
The ML Data Prep Zoo:
Towards Semi-Automatic Data Preparation for ML

Vraj Shah, Arun Kumar
University of California, San Diego
{vps002,arunkk}@eng.ucsd.edu

ABSTRACT
Data preparation (prep) time is a major bottleneck for many
ML applications. It is often painful grunt work that is handled
manually by data scientists, reducing their productivity and
raising costs. It is also a roadblock for emerging AutoML plat-
forms. We envision a new line of community-driven research
to tackle this bottleneck based on a simple philosophy: use
ML to semi-automate data prep for ML. For impactful research
on this problem, we believe the major impediment is not new
algorithms or theory but rather common task definitions and
benchmark labeled datasets. To this end, we formalize a few
major data prep tasks for ML over structured data as applied
ML tasks. We discuss research challenges in scaling up data
labeling, defining accuracy metrics, and creating practical
tool support. We present a case study of our progress on a
key data prep task: ML schema inference. Finally, we propose
a public “zoo” of labeled datasets and pre-trained ML models
for data prep tasks to act as a community-led repository for
further research on this problem.
ACM Reference Format:
Vraj Shah, Arun Kumar. 2019. The ML Data Prep Zoo: Towards
Semi-Automatic Data Preparation for ML. In InternationalWorkshop
on Data Management for End-to-End Machine Learning (DEEM’30),
June 30, 2019, Amsterdam, Netherlands. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3329486.3329499

1 INTRODUCTION
Surveys of data scientists show that ML data prep often dom-
inates their time and effort, even up to 80% [7]. It is tedious
grunt work involving tasks such as identifying feature types
and extracting feature values. Today, it is performed mostly
manually in tools like Python and R, reducing data scientists’

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
DEEM’30, June 30, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6797-4/19/06. . . $15.00
https://doi.org/10.1145/3329486.3329499

productivity and raising costs. Modern datasets also often
have 1000s of columns, worseing this issue. Furthermore,
SalesForce, Google, and other cloud vendors are starting to
offer end-to-end AutoML platforms for enterprises; manual
data prep at this scale of millions of datasets is untenable [8].
Challenge: Semantic Gap.While the DB community has
long studied data cleaning/prep for SQL analytics, little work
has studied the peculiarities of ML data prep. The semantic
gap between what an attribute is in a DB/data file and what a
feature is for ML means many tasks have fallen through the
cracks. Thus, a pressing grand challenge for the DEEM com-
munity is to construct a shared understanding/terminology
of such tasks, understand why they are hard to automate,
and standardize evaluation of (semi-)automated tools.
Our Vision. To meet the above challenge, we envision a
community-driven effort for semi-automating ML data prep.
Our philosophy is to abstract specific ML data prep tasks
and cast them as applied ML tasks. This raises 3 questions.
What are the tasks and what is their role? How to cast them
as applied ML tasks? How to create benchmark datasets for
comparing tools? In particular, we believe the critical limiting
factor for impactful and replicable research in this space is
not fancier algorithms or theory but the availability of large
high-quality labeled datasets for ML data prep tasks. As an
analogy, the formalization of the ImageNet task and dataset
spurred major recent advances in ML-based vision.
This Paper.We present our vision of the ML Data Prep Zoo,
a repository of commonML data prep task definitions, bench-
mark labeled datasets, and pre-trained ML models. Figure 1
illustrates 6 tasks we have defined so far based on our con-
versations with data scientists. In Section 2, we explain these
tasks and how to cast them as applied ML tasks. In Section
3, we discuss key research questions in realizing this vision
and explain our plans. In Section 4, we present a case study
of our progress on the first task:ML schema inference. For in-
stance, our labeled data-based applied ML approach yielded
a whopping 30% lift for identifying numeric features among
attributes compared to existing rule-based approaches in
Python Pandas and TensorFlow DataValidation [2]. In Sec-
tion 5, we describe the ML Data Prep Zoo repository for our
datasets and models and announce competitions for commu-
nity contributions. Section 6 discusses related work.

https://doi.org/10.1145/3329486.3329499
https://doi.org/10.1145/3329486.3329499

CustID
(Varchar)

Time Since
(Varchar)

Zipcode
(Integer)

Income
(Varchar)

Age
(INT)

XYZ
(Varchar)

101 25 months 92092 12000 25 005

102 10 years 92093 USD 1000 56 007

103 15 weeks UNK 50000 34 003

104 10 years 92093. 1000 56 007

Raw CSV file (DB schema)

