
Enabling and Optimizing Non-linear Feature
Interactions in Factorized Linear Algebra
Side Li

University of California, San Diego

s7li@eng.ucsd.edu

Lingjiao Chen

University of Wisconsin, Madison

lchen362@wisc.edu

Arun Kumar

University of California, San Diego

arunkk@eng.ucsd.edu

ABSTRACT

Accelerating machine learning (ML) over relational data is a

key focus of the database community.While many real-world

datasets are multi-table, most ML tools expect single-table

inputs, forcing users to materialize joins before ML, leading

to data redundancy and runtime waste. Recent works on

“factorized ML” address such issues by pushing ML through

joins. However, they have hitherto been restricted to ML

models linear in the feature space, rendering them less ef-

fective when users construct non-linear feature interactions

such as pairwise products to boost ML accuracy. In this work,

we take a first step towards closing this gap by introducing

a new abstraction to enable pairwise feature interactions in

multi-table data and present an extensive framework of alge-

braic rewrite rules for factorized LA operators over feature

interactions. Our rewrite rules carefully exploit the interplay

of the redundancy caused by both joins and interactions. We

prototype our framework in Python to build a tool we call

MorpheusFI. An extensive empirical evaluation with both

synthetic and real datasets shows that MorpheusFI yields

up to 5x speedups over materialized execution for a popular

second-order gradient method and even an order of magni-

tude speedups over a popular stochastic gradient method.

ACM Reference Format:

Side Li, Lingjiao Chen, and Arun Kumar. 2019. Enabling and Opti-

mizing Non-linear Feature Interactions in Factorized Linear Algebra.

In 2019 International Conference on Management of Data (SIGMOD

’19), June 30-July 5, 2019, Amsterdam, Netherlands. ACM, New York,

NY, USA, 18 pages. https://doi.org/10.1145/3299869.3319878

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00

https://doi.org/10.1145/3299869.3319878

1 INTRODUCTION

Understanding and optimizing data-intensive steps in end-

to-end ML workflows is a pressing problem for the data

management community. While most ML tools expect single-

table datasets, most real-world applications with structured

data have multiple tables connected by datasets dependen-

cies such as key-foreign key dependencies. This forces data

scientists to materialize the join output before ML, which

introduces redundancy in the data and ML computations,

thus wasting memory and runtime. A recent line of work

on “factorized ML” avoids such redundancy by pushing ML

computations through joins, thus improving efficiency [15,

16, 21, 27]. In particular, [6] generalized this idea to show

how any ML algorithm expressible in the formal language of

linear algebra (LA) can be automatically “factorized” using

its framework of algebraic rewrite rules. Such “factorized LA”

rules rewrite LA operations (e.g., matrix-vector multiplica-

tion) over the join output’s feature matrix into LA operations

over the base tables’ matrices.

Example (based on [6]). Consider an insurance data scien-

tist using ML to predict customer churn (will a customer

move to a competitor?). She joins a table Customers with

features such as age, income, employer, etc. with another

table Employers with features about customers’ employers

such as revenue, city, etc. The feature vectors in the base

tables can be viewed as matrices, say, C and E, respectively.
The materialized join output can also be viewed as a matrix,

say,M . Factorized LA rewrites an LA operation overM , e.g.,

Mw (w is a parameter vector) into LA operations overC and

E. Thus, she writes ML algorithms as if only one table exists,

but under the covers, the tool in [6] rewrites the algorithm

to operate on C and E.

While factorized LA benefits many ML algorithms, in-

cluding all generalized linear models (GLMs) [4, 6], it has a

key restriction: linearity over feature vectors. This reduces

its benefits and applicability in cases with a common data

preparation step in ML practice: feature interactions [2, 10].

For instance, given d features, quadratic (degree 2) interac-

tions create

(d
2

)
+ d extra features by computing pairwise

products and individual squares. Such interactions are es-

pecially popular for boosting the accuracy of GLMs, since

interactions enable such models to represent more functions

https://doi.org/10.1145/3299869.3319878
https://doi.org/10.1145/3299869.3319878

Most ML tools

Materialize Join

Materialize Feature Interactions

LA-based ML algorithm

MORPHEUS (Chen et al.[5])

Factorize Join

Materialize Feature Interactions

LA-based ML algorithm

This paper (MorpheusFI)

Factorize Join

Factorize Feature Interactions

LA-based ML algorithm

Figure 1: Conceptual comparison of common practice

of materializing both joins and feature interactions

over normalized data; this creates two forms of redun-

dancy. Recent prior work (Morpheus [6]) avoids re-

dundancy caused by joins but not feature interactions.

Our work avoids both forms of redundancy.

of the data [2, 18, 28]. Alas, existing factorized LA frame-

works force users to materialize this non-LA step at least in

part, which introduces a new form of redundancy in the data

and ML computations and wastes memory and runtimes.

In this paper, we present a novel and comprehensive frame-

work to support and optimize quadratic feature interactions

within a factorized LA framework. Our goal is to offer the

best of both worlds: benefits of quadratic interactions and

generality of factorized LA. We focus on degree 2 interac-

tions, since they are the most common [18] (higher degrees

could lead to far too many features with negligible benefits)

and they let us study this novel issue in depth.

The core technical challenge is to carefully delineate the

double redundancy caused by two levels of materialization–

denormalization and feature interaction–for LA operators

without losing the automation benefits of factorized LA. To

tackle this challenge, we augment LA with two non-linear

interaction operators: self-interaction within a matrix and

cross-interaction between matrices participating in a join.

The semantics of our operators allow them to co-exist with

LA operators, since their inputs and outputs are also just ma-

trices. Given this extended LA formalism, we devise a novel

and extensive framework of rewrite rules to convert many

LA operators over the output of quadratically interacted de-

normalized table’s matrix to the base tables’ matrices. The

intuition is to delaymaterialization of interactions in the push

down rewrite as far as possible. Such sophisticated rewrites

are effectively impossible in existing pure LA frameworks.

Since our rewrite rules are more complex than regular fac-

torized LA rewrites, we provide formal proofs of correctness

for some rewrites and also quantify the runtime complexity

of rewritten LA operators. We then extend our framework

to star schema multi-table joins. We find that such joins lead

to yet more novel interplays between joins and feature inter-

actions, specifically, between the matrices of the dimension

tables. To exploit this opportunity and reduce computational

redundancy further, we extend the semantics of our new

operators to handle two joins at once.

Factorized LA itself is not always faster than materialized

execution–the runtime trade-offs depend on the dimensions

of the matrices joined [6]. Our framework also has similar

runtime trade-offs, and we perform an in-depth analysis to

understand these trade-offs. We find that our framework

presents two novel differences from the trade-off space of

regular factorized LA (no feature interactions). First, sparsity

of feature vectors plays a more outsized role in our setting

in terms of determining where runtime crossovers might

occur. Second, our rewrite rules also require an ordering

among dimension tables; different orderings lead to different

runtimes. We explain these issues formally by extending

our runtime complexity analyses. We use these analyses to

devise a simple and easy-to-check heuristic decision rule that

helps predict when materialized execution might actually be

faster and how to order dimension tables otherwise.

We prototype our framework in the popular ML frame-

work PyTorch and build a tool we call MorpheusFI. We per-

form an extensive experimental evaluation of MorpheusFI

with both synthetic data and 7 real-worldmulti-table datasets.

We compare with two baselines, materialized execution and

factorized LA in MorpheusPy (from the authors of [6]), for

various LA operators on synthetic data. MorpheusFI yields

speedups of up to 10x over both baselines depending on

the redundancy present. We also validate that our trade-off

analyses accurately predict the trends. We then compare all

tools on the real datasets for logistic regression and linear

SVM trained using two popular optimization procedures:

LA-based LBFGS and non-LA stochastic gradient descent

(SGD). On 5 datasets, MorpheusFI is up to 5x faster than

materialized LBFGS and up to 2x faster than MorpheusPy

but slightly slower on the other 2 datasets, as predicted by

our heuristic decision rule. Relative to SGD, however, Mor-

pheusFI is about 4x faster an average and up to 36x faster

overall, while yielding similar accuracy.

Overall, this paper makes the following contributions:

• To the best of our knowledge, this is the first paper

to fuse a common data preparation step for linear ML

models–feature interactions–within a factorized LA

framework to optimize ML over normalized data.

• We augment LA with two non-linear operators to cap-

ture quadratic interactions. We devise a novel frame-

work of algebraic rewrite rules to avoid the double re-

dundancy interplay between feature interactions and

joins without losing the benefits of factorized LA.

• We extend our framework to support star schema

multi-table joins by modifying the semantics of our

non-linear operators and reduce computational redun-

dancy further.

• Weperform an in-depth analysis of the correctness and

time complexity of our rewrite rules. We explain the

runtime trade-offs involved and how they differ from

factorized LA. We present a simple heuristic decision

rule to navigate these trade-offs.

• We present a comprehensive empirical evaluation of

our framework, prototyped in Python and namedMor-

pheusFI using both real and synthetic data, comparing

it against materialized execution, factorized LA, and a

non-LA SGD method. MorpheusFI yields substantial

speedups in most cases, including over 10x speedup

over SGD in one case.

Outline. Section 2 presents the technical background. Sec-

tion 3 explains our formal problem setup and basic idea.

Section 4 dives into our novel framework of rewrite rules.

Section 5 presents deeper analysis and extensions to our

framework. Section 6 presents the experiments. We discuss

other related work in Section 7 and conclude in Section 8.

2 BACKGROUND

2.1 Linear Algebra Tools

Linear algebra (LA) is an elegant formal language to cap-

ture linear transformations of matrices. An LA operator

converts a matrix (or matrices) to another matrix (or ma-

trices). ML-oriented data scientists and statisticians often

specify ML algorithms as LA scripts. Essentially, the training

datasets and ML model parameters are both matrices manip-

ulated using LA operators. Common LA operators in ML al-

gorithms include scalar-matrix multiplication, matrix aggre-

gation, matrix-matrix multiplication, and crossproduct (aka

Gramian). Popular programming environments and libraries

for writing LA scripts include R [24], Python NumPy [26],

Matlab, and SAS. Recent tools such as PyTorch[23] and Ten-

sorFlow [3] also support LA with NumPy and SciPy [12]. We

use Python Numpy integrated with PyTorch for our proto-

type, but our ideas are generic and orthogonal to the specific

LA tool; our ideas can be used with these other LA tools too.

2.2 Feature Interactions

One of the most popular classes of ML models are general-

ized linear models (GLMs) [1]. They are simple to interpret

and efficient to use. However, they suffer from a key re-

striction: they can only learn hyperplanes over the feature

space. ML theory tells us that this can potentially lead to

high prediction errors because such models “underfit” the

data, especially when the number of training examples is

large [28]. To counteract this issue, practitioners routinely

use feature interactions for statistical ML-based data analysis,

especially for GLMs [2, 18]. Given d features, quadratic inter-

action (also called degree 2 interactions) expands the feature

vector to d ′ = 2d +
(d

2

)
features (d original, d for squares,

and

(d
2

)
for pairs of products). For example, if d = 100,

d ′ = 5, 150. Since the complexity of the feature represen-

tation increases, feature interaction often helps mitigate un-

derfitting for GLMs. On the other hand, interactions with

Symbol Meaning

Y Target/label feature in table S

S “Fact” table feature matrix

n or nS Number of rows (examples) in S
Ri “Dimension” table number i feature matrix

n1 Number of rows in Ri
dS ,di Number of columns in S and Ri resp.
Xi Expanded dim. table i feature matrix (nS rows)

Ki Indicator matrix for joining S and Ri
T Joined table of S and all Ri
eS Sparsity of S
ei Sparsity of Ri
M̊ Self-interaction of matrixM

Mi ⊗ Mj Cross-interaction onMi andMj (same # rows)

Mi ⊙ Mj Hadamard product ofMi andMj (same shape)

Table 1: Notation used in this paper.

degrees higher than 2 are rare, since d ′ can quickly explode

to cause “overfitting,” the opposite of underfitting. For exam-

ple, d ′ = 3d +
(d

2

)
+ d(d − 1) +

(d
3

)
for degree 3 interactions,

which for d = 100 becomes d ′ = 181, 800 already! Thus, we

restrict our focus to quadratic interactions in this paper.

