
Incremental and Approximate Inference for
Faster Occlusion-based Deep CNN Explanations

Supun Nakandala, Arun Kumar, and Yannis Papakonstantinou
University of California, San Diego

{snakanda,arunkk,yannis}@eng.ucsd.edu

ABSTRACT
Deep Convolutional Neural Networks (CNNs) now match
human accuracy in many image prediction tasks, resulting
in a growing adoption in e-commerce, radiology, and other
domains. Naturally, “explaining” CNN predictions is a key
concern for many users. Since the internal workings of CNNs
are unintuitive for most users, occlusion-based explanations
(OBE) are popular for understanding which parts of an im-
age matter most for a prediction. One occludes a region of
the image using a patch and moves it around to produce a
heat map of changes to the prediction probability. Alas, this
approach is computationally expensive due to the large num-
ber of re-inference requests produced, which wastes time
and raises resource costs. We tackle this issue by casting the
OBE task as a new instance of the classical incremental view
maintenance problem. We create a novel and comprehensive
algebraic framework for incremental CNN inference com-
bining materialized views with multi-query optimization to
reduce computational costs. We then present two novel ap-
proximate inference optimizations that exploit the semantics
of CNNs and the OBE task to further reduce runtimes. We
prototype our ideas in Python to create a tool we call K����
��� that supports both CPUs and GPUs. Experiments with
real data and CNNs show that K������ reduces runtimes
by up to 5X (resp. 35X) to produce exact (resp. high-quality
approximate) results without raising resource requirements.

ACM Reference Format:
Supun Nakandala, Arun Kumar, and Yannis Papakonstantinou.
2019. Incremental and Approximate Inference for Faster Occlusion-
based Deep CNN Explanations. In 2019 International Conference

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD ’19, June 30-July 5, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5643-5/19/06. . . $15.00
https://doi.org/10.1145/3299869.3319874

Input OCT Retina
Image

CNN composed of Convolution, Pool, ReLU,
and Fully-Connected layers

Probability having
Diabetic

Retinopathy
yes 96.3%

CNN

(a) CNN inference

(b) CNN inference with an occluding patch (c) Occlusion experiment output

Probability of
having Retinopathy

no 3.7%

yes 15.4%

no 84.6%

Figure 1: (a) Using a CNN to predict diabetic retinopathy
in an OCT image/scan. (b) Occluding a part of the image
changes the prediction probability. (c) Bymoving the occlud-
ing patch, a sensitivity heatmap can be produced.

on Management of Data (SIGMOD ’19), June 30-July 5, 2019, Am-
sterdam, Netherlands. ACM, New York, NY, USA, 18 pages. https:
//doi.org/10.1145/3299869.3319874

1 INTRODUCTION
Deep Convolution Neural Networks (CNNs) are now the
state of the art method for many image prediction tasks [1].
Thus, there is growing interest in adopting deep CNNs in
various application domains, including healthcare [2, 3], agri-
culture [4], security [5], and sociology [6]. Remarkably, even
the US Food and Drug Administration recently approved
the use of deep CNNs in radiology to assist radiologists in
processing X-rays and other scans, cross-checking their deci-
sions, and even mitigating the shortage of radiologists [7, 8].
Despite their successes, a key criticism of CNNs is that

their internal workings are unintuitive to non-technical
users. Thus, users often seek an “explanation” for why a
CNN predicted a certain label. Explanations can help users
trust CNNs [9], especially in high stakes applications such as
radiology [10], and are a legal requirement for machine learn-
ing applications in some countries [11]. How to explain a
CNN prediction is still an active research question, but in the
practical literature, an already popular mechanism for CNN
explanations is a simple procedure called occlusion-based
explanations [12], or OBE for short.

OBE works as follows. Place a small square patch (usually
gray) on the image to occlude those pixels. Rerun CNN infer-
ence, illustrated in Figure 1(a), on the occluded image. The
probability of the predicted class will change, as Figure 1(b)
shows. Repeat this process by moving the patch across the
image to obtain a sensitivity heatmap of probability changes,
as Figure 1(c) shows. This heatmap highlights regions of
the image that were highly “responsible” for the prediction
(red/orange color regions). Such localization of the regions of
interest allows users to gain intuition on what “mattered” for
the prediction. For instance, the heatmap can highlight the
diseased areas of a tissue image, which a radiologist can then
inspect more deeply for further tests. Overall, OBE is popular
because it is easy for non-technical users to understand.

Alas, OBE is highly expensive computationally. Deep CNN
inference is already expensive; OBE just ampli�es it by is-
suing a large number of CNN re-inference requests (even
1000s). For example, [13] report 500,000 re-inference requests
for 1 image, which took 1hr even on a GPU! Such long wait
times can hinder users’ ability to consume explanations and
reduce their productivity. One could use more compute hard-
ware, if available, since OBE is embarrassingly parallel across
re-inference requests. But this may not always be a�ordable,
especially for domain scientists, or feasible in all settings,
e.g., in mobile clinical diagnosis. Extra hardware can also
raise monetary costs, especially in the cloud.

In this paper, we use a database-inspired lens to formalize,
optimize, and accelerate OBE. We start with a simple but cru-
cial observation: the occluded images are not disjoint but share
most of their pixels; so, most of CNN re-inference computations
are redundant. This observation leads us to connect OBEwith
two classical data management concerns: incremental view
maintenance (IVM) and multi-query optimization (MQO). In-
stead of treating a CNN as a “blackbox,” we open it up and
formalize CNN layers as “queries.” Just like how a relational
query converts relations to other relations, a CNN layer con-
verts tensors (multidimensional arrays) to other tensors. So,
we reimagine OBE as a set of tensor transformation queries
with incrementally updated inputs. With this fresh database-
inspired view, we introduce several novel CNN-speci�c query
optimization techniques to accelerate OBE.
Our �rst optimization is incremental inference. We �rst

materialize all tensors produced by the CNN. For every
re-inference request, instead of rerunning inference from
scratch, we treat it as an IVM query, with the “views” being
the tensors. We rewrite such queries to reuse the material-
ized views as much as possible and recompute only what
is needed, thus avoiding computational redundancy. Such
rewrites are non-trivial because they are tied to the com-
plex geometric data�ows of CNN layers. We formalize such
data�ows to create a novel algebraic rewrite framework. We
also create a “static analysis” routine to tell us up front how

much computations can be saved. Going further, we batch all
re-inference requests in OBE to reuse the same materialized
views. This is a form of MQO, which we call batched incre-
mental inference. We also create a GPU-optimized kernel for
such execution. To the best of our knowledge, this is the
�rst instance of IVM being combined with MQO in query
optimization, at least for CNN inference.
We then introduce two novel approximate inference op-

timizations that allow users to tolerate some degradation
in visual quality of the heatmaps produced to reduce run-
times further. These optimizations build upon our incremen-
tal inference optimization to trade o� heatmap quality in
a user-tunable manner. Our �rst approximate optimization,
projective �eld thresholding, draws upon an idea from neu-
roscience and exploits the internal semantics of how CNNs
work. Our second approximate optimization, adaptive drill-
down, exploits the semantics of the OBE task and the way
users typically consume the heatmaps produced. We also
present intuitive automated parameter tuning methods to
help users adopt these optimizations.
We prototype our ideas in the popular deep learning

framework PyTorch to create a tool we call K������. It
works on both CPU and GPU and currently supports a
few popular deep CNNs (VGG16, ResNet18, and Incep-
tionV3). We perform a comprehensive empirical evaluation
of K������ with three real-world image datasets from re-
cent radiology and computer vision papers. K������ yields
up to 35X speedups over the current dominant practice
of running re-inference with just batching for producing
high-quality approximate heatmaps and up to 5X speedups
for producing exact heatmaps. We then analyze the utility
of each of our optimizations. Overall, this paper makes the
following contributions:

• To the best of our knowledge, this is the �rst paper
to formalize and optimize the execution of occlusion-
based explanations (OBE) of CNN predictions from a
data management standpoint.
• We cast OBE as an IVM problem to create a novel and
comprehensive algebraic framework for incremental
CNN inference. We also combine our IVM technique
with an MQO-style technique to further reduce com-
putational redundancy in CNN inference.
• We present two novel approximate inference optimiza-
tions for OBE that exploit the semantics of CNNs and
properties of human perception.
• We prototype our ideas in a tool, K������, and per-
form an extensive empirical evaluation with real data
and deep CNNs. K������ speeds up OBE by even over
an order of magnitude in some cases.

Outline. Section 2 explains our problem setup, assumptions,
and CNN data�ow model. Section 3 (resp. Section 4) presents

our incremental (resp. approximate) inference optimizations.
Section 5 presents the experimental evaluation. We discuss
other related work in Section 6 and conclude in Section 7.

2 SETUP AND PRELIMINARIES
We now state our problem formally and explain our assump-
tions. We then formalize the data�ow of the layers of a CNN,
since these are required for understanding our techniques in
Sections 3 and 4. Table 1 lists our notation.

