) · Id). Gaussian Mechanism simplifies all the de-

sired properties to a simple condition. Roughly speaking, a

pricing function pϵ,λ satisfies all pricing function desiderata

for the Gaussian mechanism KG if and only if the function

pϵ,λ(1/ϕ(x),D) is nonnegative, monotone and subadditive,

where ϕ(·) is a mapping function between the noise control

parameter and the desired ML model error. More details can

be found in [6].

Figure 2: Nimbus GUIs. (a) Seller; (b) Buyer.

3 SYSTEM OVERVIEW
We discuss Nimbus’s architecture in this section.

Front-end. There are two graphical user interfaces (GUIs)

for the seller and the buyer, respectively, both implemented

in Python using the Bokeh [2] library, as shown in Figure

2. Through the GUI, the seller first uploads the datasets,

ML models for sale, and the estimated market information.

He/She also has the option to specify additional constraints

on the price. For example, he/she can set prices for ML model

instances with certain amount of error. Once the broker ob-

tains the information and publish the ML models associated

with their prices, the real time revenue will be presented

to the seller. The buyer’s GUI allows the buyer to choose a

particular model instance by either picking a point in the

price-accuracy curve or writing a simple query, based on

his/her budget/accuracy requirements. After the broker com-

putes the desired model instance and the price, the buyer

needs to pay for the price via online payment methods such

as credit cards or debit cards. Finally, the purchased model

instance will become downloadable through the buyer’s GUI.

Back-end. The back-end is also implemented in Python.

There are two parts, i) generating the model instance, and

ii) computing the price. Given the data and ML model infor-

mation provided by the seller, we first generate the optimal

model instance for each fixed hypothesis. Next, taking into

market estimation and price requirements, the price compu-

tation engine computes the pricing function (on the model

instance space) that maximizes the seller’s revenue. Noting

that the revenue optimization problem is in general coNP-

hard [6], we use a dynamic programming algorithm to ap-

proximately solve it. We stress that the above process is a

one time cost, i.e., this only needs to be done once before any

buyer joins the market. Now suppose a buyer comes. Since

one property of the pricing function is monotonicity w.r.t.

model accuracy, the pricing function is first transformed

from the model instance domain to the model accuracy do-

main and then shown to the buyer via the front-end. The

buyer then specifies accuracy or budget constraints by i)

issuing a simple optimization query, or ii) simply picking

a point on the pricing function (of model accuracy). Either

way, the back-end can then easily compute the desired noise

control parameter, which is then used to generate the desired

noisy model instance. The price is then simply the value of

the pricing function on the desired noisy model instance.

4 DEMONSTRATION SCENARIOS
We divide the demonstration into 3 phases: i) a brief intro-

duction to model based pricing with a simple example, ii) a

“hands-on” phase in which attendees can play the role of the

seller and the buyer , and iii) a performance comparison of

the revenue optimization and other naive approaches. We

now explain them in details.

A brief introduction: In this phase, we present the market

setup, explain the model generation mechanism and pricing

process, and highlight the desiderata as well as the revenue

optimization. One running example may be used throughout

this phase, where a seller is selling a logistic regressionmodel

on a private dataset and a buyer with budget constraint is

interested in buying the model. We will show how Nimbus

enables a seller to obtain more revenue and a buyer to glean

useful model with limited budget.

Hands-on Trial: During this phase, attendees are able to

play the role of both seller and buyer. As a seller, an at-

tendee may specify different ML models/hypothesizes, dif-

ferent number of fixed price values (as pricing constraints),

different buyer distribution and demand curves (as estimated

market information). Simulated buyers will be generated and

the real time revenue will be shown to the attendee. As a

buyer, an attendee may specify the model instances by either

choosing a point on the price-accuracy curve or writing a

simple query, pay the price using a simulated credit card

and download the model instances. A model combiner is

also provided to demonstrate why a buyer cannot obtain

arbitrage by combining model instances.

Performance Comparison: In this phase, we compare the

performance of the proposed revenue optimization part with

naive approaches. We vary the number of model instances

to sell, the buyer distribution, the demand curve, and the

constraints set by the seller. Then we show the price curve,

revenue curve, and the runtime curve of our proposed ap-

proach along with other methods. A set of “offline” results

will be presented. This will give the attendees a better under-

standing of the benefits of the revenue optimization engine.

5 CONCLUSION
Wedemonstrate Nimbus, a generic framework towardsmodel

based pricing for ML in a data market. Nimbus allows the

seller to sell various model instances with different price con-

straints while enables the buyer to buy customized model

instances with appropriate price.

REFERENCES
[1] [n. d.]. Big Data Exchange. www.bigdataexchange.com.

[2] [n. d.]. Bokeh. https://github.com/bokeh/bokeh.

[3] [n. d.]. QLik Data Market. qlik.com/us/products/qlik-data-market.

[4] L. Chen et al. 2017. Model-based Pricing: Do not Pay for More than

What You Learn!. In SIGMOD DEEM Workshop.
[5] L. Chen et al. 2017. Towards Linear Algebra over Normalized Data. In

PVLDB.
[6] L. Chen et al. 2019. Towards Model-based Pricing for ML in a Data

Marketplace. In SIGMOD.
[7] Joseph M. Hellerstein et al. 2012. The MADlib Analytics Library or

MAD Skills, the SQL. In VLDB.
[8] Ce Zhang et al. 2014. MaterializationOptimizations for Feature Selection

Workloads. In SIGMOD.

www.bigdataexchange.com
https://github.com/bokeh/bokeh
qlik.com/us/products/qlik-data-market

	Abstract
	1 Introduction
	2 Model-based Pricing
	2.1 Market Setup and Agents
	2.2 Pricing Function Desiderata
	2.3 Gaussian Mechanism: A Concrete Instance

	3 System Overview
	4 Demonstration Scenarios
	5 Conclusion
	References