Age

CustID

XYZ

Zipcode

Time Since
Income

ML schema

Task 0: ML Schema
Inference (MC)

Usable Numeric

Unusable

Context-Specific

Usable Categorical

Usable with Extraction

CustID …

103 …

Task 1: Detect Anomalous
Categories (BC)

Task 2: Category
Deduplication (BC)

Flagged Rows

Task 4: Multiple Number
Units Detection (BC)

Task 5: Embedded Number
Extraction (Seq2Seq)

Task 6: List Domain Extraction
(Seq2SetSeq)

Detect Data
TypeSchema Extraction

from DB world

Custom Features: n-
gram, Word2vec, …

months 30

years 365

… …

External Knowledge Base

CustID Time Since Income …

101 750 12000 …

102 3650 1000 …

103 105 50000 …

CustID …

102 …

104 …

Similar Rows

Numbers

List

Date

Timestamp

Sentence

URL

Custom Object

Task 3: Embedded Feature
Type Inference(MC)

Figure 1: Illustrating major data prep tasks. The user loads a customers table to train, say, a churn predictor. BC
stands for binary classification. MC stands formulti-class classification. Seq2Seq stands for sequence-to-sequence
learning. Seq2SetSeq stands for sequence-to-set-of-sequence learning.

2 DATA PREP TASKS FOR ML
2.1 Current Scope
We focus on tabular/relational data, typically exported from
a DBMS with DB schema or managed as files (CSV, JSON,
etc.). Either way, we assume the loaded dataset is a single
table with column names available. ML users usually load
such data into a Python/R “dataframe” for ML. This stage is
our focus; this work does not focus on feature engineering
(e.g., binning, removing outliers, Word2Vec, etc.). We call ML
models to be trained on the prepared data “target models.”
Figure 1 shows a typical data prep workflow. Next, we dive
into a few major steps in this workflow and discuss how we
could cast the human’s intuition as an applied ML task.

2.2 Task 0: ML Schema Inference
Description and Example. The first step is to infer the
“ML schema”: what is the feature type of each column? Most
ML models recognize only numeric or categorical features.
This task is surprisingly hard to automate accurately due to
the semantic gap between DB and ML schemas. For example,
Zipcode in Figure 1 is an integer; so, Pandas will call it a
numeric feature, which is nonsensical! This semantic gap is
bridged today manually by converting it to categorical. This
issue is common in real datasets, since categories are often
stored as integers, e.g., disease codes, product types, etc. Real
datasets also often have 100s of features, which means the
manual grunt work quickly adds up.

Casting as an ML Task. We bridge the semantic gap by
casting this task as an ML classification task. In fact, our
trained ML models yield 30% lift for predicting numeric vs.
non-numeric features against existing rule-based heuristics in
Pandas and TensorFlow Data Validation (TFDV) [2] (details
in Section 4). The raw features are a whole column, including
name such as “ZipCode” and sample values such as 90292,
92093, etc. in the above example. Two classes are numeric
and categorical. But there is often not enough information in

the data file to identify a column type, even for humans. This
necessitates more classes; we created a 5-class vocabulary.
(1) Usable-Numeric and (2) Usable-Categorical: These are

for columns that can be (almost) directly used for the target
model, e.g., Age in Figure 1 is Usable-Numeric, while Zip-
code is Usable-Categorical. (3) Usable-with-Extraction: Such
columns have “messy” values, preventing direct use as nu-
meric or categorical features, e.g., Income and TimeSince
require custom extraction before being used as numeric fea-
tures. Such extraction is hard to automate fully, but we later
discuss a few common extraction tasks that can be cast as
applied ML tasks. (4) Unusable: Such columns can not be used
as features for the target model because they are not “gener-
alizable,” e.g., CustID is a primary key. (5) Context-Specific:
This is a catch-all for columns whose type is hard to tell even
for humans, e.g., XYZ has integers but is it really numeric
(like Age) or categorical (like Zipcode)? To ascertain the type
of such columns, data scientists typically need to manually
check the application’s data documentation.
2.3 Tasks for Usable-Categorical
While a Usable-Categorical column can be used directly, data
scientists often seek to resolve two issues with its domain
to boost target model accuracy: missing value categories and
duplicate categories. For instance, we saw both“-999" and
“unknown" for missing values and both “CA” and “California”
for California in real datasets. One may want to discard miss-
ing value categories and instead use statistical techniques
for handling missing values. One may also want to dedupli-
cate categories to reduce domain size, which helps in the
bias-variance tradeoff. Thus, we formalize two new data
prep tasks as binary classification: Task 1: Detect Anoma-
lous Categories to flag missing value categories and Task
2: Category Deduplication to flag pairs of categories that
are duplicates. The column name and its domain are the raw
features for both tasks. Task 2 is an instance of the entity
matching problem in the data cleaning literature but with
much less metadata for devising similarity scores; one could
consider Siamese neural networks for this task.