2.1 Problem Statement and Assumptions
We are given a CNN f that has a sequence (or DAG) of layers
l , each of which has a tensor transformation function T:l . We
are also given the image I:im� for which the occlusion-based
explanation (OBE) is desired, the class label L predicted by f
on I:im� , an occlusion patch P in RGB format, and occlusion
patch stride SP . We are also given a set of patch positions
G constructed either automatically or manually with a vi-
sual interface interactively. The OBE workload is as follows:
produce a 2-D heat mapM , wherein each value corresponds
to a position in G and has the prediction probability of L by
f on the occluded image I0x,� :im� (i.e., superimpose occlu-
sion patch on image) or zero otherwise. More precisely, we
can describe the OBE workload with the following logical
statements:

WM = b(width(I:im�) � width(P) + 1)/SPc (1)
HM = b(height(I:im�) � height(P) + 1)/SPc (2)

M 2 IRHM⇥WM (3)
8 (x ,�) 2 G : (4)

I0x,� :im� I:im� �(x,�) P (5)

M[x ,�] f (I0x,� :im�)[L] (6)

Steps (1) and (2) calculate the dimensions of the heat map
M . Step (5) superimposes P on I:im� with its top left corner
placed on the (x ,�) location of I:im� . Step (6) calculates the
output value at the (x ,�) location by performing CNN infer-
ence for I0x,� :im� using f and picks the prediction probability
of L. Steps (5) and (6) are performed independently for every
occlusion patch position in G. In the non-interactive mode,
G is initialized to G = [0,HM) ⇥ [0,WM). Intuitively, this
represents the set of all possible occlusion patch positions on
I:im� , which yields a full heat map. In the interactive mode,
the user may manually place the occlusion patch only at a
few locations at a time, yielding partial heat maps.
We assume the CNN is used for classi�cation (or regres-

sion), since only such applications typically use OBE. One
could create CNNs that predict an image “segmentation” in-
stead, but labeling image segments for training such CNNs
is tedious and expensive. Thus, most recent applications of
CNNs in healthcare, sociology, and other domains rely on
classi�cation CNNs and use OBE [2–6]. Other approaches

Symbol Meaning

f Given deep CNN; input is an image tensor; output is
a probability distribution over class labels

L Class label predicted by f for the original image I:im�

T:l Tensor transformation function of layer l of the given
CNN f

P Occlusion patch in RGB format

SP Occlusion patch striding amount

G Set of occlusion patch superimposition positions on
I:im� in (x,y) format

M Heat map produced by the OBE workload

HM ,WM Height and width ofM

�(x,�) Superimposition operator. A �(x,�) B, superimposes
B on top of A starting at (x ,�) position

I:l (I:im�) Input tensor of layer l (Input Image)

O:l Output tensor of layer l

CI:l ,HI:l ,WI:l Depth, height, and width of input of layer l

CO:l ,HO:l ,WO:l Depth, height, and width of output of layer l

Kcon� :l Convolution �lter kernels of layer l

Bcon� :l Convolution bias value vector of layer l

Kpool :l Pooling �lter kernel of layer l

HK :l ,WK :l Height and width of �lter kernel of layer l

S:l ; Sx :l ; S� :l Filter kernel striding amounts of layer l ; S:l ⌘
(Sx :l , S� :l), strides along width and height dimensions

P:l ; Px :l ; P� :l Padding amounts of layer l ; P:l ⌘ (Px :l , P� :l), padding
along width and height dimensions

Table 1: Notation used in this paper.

to explain CNN predictions have been studied, but since
they are orthogonal to our focus, we summarize them in
the appendix due to space constraints. We assume f is from
a roster of well-known deep CNNs; we currently support
VGG16, ResNet18, and InceptionV3. We think this is a rea-
sonable start, since most recent OBE applications use only
such well-known CNNs from model zoos [14, 15]. But we
note that our techniques are generic enough to apply to any
CNN; we leave support for arbitrary CNNs to future work.

2.2 Data�ow of CNN Layers
CNNs are organized as layers of various types, each of
which transforms a tensor (multidimensional array, typically
3-D) into another tensor: Convolution uses image �lters
from graphics to extract features, but with parametric �l-
ter weights (learned during training); Pooling subsamples
features in a spatial-aware manner; Batch-Normalization nor-
malizes the output tensor; Non-Linearity applies an element-
wise non-linear function (e.g., ReLU); Fully-Connected is an
ordered collection of perceptrons [16]. The output tensor
of a layer can have a di�erent width, height, and/or depth
than the input. An image can be viewed as a tensor, e.g., a

34134 34 21 21189

78 45 93 11114

134 49 11 1826

39 45 0 11114

123 67 1 525

0

0

0

0

0

0

0 0 0 0 0

134 34 21 21189

78 45 93 11114

134 49 11 1826

39 45 0 11114

123 67 1 525

0

0

0

0

0

0

0 0 0 0 0

134 34 2189

78 45 9314

134 49 1126

39 45 014

0

0

0

0

0

0

0 0 0 0 0

0 0 0 0 0

0

0

0

0

Convolution Layer
Padding=(1,1)
Stride=(1,1)

Padding

-3.2 23.2 2.1

2 34 0

-79 1 -6

-3.2 23.2 2.1

2 34 0

-79 1 -6

-3.2 23.2 2.1

2 34 0

-79 1 -6

-3.2 23.2 2.1

2 34 0

-79 1 -6

-3.2 23.2 2.1

2 34 0

-79 1 -6

98 -35 2.1

68 34 12

58 0.35 -6

Element-wise
product

34 -45.2 893 -2

0 11 4.56 59

4 -12 78 13

56 8 -58 1

373 893 -2

0 11 4.56 59

4 -12 78 13

56 8 -58 1

-34

Conv. Layer Input

Convolution Filters of Layer 1

ReLU Layer

34 -45.2 893 -2

0 11 4.56 59

4 -12 78 13

56 8 -58 1

373 893 0

0 11 4.56 59

4 0 78 13

56 8 0 1

0
max(0, x)

Max Pool Layer
Filter Size=(2,2),
Padding=(0,0),

Stride=(2,2)

373 893

56 7856 78

893

Conv. Layer Output / ReLU Layer
Input

ReLU Layer Output/ Max Pool
Layer Input

Max Pool Layer
Output

Operates on a local context
covering the full depth . Output size
is determined by input size, stride,
padding, and filter size.

Operates on individual values.
Preserves input dimensions.
Outputs zeros for negative values.

Operates on a local contexts with each
depth slice separately. Takes in a 2D input
and outputs the maximum of it as output.
Larger than one strides reduces the output
size.

Bank of 3D filters. Depth of
a filter and the depth of the
input are the same.

373

(a) (b) (c)

Figure 2: Simpli�ed illustration of the key layers of a typical CNN. The highlighted cells (dark/red background) show how a
small local spatial context in the �rst input propagates through subsequent layers. (a) Convolution layer (for simplicity sake,
bias addition is not shown). (b) ReLU Non-linearity layer. (c) Pooling layer (max pooling). Notation is explained in Table 1.

224⇥224 RGB image is a 3-D tensor with width and height
224 and depth 3. A Fully-Connected layer converts a 1-D
tensor (or a “�attened” 3-D tensor) to another 1-D tensor.
For simplicity of exposition, we group CNN layers into 3
main categories based on the spatial locality of how they
transform a tensor: (1) Transformations with a global context,
e.g., Fully-Connected; (2) Transformations at the granularity
of individual elements, e.g., ReLU or Batch Normalization;
and (3) Transformations at the granularity of a local spatial
context, e.g. Convolution or Pooling.

Global context granularity. Such layers convert the input
tensor holistically into an output tensor without any spatial
context, typically with a full matrix-vector multiplication.
Fully-Connected is the only layer of this type. Since every
element of the output will likely be a�ected by the entire
input, such layers do not o�er a major opportunity for faster
incremental computations. Thankfully, Fully-Connected lay-
ers typically arise only as the last layer(s) in deep CNNs (and
never in some recent deep CNNs), and they typically account
for a negligible fraction of the total computational cost. Thus,
we do not focus on such layers for our optimizations.

Individual element granularity. Such layers apply a
“map()” function on the elements of the input tensor, as
Figure 2(b) illustrates. Thus, the output has the same dimen-
sions as the input. Non-Linearity (e.g., with ReLU) falls under
this category. The computational cost is proportional to the
“volume” of the input tensor (product of the dimensions). If
the input is incrementally updated, only the corresponding
region of the output will be a�ected. Thus, incremental infer-
ence for such layers is straightforward. The computational
cost of the incremental computation is proportional to the
volume of the updated region.

Local spatial context granularity. Such layers perform
weighted aggregations of slices of the input tensor, called
local spatial contexts, by multiplying them with a �lter kernel
(a tensor of weights). Thus, input and output tensors can

di�er in width, height, and depth. If the input is incremen-
tally updated, the region of the output that will be a�ected
is not straightforward to ascertain–this requires non-trivial
and careful calculations due to the overlapping nature of
how �lters get applied to local spatial contexts. Both Con-
volution and Pooling fall under this category. Since such
layers typically account for the bulk of the computational
cost of deep CNN inference, enabling incremental inference
for such layers in the OBE context is a key focus of this paper
(Section 3). The rest of this section explains the machinery
of the data�ow in such layers using our notation. Section 3
then uses this machinery to explain our optimizations.

Data�ow of Convolution Layers. A layer l has CO:l 3-D
�lter kernels arranged as a 4-D arrayKcon� :l , with each hav-
ing a smaller spatial widthWK :l and height HK :l than the
widthWI:l and height HI:l of the input tensor I:l but the
same depthCI:l . During inference, cth �lter kernel is “strided”
along the width and height dimensions of the input to pro-
duce a 2-D “activation map” A:c = (a�,x :c) 2 IRHO:l⇥ WO:l by
computing element-wise products between the kernel and
the local spatial context and adding a bias value as per Equa-
tion (7). The computational cost of each of these small matrix
products is proportional to the volume of the �lter kernel. All
the 2-D activation maps are then stacked along the depth di-
mension to produce the output tensor O:l 2 IRCO:l⇥HO:l⇥WO:l .
Figure 2 (a) presents a simpli�ed illustration of this layer.

a�,x :c =
CI:lX

k=0

HK :l�1X

j=0

WK :l�1X

i=0
Kcon� :l [c,k, j, i]

⇥ I:l [k,� � bHK :l
2
c + j,x � bWK :l

2
c + i]

+ Bcon� :l [c]

(7)

Data�ow of Pooling Layers. Such layers behave essen-
tially like Convolution layers but with a �xed (not learned)
2-D �lter kernel Kpool :l . These kernels aggregate a local spa-
tial context to compute its maximum or average element. But
unlike Convolution, Pooling operates independently on the

depth slices of the input tensor. It takes as input a 3-D tensor
Ol of depth CI:l , widthWI:l , and height HI:l . It produces
as output a 3-D tensor O:l with the same depth CO:l = CI:l
but a di�erent width ofWO:l and height HO:l . The �lter ker-
nel is typically strided over more than one pixel at a time.
Thus,WO:l and HO:l are usually smaller thanWI:l and HI:l ,
respectively. Figure 2(c) presents a simpli�ed illustration of
this layer. Overall, both Convolution and Pooling layers have
a similar data�ow along the width and height dimensions,
while di�ering on the depth dimension. Since OBE only con-
cerns the width and height dimensions of the image and
subsequent tensors, we can treat both these types of layers
in a uni�ed manner for our optimizations.