3 SETUP AND PRELIMINARIES

3.1 Notation

We study the same schema setting as [6] and so, we adopt

their notation. Consider a 2-table join schema: S(Y ,Xs ,K1)

and R1(RID1,X1). S is akin to the fact table in OLAP; R1 is

akin to a dimension table. Xs and X1 are feature vectors,

Y is the prediction target, RID1 is the primary key of R,

while K1 is the foreign key. The projected equi-join is as

follows: T(Y , [Xs ,X1]) ← π (S▷◁K1=RID1
R1), wherein [Xs ,X1]

is a concatenation of the feature vectors from the base tables.

For simplicity sake and without loss of generality, assume the

join is not selective, i.e., each tuple in R is referred to at least

once in S and they are the only tuples referred to. So, T will

have the same number of tuples as S. In a general star schema,

S can have more foreign keys (say, q): K1, K2, · · · , Kq , which

correspond to dimension tables R1,R2, · · · ,Rq , respectively.

We focus on star schemas for tractability sake and because

they are common in practice (snowflake schemas can also

be reduced partially to star schemas). The feature vectors

in each table can be viewed as matrices for convenience in

LA syntax. In particular, the matrix corresponding to S.Xs is

denoted S ; its shape is nS × dS . Similarly, we can define Ri
and T . Table 1 summarizes our notation.

3.2 Prior Work: Normalized Matrix

To understand the ideas proposed in our paper, we need to un-

derstand prior work on factorized LA, especially the so-called

“normalized matrix” abstraction introduced by [6]. It is a log-

ical matrix data type to represent multi-table data using ex-

isting data types in LA tools. In our notation, the normalized

matrix for the 2-table join is the triple (S,K1,R1). Here, K1 is

an indicator (0/1) matrix encoding the primary key-foreign

key dependency. Assume the ordering of tuples in S and R

are fixed and their respective rows are numbered sequen-

tially. Then, we have Ki [i, j] = 1 iff the i th row of S refers to

the jth row of R1. All other entries of Ki are 0, i.e., it is highly

sparse. Now, it is clear that T = [S,K1R1], wherein [,] de-
notes column-wise matrix stitching, since the multiplication

K1R1 replicates tuples of R as per the join/denormalization

semantics. Overall, the normalized matrix abstraction is an

elegant way of representing the join in LA syntax. It has a

generalization to star schemas as well [6].

Factorized LA is a framework of algebraic rewrite rules that

use this abstraction to “push down” LA operations through

joins by rewriting an LA operation over T to LA operations

over S , K1, and R1. As an illustration, consider the LA opera-

tion left-matrix multiplication (LMM), which is common in

LA-based ML: Tw . Here, T has the shape n × d (d = dS + d1),

whilew is the model parameter vector, e.g., the weights of

logistic regression, with the shape d × 1. The rewrite rule

using the normalized matrix (S,K1,R1) is as follows:

Tw → SwS + K1(R1w1)

In the above,w ≜ [wS ,w1] splitsw s.t.wS is of shapedS×1,

while w1 is d1 × 1. The portion R1w1 pre-computes partial

inner products to yield an intermediate vector of shape n1×1.

Its multiplication withK1 “expands” that intermediate vector

to length nS as per the primary key-foreign key dependency.

Since LA-based ML algorithms are just a series of LA opera-

tions, factorized LA effectively automates the push down for

any ML algorithm expressible in LA.

3.3 Formalizing Quadratic Interactions

Note that the data processing operation of feature inter-

actions is non-linear and thus, it is outside the scope of

prior work on factorized LA. Before presenting our new

framework that combines feature interactions and factor-

ized LA, we need to formally define 3 non-linear operators:

self-interaction and cross-interaction,

Definition 3.1. Self-interaction: Given a matrix M of

shape n × d , self-interaction ofM , denoted M̊ is a non-linear

unary operator that outputs a matrix M ′ of shape n × d ′,

wherein d ′ = d +
(d

2

)
=

(d+1

2

)
. The entries of the i th row

of M ′ are defined by the following binomial enumeration:

∀a = 1, 2, · · · ,d,b = 1, 2, · · · ,a, and k =
(a
2

)
+ b, we have

M̊[i,k] = M[i,a] ·M[i,b].

Definition 3.2. Interaction: Given a matrixM , interac-

tion of M , is a non-linear unary operator that is denoted as

inter(M) and defined as inter(M) ≜ [M, M̊].

Definition 3.3. Cross-interaction: Given two matrices

M1 of shape n×d1 andM2 of shape n×d2, cross-interaction of

M1 andM2, denotedM1 ⊗M2 is a non-linear binary operator

that outputs a matrixM ′ of shape n × d ′, wherein d ′ = d1d2.

The entries of the i th row of M ′ are defined by the following

pairwise enumeration: ∀k = 1, 2, · · · ,d1d2, letting a = ⌈k/d2⌉

and b = k mod d2, we have M
′[i,k] = M1[i,a] · M2[i,b]

(whereM2[i, 0] ≜ M2[i,d2]).

Here, self-interaction captures pairwise interactionswithin

a matrix (avoiding duplicate pairs), while full interaction in-

cludes the original d features. Cross-interaction captures

pairwise interactions across two matrices. Now we are ready

to present the first key proposition for representing the self

interaction of a matrix in terms of its column-wise splitting.

Assume that there is a matrixM which is split column-wisely

by M = [Ml ,Mr]. Then the self-interaction within M in-

volves two columns, which may both come from Ml (thus

falls in M̊l), orMr (thus falls in M̊r), orMl andMr separately

(thus falls in Ml ⊗ Mr). Nevertheless, the ordering of the

columns within M̊ can be different from M̊l , M̊r ,Ml ⊗ Mr
and therefore a permutation of the columns is needed. Skip-

ping the proof due to space constraint, we summary the

resulting proposition as follows.

Proposition 3.1. Consider a matrixM = [Ml ,Mr] where

Ml ∈ R
n×dl andMr ∈ R

n×dr
. Then we have

M̊ =
[
M̊l ,

[
M̊r ,Ml ⊗ Mr

]
P
]
,

where P ∈ R

(
(dr +1

2
)+dldr

)
×

(
(dr +1

2
)+dldr

)
is a permutation matrix

such that P[i, j] = 1 iff there exist integers a ∈ [dl + 1,dl + dr]
and b ∈ [1,a], s.t. the following conditions hold:

i =

{(dr+1

2

)
+ (b − 2)dl + a, if b ≤ dl(a−dl

2

)
+ b − dl , otherwise

j =

(
a

2

)
−

(
dl + 1

2

)
+ b .

Now we consider feature interactions over normalized

data. We are given the normalized matrix (S,K1,R1) s.t. T =
[S,K1R1]. Let X1 ≜ K1R1 denote the intermediate denor-

malized part of T . As per Proposition 3.1, we have T̊ =[
S̊,

[
X̊1, S ⊗ X1

]
PT

]
, where PT ∈ R

(
(d1
+1

2
)+dsd1

)
×

(
(d1
+1

2
)+dsd1

)
is a a permutation matrix such that PT [i, j] = 1 iff there ex-

ist integers a ∈ [ds + 1,ds + d1] and b ∈ [1,a], s.t the same

conditions on i and j as in Proposition 3.1 hold, except with

dl replaced by ds . Thus, we have the following relationship:

inter(T) = [T , T̊] =
[
S,X1,

[
S̊,

[
X̊1, S ⊗ X1

]
PT

]]
. (1)

Convention on foreignkey features.An important differ-

ence in our setting compared to factorized LA is the way we

treat foreign key features (RIDi /Ki). Such features are known

to be beneficial for ML accuracy in some cases [17]. But for

linear models, such categorical features need be represented

as “one-hot” encoded vectors (large sparse 0/1 vectors). Since

these can be very large (e.g., tens of thousands), even qua-

dratic interactions can be untenable for such features. Thus,

we exclude them from interactions in the rest of this paper.

3.4 Baseline: Interactions in Morpheus

A basic question is: Is it possible to realize quadratic interac-

tions directly over the normalized matrix? Strictly speaking,

the answer is no since the permutation matrix PT disables

us from creating a fact table feature matrix as well as a di-

mension feature matrix. If we view matrices as equivalent

up to a permutation (i.e., ignoring permutation and reorder-

ing the columns), the answer becomes yes, but the major

downside of this approach is likely to be inefficient, since

it requires materializing cross-interactions. Thus, substantial

computational redundancy will still remain. More precisely,

to compute T with the regular normalized matrix in the Mor-

pheus tool from [6], we need to replace (S,K1,R1) with a

new normalized matrix (S̄,K1, R̄1), defined as follows using

our new non-linear operators (note X1 ≜ K1R1).

S̄ = [inter(S), S ⊗ X1] and R̄1 = [RID1, inter(R1)]

In the above, S̄ has a shape nS × (2dS +
(dS

2

)
+ dSd1), where

d1 is the number of features in R1, while R̄1 has a shape

n1×(1+2d1+
(d1

2

)
). Note that unlike the case of linear features

where T = [S,K1R1], for quadratic interaction, T̊ , [S̄,K1R̄],
but the equation holds up to a permutation, i.e., there exists

some permutation matrix PT̊ , such that T̊ PT̊ = [S̄,K1R̄].
We now explain why this approach is inefficient. Prior

work showed that speedups possible with factorized LA for

a given normalized matrix is a function of the so-called tuple

ratio and feature ratio [16]. The former is nS/n1; the latter

is d1/dS . As the tuple ratio goes to infinity, the speedup

possible for most LA operators gets capped at 1+ feature ratio.

In our setting, while tuple ratio is unaffected, feature ratio

changes from d1/dS to

(
2d1 +

(d1

2

))
/

(
2dS +

(dS
2

)
+ dSd1

)
in

the above formulation. As d1 goes to infinity, the latter term

becomes d1/(2dS) and thus the feature ratio becomes around

50% smaller. Indeed, such inefficiency is introduced by the

cross-interaction term S ⊗ X1, which has a special algebraic

structure (embedded in X1 = K1R) and hence provides room

for further optimization.

Motivation for MorpheusFI. Given the above analysis

of the baseline approach, we now ask: Is it possible to further

factorize quadratic interactions to reduce computational re-

dundancy further? In short, the answer is yes, but it requires

fundamentally reworking the rewrites rules of factorized

LA. In the next section, we present such a new framework

that carefully delineates the interplay of redundancy caused

denormalization with quadratic interactions.

4 FACTORIZED QUADRATIC

INTERACTIONS

We first explain our new abstraction for capturing quadratic

interactions over joins. We then present our framework of

algebraic rewrite rules using our abstraction. The proofs of

correctness for the rewrite rules are deferred to the appendix.