2.4 Tasks for Usable-with-Extraction
Usable-with-Extraction columns require more processing to
extract numeric and/or categorical features, e.g., Income.
Figure 1 has “USD” prefixing a number, while TimeSince
has “months,” “years,” etc. suffixing numbers. Data scientists
often write regular expressions or custom code to extract
such values. While it is perhaps impossible to automate all
such extractions, we identify three common tasks that can
be cast as applied ML tasks.

Task 3: Embedded Feature Type Inference: What is
the feature type embedded? Figure 1 shows our current tax-
onomy for embedded feature types. Dates and timestamps
can be processed using standard DB techniques, while URLs
and custom objects may require human intervention. One
could consider character-level CNNs and RNNs for this task.

Task 4: Multiple Number Units Detection: Are the
units of an embedded number the same? If not, we need
to standardize the units, likely with human intervention
and/or external knowledge bases about units. In Figure 1,
TimeSince has multiple units. If yes, we get Task 5: Embed-
ded Number Extraction: What is the embedded number?
For instance, extract 1000 from “USD 1000.” This can be seen
as both a Seq2Seq task and a sequence-to-regression task.
An encoder-decoder CNN/RNN may fit this task. One could
also consider joint multi-task learning for Tasks 4 and 5.

Task 6: List Domain Extraction: Some columns have
lists in a string separated by commas, space, semicolons, etc.
Data scientists typically write custom code to extract the
domain of the list values and use the domain to get new
numeric/categorical features for the target model. This is a
complex task that converts a sequence to a set of sequences
representing domain entries. Once could consider more com-
plex neural architectures for this task.
Other Featurization Routines. In our current scope, we

leave other standard featurization routines for custom pro-
cessing to the user. For instance, to process a full English
sentence in a Usable-with-Extraction column, data scientists
may want to use bag-of-words, n-grams, or embeddings like
Word2Vec or Doc2Vec. Such feature engineering decisions
are orthogonal to our focus and are often application-specific.

3 RESEARCH QUESTIONS AND OPTIONS
We now discuss a few major research questions in tackling
the applied ML tasks we listed.
3.1 Metrics and Featurization
The accuracy metrics for Tasks 0 to 4 are standard, but for
Tasks 5 and 6, we may need to define new metrics. For Task
5, edit distance and/or squared loss are candidates with dif-
fering results, e.g., “12” is closer to “$12.99” under the latter
but not the former although edit distance helps sequence
extractors. Task 6 has a complex structured prediction out-
put, which may need a complex loss function (ideally, still

differentiable) and multiple accuracy metrics. Even the fea-
turization of the raw column is an open question, since the
ML models for our tasks also need numeric, categorical, or
string features. Several options exist: obtain n-grams or em-
beddings from column names and sample values, get sum-
mary statistics, and so on. Characterizing which of these
features matter the most is also part of our research, since
such featurization matters for both accuracy and inference
latency at deployment time.
3.2 Creating Large Labeled Datasets
This is our central research challenge. To the best of our
knowledge, there are no large benchmark labeled datasets for
any of our 6 data prep tasks. So far, we have collected 360 CSV
data files from Kaggle, UCI repository, etc., adding up to 9000
columns. Manual labeling for each task each could yield best
accuracy but it is highly time-consuming and expensive. We
plan to try 3 alternative approaches: crowdsourcing, active
learning, and weak supervision.
Crowdsourcing labels is common in ML practice, but we