Relationship between Input and Output Dimensions.
For Convolution and Pooling layers,WO:l and HO:l are deter-
mined byWI:l and HI:l ,WK :l and HK :l , and two other pa-
rameters that are speci�c to that layer: stride S:l and padding
P:l . Stride is the number of pixels by which the �lter kernel is
moved at a time; it can di�er along the width and height di-
mensions: Sx :l and S� :l , respectively. In practice, most CNNs
have Sx :l = S� :l . Typically, Sx :l  WK :l and S� :l  HK :l . In
Figure 2, the Convolution layer has Sx :l = S� :l = 1, while the
Pooling layer has Sx :l = S� :l = 2. For some layers, to help con-
trol the dimensions of the output to be the same as the input,
one “pads” the input with zeros along the width and height
dimensions. Padding P:l captures how much such padding
extends these dimensions; once again, padding values can
di�er along the width and height dimensions: Px :l and P� :l .
In Figure 2 (a), the Convolution layer has Px :l = P� :l = 1.
Given these parameters, width (similarly height) of the out-
put tensor is given by the following formula:

WO:l = (WI:l �WK :l + 1 + 2 ⇥ Px :l)/Sx :l (8)

Computational Cost of Inference. Deep CNN inference
is computationally expensive. Convolution layers typically
account for a bulk of the cost (90% or more) [17]. Thus, we
can roughly estimate the computational cost of inference
by counting the number of fused multiply-add (FMA) �oat-
ing point operations (FLOPs) needed for the Convolution
layers. For example, applying a Convolution �lter with di-
mensions (CI:l ,HK :l ,WK :l) to compute one element of the
output tensor requires CI:l · HK :l ·WK :l FLOPs, with each
FLOP corresponding to one FMA. Thus, the total computa-
tional cost Q:l of a layer that produces output O:l of dimen-
sions (CO:l ,HO:l ,WO:l) and the total computational cost Q
of the entire set of Convolution layers of a given CNN f can
be calculated as per Equations (9) and (10).

Q:l = (CI:l · HK :l ·WK :l) (CO:l · HO:l ·WO:l) (9)

Q =
X

l in f

Q:l (10)

3 INCREMENTAL INFERENCE
OPTIMIZATIONS

We start with a theoretical characterization of the speedups
incremental inference can yield. We then dive into our novel
algebraic framework to enable incremental CNN inference
and combine it with our multi-query optimization for OBE.

3.1 Expected Speedups
In relational IVM,when a part of the input relation is updated,
we recompute only the part of output that gets changed. We
bring this notion to CNNs; a CNN layer is our “query” and
the materialized feature tensor is our “relation.” OBE updates
only a part of the image; so, only some parts of the tensors
need to be recomputed. We create an algebraic framework
to determine which parts these are for a CNN layer (Section
3.2) and how to propagate updates across layers (Section
3.3). Given a CNN f and the occlusion patch, our framework
determines using “static analysis” over f how many FLOPs
can be saved, yielding us an upper bound on speedups.
More precisely, let the output tensor dimensions of layer

l be (CO:l ,HO:l ,WO:l). An incremental update recomputes
a smaller local spatial context with widthWP:l WO:l and
height HP:l  HO:l . Thus, the computational cost of incre-
mental inference for layer l , denoted byQinc:l , is equal to the
volume of the individual �lter kernel times the total volume
of the updated output, as given by Equation (11). The total
computational cost for incremental inference, denoted Qinc ,
is given by Equation (12).

Qinc:l = (CI:l · HK :l ·WK :l) (CO:l · HP:l ·WP:l) (11)

Qinc =
X

l in f

Qinc:l (12)

The above costs can be much smaller than Q:l and Q
in Equations (9) and (10) earlier. We de�ne the theoretical
speedup as the ratio Q

Qinc
. It tells us how bene�cial incremen-

tal inference can be in the best case without performing the
inference itself. It depends on several factors: the occlusion
patch size, its location, the parameters of layers (kernel di-
mensions, stride, etc.), and so on. Calculating it is non-trivial
and requires careful analysis, which we perform. The loca-
tion of patch a�ects this ratio because a patch placed in the
corner leads to fewer updates overall than one placed in
the center of the image. Thus, the “worst-case” theoretical
speedup is determined by placing the patch at the center.
We perform a sanity check experiment to ascertain the

theoretical speedups for a few popular deep CNNs. For vary-
ing occlusion patch sizes (with a stride of 1), we plot the
theoretical speedups in Figure 3. VGG-16 has the highest the-
oretical speedups, while DenseNet-121 has the lowest. Most
CNNs fall in the 2X–3X range. The di�erences arise due to
the speci�cs of the CNNs’ architectures: VGG-16 has small

Figure 3: Theoretical speedups for popular deep CNN archi-
tectures with incremental inference.

0

0

Input Output

Updated patch in
the output

Updated patch in the input

Input patch that needs to be read in
to the transformation operator

0
0

Padding

Filter kernel

Figure 4: Simpli�ed illustration of input and output update
patches for Convolution/Pooling layers.

Convolution �lter kernels and strides, which means full in-
ference incurs a high computational cost (Q = 15 GFLOPs).
Thus, VGG-16 bene�ts the most from incremental inference.
Note the image size is assumed to be 224 ⇥ 224 for this plot;
if the image is larger, the theoretical speedups will be higher.

While speedups of 2X-3X may sound “not that signi�cant”
in practice, we �nd that they indeed are signi�cant for at
least two reasons. First, users often wait in the loop for OBE
workloads for performing interactive diagnoses and analyses.
Thus, even such speedups can improve their productivity,
e.g., reducing the time taken on a CPU from about 6min to
just 2min, or on a GPU from 1min to just 20s. Second, and
equally importantly, incremental inference is the foundation
for our approximate inference optimizations (Section 4), which
amplify the speedups we achieve for OBE. For instance, the
speedup for Inception3 goes up from only 2X for incremental
inference to up to 8X with all of our optimizations enabled.
Thus, incremental inference is critical to optimizing OBE.

3.2 Single Layer Incremental Inference
We now present our algebraic framework for incremental
updates to the materialized output tensor of a CNN layer. As
per the discussion in Section 2.2, we focus only on the non-
trivial layers that operate at the granularity of a local spatial

Symbol Meaning

xIP:l ,�
I
P:l Start coordinates of input update patch for layer l

xRP:l ,�
R
P:l Start coordinates of read-in context for layer l

xOP:l ,�
O
P:l Start coordinates of output update patch for layer l

H IP:l ,W
I
P:l Height and width of input update patch for layer l

H RP:l ,W
R
P:l Height and width of read-in context for layer l

H OP:l ,W
O
P:l Height and width of output update patch for layer l

� Projective �eld threshold

rdr ill�down Drill-down fraction for adaptive drill-down

Table 2: Additional notation for Sections 3 and 4.

context (Convolution and Pooling). We call our modi�ed
version of such layers “incremental inference operations.”

Determining Patch Update Locations. We �rst explain
how to calculate the coordinates and dimensions of the out-
put update patch of layer l given the input update patch and
layer-speci�c parameters. Figure 4 presents a simpli�ed illus-
tration of these calculations. Our coordinate system’s origin
is at the top left corner. The input update patch is shown in
red/dark color and starts at (xIP:l ,�

I
P:l), with heightH IP:l and

widthW I
P:l . The output update patch starts at (x

O
P:l ,�

O
P:l) and

has a height H OP:l and widthW O
P:l . Due to overlaps among

�lter kernel positions during inference, computing the out-
put update patch requires us to read a slightly larger spatial
context than the input update patch–we call this the “read-in
context,” and it is illustrated by the blue/shaded region in
Figure 4. The read-in context starts at (xRP:l ,�

R
P:l), with its di-

mensions denoted byW R
P:l and H

R
P:l . Table 2 summarizes all

this additional notation for this section. The relationship be-
tween these quantities along the width dimension (similarly
along the height dimension) can be expressed as follows:

xOP:l =max
⇣
d(Px :l + xIP:l �WK :l + 1)/Sx :l e, 0

⌘
(13)

W O
P:l =min

⇣
d(W I

P:l +WK :l � 1)/Sx :l e,WO:l
⌘

(14)

xRP:l = x
O
P:l ⇥ Sx :l � Px :l (15)

W R
P:l =WK :l + (W O

P:l � 1) ⇥ Sx :l (16)

Equation (13) calculates the coordinates of the output up-
date patch. As shown in Figure 4, padding e�ectively shifts
the coordinate system and thus, Px :l is added to correct it.
Due to overlaps among the �lter kernels, the a�ected region
of the input update patch (blue/shaded region in Figure 4)
will be increased byWK :l � 1, which needs to be subtracted
from the input coordinate xIP:l . A �lter of sizeWK :l that is
placed starting at xIP:l �WK :l + 1 will see an update starting
from xIP:l . Equation (14) calculates the width of the output
update patch which is essentially the number of �lter kernel

stride positions on the read-in input context. However, this
value cannot be larger than the output size. Given these, a
start coordinate and width of the read-in context are given
by Equations (15) and (16); similar equations hold for the
height dimension (skipped for brevity).

Incremental Inference Operation. For layer l , given the
transformation function T:l , the pre-materialized input ten-
sor I:l , input update patch PO:l , and the above calculated
coordinates and dimensions of the input, output, and read-in
context, the output update patch PO:l is computed as follows:

U = I:l [:,xRP:l : xRP:l +W R
P:l ,�

R
P:l : �

R
P:l + H

R
P:l] (17)

U =U �(xIP:l�xRP:l), (�IP:l��RP:l) P
I
:l (18)

PO:l = T:l (U) (19)

Equation (17) slices the read-in contextU from the pre-
materialized input tensor I:l . Equation (18) superimposes the
input update patch PI:l on it. This is an in-place update of
the array holding the read-in context. Finally, Equation (19)
computes the output update patch PO:l by invoking T:l on
U . Thus, we avoid performing inference on all of I:l , thus
achieving incremental inference and reducing FLOPs.