4.1 Interacted Normalized Matrix: A New

Data Abstraction

We present a new abstraction, interacted normalized matrix,

layered on the top of existing matrix data types in LA. It is

similar to the normalized matrix of factorized LA, but has

first-class support for quadratic interactions. For simplicity’s

sake, we first focus on a 2-table join as explained before, with

the given normalized matrix being (S,K1,R1). We create a

new hexatruple (Ŝ,K1, R̂1, S,X1, P̂) called Interacted Normal-

ized Matrix with the following relationships (K1 is retained):

Ŝ = [S, S̊] and R̂1 = [R1, R̊1] and P̂ is a permutation matrix

s.t. inter (T̊) =
[
Ŝ,K1R̂1, S ⊗ (K1R1)

]
P̂

Note that compared to the normalized matrix representa-

tion (in Section 3.4), the cross-interaction between S and X1

is not explicitly maintained. Instead, we only store S,K1,R1,

and push the computations on S ⊗X1 down through S,K1,R1

whenever needed (explained later). This is central to how

our abstraction avoids double redundancy. For simplicity

purpose, let R̂′
1
≜ S ⊗ (K1R1). Compared to Equation (1),

permutation matrix P̂ is simply used to reorder inter (T)’s
columns. P̂ is not physically constructed but lazily evaluated

during the LA operation rewrite.

4.2 Element-wise Scaling Operators

Element-wise scaling (/ and ×) operators are common in

ML. Typically they appear when a regularizer or a step size

is applied. In Morpheus, the rewrite rules are trivial and

preserve the normalized matrix structure.

In our setting, we observe that the scaling operators can

also be lazily evaluated until other operators are in need.

Thus, we maintain a scaling value denoted by α (initially

= 1) in our implementation until any other operators are

needed. If a new scaling factor β comes, we update α by

α/β or α × β depending on the scaling operator. When other

operator is called, we apply the following update Ŝ = αŜ ,
R̂1 = αR̂1 and R1 = αR1. Note that we do not update P̂ at all.

4.3 Left Matrix Multiplication (LMM)

LMM is also common in ML, arising is all GLMs solved with

batch gradient methods. For clarity of exposition, we present

the Morpheus rewrite rule before explaining our new rewrite

rule. Note thatW is a d × dW parameter matrix.

TW → SW [: dS ,] + K1(R1W [dS + 1 : d,])

With Interactions. In our setting, we first permuteW to

mitigate the effect of P̂ , then multiply parts of the results

with the self-interactions and cross-interaction parts seper-

ately, and finally add them. Formally, recall that inter (T̊) =[
Ŝ,K1R̂1, R̂

′
]
P̂ . We first compute Ŵ = P̂W (where P is sim-

ply a permutation matrix and thus this is only reordering

the rows inW). Split Ŵ column-wisely into 3 parts,ŴS =

Ŵ [1 : dS +
(dS+1

2

)
,] , ŴR = Ŵ [1 + dS +

(dS+1

2

)
: d1 +

(d1+1

2

)
+

dS +
(dS+1

2

)
,], andŴSR = Ŵ [1+d1+

(d1+1

2

)
+dS +

(dS+1

2

)
: d,].

Then we have

inter (T)W = ŜŴS + K1R̂1ŴR + R̂
′
1
ŴSR

Since Ŝ has no join-related redundancy, we leave the first

term as it is. For the second term, similar to the case of

Morpheus, we mutiply R̂1ŴR and then compute the result

times K1.

The third term, i.e., R̂′
1
ŴSR , is the most challenging and

novel part. The rewrite rule for this part is illustrated in

Figure 2. First, cut ŴSR into dS segments row-wise, each with

the shape d1 × dW and the i-th chunk is denoted byW i
S1
.

Then, multiply R1 with eachWm
S1

and stitch the resultant

R′
1
= [R1W

1

S1
,R1W

2

S1
, ...,R1W

dS
S1
]

LetM denote K1R
′
1
; its shape is nS ×dW dS . If dW = 1, do a

Hadamard product (⊙) betweenM and S and take a rowSum

of the result. Thus, we have this rewrite rule:

R̂′
1
ŴSR → rowSum(M ⊙ S)

If dW > 1, chunkM into dW segments by columns, denoted

M (j). Apply the Hadamard product and rowSum to each col-

umn and stitch all resultant matrices column-wise:

R̂′
1
ŴSR → [rowSum(M

(1) ⊙ S), · · · , rowSum(M (dW) ⊙ S)]

Overall, the full rewrite rule for LMM inter(T)W with P̂W ≜
[ŴS ,ŴR ,ŴSR] is as follows:

inter(T)W → (Ŝ)ŴS + K̂1(R̂1ŴR)

+
[
rowSum

(
M (1) ⊙ S

)
, · · · , rowSum

(
M (dW) ⊙ S

)]

where

[
M (1), · · · ,M (dW)

]
≜ K1

©­­­«[R1,R1, · · · ,R1]︸ ︷︷ ︸
dS

WSR

ª®®®¬.
4.4 Right Matrix Multiplication (RMM)

RMM is another common operator in ML (used in all GLMs

as well). Given a parameter matrixW of shape nW × nS , the
Morpheus rewrite rule was as follows:

WT → [WS, (WK1)R1]

With Interactions. In our setting, we need to handle self-

interactions and cross-interactions. Note that

Winter (T) = [WŜ,WK1R̂1,WR̂′
1
]

Again, since Ŝ is not factorizable, so the first term is retained.

For the second term, similar to the rewrite in Morpheus, we

computeWK̊1 first and then multiply the result by R̂.WR̂′
1
=

W (S ⊗ (K1R1)) is the most novel and challenging part. Its

rewrite rule contains two main steps. First, we compute[
M (1),M (2), · · · ,M (dW)

]
≜ KT

1

(
W T ⊗ S

)
, where each M (i)

has dS columns. Next, we compute colSum(M (i) ⊗ R1) for

each i and stitch the results row-wisely. This gives (proved

in the appendix)

WR̂′
1
=

[
colSum

(
M (1) ⊗ R1

)
; · · · ; colSum

(
M (dW) ⊗ R1

)]
The overall rewrite rule is as follows.

Winter (T) →

[
WŜ, (WK1)R̂1,[

colSum
(
M (1) ⊗ R1

)
; · · · ; colSum

(
M (dW) ⊗ R1

)]]
where

[
M (1),M (2), · · · ,M (dW)

]
≜ KT

1

(
W T ⊗ S

)
and each

M (i) has dS columns.

4.5 Matrix Aggregation

Matrix aggregations such as rowSum, colSum, and sum help

compute loss functions and gradients in ML. Due to space

constraints, we skip the Morpheus rewrite rules here.

With Interactions. Once again, the novelty is in handling

self-interactions and cross-interactions. Interestingly, we can

reduce redundancy further by pushing down aggregation

through the interaction as well–the first known instance

of such a push down, to the best of our knowledge. The

multi-part rewrite rule is as follows:

AD BD AK BK

CE DE CM DM

AF BF AN BN

CG DG CO DO

AH BH AP BP

CI DI CQ DQ

AJ BJ AR BR

1.0

2.0

3.0

4.0

AD+2BD+3AK+4BK

CE+2DE+3CM+4DM

AF+2BF+3AN+4BN

CG+2DG+3CO+4DO

AH+2BH+3AP+4BP

CI+2DI+3CQ+4DQ

AJ+2BJ+3AR+4BR

A B

C D

1.0

2.0

3.0

4.0

A+2B 3A+4B

C+2D 3C+4D

A+2B 3A+4B

C+2D 3C+4D

1 0

0 1

1 0

0 1

1 0

0 1

1 0

A+2B 3A+4B

C+2D 3C+4D

A+2B 3A+4B

C+2D 3C+4D

A+2B 3A+4B

C+2D 3C+4D

A+2B 3A+4B

D K

E M

F N

G O

H P

I Q

J R

AD+2BD 3AK+4BK

CE+2DE 3CM+4DM

AF+2BF 3AN+4BN

CG+2DG 3CO+4DO

AH+2BH 3AP+4BP

CI+2DI 3CQ+4DQ

AJ+2BJ 3AR+4BR

A B

C D

𝑋"⨂𝑋$%

𝑊

(𝑋"⨂𝑋$%)𝑊

𝑅% 𝑊%

𝑊*

𝑅%′=[𝑅%𝑊%,	𝑅%𝑊*]

𝐾%

𝑅%′

𝐾%𝑅%′𝐾%𝑅%′ 𝑆 𝑀 = 𝑆	 ⊙ 𝐾%𝑅%′ 𝑟𝑜𝑤𝑆𝑢𝑚(𝑀)

A+2B 3A+4B

C+2D 3C+4D

A+2B 3A+4B

C+2D 3C+4D

A+2B 3A+4B

C+2D 3C+4D

A+2B 3A+4B

AD+2BD+3AK+4BK

CE+2DE+3CM+4DM

AF+2BF+3AN+4BN

CG+2DG+3CO+4DO

AH+2BH+3AP+4BP

CI+2DI+3CQ+4DQ

AJ+2BJ+3AR+4BR

A B

C D

𝑅%

Figure 2: Illustration of LMM for XS ⊗ X1 (X1 is denoted XR1 for more clarity). (A) Materialized LMM. The individ-

ual entries of the dataset matrices are denoted with variables A, B, etc. instead of specific numbers to show the

propagation of values. (B) DecomposeW and multiply segments with R1 to get R′
1
. (C) Expand R′

1
by multiplying

it with K1. (D) Hadamard product of S and K1R
′
1
, whose result is passed to rowSum.

Part 1: S̊ : While this is not factorizable, we can push down

aggregation through interaction as follows:

rowSum(S̊) →
(
(rowSum (S))2 + rowSum (S ⊙ S)

)
/2

sum(S̊) → sum
(
rowSum

(
S̊
))

Part 2: X̊1: This part is factorizable; rewrite it like X1:

rowSum(X̊1) → K1

(
(rowSum(R1))

2 + rowSum(R1 ⊙ R1)
)
/2

colSum(X̊1) → colSum(K1)R̊1

sum(X̊1) → colSum (K1) rowSum(R̊1)

Part 3: S ⊗ X1: This part is also factorizable, in addition

to pushing down aggregation through joins. Note how the

aggregation of the cross-interaction becomes a Hadamard

product over partial aggregations.

rowSum(S ⊗ X1) → rowSum(S) ⊙ (K1rowSum(R1))

colSum(S ⊗ X1) → colSum
((
KT

1
S
)
⊗ R1

)
sum(S ⊗ X1) → colSum

(
rowSum(KT

1
S) ⊙ (rowSum(R1))

)
Using the above, the full rewrite rules can be easily derived

and skipped here due to space limit.

4.6 Crossprod

Crossprod of T , which is TTT (aka Gramian), arises in least

squares linear regression and other ML techniques. Its run-

time is expensive–O(nd2), which becomes O(nd4) with qua-

dratic interactions. Due to space constraints, we skip its

tedious Morpheus rewrite rule.

With Interactions.The goal is to compute crossprod(inter (T))
= inter (T)T inter (T). We need to carefully handle the double

redundancy in self-interactions and cross-interactions. We

create the following novel multi-part rewrite rule, wherein

cp stands for crossprod .

P1 = R̂T
1
(KT

1
Ŝ) ; P2 = R̂

′T
1
Ŝ = (ŜT R̂

′

1
)T

P3 = R̂
′T
1
(K1R̂1) = (R̂

T
1
(KT

1
(S ⊗ X1)))

T =
(
R̂T

1

((
KT

1
S
)
⊗ R1

))T
Q = (diaд(colSums(K)))

1

2 R̂1 ;

cp(R̂′
1
) = cp(S ⊗ (K1R1)) = reshape

(
(R1 ⊗ R1)

T
(
KT

1
(S ⊗ S)

))
where “reshape” is an operator used to change the shape of

a matrix as well as reorder the elements within it. We leave

it to the appendix due to space limit.

Overall, the rewritten expression for cp(inter (T)) is:
cp(Ŝ) PT

1
PT

2

P1 cp(Q) PT
3

P2 P3 cp(R̂
′

1
)


P2 can be factorized using the rewrite rules for RMM as pre-

sented earlier. Here the most challenging part is to compute

cp(R̂′
1
) without materializing R̂′

1
. The key insight is that we

can pre-aggregate the rows in S based on K1 to avoid O(d2)

many innner-product of vectors with length nS . Instead, the
rewrite rule only asks for O(d2

S) many such inner-product.

4.7 Matrix Pseudo-Inverse

The rewrite rule pseudo-inverse in our framework is identical

to that of Morpheus, since the structure of this operation is

not affected by feature interactions.

5 ANALYSIS AND EXTENSIONS

We now formally analyze the runtime complexity of our

rewritten LA operations. We then extend our framework to

star schema multi-table joins. Finally, we discuss the runtime

trade-offs of our rewrite rules and explain why crossovers

with materialized execution can arise. Due to space con-

straints, the formal proofs of correctness for LMM and RMM

rewrite rules are given in the Appendix.

5.1 Runtime Complexity Analysis

Table 2 summarizes the runtime complexity comparison.

Since we want to know how much computational redun-

dancy has been avoided in terms of the number of FLOPS

(for floating point adds and multiplies), we skip the big O

notation. Instead, we express the proportional dependency of

the arithmetic computation cost (FLOPS), on the data size pa-

rameters. Recall that S has shape nS ×dS , while R1 has shape

n1 × d1. Also, d = dS + d1, while after quadratic interaction,

the number of features goes up to 2d +
(d

2

)
.

5.2 Extension to Star Schema

Star schemas are common. For example, in a recommenda-

tion system like Netflix, one often joins the fact table with

ratings with at least 2 dimension tables: user and movie

details. Having more than one dimension tables compli-

cates feature interactions, especially across said tables. We

explain how our rewrite rules generalize to a 3-table star

schema with 1 fact table S and 2 dimension tables R1 and

R2. It is straightforward to extend to more multiple dimen-

sion tables, and we have implemented them in MorpheusFI.

But we skip showing the most general forms for exposi-

tion sake, since they are tedious. Similarly, we omit the per-

mutation matrix for exposition sake. Formally, T has the

schema T(Y , [XS ,X1,X2]). The base table feature matrices

Operator Materialized Our Framework

Scaling Op nS f (d) 1 (lazy)

LMM

dW nS (f (ds)+
f (d1) + dSd1)

dW (nS f (dS) + n1 f (d1)

+ n1d1dS + nSdS)

RMM

nW nS (f (dS)+
f (d1) + dSdR)

nW (nS f (dS) + n1 f (d1)

+ 2nSd1 + n1d1dS)

sum nS f (d) 4(nSdS + n1d1)

crossprod
1

2
nS f (dS + d1)

2
nS f (ds)

2 + 2n1 f (d1)
2+

n1 f (dS)f (d1) + n1(dSd1)
2

Table 2: Arithmetic computation costs (time complex-

ity). We denote f (x) = 2x +
(x

2

)
.

are S , R1, and R2, while the foreign key indicator matrices

are K1 and K2. Thus, modulo a column permutation, we have

inter (T) = [S, S̊, S ⊗X1, S ⊗X2,X1, X̊1,X2, X̊2,X1 ⊗X2], Note

that X1 = K1R1 and X2 = K2R2.

We see a new component:X1⊗X2, cross-interaction across

dimension tables. The technical novelty of this extension is in

carefully avoiding double redundancy for this component. The

other components area handled as explained in Section 4. We

skip scalar operations for brevity sake, since their behavior is

similar to the 2-table join case. Other LA operators, however,

require novel rewrite rules to factorize X1 ⊗ X2.

5.2.1 LMM. Denote the chunk ofW that multiplies with

X1⊗X2 asW12; its shape isd1d2×dW . To handle (X1⊗X2)W12,

we first computeX1 = K1R1, and then use the similar rewrite

in LMM for 2-table joins. More precisely,

(X1 ⊗ X2)W12 →[
rowSum

(
M (1) ⊙ X1

)
, · · · , rowSum

(
M (dW) ⊙ X1

)]
where

[
M (1), · · · ,M (dW)

]
≜ K2

©­­­«[R2,R2, · · · ,R2]︸ ︷︷ ︸
d1

W12

ª®®®¬.
Note that changing the ordering of X1,X2 gives a different

rewrite rules (by exchaning 1 and 2). Therefore, it becomes an

interesting question of how to order the attribute tables. We

leave a detailed discussion to Section 5.3. Given the above

rewrite rule, the full rewrite rule for LMM can be easily

obtained and skipped here due to space limit.

5.2.2 RMM. Similar to LMM, the key novelty is in han-

dlingW (X1 ⊗ X2). We first fix X1 and then we have:

W (X1 ⊗ X2) →[
colSum

(
M (1) ⊗ R2

)
; · · · ; colSum

(
M (dW) ⊗ R2

)]
where

[
M (1),M (2), · · · ,M (dW)

]
≜ KT

2

(
W T ⊗ (K1R1)

)
and each

M (i) has d1 columns.

Note that similar to LMM, if we change the order ofX1,X2,

we will have another rewrite rule.

5.2.3 Aggregation. As in Section 4.5, the X1 ⊗ X2 part

is not just factorizable but also amenable to push down of

aggregation through interactions. Indeed, aggregation of

cross-interaction becomes a Hadamard product of partial

aggregations, avoiding computational redundancy further.

rowSum(X1 ⊗ X2) → K1rowSum(R1) ⊙ K2rowSum(R2)

colSum(X1 ⊗ X2) → colSum(K1)R1 ⊗ colSum(K2)R2

sum(X1 ⊗ X2) → sum(K1rowSum(R1) ⊙ K2rowSum(R2))

Due to space constraints, we present the overall rewrite

rules for aggregations of inter(T), as well as the rewrite rule
for crossprd in the Appendix.

5.3 Performance Trade-offs and

Crossovers

Prior work on factorized LA showed that the rewritten fac-

torized approach will not always be faster than materialized

execution. As in relational query optimization, there are

performance trade-offs based on the data sizes, leading to

crossovers in runtime trends between alternate plans. In

particular, [16] showed that two quantities are critical to

quantify these trade-offs: tuple ratio and feature ratio. For a

2-table join, the tuple ratio is nS/n1; feature ratio is d1/dS .
If the feature ratio is high (say, > 1) and tuple ratio is also

high (say, > 5), the efficiency gains of factorized LA will be

significant. Otherwise, materialized execution is compara-

ble or even slightly faster due to the overheads of extra LA

operations introduced by the rewrite rules [6].

The above trade-offs matter in our setting too, but an

additional factor also matters: sparsity (fraction of non-zero

entries). Sparse matrices are common in ML applications,

since categorical features are usually “one-hot” encoded to

get long 0/1 vectors, especially for linear models. In our

customer churn example, country is a categorical feature

(with say, 200 unique values) that will be recoded to a 200-D

vector with exactly one feature being 1 (rest are 0). Sparse

matrix representation avoids storing zeros by storing only

triples of row-column-value for non-zeros.

Sparse Feature Interaction Trade-offs. Given the above,

crucial observation is this: quadratic interactions amplify

sparsity quadratically. For instance, if we have a matrix

M with sparsity e , the sparsity of materialized inter(M) is
roughly e2

. But in our framework’s rewrite rules, we create

many dense intermediate tables. For instance, in the rewrite

rule for LMM in Section 4.3, rewriting (S ⊗ X1)W creates

dense intermediates R′
1
andM . Thus, if the base tables’ ma-

trices are too sparse, factorized interactions might be more

expensive than materialized execution. More precisely, con-

sider only the cross-interaction between S and R1 in the

LMM example of Figure 2. Suppose both S and R1 have a

sparsity of e . Materialized execution (A in the figure) costs

nSdSd1e
2
, while our rewrite rule costs n1d1dSe + nSdSe . The

speedup is nSdSd1e
2/(n1d1dSe +nSdSe), which can be < 1, if

e is very small (< 5%). But if e is large or just equal to 100%

(i.e., the base table matrices are dense), the speedups could

be reasonable or even substantial.

Heuristic Decision Rule. To deal with the sparsity-related

trade-offs in addition to the feature and tuple ratios, we

propose a simple conservative heuristic decision rule to pre-

dict if our rewritten approach is likely to be significantly

faster. This could help users decide for their dataset instance

whether to use our tool; it can also be integrated into an

“automated optimizer” for a higher-level ML system. Our

decision rule is derived from the above cost ratio calculation

for LMM. Assume all base table matrices have sparsity e .
Ignore nSdSe in the denominator. The ratio gets simplified to

roughly
nS
n1

e . Our decision rule then is as follows: If
nS
n1

e > 1,

use the factorized interaction rewrite rule. We can also ex-

tend this decision rule to multi-table joins. In general, the

more dimension tables we have that satisfy the above rule,

the more likely it is that the factorized interaction approach

will be faster. Note that even if one base table matrix is dense

(or almost dense), all cross-interactions with it will likely

become dense. With this intuition, we extend our decision

rule as follows. Let p be the number of base tables. Let q be

the number of dimension tables that are “sparse” (sparsity

< 5%). Let ei denote the sparsity of Ri . Our decision rule is

as follows (empirically validated in Section 6).

Rule. Use our factorized interaction framework if and only

if one of the following two conditions hold:

q <
⌊ p

2

⌋
, or q ≥

⌊ p
2

⌋
and ∀i ∈ 1 to q, ei

nS
ni
> 1.

Ordering of Dimension Tables. As mentioned in Section

5.2.1, the ordering among dimension tables matters for per-

formance in our framework. Recall that the LMM rewrite

rule multiples R1 with d2 chunks ofW , yielding R′
1
of shape

n1 × d2dW . Had we swapped R1 for R2 in this ordering, the

shape of the intermediate matrix will be n2 × d1dW instead.

Clearly, the relative sizes of Ri matter for ordering. We now

formally analyze what ordering is likely to be most beneficial.

We use LMM as our prototypical LA operator to understand

this trade-off more deeply. Let the sparsity of R1 and R2 be

e1 and e2, respectively. The cost ratio relative to material-

ized execution of our factorized rewrite rule for the X1 ⊗ X2

component is as follows:

nSd1d2e1e2

e1n1d1d2 + nSd2e2

=
nSe1e2

e1n1 +
nS
dR
e2

=
1

1

e2

nS
n

1

+ 1

d1e1

Thus, the smaller the values of
1

e2

nS
n

1

and
1

d1e1

, the larger the

speedup for this cross-interaction across dimension tables.

This observation suggests a simple heuristic ordering rule

for dimension tables. Given a pair of dimension tables Ri
and R j , Ri should go before R j for the rewrite rules if the
following holds. If there are ties in the global ordering based

on conflicts between such local pairwise orderings, we can

break the ties randomly.

1

ej
nS
nRi

+
1

dRi ei
<

1

ei
nS
nRj

+
1

dRjej

6 EXPERIMENTAL EVALUATION

We prototype our framework in PyTorch to create a tool

we call MorpheusFI. We briefly explain its implementation

and then present an extensive empirical evaluation of its

performance on various synthetic and real-world datasets.

We seek to answer three questions. (1) How do our rewrites

affect runtimes of various LA operators and LA-based ML

algorithms? (2) Is our characterization of the runtime trade-

offs accurate? (3) How do the runtimes and accuracy of the

ML algorithms on real data in MorpheusFI compare with

the alternatives?