3.3 Propagating Updates across Layers

Sequential CNNs. Unlike relational IVM, CNNs have many
layers, often in a sequence. This is analogous to a sequence of
queries, each requiring IVM on its predecessor’s output. This
leads to a new issue: correctly and automatically con�guring
the update patches across all layers of a CNN. Speci�cally,
output update patch PO:l of layer l becomes the input update
patch of layer l + 1. While this seems simple, it requires
care at the boundary of a local context transformation and a
global context transformation, e.g., between a Convolution
(or Pooling) layer and a Fully-Connected layer. In particular,
we need to materialize the full updated output, not just the
output update patches, since global context transformations
lose spatial locality for subsequent layers.

Extension to DAG CNNs. Some recent deep CNNs have
a more general directed acyclic graph (DAG) structure for
layers. They have two new kinds of layers that “merge” two
branches in the DAG: element-wise addition and depth-wise
concatenation. Element-wise addition requires two input ten-
sors with all dimensions being identical. Depth-wise con-
catenation takes two input tensors with the same height and
width dimensions. We now face a new challenge–how to
calculate the output update patch when the two input ten-
sors di�er on their input update patches locations and sizes?
Figure 5 shows a simpli�ed illustration of this issue. The �rst
input has its update patch starting at coordinates (xIP1:l ,�

I
P1:l)

Input 1 Input 2 Output

Figure 5: Illustration of bounding box calculation for di�er-
ing input update patch locations for element-wise addition
and depth-wise concatenation layers in DAG CNNs.

with dimensions H IP1:l andW
I
P1:l , while the second input has

its update patch starting at coordinates (xIP2:l ,�
I
P2:l) with

dimensions H IP2:l andW
I
P2:l . This issue can arise with both

element-wise addition and depth-wise concatenation.
We propose a simple uni�ed solution: compute the bound-

ing box of the input update patches. So, the coordinates and
dimensions of both read-in contexts and the output update
patch will be identical. Figure 5 illustrates this. While this
will potentially recompute parts of the output that do not
get modi�ed, we think this trade-o� is acceptable because
the gains are likely to be marginal for the additional com-
plexity introduced into our framework. Overall, the output
update patch coordinate and width dimension are given by
the following (similarly for the height dimension):

xOP :l = min(xIP1:l ,x
I
P2:l)

W O
P:l = max(xIP1:l +W

I
P1:l ,x

I
P2:l +W

I
P2:l) � min(xIP1:l ,xIP2:l)

(20)

3.4 Multi-Query Incremental Inference
OBE issues |G | re-inference requests in one go. Viewing each
request as a “query” makes the connection with multi-query
optimization (MQO) [18] clear. The |G | queries are also not
disjoint, since the occlusion patch is typically small, which
means most pixels are the same for each query. Thus, we now
extend our IVM framework for re-inference with an MQO-
style optimization fusing multiple re-inference requests. An
analogy with relational queries would be having many incre-
mental update queries on the same relation in one go, with
each query receiving a di�erent incremental update.

Batched Incremental Inference. Our optimization works
as follows: materialize all CNN tensors once and reuse them
for incremental inference across all |G | queries. Since the oc-
cluded images share most of their pixels, parts of the tensors
will likely be identical too. Thus, we can amortize the materi-
alization cost. One might ask: why not just perform “batched”
inference for the |G | queries? Batched execution is standard
practice on high-throughput compute hardware like GPUs,
since it amortizes CNN set up costs, data movement costs,
etc. Batch sizes are tuned to optimize hardware utilization.

Algorithm 1 B������I����������I��������
Input:
T:l : Original Transformation function
I:l : Pre-materialized input from original image
[PI1:l , ...,PIn:l] : Input patches
[(xIP1:l ,�

I
P1:l), ..., (x

I
Pn :l ,�

I
Pn :l)] : Input patch coordinates

W I
P:l ,H

I
P:l : Input patch dimensions

1: procedure B������I����������I��������
2: Calculate [(xOP1:l ,�

O
P1:l), ..., (x

O
Pn :l ,�

O
Pn :l)]

3: Calculate (W O
P:1,H

O
P:l)

4: Calculate [(xRP1:l ,�
R
P1:l), ..., (x

R
Pn :l ,�

R
Pn : l)]

5: Calculate (W R
P:l ,H

R
P:l)

6: Initialize U 2 IRn⇥depth(I:l)⇥HRP:l⇥W R
P:l

7: for i in [1,...,n] do
8: T1 I:l [:,xRPi :l : xRPi :l +W R

P:l ,�
R
Pi :l : �

R
Pi :l +H

R
P:l]

9: T2 T1 �(xIPi :l�xRPi :l), (�IPi :l��RPi :l) Pi :l
10: U[i, :, :] T2
11: [PO1:l , ...,POn:l] T (U) . Batched version
12: return [PO1:l , ...,POn:l],
13: [(xOP1:l ,�

O
P1:l), ..., (x

O
Pn :l ,�

O
Pn :l)], (W

O
P:l ,H

O
P:l)

We note that batching is an orthogonal (albeit trivial) opti-
mization compared to our MQO. Thus, we combine both of
these ideas to execute incremental inference in a batched
manner. We call this approach “batched incremental infer-
ence.” Empirically, we �nd that batching alone yields limited
speedups (under 2X), but our batched incremental inference
ampli�es the speedups. Algorithm 1 formally presents the
batched incremental inference operation for layer l .

B������I����������I�������� �rst calculates the geo-
metric properties of the output update patches and read-in
contexts. A temporary tensor U is initialized to hold the
input update patches with their read-in contexts. The for
loop iteratively populates U with corresponding patches.
Finally, T:l is applied to U to compute the output patches.
We note that for the �rst layer, all input update patches will
be identical to the occlusion patch. But for the later layers,
the update patches will start to deviate depending on their
locations and read-in contexts.

GPU Optimized Implementation. Empirically, we found
a dichotomy between CPUs and GPUs: B������I��������
���I�������� yielded expected speedups on CPUs, but it
performed dramatically poorly on GPUs. In fact, a naive im-
plementation of B������I����������I�������� on GPUs
was slower than full re-inference! We now shed light on why
this is the case and how we tackled this issue. The for loop
in line 7 of Algorithm 1 is essentially preparing the input
for T:l by copying values (slices of the materialized tensor)

from one part of GPU memory to another sequentially. A
detailed pro�ling of the GPU showed that these sequential
memory copies are a bottleneck for GPU throughput, since
they throttle it from exploiting its massive parallelism e�ec-
tively. To overcome this issue, we created a custom CUDA
kernel to perform input preparation more e�ciently by copy-
ing memory regions in parallel for all items in the batched
inference request. This is akin to a parallel for loop tailored
for slicing the tensor. We then invoke T:l , which is already
hardware-optimized by modern deep learning tools [19]. We
defer more details on our custom CUDA kernel to the appen-
dix due to space constraints. Also, since GPU memory might
not be enough to �t all |G | queries, the batch size for GPU
execution might be smaller than |G |.
3.5 Putting it All Together
We summarize the end-to-end work�ow of our incremental
inference optimizations for OBE. We are given the CNN f ,
image I:img , predicted class label L, occlusion patch P and
its stride SP , and the set of occlusion patch positions G . Pre-
materialize the output tensors of all layers of f with I:img

as the input. Prepare occluded images (I0(x,�):img) for all posi-
tions in G. For batches of I0(x,�):img as the input, invoke the
transformations functions of the layers of f in topological
order and calculate the corresponding entries of heat map
M . For transformations with local spatial context, invoke
B������I����������I��������. For layer that precede a
global context transformation, materialize the full updated
output. For all other layers, invoke the original transforma-
tion function.M is now the output heat map.

4 APPROXIMATE INFERENCE
OPTIMIZATIONS

Since incremental inference is exact, i.e., it yields the same
heat map as full inference, it does not exploit a capability of
human perception: tolerance of some degradation in visual
quality. Thus, we now build upon our IVM framework to
create two novel heuristic approximate inference optimiza-
tions that trade o� the heat map’s quality in a user-tunable
manner to accelerate OBE further. We note that our opti-
mizations operate at the logical level and are complementary
to more physical-level optimizations such as low-precision
computation [20] and model pruning [21]. We �rst present
the techniques and then explain how to tune them.

4.1 Projective Field Thresholding
The projective �eld of a CNN neuron is the slice of the output
tensor that is connected to it [22]. It is a term from neuro-
science to describe the e�ects of a retinal cell on the output
of the eye’s neuronal circuitry [23]. This notion sheds light
on the growth of the size of the update patches through the

1

3

6

7

6

3

1

3

6

7

6

3

(a) Projective Field (b) Projective field thresholding

Figure 6: (a) Projective �eld growth for 1-D Convolution (�l-
ter size 2, stride 1). (b) Projective �eld thresholding; � = 5/7.

layers of a CNN. The 3 kinds of layers (Section 2.2) a�ect the
projective �eld size growth di�erently. Transformations at
the granularity of individual elements do not alter the projec-
tive �eld size. Global context transformations increase it to
the whole output. But local spatial context transformations,
which are the most crucial, increase it gradually at a rate
determined by the �lter kernel’s size and stride: additively
in the size and multiplicatively in the stride. The growth of
the projective �eld size implies the amount of FLOPs saved
by IVM decreases as we go to the higher layers of a CNN.
Eventually, the output update patch becomes as large as the
output tensor. This growth is illustrated by Figure 6(a).
Our above observation motivates the main idea of this

optimization, which we call projective �eld thresholding:
truncate the projective �eld from growing beyond a given
threshold fraction � (0 < �  1) of the output size. This
means inference in subsequent layers is approximate. Fig-
ure 6(b) illustrates the idea for a �lter size 3 and stride 1. One
input element is updated (shown in red/dark); the change
propagates to 3 elements in the next layer and then 5, but
it then gets truncated because we set � = 5/7. This approxi-
mation can alter the accuracy of the output values and the
heat map’s visual quality. Empirically, we �nd that modest
truncation is tolerable and does not a�ect the heat map’s
visual quality too signi�cantly.