Implementation of MorpheusFI. We implement our in-

teracted normalized matrix as a Python class using NumPy’s

ndarray and SciPy’s COO sparse matrix. We integrate it with

the popular ML package PyTorch to exploit pre-existing gra-

dient methods. Our class supports a star schema. Every LA

operator is overloaded for our class. As in Morpheus, trans-

posed LA operations are handled using the regular rewrite

rules with a double transpose. A flag in our class records if

it is transposed. Scalar operators are cached for lazy evalua-

tion. Another flag lets the user indicate if foreign key features

should be used. As mentioned in Section 4.1, our class has

a copy of S an Ri along with the self-interactions S̊ and R̊1,

but it does not physically store the denormalized versions or

cross-interactions (to avoid redundancy). A user can load a

star schema dataset as CSV files using a simple file reading

API. Given an LA-based ML algorithm, MorpheusFI invokes

our rewrite rules for each LA operation in that algorithm

automatically under the covers. Due to space constraints, we

defer examples of such automatically factorized interactions

to the appendix: logistic regression and linear SVM with gra-

dient descent and ordinary least squares linear regression.

Synthetic Data. We generate data of various shapes in

NumPy to analyze runtimes in depth. We focus primarily on

a 2-table join. We set n1 = 10
5
and dS = 20 and vary the tuple

ratio
nS
n1

and feature ratio
d1

dS
to set nS and d1. All matrices

are dense except for the sparsity experiment.

Real-world Datasets. We use the 7 real-world star schema

datasets from [17]. Each dataset has at least 2 dimension

Dataset (nS , dS)
S

Sparsity

(ni , di)
Ri

Sparsity

Walmart (421570, 81) 0.0123

(2340, 9)

(45, 4)

0.9951

0.5000

Yelp (215879,0) NA

(11537, 111)

(43873, 7)

0.2883

0.8571

Movie (1000209,0) NA

(6040, 3463)

(3706, 120)

0.0012

0.1750

Expedia (942142, 6) 0.8771

(37021, 3205)

(11939, 43)

0.0044

0.1860

LastFM (343747,0) NA

(4999, 12)

(50000, 229)

0.5833

0.0175

Books (253120,0) NA

(27876, 140)

(49972, 3662)

0.0143

0.0011

Flights (66548, 20) 1.0

(540, 178)

(3182, 3301)

(3182, 3301)

0.0281

0.0018

0.0018

Table 3: Shapes and sparsity of the tables in the real-

world datasets. "NA" means S is empty in that dataset.

tables. Some of the datasets have no features in the fact ta-

ble, in which case S is empty. We pre-processed all datasets

as per standard ML practice: drop primary keys in fact ta-

bles, “whiten” all numeric features (subtract mean and divide

by standard deviation), and convert all categorical features

with one-hot encoding. For binary classification with logistic

regression and linear SVM, we binarized all targets to 0/1

values for the former and 1/-1 for the latter. Overall, many

tables’ matrices become very sparse. Overall, the shapes and

sparsity of the tables’ matrices are listed in Table 3.

Experimental Setup and Protocol. All experiments were

run on CloudLab [7]. The machine had 2 Intel E5-2660 v2

10-core CPUs, 256 GB RAM and 2 TB disk. The OS was

Ubuntu 16.04 LTS. We used Python 2.7, NumPy 1.13, SciPy

1.1, PyTorch 0.4.0, and gcc 5.4.0 20160609. For the baseline

comparison with Morpheus, we use MorpheusPy [19], which

implements factorized LA in Python NumPy. The Material-

ized execution plan uses the single-table matrix T , which is

pre-materialized by joining the base tables in Python. We

exclude this materialization in our results (note this favors

Materialized). We exclude all data pre-processing times for

the real datasets, as well as all data loading times for all com-

pared tools to let us focus on LA/ML computations times.

All runtimes reported are averages of three runs.

6.1 Results on Synthetic Data

6.1.1 LA Operators. We first compare the relative run-

times of MorpheusFI againstMaterialized for 3 time-intensive

LA operators: LMM, RMM, and crossprod . Figure 3 presents
the results.We see thatMorpheusFI achieves higher speedups

for higher feature and tuple ratios on all operators, which

0 5 10 15 20

1

2

3

4

0 5 10 15 20

1

2

3

4

0 5 10 15 20

1

2

3

4

speedup < 1 1 <= speedup < 2 2 <= speedup < 3 speedup >= 3

Tuple Ratio Tuple Ratio Tuple Ratio

Fe
at

ur
e

R
at

io

Fe
at

ur
e

R
at

io

Fe
at

ur
e

R
at

io

LMM RMM Crossprod

Figure 3: Relative runtimes of MorpheusFI against Materialized for major LA operators on synthetic data.

0 5 10 15 20

1

2

3

4

0 5 10 15 20

1

2

3

4

speedup < 1 1 <= speedup < 2 2 <= speedup < 3 speedup >= 3

Tuple Ratio Tuple Ratio

Fe
at

ur
e

R
at

io

Fe
at

ur
e

R
at

io

Linear SVM Logistic Regression

Figure 4: Relative runtimes of MorpheusFI against

Materialized for LA-basedML algorithms on synthetic

data.

is consistent with past results for regular factorized LA. For

LMM, the speedups grow with the feature ratio even for a

tuple ratio of just 10. But for crossprod , MorpheusFI is faster

only at much higher tuple and feature ratios. This is because

the fraction of the time spent on the factorized portion gets

reduced with feature interactions–recall that S̊ has no re-

dundancy. The trends for RMM are in between because its

overheads are more substantial than LMM.

6.1.2 LA-based ML Algorithms. We now compare the

relative runtimes for end-to-end training of LA-based ML

algorithms. We study 2 popular classifiers for which feature

interactions are widely used: linear SVM and logistic regres-

sion. The automatically factorized interaction versions of

both algorithms are shown in the appendix. Figure 4 presents

the results. We see that the trends for linear SVM resemble

that of LMM. This is expected because LMM is the dominant

LA operator in that algorithm. In contrast, the trends for

logistic regression look like a hybrid of LMM and RMM; this

is because both of these operators arise in this algorithm.

Overall, MorpheusFI yields speedups for both LA-based ML

algorithms commensurate with the amount of redundancy

in the data, as captured by the tuple and feature ratios.

6.1.3 Effects of Sparsity. As explained in Section 5.3,

sparsity is a key factor for the runtime trade-offs of Mor-

pheusFI. To understand these trade-offs quantitatively, we

synthesize data for a 3-table join. All Ri have the same shape.

We set n1 = n2 = 10
5
, dS = 20, both tuple ratios to 20, and

both feature ratios to 4. We study various sparsity regimes:

only R1 is sparse, both R1 and R2 are sparse, etc., with the

same sparsity used for all sparse tables. We plot the runtimes

0 0.5 1

−1

−0.5

0

0 0.5 1

−1.5

−1

−0.5

0

0 0.5 1

−0.5

0

0.5

0 0.5 1
−1.5

−1

−0.5

0

0.5

Materialized
MorpheusPy
MorpheusFI(ours)

Sparsity Sparsity

Sparsity Sparsity

R
un

ti
m

e
co

st
 (

lo
g1

0)

R
un

ti
m

e
co

st
 (

lo
g1

0)

R
un

ti
m

e
co

st
 (

lo
g1

0)

R
un

ti
m

e
co

st
 (

lo
g1

0)

LMM, q=1, p=3 LMM, q=2, p=3

RMM, q=1, p=3 RMM, q=2, p=3

Figure 5: Effect of sparsity on LMM and RMM. p is the

number of joined tables and q is the number of dimen-

sion tables that are sparse; their sparsity factor is var-

ied on the x axis.

of LMM and RMM in regime for varying sparsity. Figure 5

shows the runtimes for 2 regimes comparing MorpheusFI,

Materialized, and MorpheusPy. Other regimes yielded sim-

ilar insights; we defer them to the appendix due to space

constraints.

Overall, we see that factorized interactions inMorpheusFI

can be even an order of magnitude faster than both Materi-

alized and MorpheusPy as the sparsity factor goes to 1 (i.e.,

the dimension tables become dense). As expected, the gaps

are larger when only 1 dimension table is sparse (q = 1) com-

pared to both being sparse, which validates our explanation

of the trade-offs in Section 5.3. Interestingly, when q = 1,

MorpheusFI is always faster regardless of the sparsity factor,

i.e., there are no crossovers. But for q = 2, we see crossovers

below a sparsity factor of 0.05, wherein both Materialized

and MorpheusPy become (slightly) faster. These results jus-

tify our heuristic decision rule that also considers sparsity

for predicting when using MorpheusFI might actually be

beneficial.

6.2 Results on Real-world Datasets

We now present the runtime and accuracy results for logis-

tic regression and linear SVM with feature interactions on

Dataset

Batches Seen Validation Accuracy Time to Convergence (sec) Speedup of MFI over:

Adam LBFGS Adam LBFGS Adam

LBFGS

(MFI)

LBFGS

(Mor)

LBFGS

(Mat)

Adam

LBFGS

(Mor)

LBFGS

(Mat)

Walmart 6727 87 0.9287 0.9336 13.72 9.2 12.2 29.2 1.5 1.3 3.2

Yelp 1080 50 0.7595 0.7601 23.98 16.1 26.4 75.7 1.5 1.6 4.7

Movie 5040 116 0.6830 0.6840 398.39 108.4 137.9 314.3 3.7 1.3 2.9

Expedia 7467 80 0.7685 0.7629 671.15 118.3 176.4 267.5 5.7 1.5 2.3

LastFM 5244 39 0.6845 0.6786 31.53 8.4 5.6 10.7 3.7 0.7 1.3

Books 525 48 0.5999 0.6005 50.94 32.8 20.0 19.4 1.6 0.6 0.6

Flights 3751 167 0.8360 0.8560 1099.35 441.6 272.2 271.3 2.5 0.6 0.6

Table 4: End-to-end training results of logistic regression with feature interactions. "MFI" is MorpheusFI. "Mor"

is MorpheusPy. "Mat" is Materialized. NB: MorpheusFI, MorpheusPy, and Materialized have the same LBFGS

accuracy.

Dataset

Batches Seen Validation Accuracy Time to Convergence (sec) Speedup of MFI over:

Adam LBFGS Adam LBFGS Adam

LBFGS

(MFI)

LBFGS

(Mor)

LBFGS

(Mat)

Adam

LBFGS

(Mor)

LBFGS

(Mat)

Walmart 48447 166 0.9257 0.9284 102.5 16.7 23.0 55.1 6.1 1.4 3.3

Yelp 3352 112 0.7571 0.7490 76.0 34.4 57.0 168.3 2.2 1.7 4.9

Movie 10220 196 0.6774 0.6313 989.7 193.6 216.4 673.0 4.7 1.1 3.5

Expedia 16726 36 0.7557 0.7338 1760.0 48.8 84.8 129.2 36.1 1.7 2.6

LastFM 18612 84 0.6634 0.6783 113.6 17.2 10.5 21.3 6.6 0.6 1.2

Books 2484 84 0.5940 0.5905 295.8 58.9 38.8 38.4 5.0 0.7 0.7

Flights 2285 311 0.8395 0.8617 651.2 705.9 557.0 563.4 0.9 0.8 0.8

Table 5: End-to-end training results of linear SVM with feature interactions. "MFI" is MorpheusFI. "Mor" is Mor-

pheusPy. "Mat" is Materialized. NB: MorpheusFI, MorpheusPy, and Materialized have the same LBFGS accuracy.

0 2 4 6 8 10

0.1

0.2

0.3

0.4

0 10 20 30 40 50 60
0.24

0.26

0.28

0.3

0.32

0 200 400 600 800 1000
0.3

0.35

0.4

LBFGS Materialized LBFGS MorpheusFI(ours) Adam LBFGS MorpheusPy

Runtime (second) Runtime (second) Runtime (second)

Va
lid

at
io

n
er

ro
r

Va
lid

at
io

n
er

ro
r

Va
lid

at
io

n
er

ro
r

Walmart Yelp Movie

Figure 6: Convergence behavior of logistic regression validation error over wall-clock runtime of training for 3

real-world datasets. For LBFGS, errors are computed after every epoch. For Adam, errors are computed after every

mini-batch. Note that the time to compute the errors is exclude from the runtime.

the real data. We use the LBFGS optimization procedure,

which has a similar data access pattern as BGD. Since Py-

Torch already implements LBFGS, we just overloaded the

Autograd function of PyTorch to compute “forward” (loss)

and “backward” (gradient) passes. We use PyTorch’s native

SparseTensor for LA operators. We compare 4 approaches:

LBFGS+MorpheusFI, LBFGS+MorpheusPy, LBFGS+Materialized,

and Adam, a popular SGD procedure [14]. Since SGD is not

expressible with bulk LA operators (it needs mini-batch sam-

pling), Adam uses the pre-materialized T . We prepare all

mini-batches beforehand and store them in memory; this

pre-processing time is excluded from the results (this could

favor Adam).

MLMethodology.We follow standard ML training method-

ology [10]. The datasets are pre-split into train-validation-

test sets. We use L2 regularization and tune two hyper-

parameters: regularizer (λ) and initial stepsize (α) using a

standard grid search: α ∈ {1, 0.5, 0.25, 0.1, 0.05, 0.01, 0.005,
0.001, 0.0005, 0.0001, 0.00001} and λ ∈ {1, 0.5, 0.1, 0.05, 0.01}.

Other hyper-parameters used default PyTorch values (batch

size 50 for Adam and 20 cached gradients for LBFGS). All

models are trained till convergence, defined as follows per

standard practice. Compute the moving average of the valida-

tion error for the last 5 iterations. If it drops by < 0.01%, stop.

An “iteration” for LFBGS is a full pass over the data; forAdam,

it is a mini-batch pass. So, Adam can converge even “within”

an epoch. Note that the moving average helps smooth over

the noisy convergence behavior of SGD/Adam. We exclude

the time to compute validation errors for all approaches.

Heuristic Decision Rule Predictions.We first check if we

can even expect MorpheusFI to be faster than Materialized

using our heuristic decision rule from Section 5.3. Note that

this check only applies to the LBFGS-based approaches and

relates only to per-epoch runtimes. It is not possible to pre-

dict time to convergence. Based on the values of the ratios

and sparsity listed in Table 3, the predictions of our deci-

sion rule are as follows: “Yes” for 5 of 7 datasets: Walmart,

Yelp, Movies, Expedia, and LastFM, and “No” for the other 2

datasets: Books and Flights. In other words, we can expect

MorpheusFI to be (slightly) slower than Materialized for

Books and Flights in terms of per-epoch runtimes. For com-

pleteness sake, we still run our runtime-accuracy experiment

for all 7 datasets to verify which predictions hold true.

6.2.1 Results: Runtimes. Table 4 and Table 5 present

the runtimes till convergence and validation accuracy at

convergence for the chosen hyper-parameters. We first focus

on the runtimes and see three main takeaways:

First, MorpheusFI with LBFGS is significantly faster than

the other approaches for many datasets on both ML models:

up to 36.1× faster than Adam, up to 4.9× faster than Mate-

rialized, and up to 1.7× faster than MorpheusPy. While the

speedup against MorpheusPy is relatively lower, this is an

artifact of all the real datasets being very sparse. Recall from

Figure 5 that for denser data, MorpheusFI can be even faster.

Second, while MorpheusFI is substantially faster than

Adam for almost all datasets across both models, Material-

ized was interestingly slower than Adam in some cases (e.g.,

logistic regression onWalmart). This meansMorpheusFI can

actually swap the relative performance trend between SGD

and batch gradient methods for multi-table data by avoiding

computational redundancy for LA operations.

Third, our heuristic decision rule correctly predicted that

MorpheusFI is likely to be slower than Materialized on

Books and Flights. This slowdown, albeit minor (< 2×) is

seen on both models. Thus, practitioners can easily apply our

decision rule to check beforehand if MorpheusFI is likely to

benefit them compared to Materialized or MorpheusPy. In-

terestingly, except for linear SVM on Flights, MorpheusFI is

still faster than Adam in all these cases.

6.2.2 Results: Accuracy andConvergenceBehavior.
To understand the convergence behavior, Table 4 and Table 5

also report the number of batches/iterations seen till con-

vergence. Note that a batch for LBFGS is the full dataset,

but for Adam, it is a mini-batch. Figure 6 also shows the

learning curves of validation errors (1− accuracy) over time

for logistic regression on 3 datasets for more intuition (due

p=0.9999 p=0.999 p=0.99 p=0.9
0
1
2
3
4
5
6
7
8
9

p=0.9999 p=0.999 p=0.99 p=0.9
0

0.2

0.4

0.6

0.8

1

accuracy MFI over Mor MFI over Mat

S
pe

ed
up

C
on

ve
rg

en
ce

 a
cc

ur
ac

y

Movie Flights

Figure 7: LR speedups and accuracies after feature se-

lections on Movie and Flights

to space constraints, the plots for the other datasets are in

the Appendix). We see two main takeaways.

First, the accuracy of LBFGS and Adam are mostly simi-

lar for almost all datasets and both models. In a couple of

cases, LBFGS has slightly more accuracy (both models on

Flights), while there is one case where Adam has slightly

more accuracy (linear SVM on Movie). Given that accu-

racy is similar, time to convergence (previous subsection)

and convergence behavior are crucial. On that count, Mor-

pheusFI with LBFGS is substantially faster than Adam, while

still yielding similar accuracy. Second, the learning curves

of LBFGS with the three tools–MorpheusFI, Materialized,

and MorpheusPy– exhibits interesting differences, especially

when contrasted with Adam (Figure 6). On Walmart, Adam

reduces errors quickly initially but then slows down. Mor-

pheusFI with LBFGS catches up and eventually converges

earlier. On Movie, however, Adam exhibits rather noisy be-

havior, leading to all 3 LBFGS approaches converge earlier.

But the most interesting case is Yelp. While Adam converges

earlier than both Materialized and MorpheusPy, the faster

per-epoch efficiency of MorpheusFI (due to our factorized

interaction rewrite rules) inverts the trend for LBFGS and

converges earlier than Adam.

6.2.3 Results: Runtimes and Sparsity. As mentioned

before, the real datasets all have sparse features, resulting in

relatively lower speedups for MorpheusFI over MorpheusPy.

To understand if this gap increase if the featureswere densers,

we include this experiment. We perform an unsupervised

feature subset selection on real datasets to reduce sparsity;

we filtered out features in dimension tables that do not meet

a certain variance threshold; the threshold is p(1 − p) and p
was varied. Table 6 in the appendix depicts the new reduced

dimensions of all tables. Figure 7 comparesMorpheusFI with

Morpheus on this modified Movie and Flights for logistic re-

gression with LBFGS; other datasets are shown in the appen-

dix due to space constraints. We have two main takeaways:

First, MorpheusFI now reports higher speedups over Mor-

pheus on these denser features, as predicted. In fact, the

speedup over Materialized goes up even further. for instance,

on Movie, MorpheusFI now reports 9× speedup over Ma-

terialized and 3× speedup over MorpheusPy. We also note

an interesting reversal of trend on Flights: MorpheusFI was

slower than MorpheusPy and Materialized in Tables 4 and 5,

but it is now 2× faster than both MorpheusPy and Material-

ized. Second, the accuracy is reduced slightly even as feature

selection reduced runtimes across the board. This is because

accuracy is tied to the richness of the features used, and our

low-variance thresholding reduces this richness. This is a

classical runtime-accuracy trade-off due to feature subset

selection, and data scientists can pick an operating point

based on their application-specific constraints.

6.3 Summary and Discussion

Our results show that MorpheusFI can offer substantial

speedups for LA operators and LA-based linear ML algo-

rithms over normalized data with non-linear feature inter-

actions. In some corner cases, predictable with our decision

rule, materialized execution is slightly faster. Our work gen-

eralizes factorized LA along a novel direction and studies

hitherto unknown trade-off spaces for ML runtime efficiency.

By avoiding materialization of both join and feature interac-

tions, our work reduces memory and storage requirements.

As ML analytics increasingly move to the cloud, such mem-

ory and runtimes savings can translate to monetary cost

savings. While our prototype used PyTorch, our ideas are

generic and applicable to other LA frameworks such as Ten-

sorFlow or R as well.

7 RELATEDWORK

Factorized ML. Our work generalizes the recent line of

work on optimizing ML over multi-table data [6, 15, 16,

21, 25, 27]. Most of these works focus on specific ML al-

gorithms or are dependent on specific systems/platforms

(e.g., RDBMS). For instance, [21, 27] focus only on linear

regression, while [25] focus on a recommendation algorithm

called “factorization machine,” and [15] studied in-RDBMS

factorized ML. Morpheus [6, 19] is the closest to our work in

that it decouples LA operators fromML algorithms or system

platforms and created a general factorized LA framework.

The novelty of our work is that we support and optimize

quadratic feature interactions within such a factorized LA

setting. Our framework of rewrite rules are novel in tack-

ling the unique double redundancy caused by the interplay

of joins and feature interactions. So, our work expands the

benefits of factorized ML/LA idea to a larger set of use cases.

LA Systems. There is much prior work on LA systems [3–

5, 9, 22, 23, 25, 29, 30, 32]. Some systems build LA opera-

tions on top of RDBMSs or dataflow systems, including Sys-

temML [4, 5, 32], RIOT [32], and SimSQL [20]. In particular,

SystemML has extensive logical and physical optimizations

for LA workloads [8, 9]. All these systems are complementary

to our work, since none of them focus on multi-table data

or address non-LA operations such as feature interactions.

It is possible to integrate our framework with any of these

scalable LA systems, which we leave for future work. An-

other lines of work aims to optimize physical layout and

compression of matrices. For instance, TileDB [22] employs

fragments to manage random rewrites for array data, while

SciDB [29] also does blocked array management. These sys-

tems support only a limited set of LA operators and do not

target ML workloads. A bevy of recent deep learning tools

also support LA operators: TensorFlow [3], PyTorch [23],

SINGA [31], etc. None of them focus on multi-table data or

optimizing feature interactions. They are also orthogonal to

our focus on logical rewrite rules; our framework can be

integrated such tools, as our prototype with PyTorch shows.

Cross-Algebra Optimization. Some recent works [11, 13]

combine relational algebra (RA) and linear algebra (LA) for

cross-algebra optimization. For instance, TensorDB [13] pushes

tensor decomposition through joins and unions. LaraDB [11]

proposes a minimal logical abstraction, called associative

table, to combine LA and RA. With three basic operators,

it captures many functionalities of both RA and LA. Such

cross-algebra approaches and their optimizations are com-

plementary to our focus on non-linear feature interactions

in a factorized LA setting. It is interesting future work to

integrate our ideas with such approaches without losing the

efficiency gains we see in an LA setting.

8 CONCLUSION AND FUTUREWORK

Factorized ML techniques accelerate ML over multi-table

data but have hitherto been restricted to ML algorithms

expressible with only linear data transformations. We fun-

damentally extend this paradigm to support a popular non-

linear data transformation: quadratic feature interactions.

With a new abstraction and an extensive framework of novel

algebraic rewrite rules, our work exploits the peculiar dou-

ble redundancy caused by the interplay of joins with feature

interactions. Our tool, MorpheusFI, offers substantial effi-

ciency gains over approaches that ignore such redundancy.