To provide intuition on why the above happens, consider
histograms on the side of Figures 6(a,b) that list the number
of unique “paths” from the updated element to each element
in the last layer. It resembles a Gaussian distribution, with
the maximum paths concentrated on the middle element.
Thus, for most of the output patch updates, truncation will
only discard a few values at the “fringes” that contribute
to an output element. Of course, we do not consider the
weights on these “paths,” which is dependent on the given
trained CNN. Since the weights can be arbitrary, a tight
formal analysis is unwieldy. But under some assumptions
on the weights values (similar to the assumptions in [24] for
understanding the “receptive �eld” in CNNs), we show in
the appendix that this distribution does indeed converge to a

(a)

(b)

Figure 7: (a) Theoretical speedups with projective �eld
thresholding. (b) Mean Square Error between exact and ap-
proximate output of �nal Convolution/Pooling layers.

Gaussian. Thus, while this idea is a heuristic, it is grounded
in a common behavior of real CNNs. Overall, since most of
the contributions to the output elements are concentrated
around the center, such truncation is often a�ordable. Note
that this optimization is only feasible in conjunction with our
incremental inference framework (Section 3) to reuse the
remaining parts of the tensors and save FLOPs. We extend
the formulas for the output-input coordinate calculations to
account for � . For the width dimension, the new formulas
are as follows (similarly for the height dimension):

W O
P:l = min

⇣
d(W I

P:l +WK :l � 1)/Sx :l e,W O
P:l
⌘

(21)

IfW O
P:l > round(� ⇥W O

:l) : (22)

W O
P:l = round(� ⇥W O

:l) (23)

W I
Pnew :l =W

O
P:l ⇥ Sx :l �WK :l + 1 (24)

xIP:l += (W I
P:l �W I

Pnew :l)/2 (25)

W I
P:l =W

I
Pnew :l (26)

xOP:l =max
⇣
d(Px :l + xIP:l �WK :l + 1)/Sx :l e, 0

⌘
(27)

Equation (21) calculates the width assuming no thresh-
olding. But if the output width exceeds the threshold, it is
reduced as per Equation (23). Equation (24) calculates the
input width that would produce an output of widthW O

P:l ; we
can think of this as makingW I

P:l the subject of Equation (21).
If the new input width is smaller than the original input
width, the starting x coordinate should be updated as per
Equation (25) s.t. the new coordinates correspond to a “center
crop” compared to the original. Equation (26) sets the input
width to the newly calculated input width. Equation (27)
calculates the x coordinate of the output update patch.

Theoretical Speedups. We modify our “static analysis”
framework to determine the theoretical speedup of incre-
mental inference (Section 3) to also include this optimization
using the above formulas. Consider a square occlusion patch
placed on the center of the input image. Figure 7 (a) plots
the new theoretical speedups for varying patch sizes for 3
popular CNNs for di�erent � values. As expected, as � goes
down from 1, the theoretical speedup goes up for all CNNs.
Since lowering � approximates the heat map values, we also
plot the mean square error (MSE) of the elements of the
exact and approximate output tensors produced by the �nal
Convolution or Pooling layers on a sample (n=30) of real-
world images. Figure 7 (b) shows the results. As expected, as
� drops, MSE increases. But interestingly, the trends di�er
across the CNNs due to their di�erent architectural proper-
ties. MSE is especially low for VGG-16, since its projective
�eld growth is rather slow relative to the other CNNs. We
acknowledge that using MSE as a visual quality metric and
tuning � are both unintuitive for humans. We mitigate these
issues in Section 4.3 by using a more intuitive quality metric
and by presenting an automated tuning method for � .

4.2 Adaptive Drill-Down
This heuristic optimization is based on our observation about
a peculiar semantics of OBE that lets us modify how G (the
set of occlusion patch locations) is speci�ed and handled,
especially in the non-interactive speci�cation mode. We ex-
plain our intuition with an example. Consider a radiologist
explaining a CNN prediction for diabetic retinopathy on a
tissue image. The region of interest typically occupies only a
tiny fraction of the image. Thus, it is an overkill to perform
regular OBE for every patch location: most of the (incre-
mental) inference computations are e�ectively “wasted” on
uninteresting regions. In such cases, we modify the OBE
work�ow to produce an approximate heat map using a two-
stage process, illustrated by Figure 8(a).
In stage one, we produce a lower resolution heat map by

using a larger stride–we call it stage one stride S1. Using this
heat map, we identify the regions of the input that see the
largest drops in predicted probability of the label L. Given a
prede�ned parameter drill-down fraction, denoted rdrill�down,
we select a proportional number of regions based on the
probability drops. In stage two, we perform OBE only for
these regions with original stride value (we also call this
stage two stride, S2) for the occlusion patch to yield a portion
of the heat map at the original higher resolution. Since this
process “drills down” adaptively based on the lower reso-
lution heat map, we call it adaptive drill-down. Note that
this optimization also builds upon the incremental inference
optimizations of Section 3, but it is orthogonal to projective
�eld thresholding and can be used in addition.

Stage
1

Stage 2

Final Output

Pr
ed

ict
ed

 P
ro

ba
bi

lity

1.0

0.5

S1 rdrill-down

Sp
ee

du
p

Sp
ee

du
p

rdrill-down
fixed

S1 fixed

(a) (b)

Figure 8: (a) Schematic illustration of the adaptive drill-
down idea. (b) Conceptual depiction of the e�ects of S1 and
rdrill�down on the theoretical speedup..

Theoretical Speedups. We now de�ne a notion of theo-
retical speedup for this optimization; this is independent of
the theoretical speedup of incremental inference. We �rst
explain the e�ects of rdrill�down and S1. Setting these param-
eters is an application-speci�c balancing act. If rdrill�down is
low, only a small region will need re-inference at the original
resolution, which will save a lot of FLOPs. But this may miss
some regions of interest and thus, compromise important
explanation details. Similarly, a large S1 also saves a lot of
FLOPs by reducing the number of re-inference queries in
stage one. But it runs the risk of misidentifying interesting
regions, especially when the size of those regions are smaller
than the occlusion patch size. We now de�ne the theoretical
speedup of adaptive drill-down as the ratio of the number of
re-inference queries for regular OBE without this optimiza-
tion to that with this optimization. We only need the counts,
since the occlusion patch dimensions are unaltered, i.e., the
cost of a re-inference query is the same with or without this
optimization. Given a stride S , the number of re-inference
queries is

HIimg
S · WIimg

S . Thus, the theoretical speedup is given
by the following equation. Figure 8(b) illustrates how this
ratio varies with S1 and rdrill�down.

speedup =
S21

S22 + rdrill�down · S21
(28)

4.3 Automated Parameter Tuning
We now present automated parameter tuning methods for
easily con�guring our approximate inference optimizations.

Tuning Projective Field Thresholding. As Section 4.1 ex-
plained, � controls the visual quality of the heat map. There
is a spectrum of visual quality degradation: imperceptible
changes to major structural changes. But mapping � to visual
quality directly is likely to be unintuitive for users. Thus, to
measure visual quality more intuitively, we adopt a cognitive
science-inspired metric called Structural Similarity (SSIM)

(a)

(b)

Figure 9: (a) Fitting a second-order curve for SSMagainst� on
a sample of the OCT dataset. (b) CDFs of deviation of actual
SSIM from the target SSIM (0.9) with our auto-tuned � , which
turned out to be 0.5, 0.7, and 0.9 for VGG-16, ResNet-18, and
Inception-V3, respectively.

Index, which is widely used to quantify human-perceptible
di�erences between two images [25]. In our case, the two
“images” are the original and approximate heat maps. SSIM
is a number in [�1, 1], with 1meaning a perfect match. SSIM
values in the [0.90, 0.95] range are considered almost imper-
ceptible distortions in many practical multimedia applica-
tions such as image compression and video encoding [25].
Our tuning process for � has an o�ine “training” phase

and an online usage phase. The o�ine phase relies on a
set of sample images (default 30) from the same application
domain. We compute SSIM for the approximate and exact
heat maps for all sample images for a few � values (default
1.0, 0.9, 0.8, . . . , 0.4). We then learn a second-degree polyno-
mial curve for SSIM as a function of � with these data points.
Figure 9(a) illustrates this phase and the �t SSIM-� curves for
3 di�erent CNNs using sample images from an OCT dataset
(Section 5). In the online phase, when OBE is needed on a
given image, we expect the user to provide a target SSIM for
the quality–runtime trade-o� they want (1 yields the exact
heat map). We can then use our learned curve to map this
target SSIM to the lowest � . Figure 9(b) shows the CDFs of
di�erences between the target SSIM (0.9) and the actual SSIM
yielded when using our auto-tuned � on both the training
set and a holdout test set (also 30 images). In 80% of the cases,
the actual SSIM was better than the user-given target; never
once did the actual SSIM go 0.1 below the target SSIM. This
suggests that our auto-tuning method for � works, is robust,
and applicable to di�erent CNNs.

Tuning Adaptive Drill-Down. As Section 4.2 explained,
the speedup o�ered by adaptive drill-down is controlled by
two parameters: stage one stride S1 and drill-down fraction
rdrill�down. We expect the user to provide rdrill�down (default

0.25), since it captures the user’s intuition about how large
or small the region of interest is likely to be in the images in
their speci�c application domain and dataset. We also expect
the user to provide a “target speedup” ratio (default 3) for us-
ing this optimization to capture their desired quality-runtime
trade-o�. Higher the user’s target speedup, themore we sacri-
�ce the quality of the “non-interesting regions” (1�rdrill�down
fraction of the heat map). Our automated tuning process sets
S1 using these two user-given settings. Unlike the tuning
of � , setting S1 is more direct, since this optimization relies
on the number of re-inference queries, not SSIM. Let target
denote the target speedup; the original occlusion patch stride
is S2. Equation 29 shows how we calculate S1; it is obtained
by making S1 the subject of Equation 28. Since S1 cannot be
larger than the image widthWimg (similarly Himg) and due
to the constraint of (1 � rdrill�down · speedup) being positive,
we also have an upper bound on the possible speedups as
per Equation 30.