As integration of ML with data management receives more

attention, our work shows the benefits of looking beyond

LA-only or RA-only algebraic formalisms to optimize end-to-

end ML workflows more holistically. As for future work, we

plan to support more complex LA operations and integrate

our framework with distributed LA systems.

ACKNOWLEDGMENTS

This work was supported in part by a Hellman Fellowship,

Google PhD Fellowship, and Faculty Research Awards from

Google and Opera Solutions. We thank the members of UC

San Diego’s Database Lab for their feedback on this work.

REFERENCES

[1] Kaggle Survey: The State of Data Science and Machine Learning. https:

//www.kaggle.com/surveys/2017.

[2] Scikit-learn Preprocessing: Polynomial Features.

[3] Abadi, M., et al. Tensorflow: A system for large-scale machine

learning. In 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16) (2016), pp. 265–283.

[4] Boehm, M., Dusenberry, M. W., Eriksson, D., Evfimievski, A. V.,

Manshadi, F. M., Pansare, N., Reinwald, B., Reiss, F. R., Sen, P.,

Surve, A. C., and Tatikonda, S. Systemml: Declarative machine

learning on spark. Proc. VLDB Endow. 9, 13 (Sept. 2016), 1425–1436.

[5] Cai, Z., Vagena, Z., Perez, L., Arumugam, S., Haas, P. J., and Jer-

maine, C. Simulation of database-valued markov chains using simsql.

In Proceedings of the 2013 ACM SIGMOD International Conference on

Management of Data (New York, NY, USA, 2013), SIGMOD ’13, ACM,

pp. 637–648.

[6] Chen, L., Kumar, A., Naughton, J., and Patel, J. M. Towards linear

algebra over normalized data. Proc. VLDB Endow. 10, 11 (Aug. 2017),

1214–1225.

[7] Eide, R. R. E., and Team, C. Introducing CloudLab: Scientific infras-

tructure for advancing cloud architectures and applications. ;login:the

magazine of USENIX 39, 6 (2014), 36–38.

[8] Elgamal, T., Luo, S., Boehm, M., Evfimievski, A. V., Tatikonda, S.,

Reinwald, B., and Sen, P. Spoof: Sum-product optimization and

operator fusion for large-scale machine learning. In CIDR (2017).

[9] Elgohary, A., Boehm, M., Haas, P. J., Reiss, F. R., and Reinwald,

B. Compressed linear algebra for large-scale machine learning. Proc.

VLDB Endow. 9, 12 (Aug. 2016), 960–971.

[10] Hastie, T., et al. The Elements of Statistical Learning: Data mining,

Inference, and Prediction. Springer-Verlag, 2001.

[11] Hutchison, D., Howe, B., and Suciu, D. Laradb: A minimalist kernel

for linear and relational algebra computation. In Proceedings of the 4th

ACM SIGMODWorkshop on Algorithms and Systems for MapReduce and

Beyond (New York, NY, USA, 2017), BeyondMR’17, ACM, pp. 2:1–2:10.

[12] Jones, E., Oliphant, T., Peterson, P., et al. SciPy: Open source

scientific tools for Python, 2001–.

[13] Kim,M., and Candan, K. S. Tensordb: In-database tensor manipulation

with tensor-relational query plans. In Proceedings of the 23rd ACM

International Conference on Conference on Information and Knowledge

Management (New York, NY, USA, 2014), CIKM ’14, ACM, pp. 2039–

2041.

[14] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization.

CoRR abs/1412.6980 (2014).

[15] Kumar, A., Jalal, M., Yan, B., Naughton, J., and Patel, J. M. Demon-

stration of santoku: Optimizing machine learning over normalized

data. Proc. VLDB Endow. 8, 12 (Aug. 2015), 1864–1867.

[16] Kumar, A., Naughton, J., and Patel, J. M. Learning generalized linear

models over normalized data. In Proceedings of the 2015 ACM SIGMOD

International Conference on Management of Data (New York, NY, USA,

2015), SIGMOD ’15, ACM, pp. 1969–1984.

[17] Kumar, A., Naughton, J., Patel, J. M., and Zhu, X. To join or not to

join?: Thinking twice about joins before feature selection. In Proceed-

ings of the 2016 International Conference on Management of Data (New

York, NY, USA, 2016), SIGMOD ’16, ACM, pp. 19–34.

[18] Langford, J. Vowpal Wabbit. https://github.com/JohnLangford/

vowpal_wabbit/wiki.

[19] Li, S., and Kumar, A. Morpheuspy: Factorized machine learning

with numpy. Tech. rep. https://adalabucsd.github.io/papers/TR_2018_

MorpheusPy.pdf.

[20] Luo, S., Gao, Z. J., Gubanov, M., Perez, L. L., and Jermaine, C. Scal-

able linear algebra on a relational database system. In 2017 IEEE 33rd

International Conference on Data Engineering (ICDE) (April 2017).

[21] Olteanu, D., and Schleich, M. F: Regression models over factorized

views. Proc. VLDB Endow. 9, 13 (Sept. 2016), 1573–1576.

[22] Papadopoulos, S., Datta, K., Madden, S., and Mattson, T. The

tiledb array data storage manager. Proc. VLDB Endow. 10, 4 (Nov. 2016),

349–360.

[23] Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito,

Z., Lin, Z., Desmaison, A., Antiga, L., and Lerer, A. Automatic

differentiation in pytorch. In NIPS-W (2017).

[24] R Core Team. R: A Language and Environment for Statistical Computing.

R Foundation for Statistical Computing, Vienna, Austria, 2018.

[25] Rendle, S. Scaling factorization machines to relational data. In Pro-

ceedings of the 39th international conference on Very Large Data Bases

(2013), PVLDB’13, VLDB Endowment, pp. 337–348.

[26] S.Walt, S. C. C., and Varoqaux, G. The numpy array: A structure for

efficient numerical computation. Computing in Science & Engineering

13, 2 (March 2011), 22–30.

[27] Schleich, M., Olteanu, D., and Ciucanu, R. Learning linear regres-

sion models over factorized joins. In Proceedings of the 2016 Interna-

tional Conference on Management of Data (New York, NY, USA, 2016),

SIGMOD ’16, ACM, pp. 3–18.

[28] Shalev-Shwartz, S., and Ben-David, S. Understanding Machine

Learning: From Theory to Algorithms. Cambridge University Press,

2014.

[29] Stonebraker, M., Brown, P., Poliakov, A., and Raman, S. The

architecture of scidb. In Proceedings of the 23rd International Conference

on Scientific and Statistical Database Management (Berlin, Heidelberg,

2011), SSDBM’11, Springer-Verlag, pp. 1–16.

[30] Venkataraman, S., et al. Sparkr: Scaling r programs with spark.

In Proceedings of the 2016 International Conference on Management of

Data (New York, NY, USA, 2016), SIGMOD ’16, ACM, pp. 1099–1104.

[31] Wang, W., et al. Singa: Putting deep learning in the hands of multi-

media users. In Proceedings of the 23rd ACM International Conference

on Multimedia (2015), MM ’15, ACM, pp. 25–34.

[32] Zhang, Y., Herodotou, H., and Yang, J. RIOT: i/o-efficient numerical

computing without SQL. CoRR abs/0909.1766 (2009).

A PROOFS OF REWRITE RULES

We now prove the correctness of our rewrite rules for the

cross-interaction part S ⊗ X1 of LMM, RMM and Crossprod.

For brevity sake, we focus on matrix-vector multiplication

over a 2-table join, but our proofs can be easily generalized to

matrix-matrix multiplication, and other operators, including

for multi-table joins. We first introduce some notation used

in the proofs.X [i, j] is the entry in the i th row and jth column

of matrix X . Similarly,W [i] is i th element of vectorW .

A.1 Proof for LMM

Lemma A.1. Given R1 (shape n1 ×d1), S (shape nS ×dS),W
(shape dSd1 × 1), X1 ≜ K1R1, and R′ ≜ S ⊗ (K1R1), R

′W ≜
rowSum(KR′

1
⊙ S) where R′

1
= [R1W

1, ...,R1W
dS].

Proof. To prove the lemma, we compare the first row in

the results of R′W (materialized) and rowSum(M ⊙S) (factor-
ized) interaction executions, denoted asm and f respectively.

SinceW is a vector, bothm and f are just scalars. We derive

the expressions for both to show their equivalence. Since

this line of reasoning applies directly to every row of the

respective results, the proof follows directly from this result.

https://www.kaggle.com/surveys/2017
https://www.kaggle.com/surveys/2017
https://github.com/JohnLangford/vowpal_wabbit/wiki
https://github.com/JohnLangford/vowpal_wabbit/wiki
https://adalabucsd.github.io/papers/TR_2018_MorpheusPy.pdf
https://adalabucsd.github.io/papers/TR_2018_MorpheusPy.pdf

Materialized:m =
dS∑
i=1

d1∑
j=1

S[1, i]X1[1, j]W [d1(i − 1) + j]

Factorized: We write out the intermediate matrix R′
1
:

∑d1

j=1
R1[1, j]W [j] . . .

∑d1

j=1
R1[1, j]W [d1(dS − 1) + j]

.∑d1

j=1
R1[n1, j]W [j] . . .

∑d1

j=1
R1[n1, j]W [d1(dS − 1) + j]


Note that the rewrite then computes rowSum((K1R

′
1
) ⊙ S).

Since we only need the first entry of this resultant column

vector, we only need the expression for the first row of K1R
′
1

next. Consider the i th entry of the first row (i goes from 1 to

dS):

(K1R
′
1
)[1, i] =

n1∑
l=1

K1[1, l]R
′
1
[l , i]

=

n1∑
l=1

K1[1, l]
d1∑
j=1

R1[l , j]W [d1(i − 1) + j]

We then reorder the summation over the indices as follows

(note that X1 ≜ K1R1):

(K1R
′
1
)[1, i] =

d1∑
j=1

W [d1(i − 1) + j]
n1∑
l=1

K1[1, l]R1[l , j]

=

d1∑
j=1

W [d1(i − 1) + j]X1[1, j]

Given the above, the full expression for f , which is the

first entry of rowSum((K1R
′
1
) ⊙ S), is as follows:

f =
dS∑
i=1

(K1R
′
1
)[1, i]S[1, i]

=

dS∑
i=1

d1∑
j=1

W [d1(i − 1) + j]X1[1, j]S[1, i]

=m □

We have proved the lemma. Now we prove that LMM

works end-to-end.

ŜŴS + K1R̂1ŴR + rowSum(K1R̂
′
1
⊙ Ŝ)

where R′
1
= [R̂1W

1

SR , ..., R̂1W
dS
SR]

=ŜŴS + K1R̂1ŴR + R̂
′ŴSR

=(Ŝ + K1R̂1 + R̂
′)Ŵ

=(Ŝ + K1R̂1 + Ŝ ⊗ K1R̂1)P̂W = inter (T)W

□

A.2 Proof for RMM

Lemma A.2. Given R1 (shape n1 × d1), S (shape nS × dS),
W (shape 1 × nS), X1 ≜ K1R1, and R

′ ≜ S ⊗ (K1R1),WR′ ≜
colSum(KT

1
(W T ⊗ S) ⊗ R1).

Proof. To prove the lemma, we compare the first column

in the results of materialized and factorized interaction exe-

cutions, denoted asm and f respectively. SinceW is a vector,

bothm and f are just scalars. We derive the expressions for

both to show their equivalence. As with LMM, this line of

reasoning applies to every column and so, the proof follows.

Materialized:m =
nS∑
i=1

W [i]S[i, 1]X1[i, 1]

Factorized:We write out the intermediate matrix S ′:

S ′ =


S[1, 1]W [1] . . . S[1,dS]W [1]
.