S1 =

r
target

1 � rdrill�down · target · S2 (29)

speedup < min

*
,

W 2
img

S22 + rdrill�down ·W 2
im�
,

1
rdrill�down

+
- (30)

5 EXPERIMENTAL EVALUATION
We integrated our optimization techniques with the popular
deep learning framework PyTorch to create a tool we call
K������. Due to space constraints, implementation details
of this integration are deferred to Appendix B. We now eval-
uate the speedups yielded by K������ for OBE for di�erent
deep CNNs and datasets. We then drill into the contributions
of each of our optimization techniques.

Datasets. We use 3 diverse real-world image datasets: OCT,
Chest X-Ray, and ImageNet. OCT has about 84,000 optical
coherence tomography retinal images with 4 classes: CNV,
DME, DRUSEN, and NORMAL; CNV (choroidal neovascu-
larization), DME (diabetic macular edema), and DRUSEN are
varieties of diabetic retinopathy. Chest X-Ray has about 6,000
X-ray images with three classes: VIRAL, BACTERIAL, and
NORMAL; VIRAL and BACTERIAL are varieties of pneu-
monia. Both OCT and Chest X-Ray are from a recent radiol-
ogy study that applied deep CNNs to detect the respective
diseases [2]. ImageNet is a benchmark dataset in computer
vision [26]; we use a sample of 1,000 images with 200 classes.

Workloads.We use 3 diverse ImageNet-trained deep CNNs:
VGG16 [27], ResNet18 [28], and Inception3 [29], obtained
from [30]. They complement each other in terms of model
size, architectural complexity, computational cost, and our
predicted theoretical speedups (Figure 3 in Section 3). For

R
un

tim
e

(s
)

5.4X

34.5X 2.1X
14.8X

8.0X
5.4X

13.8X 2.1X
4.9X

3.7X
5.4X

2.1X19.9X 8.5X

4.7X

1.5X 1.5X 1.5X

R
un

tim
e

(s
)

3.9X
16.0X 1.6X

6.2X

4.5X
3.9X

8.6X 1.6X 3.1X

2.3X

3.9X 1.6X11.2X 4.4X

2.6X

0.7X 0.7X 0.7X

Figure 10: End-to-end runtimes of K������ and baselines on all 3 datasets, 3 CNNs, and both GPU and CPU.

OCT and Chest X-Ray, the 3 CNNs were �ne-tuned by re-
training their �nal Fully-Connected layers as per standard
practice. The details of �ne-tuning are not relevant for the
rest of our discussion; so, we present further details in the
appendix. The OBE heatmaps are plotted using Python Mat-
plotlib’s imshow method using the jet_r color scheme; we
set the maximum threshold to min(1, 1.25p) and minimum to
0.75p, where p is predicted class probability on a given image.
All images are resized to the input size required by the CNNs
(224⇥224 for VGG16 and ResNet18; 299⇥299 for Inception3);
no additional pre-processing was done. The GPU-based ex-
periments used a batch size of 128; for CPUs, the batch size
was 16. All CPU-based experiments were executed with a
thread parallelism of 8. All of our datasets, experimental
scripts, and the K������ codebase will be made publicly
available on our project webpage.

Experimental Setup.We use a machine with 32 GB RAM,
Intel i7-6700 3.40GHz CPU, and NVIDIA Titan X (Pascal)
GPU with 12 GB memory. The machine runs Ubuntu 16.04
with PyTorch version 0.4.0, CUDA version 9.0, and cuDNN
version 7.1.2. All reported runtimes are the average of 3 runs,
with 95% con�dence intervals shown.

5.1 End-to- End Runtimes
We focus on the most common OBE scenario of produc-
ing the whole heatmap; G is automatically created (“non-
interactive” mode). We use an occlusion patch of size 16 and
stride of 4. We compare two variants of K������: K����
���-Exact uses only incremental inference (Section 3), while
K������-Approximate uses our approximate inference op-
timizations too (Section 4). The main baseline is Naive, the
current dominant practice of performing full inference for
OBE with just only batching. We have another baseline on

GPU: Naive Inc. Inference-Exact, which is a direct implemen-
tation of Algorithm 1 in PyTorch/Python without using our
GPU-optimized CUDA kernel (Section 3.4). Note that Naive
Inc. Inference-Exact is not relevant on CPU.
We set the adaptive drill-down parameters based on the

semantics of each dataset’s prediction task (Section 4.3). For
OCT, since the region of interest is likely to be small, we
set rdrill�down = 0.1 and target = 5. For Chest X-Ray, the
region of interest can be large; so, we set rdrill�down = 0.4
and target = 2. For ImageNet, which is in between, we use
the K������ default of rdrill�down = 0.25 and target = 3.
Throughout, � is auto-tuned with a target SSIM of 0.9 (Sec-
tion 4.3). Figure 10 presents the results. Visual examples of
the heatmaps produced are provided in the appendix.

Overall, we seeK������ o�ers signi�cant speedups across
the board on both GPU and CPU, with the highest speedups
seen by K������-Approximate on OCT with VGG16: 16X on
GPU and 34.5X on CPU. The highest speedups of K������-
Exact are also on VGG16: 3.9X on GPU and 5.4X on CPU.
The speedups of K������-Exact are identical across datasets
for a given CNN, since it does not depend on the image se-
mantics, unlike K������-Approximate due to its parameters.
K������-Approximate sees the highest speedups onOCT be-
cause our auto-tuning yielded the lowest rdrill�down, highest
target speedup, and lowest � on that dataset.
The speedups are lower with ResNet18 and Inception3

than VGG16 due to their architectural properties (kernel �l-
ter dimensions, stride, etc.) that make the projective �eld
grow faster. Moreover, Inception3 has a complex DAG archi-
tecture with more branches and depth-wise concatenation,
which limits GPU throughput for incremental inference. In
fact, K������-Exact on GPU shows a minor slow-down
(0.7X) with Inception3. But K������-Approximate still of-
fers speedups on GPU with Inception3 (up to 4.5X). We also

Figure 11: Speedups with only the incremental inference op-
timization (occlusion patch stride S = 4).

Figure 12: Speedups with incremental inference combined
with only projective �eld thresholding.

see that ResNet18 and VGG16 almost near their theoretical
speedups (Figure 3) but Inception3 does not. Note that the
theoretical speedup de�nition only counts FLOPs and does
not account for memory stalls.

Finally, the speedups are higher on CPU than GPU; this is
because CPU su�ers less from memory stalls during incre-
mental inferences. But the absolute runtimes are much lower
on GPU as expected. Overall, K������ reduces OBE run-
times substantially for multiple datasets and deep CNNs. We
also ran an experiment in the “interactive” mode by reduc-
ing |G |. As expected, speedups go down with |G | due to the
reduction in amortization bene�ts. Due to space constraints,
these additional results are presented in the appendix.

5.2 Ablation Study
We now analyze the contributions of our 3 optimizations
individually. We compare the speedups of K������ over
Naive (batched inference) on both CPU and GPU, termed
Empirical-CPU and Empirical-GPU respectively, against the
theoretical speedups (explained in Sections 3 and 4).

Only Incremental Inference. We vary the patch size and
set the stride to 4. Figure 11 shows the results. As expected,
the speedups go down as the patch size increases. Empirical-
GPU Naive yields no speedups because it does not use
our GPU-optimized kernel, while Empirical-GPU does. But
Empirical-CPU is closer to theoretical speedup and almost
matches it on ResNet18. Thus, there is still some room
for improvement to improve the e�ciency of incremental
inference in both environments.

Projective Field Thresholding. We vary � from 1.0 (no
approximation) to 0.4. Adaptive drill-down is disabled but

(a)

(b)

Figure 13: Speedups with incremental inference combined
with adaptive drill-down. For (a), we set S1 = 16. For (b), we
set rdr ill_down = 0.25).

note that this optimization builds on top of our incremen-
tal inference. The occlusion patch size is 16 and stride is 4.
Figure 12 shows the results. The speedups go up steadily as
� drops for all 3 CNNs. Once again, Empirical-CPU nears
the theoretical speedups on ResNet18, but the gap between
Empirical-GPU and Empirical-CPU remains due to the dis-
proportionate impact of memory stalls on GPU. Overall, this
approximation o�ers some speedups in both environments,
but has a higher impact on CPU than GPU.

Adaptive Drill-Down. Finally we study the e�ects of adap-
tive drill-down (again, on top of incremental inference) and
disable projective �eld thresholding. The occlusion patch size
is 16. Stage two stride is S2 = 4. First, we vary rdr ill�down ,
while �xing stage one stride (S1 = 16). Figure 13 (a) shows
the results. Next, we vary S1, while �xing rdr ill�down = 0.25.
Figure 13 (b) shows the results. As expected, the speedups
go up as rdr ill�down goes down or S1 goes up, since fewer re-
inference queries arise in both cases. Empirical-CPU almost
matches the theoretical speedups across the board; in fact,
even Empirical-GPU almost matches theoretical speedups
on Inception3. Empirical-GPU �attens out at high S1, since
the number of re-inference queries drops, thus resulting in
diminishing returns for the bene�ts of batched execution
on GPU. Overall, this optimization has a major impact on
speeding up OBE for all CNNs in both environments.

Memory Overhead. We compare our batched incremental
inference against full re-inference on GPU. Our approach
actually reduces memory footprint by 58%. Due to space
constraints, we explain this result further in Appendix F.

5.3 Summary and Discussion
Overall, our experiments show that K������ can substan-
tially accelerate OBE, with up to 16X speedups on GPU and

34.5X speedups on CPU. The bene�ts of our optimizations de-
pend on the CNN’s architectural properties. Our approximate
inference optimizations also depend on the dataset’s prop-
erties due to their tunable parameters, which K������ can
tune automatically. Finally, K������ sees higher speedups
on CPU than GPU but the runtimes are much lower on GPU.
Overall, our optimizations in K������ help reduce waiting
times for OBE users by improving utilization of existing
resources rather than forcing users to buy more resources.
While we focused on OBE in this paper to understand

the bene�ts of IVM-based optimizations for CNNs, our ideas
may be applicable to many other visual recognition tasks as
well. For instance, [17, 31] exploit temporal locality in video,
since successive frames do not di�er much. One could inte-
grate our ideas with theirs to devise new approximate IVM
optimizations for CNNs. Going further, “IVM-friendliness”
can be baked into the very model selection process that crafts
the CNN architecture so that the model is both accurate and
amenable to fast post-hoc explanations [32]. However, such
extensions require new techniques to batch update patches
of arbitrary sizes and shapes, which requires deeper changes
to K������. Thus, we leave them to future work.