S[nS , 1]W [nS] . . . S[nS ,dS]W [nS]


Note the rewrite then computes colSum((KT

1
S ′)⊗R1). Since

we only need the first entry of this resultant row vector,

we only need the expression for the first column of KT
1
S ′.

Consider the jth entry of the first column (j = 1 to n1):

(KT
1
S ′)[j, 1] =

nS∑
i=1

KT
1
[j, i]S ′[i, 1]

=

nS∑
i=1

KT
1
[j, i]S[i, 1]W [i]

Given the above, the full expression for f , which is the

first entry of colSum(U × R1), is as follows:

f =
n1∑
j=1

(KT
1
S ′)[j, 1]R1[j, 1]

=

n1∑
j=1

nS∑
i=1

KT
1
[j, i]S[i, 1]W [i]R1[j, 1]

Reordering the sum gives the following (X1 ≜ K1R1):

f =
nS∑
i=1

S[i, 1]W [i]
n1∑
j=1

KT
1
[j, i]R1[j, 1]

=

nS∑
i=1

S[i, 1]W [i]X1[i, 1]

=m □

We have proved the lemma. Now we prove that RMM

works end-to-end.

[WŜ,WK1R̂1, colSum(K
T
1
(W T ⊗ Ŝ) ⊗ R̂1)]

=[WŜ,WK1R̂1,W (Ŝ ⊗ K1R̂1)]

=W [Ŝ,K1R̂1, Ŝ ⊗ K1R̂1] =W inter(T)

□

A.3 Proof for Crossprod

Lemma A.3. Given R1 (shape n1 ×d1), S (shape nS ×dS),W
(shape 1×nS),X1 ≜ K1R1, andR

′ ≜ S⊗(K1R1), cp(S⊗K1R1) ≜
reshape((R1 ⊗ R1)

T (KT
1
(S ⊗ S))

Proof. To prove the lemma, we compare the set of entries

(without considering the ordering of entries) in materialized

and factorized executions, denoted as m and n respectively.

Materialized:

m = {
nS∑
k=1

S[k, i]X1[k, j]S[o,a]X1[o,b] | 1 ≤ i ≤ dS ,

1 ≤ j ≤ d1, 1 ≤ a ≤ dS , 1 ≤ b ≤ d1}

Factorized: We write out the intermediate results S ′ by ag-

gregating rows in S ⊗ S with KT
1
such that S ′ = KT

1
(S ⊗ S).

As with RMM, the j-th row in S ′ is:

S ′[j, :] = KT
1
(S ⊗ S)

= [

n1∑
j=1

nS∑
i=1

KT
1
[j, i]S[i, 1]S[i, 1],

. . . ,

n1∑
j=1

nS∑
i=1

KT
1
[j, i]S[i,dS]S[i,dS]]

Performing a matrix multiplication with R1 ⊗ R1 gives:

f = {
n1∑
k=1

R1[k, i]R1[k, j]S
′[k,m] | 1 ≤ i, j ≤ d1, 1 ≤ m ≤ d2

S }

BecauseK has preaggregated rows of S ⊗S , we can expand
it in the expression as well expand R1 to X1 such that:

f = {
n1∑
k=1

R1[k, i]R1[k, j]S
′[k,m] | 1 ≤ i, j ≤ d1, 1 ≤ m ≤ d2

S }

= {

nS∑
k=1

S[k, i]S[o,a]X1[k, j]X1[o,b] | 1 ≤ i ≤ dS ,

1 ≤ j ≤ d1, 1 ≤ a ≤ dS , 1 ≤ b ≤ d1}

=m □

Without considering the order of entries in the result ma-

trices, both executions are equivalent. We apply reshape

function to modify factorized executions to align to the cor-

rect ordering. We have therefore proved the lemma. As such,

we can prove the whole crossprod works:

crossprod(inter (T)) =


cp(Ŝ) PT

1
PT

2

P1 cp(Q) PT
3

P2 P3 cp(R′)


where

P1 = R̂T
1
(KT

1
Ŝ) ; P2 = R̂

′T
1
Ŝ = (ŜT R̂

′

1
)T

P3 = R̂
′T
1
(K1R̂1) = (R̂

T
1
(KT

1
(S ⊗ X1)))

T =
(
R̂T

1

((
KT

1
S
)
⊗ R1

))T
Q = (diaд(colSums(K)))

1

2 R̂1 ;

cp(R̂′
1
) = cp(S ⊗ (K1R1)) = reshape

(
(R1 ⊗ R1)

T
(
KT

1
(S ⊗ S)

))
□

B FACTORIZED ALGORITHMS

Algorithms 1 and 2 present logistic regression, Algorithms 3

and 4 present linear SVM, and Algorithms 5 and 6 present

ordinary least squares linear regression. While we show the

simple BGD method for the classifiers for exposition sake,

LBFGS has the same data access pattern.

C MORE EXPERIMENTAL RESULTS

Figure 9 presents the convergence behavior learning curves

for logistic regression on the remaining 4 real datasets. We

skip the convergence behavior learning curves for linear

SVM here due to space constraints; they showed similar

trends. Table 6 present data dimensions after feature selec-

tions on all real-world datasets. Figure 8 shows visualized

speedups and accuracies tradeoffs on Expedia and Yelp.

p=0.9999 p=0.999 p=0.99 p=0.9
0
1
2
3
4
5
6
7
8
9

p=0.9999 p=0.999 p=0.99 p=0.9
0

0.2

0.4

0.6

0.8

1

accuracy MFI over Mor MFI over Mat

S
pe

ed
up

C
on

ve
rg

en
ce

 a
cc

ur
ac

y

Expedia Yelp

Figure 8: LR speedups and accuracies after feature se-

lections on Expedia and Yelp

Algorithm 1: Standard Logistic Regression

Data: Regular Matrix T , Y , W

for i in 1 : max_iter do
W =W + α ∗ (TT (Y/(1 + exp(TW))))

end

p=0.9999 p=0.999 p=0.99 p=0.9

Dataset (ni ,di), Ri , sparisty nnz (ni ,di), Ri , sparisty nnz (ni ,di), Ri , sparisty nnz (ni ,di), Ri , sparisty nnz

Yelp

(11537, 93) 0.3441 369166

(43873, 7) 0.8571 263238

(11537, 73) 0.4245 357531

(43873, 7) 0.8571 263238

(11537, 55) 0.5443 345398

(43873, 7) 0.8571 263238

(11537, 22) 0.7971 202307

(43873, 7) 0.8571 263238

Movie

(6040, 3463) 0.0012 24160

(3706, 120) 0.1750 77826

(6040, 109) 0.0288 18965

(3706, 112) 0.1875 77811

(6040, 23) 0.1303 18103

(3706, 59) 0.3521 76981

(6040, 6) 0.3926 14229

(3706, 11) 0.5455 22236

Expedia

(11939, 41) 0.1951 95510

(37021, 1308) 0.0106 515395

(11939, 34) 0.2352 95463

(37021, 292) 0.0467 504537

(11939, 14) 0.5664 94676

(37021, 85) 0.1536 483356

(11939, 9) 0.8629 92718

(37021, 27) 0.4202 420020

LastFM

(4999, 12) 0.5833 34993

(50000, 142) 0.0281 199816

(4999, 12) 0.5833 34993

(50000, 65) 0.0612 198770

(4999, 12) 0.5833 34993

(50000, 30) 0.1277 191589

(4999, 10) 0.6000 29994

(50000, 8) 0.3809 152375

Books

(27876, 57) 0.0350 55652

(49972, 922) 0.0042 195664

(27876, 25) 0.0795 55407

(49972, 216) 0.0172 185882

(27876, 9) 0.21551 54066

(49972, 41) 0.0782 160224

(27876, 2) 0.8396 46811

(49972, 2) 1.0000 99944

Flights

(540, 178) 0.0281 2700

(3182, 3301) 0.0018 19092

(3182, 3301) 0.0018 19092

(540, 178) 0.0280 2700

(3182, 123) 0.0402 15740

(3182, 123) 0.0402 15740

(540, 35) 0.1293 2443

(3182, 38) 0.1222 14779

(3182, 38) 0.1222 14779

(540, 7) 0.4219 1595

(3182, 12) 0.3397 12971

(3182, 12) 0.3397 12971

Table 6: Data dimensions after feature selection.Walmart is omitted, since its dimension tables have few features.

Figure 9: Logistic Regression convergence behaviors.

Algorithm 2: Factorized Interacted Logistic Regression

Data: Normalized matrix (S, K, R) , Y , W

for i in 1 : max_iter do
W = [WS ,WSS ,W1,W11,WS1];

WS1 = [W
1

S1
,W 2

S1
, ...,W dS

S1
];

P = (Y/(1 + exp(SWS + K1(R1W1) + (S̊)WSS +

K1(R̊1W11)+rowSum(K1[R1W
1

S1
, ...,R1W

dS
S1
]⊙S))))T ;

W =W + α[PS, PS̊, (PK1)R1, PK1R̊1,
colSum(KT

1
(PT ⊗ S) ⊗ R1)]

T
;

end

Algorithm 3: Standard Linear SVM

Data: Regular Matrix T , Y , W

for i in 1 : max_iter do
P = siдn(max(0, 1 − Y ⊙ TW));

W =W + (Y ⊙ P)TT ;

end

Algorithm 4: Factorized Interacted Linear SVM

Data: Normalized matrix (S, K, R), Y , W

for i in 1 : max_iter do
W = [WS ,WSS ,W1,W11,WS1];

WS1 = [W
1

S1
,W 2

S1
, ...,W dS

S1
];

Q = SWS + K1(R1W1) + (S̊)WSS + K1(R̊1W11) +

rowSum(K1[R1W
1

S1
, ...,R1W

dS
S1
] ⊙ S);

P = siдn(max(0, 1 − Y ⊙ Q));

O = (Y ⊙ P)T ;

W =W + [OS,OS̊, (OK1)R1,OK1R̊1,
colSum(KT

1
(OT ⊗ S) ⊗ R1)];

end

Algorithm 5: Standard Linear Regression

Data: Regular matrix (S, K, R) , Y

w = дinv(crossprod(S,K ,R))((S,K ,R)TY)

Algorithm 6: Factorized Interacted Linear Regression

Data: Normalized matrix (S, K, R) , Y

P = дinv(Crossprod(S,R,K));

W = P[YT S,YT S̊, (YTK1)R1,Y
TK1R̊1,

colSum(KT
1
(Y ⊗ S) ⊗ R1)]

T
;

	Abstract
	1 Introduction
	2 Background
	2.1 Linear Algebra Tools
	2.2 Feature Interactions

	3 Setup and Preliminaries
	3.1 Notation
	3.2 Prior Work: Normalized Matrix
	3.3 Formalizing Quadratic Interactions
	3.4 Baseline: Interactions in Morpheus

	4 Factorized Quadratic Interactions
	4.1 Interacted Normalized Matrix: A New Data Abstraction
	4.2 Element-wise Scaling Operators
	4.3 Left Matrix Multiplication (LMM)
	4.4 Right Matrix Multiplication (RMM)
	4.5 Matrix Aggregation
	4.6 Crossprod
	4.7 Matrix Pseudo-Inverse

	5 Analysis and Extensions
	5.1 Runtime Complexity Analysis
	5.2 Extension to Star Schema
	5.3 Performance Trade-offs and Crossovers

	6 Experimental Evaluation
	6.1 Results on Synthetic Data
	6.2 Results on Real-world Datasets
	6.3 Summary and Discussion

	7 Related Work
	8 Conclusion and Future Work
	Acknowledgments
	References
	A Proofs of Rewrite Rules
	A.1 Proof for LMM
	A.2 Proof for RMM
	A.3 Proof for Crossprod

	B Factorized algorithms
	C More Experimental Results