6 OTHER RELATEDWORK

Methods for Explaining CNN Predictions. Perturbation-
based and gradient-based are the two main kinds of methods.
Perturbation-based methods observe the output of the CNN
by modifying regions of the input image [9, 12, 13]. OBE
belongs to this category. Gradient-based methods generate
a sensitivity heatmap by computing the partial derivatives
of model outputs with respect to every input pixel [33–35].
The recently proposed “Integrated Gradients” (IGD) method
belongs into this category [35]. Empirically, we found that
OBE produces higher quality heatmaps with better localized
regions of interest compared to IGD, while being competitive
on runtime (see Appendix H for details). In practice, however,
OBE is usually the method of choice for domain scienti�c
users, especially in radiology [10, 36], since it is easy to
understand for non-technical users and typically produces
high-quality and well-localized heatmaps.

Faster CNN Inference. EVA2 [31] is a custom software-
hardware integrated stack for exploiting temporal redun-
dancy in video frames. While one can map OBE to a video,
EVA2 will still perform motion estimation computations
on whole frames and not exploit spatial redundancy across
frames as our batched IVM does. Since our optimizations
are at the logical level, they are also applicable to any com-
pute hardware. CBinfer performs change-based approximate
CNN inference to accelerate real-time object recognition on
video [17]. Similarly, NoScope accelerates object classi�ca-
tion on video streams using model cascades [37]. Our focus

is on accelerating the OBE workload for images, not video
streams. Our IVM and approximate inference optimizations
exploit the semantic properties of OBE, not general object
recognition. Both of these tools are orthogonal to our focus.

Query Optimization. Our work is inspired by the long line
of work on relational IVM [38–40], but ours is the �rst work
to use the IVM lens for OBE with CNNs. Our novel algebraic
IVM framework is closely tied to the data�ow of CNN lay-
ers, which transform tensors in non-trivial ways. Our work
is related to the IVM framework for linear algebra in [41].
They focus on bulk matrix operators and incremental ad-
dition of rows. We do not deal with bulk matrix operators
or addition of rows but more �ne-grained CNN inference
computations and in-place updates to image pixels due to
occlusions. Also related is the IVM framework for distributed
multi-dimensional array database queries in [42]. An interest-
ing connection is that CNN layers with local spatial context
(Section 2.2) can be viewed as a variant of spatial array join-
aggregate queries. But our work enables end-to-end IVM
for entire CNNs, not just one-o� spatial queries involving
data materialization and loading. Our focus is on popular
deep learning tools, not array databases. Finally, we also in-
troduce novel CNN-speci�c and human perception-aware
optimizations to accelerate OBE.

Our work is also inspired by relational MQO [18, 43], but
our focus is CNN inference, not relational queries. To the
best of our knowledge, ours is the �rst work to combine
MQO with IVM, at least in the context of CNN inference.
Our approximate inference optimizations are inspired by
approximate query processing (AQP) techniques [44]. But
unlike statistical approximations of aggregations over rela-
tions, our techniques are novel CNN-speci�c and human
perception-aware heuristics tailored to accelerating OBE.

7 CONCLUSIONS AND FUTUREWORK
Deep CNNs are gaining widespread adoption for image
prediction tasks but their internal workings are unintu-
itive for most users. Thus, occlusion-based explanations
(OBE) have become a popular mechanism for non-technical
users to understand CNN predictions. But OBE is highly
compute-intensive due to the large number of CNN re-
inference requests produced. In this work, we formalize OBE
from a data management standpoint and introduce several
novel database-inspired optimization techniques to speed
up OBE. Our techniques span exact incremental inference
and multi-query optimization for CNN inference, as well
as CNN-speci�c and human perception-aware approximate
inference. Overall, our ideas yield even over an order of
magnitude speedups for OBE in both CPU and GPU envi-
ronments. As for future work, we plan to apply our ideas to
other complex visual recognition tasks and video analytics.

REFERENCES
[1] Olga Russakovsky et al. Imagenet large scale visual recognition chal-

lenge. International Journal of Computer Vision, 115(3):211–252, 2015.
[2] Daniel S Kermany et al. Identifying medical diagnoses and treatable

diseases by image-based deep learning. Cell, 172(5):1122–1131, 2018.
[3] Mohammad Tariqul Islam et al. Abnormality detection and localization

in chest x-rays using deep convolutional neural networks. arXiv
preprint arXiv:1705.09850, 2017.

[4] Sharada P Mohanty et al. Using deep learning for image-based plant
disease detection. Frontiers in plant science, 7:1419, 2016.

[5] Farhad Arbabzadah et al. Identifying individual facial expressions by
deconstructing a neural network. In German Conference on Pattern
Recognition, pages 344–354. Springer, 2016.

[6] Yilun Wang and Michal Kosinski. Deep neural networks are more ac-
curate than humans at detecting sexual orientation from facial images.
Journal of personality and social psychology, 114(2):246, 2018.

[7] Ai device for detecting diabetic retinopathy earns
swift fda approval. https://www.aao.org/headline/
�rst-ai-screen-diabetic-retinopathy-approved-by-f. Accessed
September 31, 2018.

[8] Radiologists are often in short supply and overworked âĂŞ deep learn-
ing to the rescue. https://government.diginomica.com/2017/12/20/
radiologists-often-short-supply-overworked-deep-learning-rescue.
Accessed September 31, 2018.

[9] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Why should i
trust you?: Explaining the predictions of any classi�er. In Proceedings of
the 22nd ACM SIGKDD international conference on knowledge discovery
and data mining, pages 1135–1144. ACM, 2016.

[10] Kyu-Hwan Jung et al. Deep learning for medical image analysis: Ap-
plications to computed tomography and magnetic resonance imaging.
Hanyang Medical Reviews, 37(2):61–70, 2017.

[11] Paul Voigt and Axel Von dem Bussche. The EU General Data Protection
Regulation (GDPR), volume 18. Springer, 2017.

[12] Matthew D Zeiler and Rob Fergus. Visualizing and understanding
convolutional networks. In European conference on computer vision,
pages 818–833. Springer, 2014.

[13] Luisa M Zintgraf et al. Visualizing deep neural network decisions:
Prediction di�erence analysis. arXiv preprint arXiv:1702.04595, 2017.

[14] Cafee model zoo. https://github.com/BVLC/ca�e/wiki/Model-Zoo.
Accessed September 31, 2018.

[15] Models and examples built with tensor�ow. https://github.com/
tensor�ow/models. Accessed September 31, 2018.

[16] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio.
Deep learning, volume 1. MIT press Cambridge, 2016.

[17] Lukas Cavigelli, Philippe Degen, and Luca Benini. Cbinfer: Change-
based inference for convolutional neural networks on video data. In
Proceedings of the 11th International Conference on Distributed Smart
Cameras, pages 1–8. ACM, 2017.

[18] Timos K Sellis. Multiple-query optimization. ACM Transactions on
Database Systems (TODS), 13(1):23–52, 1988.

[19] Sharan Chetlur, Cli�Woolley, Philippe Vandermersch, JonathanCohen,
John Tran, Bryan Catanzaro, and Evan Shelhamer. cudnn: E�cient
primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

[20] Bert Moons and Marian Verhelst. A 0.3–2.6 tops/w precision-scalable
processor for real-time large-scale convnets. In VLSI Circuits (VLSI-
Circuits), 2016 IEEE Symposium on, pages 1–2. IEEE, 2016.

[21] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accel-
erating very deep neural networks. In International Conference on
Computer Vision (ICCV), volume 2, 2017.

[22] Basic operations in a convolutional neural network - cse@iit delhi. http:
//www.cse.iitd.ernet.in/~rijurekha/lectures/lecture-2.pptx. Accessed

September 31, 2018.
[23] Saskia EJ de Vries et al. The projective �eld of a retinal amacrine cell.

Journal of Neuroscience, 31(23):8595–8604, 2011.
[24] Wenjie Luo, Yujia Li, Raquel Urtasun, and Richard Zemel. Understand-

ing the e�ective receptive �eld in deep convolutional neural networks.
In Advances in neural information processing systems, pages 4898–4906,
2016.

[25] Zhou Wang et al. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

[26] Jia Deng, Wei Dong, et al. Imagenet: A large-scale hierarchical image
database. In Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, pages 248–255. Ieee, 2009.

[27] Karen Simonyan and Andrew Zisserman. Very deep convolutional net-
works for large-scale image recognition. arXiv preprint arXiv:1409.1556,
2014.

[28] Kaiming He et al. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recog-
nition, pages 770–778, 2016.

[29] Christian Szegedy et al. Rethinking the inception architecture for
computer vision. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2818–2826, 2016.

[30] torch vison models. https://github.com/pytorch/vision/tree/master/
torchvision/models. Accessed September 31, 2018.

[31] Mark Buckler, Philip Bedoukian, Suren Jayasuriya, and Adrian Samp-
son. Eva2: Exploiting temporal redundancy in live computer vision.
arXiv preprint arXiv:1803.06312, 2018.

[32] Mohammad Motamedi, Felix Portillo, Mahya Sa�arpour, Daniel Fong,
and Soheil Ghiasi. Resource-scalable cnn synthesis for iot applications.
arXiv preprint arXiv:1901.00738, 2018.

[33] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside
convolutional networks: Visualising image classi�cation models and
saliency maps. arXiv preprint arXiv:1312.6034, 2013.

[34] Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakr-
ishna Vedantam, Devi Parikh, and Dhruv Batra. Grad-cam: Visual
explanations from deep networks via gradient-based localization. In
2017 IEEE International Conference on Computer Vision (ICCV), pages
618–626. IEEE, 2017.

[35] Mukund Sundararajan et al. Axiomatic attribution for deep networks.
arXiv preprint arXiv:1703.01365, 2017.

[36] Tim Miller. Explanation in arti�cial intelligence: Insights from the
social sciences. arXiv preprint arXiv:1706.07269, 2017.

[37] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei
Zaharia. Noscope: optimizing neural network queries over video at
scale. Proceedings of the VLDB Endowment, 10(11):1586–1597, 2017.

[38] Rada Chirkova, Jun Yang, et al. Materialized views. Foundations and
Trends® in Databases, 4(4):295–405, 2012.

[39] Ashish Gupta, Inderpal Singh Mumick, et al. Maintenance of materi-
alized views: Problems, techniques, and applications. IEEE Data Eng.
Bull., 18(2):3–18, 1995.

[40] Alon Y Levy, Alberto O Mendelzon, and Yehoshua Sagiv. Answering
queries using views. In Proceedings of the fourteenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, pages
95–104. ACM, 1995.

[41] Milos Nikolic, Mohammed ElSeidy, and Christoph Koch. Linview:
incremental view maintenance for complex analytical queries. In
Proceedings of the 2014 ACM SIGMOD international conference on Man-
agement of data, pages 253–264. ACM, 2014.

[42] Weijie Zhao, Florin Rusu, Bin Dong, Kesheng Wu, and Peter Nugent.
Incremental view maintenance over array data. In Proceedings of the
2017 ACM International Conference on Management of Data, pages
139–154. ACM, 2017.

[43] Wangchao Le, Anastasios Kementsietsidis, Songyun Duan, and Feifei
Li. Scalable multi-query optimization for sparql. In Data Engineering
(ICDE), 2012 IEEE 28th International Conference on, pages 666–677. IEEE,
2012.

[44] Minos N Garofalakis and Phillip B Gibbons. Approximate query pro-
cessing: Taming the terabytes. In VLDB, pages 343–352, 2001.

[45] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

A INTERACTIVE MODE EXECUTION
We evaluate interactive-mode incremental inference execu-
tion (no approximate inference optimizations) with Gs of
di�erent sizes. Similar to non-interactive mode experiments
presented in Section 5, all experiments are run in batched
mode with a batch size of 16 for CPU based experiments and
a batch size 128 for GPU based experiments. If the size of G
(formally |G |) or the remainder ofG is smaller than the batch
size, that value is used as the batch size (e.g. |G | = 16 results
in a batch size of 16). Figure 14 presents the �nal results.

B INTEGRATION INTO PYTORCH
For the CPU environment we implemented K������ purely
on top of the PyTorch toolkit using it’s tensor slicing and
stitching capabilities as per Algorithm 1. However, for the
GPU environment such iterative memory copying opera-
tions introduce high overheads as the many GPU cores now
have to idle wait for the slow memory copy operations. To
overcome this we extended PyTorch by adding a customGPU
kernel which optimizes the input preparation for incremen-
tal inference by invoking parallel memory copy operations.
This custom kernel is integrated to PyTorch using Python
foreign function interface (FFI). Python FFI integrates with
the Custom Kernel Interface layer which then invokes the
Custom Memory Copy Kernel Implementation. The high-
level architecture of the Custom Kernel integration is shown
in Figure 15.

C SPECIAL CASES FOR INCREMENTAL
INFERENCE

There are special cases under which the output patch size
can be smaller than the values calculated in Section 3.2. Con-
sider the simpli�ed 1-D case shown in Figure 16 (a), where
the �lter stride1 (3) is the same as the �lter size (3). In this
case, the size of the output update patch is one less than the
value calculated by Equation (14). But this is not the case for
the situation shown Figure 16 (b), which has the same input
patch size but placed at a di�erent location. Another case
arises when the modi�ed patch is placed at the edge of the
input, as shown in Figure 16 (c). In this case, it is impossible
for the �lter to move freely through all positions, since it

1Note that stride is typically less than or equal to �lter size.

Figure 14: Interactive mode execution of incremental infer-
ence with Gs of di�erent sizes

FFI
PyTorch

Python

GPU Memory

cuDNN Library

Custom Kernel Interface
C

Custom Kernel Impl.
Cuda

InvokesFlow of Data

1

2

3

4

5

6

0: Invoke incremental inference.
1: Initialize the input tensors, kernel weights and output buffer
in the GPU memory.
2: Invoke the Custom Kernel Interface (written in C) using
Python foreign function interface (FFI) support. Pass memory
references of input tensors, kernel weights and output buffer.
3: Forward the call to the Custom Kernel Implementation
(written in CUDA).
4: Parallely copy the memory regions from the input tensor to
an intermediate memory buffer.
5: Invoke the CNN transformation using cuDNN.
6: cuDNN reads the input from intermediate buffer and writes
the transformed output to the output buffer.
7: Read the output to the main memory or pass reference as
the input to the next transformation.

7

Krypton
Python

0

Figure 15: Custom GPU Kernel integration architecture

hits the input boundary. However, it is not the case for the
modi�ed patch shown in Figure 16 (d). In K������, we do
not treat these cases separately but rather use the values cal-
culated by Equation (14) for the width dimension (similarly
for the height dimension), since they act as an upper bound.
In the case of a smaller output patch, K������ reads and
updates a slightly bigger patch to preserve uniformity. This
also requires updating the starting coordinates of the patch,
as shown in Equation (31). This sort of uniform treatment is
required for performing batched inference operations, which
gives signi�cant speedups compared to per-image inference.

If xOP + W O
P >WO :

xOP =WO �W O
P ;x

I
P =WI �W I

P ;x
R
P =WI �W R

P
(31)

D EFFECTIVE PROJECTIVE FIELD SIZE
In the following proposition we formalize the e�ective pro-
jective �eld growth for a one dimensional CNN with n con-
volutions layers. We also assume that all layers has the same
weight normalized CNN �lter kernel (i.e. sum of the weights
add up to one). This proposition is motivated by a similar
proof in [24] which characterizes the e�ective growth rate
of the receptive �eld in a CNN and can be proved similarly.

P���������� D.1. For a one dimensional CNN with n lay-
ers which uses the same weight normalized �lter kernel, the

Input

Filter
Positions

Output

Input

Filter
Positions

Output

(a) (b)

(c) (d)

Figure 16: Illustration of special cases for which actual out-
put sizewill be smaller than the value given by Equation (13).
(a) and (b) show cases where the �lter stride is equal to the
�lter size. (c) and (d) show situations where the position of
the modi�ed patch a�ecting the size of the output patch.

theoretical projective �eld will grow O (n) and the e�ective
projective �eld will grow O (

p
n).

E FINE-TUNING CNNS
For OCT and Chest X-Ray, the 3 ImageNet-trained CNNs
are �ne-tuned by retraining the �nal Fully-Connected layer.
We use a train-validation-test split of 60-20-20 and the ex-
act numbers for each dataset are shown in Table 3. Cross-
entropy loss with L2 regularization is used as the loss func-
tion and Adam [45] is used as the optimizer. We tune learn-
ing rate � 2 [10�2, 10�4, 10�6] and regularization parameter
� 2 [10�2, 10�4, 10�6] using the validation set and train for
25 epochs. Table 4 shows the �nal train and test accuracies.

Train Validation Test
OCT 50,382 16,853 16, 857

Chest X-Ray 3,463 1,237 1,156
Table 3: Train-validation-test split size for each dataset.

Model Accuracy(%) Hyperparams.

Train Test � �

OCT
VGG16 79 82 10�4 10�4
ResNet18 79 82 10�2 10�4
Inception3 71 81 10�2 10�6

Chest X-Ray
VGG16 75 76 10�4 10�4
ResNet18 78 76 10�4 10�6
Inception3 74 76 10�4 10�2

Table 4: Train and test accuracies after �ne-tuning.

F MEMORY OVERHEAD OF IVM
We evaluate the memory overhead of IVM approach, with
no projective �eld thresholding (� = 1.0) and a projective
�eld thresholding value of � = 0.6, compared to the full

Figure 17: Peak GPU memory usage when performing CNN
inference on a batch of 128 images.

OCT/DME

Chest X-Ray/VIRAL

ImageNet/OBOE

Integrated Gradients
(50 steps)

OBE

Krypton Krypton
Approximate(a) (b)

Figure 18: Comparison of integrated gradients method
against OBE. (a) Heat maps generated by integrated gradi-
ents method with a step size of 50. The three color channel
gradients of a pixels at the same point are aggregated using
L2 norm

CNN inference. For this we record the peak GPU memory
utilization while the CNN models perform inference on im-
age batches of size 128. We found that incremental inference
approach can enable up to 58% lower memory overhead (see
Figure 17). Krypton materializes a single copy of all CNN
layers corresponding to the unmodi�ed image and reuses it
across a batch of occluded images with IVM. For IVM the size
of required memory bu�ers are much smaller than the full
inference as only the updated patches need to be propagated.

G VISUAL EXAMPLES
Figure 19 presents occlusion heat maps for a sample image
from each dataset with (a) incremental inference for di�erent
projective �eld threshold values and (b) incremental inference
with adaptive drill-down for di�erent projective �eld threshold
values. The predicted class label for OCT, Chest X-Ray, and
ImageNet are DME, VIRAL, and OBOE respectively.

H INTEGRATED GRADIENTS METHOD
We evaluate the runtime and visual quality of the generated
heat maps for integrated gradients (IGD) [35] and OBE meth-
ods on three representative images from our datasets (see
Figure 18). In general, OBE can better localize relevant re-
gions from the input images. IGD method requires tuning a
hyper-parameter called steps which determines the number
steps to be used in the gradient integration approximation.
Increasing steps improves both the runtime and heat map

Figure 19: Occlusion heat maps for sample images (CNN model = VGG16, occlusion patch size = 16, patch color = black, occlu-
sion patch stride (S or S2) = 4. For OCT rdr ill_down = 0.1 and target = 5. For Chest X-Ray rdr ill_down = 0.4 and target = 2. For
ImageNet rdr ill_down = 0.25 and target = 3). For a projective �eld threshold value of 0.3 we see signi�cant degradation of heat
map quality due to the signi�cant information loss from truncation.

quality of the IGD method. For performing OBE we used the
same hyper-parameters that were used in Section 5.1.

Acknowledgments. This work was supported in part by a
Hellman Fellowship and by the NIDDK of the NIH under

award number R01DK114945. The content is solely the re-
sponsibility of the authors and does not necessarily represent
the o�cial views of the NIH. We thank NVIDIA Corporation
for the donation of the Titan Xp GPU used for this work.