face a major quality issue: most crowd workers are lay users,
not data scientists who “get” data prep. In fact, our pilot
run for crowdsourcing labels for Task 0 on the FigureEight
platform resulted in too much noise even with 5 labels per
example. Thus, how to structure crowd labeling questions
better is an open research question. Active learning with a
data scientist in the loop is another option we plan to explore.
But a key disadvantage here is that we need to fix the task’s
ML model beforehand. Finally, weak supervision is a promis-
ing approach here, since it is often possible to write small
labeling functions (LFs) to encode structural heuristics and
dictionary lookups for some tasks. A denoising framework
like Snorkel [6] can potentially help boost accuracy over
the LFs’ outputs. We also plan to try Snuba-on-Snorkel [10]
to automate the production of LFs for some classification
tasks. But an open challenge is that Snorkel current does not
support complex prediction outputs like in Tasks 5 and 6.
3.3 Creating Human-in-the-loop Tools
Our work cannot end at getting ML models for our tasks. To
complete the loop,we need to integrate them for inference
in popular data prep ecosystems. There are two main kinds
of tools: programmatic (e.g., R, Pandas, and TFDV) and vi-
sual (e.g., Excel and Trifacta). Each presents its own set of
interesting implementation challenges. For the former, we
plan to introduce simple APIs to plug our trained ML models.
For the latter, it is an open research question as to how to
create appropriate interface mechanisms that can exploit
both our ML models’ predictions and human-in-the-loop
correction capabilities. For instance, the user could “guide”
an ensemble of ML models based on column semantics or
specific column values they see. Looking even further out,
we can integrate ML models with programming-by-example

TF-DV Pandas LogReg RandForest

Num N-Num Num N-Num Num N-Num Num N-Num

Precision 0.5117 0.9876 0.5418 0.9382 0.9331 0.9450 0.9722 0.9360

Recall 0.9915 0.4166 0.9502 0.4849 0.9093 0.9598 0.8909 0.9843

Accuracy 0.6359 0.6667 0.9394 0.9508

Figure 2: Test Accuracy Results.

and program synthesis approaches, especially for Tasks 5
and 6 that require value extraction. This requires resolving
ambiguity in the program search space and defining new
ranking schemes aimed at reducing manual extraction effort.

4 CASE STUDY: ML SCHEMA INFERENCE
Data Labeling. We manually labeled 9000 columns from
the data files we collected into the one of five classes of Task
0. This process took about 10 man-weeks across 4 months.

Featurization. Based on the two raw features (column name
and values), we extract several hand-crafted features to train
classical ML models. Our feature set is diverse: n-grams from
column name, summary statistics (mean, %ge NaNs, etc.),
castability as number, length of a random sample value, etc.

Experimental Setup. We perform 5-fold nested CV with a
random quarter of the train fold used for hyper-parameter
tuning. We compare logistic regression and RandomForest
trained on our data against TF-DV and Pandas. TF-DV can
infer only 2 types of features in our vocabulary: numeric or
otherwise. Pandas can only infer syntactic types: int, float
and object. Thus, we report the results on a binarization of
our 5-class vocabulary: numeric (Num) and all non-numeric
(N-Num). Figure 2 presents the test accuracy results.

Initial Results.We see a massive lift of 30% in accuracy for
our approach against both TF-DV and Pandas. Interestingly,
TF-DV and Pandas have high recall on numeric features but
very low precision. This is because their rule-based heuris-
tics are syntactic, leading them to wrongly classify many
categorical features such as ZipCode as numeric. Our mod-
els have slightly lower recall on numeric features but much
higher precision and overall accuracy.

5 THE ML DATA PREP ZOO
We announce the ML Data Prep Zoo, a living public reposi-
tory (on GitHub) of labeled data for ML data prep tasks [1].
We will release all datasets we create as CSV files. We will
also release our trained ML models in Python for the de-
fined tasks. Our first release will be for Task 0, with the
base features being the column name, summary statistics,
and 5 random sample values. Our trained models will in-
clude logistic regression, RandomForest, kernel SVM, and a
character-level CNN. The Zoo will also tabulate the accuracy
of the baselines and our models on each task. We invite con-
tributions from the research community to augment these

datasets, create new data for the other tasks, and/or define
new tasks along with their own labeled data and models. We
also plan to have leaderboards for public competitions on the
hosted datasets with multiple accuracy and runtime metrics,
inspired by the ImageNet competition. We invite researchers
to use our data to create better featurization and models to
semi-automate ML data prep tasks.

6 RELATEDWORK
Data Prep and Cleaning. TFDV [2] is a tool for managing
ML-related data in TensorFlow Extended. It uses conserva-
tive rule-based heuristics to infer ML schema from column
statistics. Our ML-based approach raises accuracy of ML
schema inference substantially. DataLinter is a rule-based
tool to inspect a data file and flag possible data quality issues
to the user [3]. It still requires users to perform data transfor-
mations manually, which makes it orthogonal to our focus.
There is growing work on reducing data cleaning effort using
ML properties (e.g., [5]). Our work is part of this growing
direction but our work specifically targets data prep tasks
and casts them as applied ML tasks.

AutoML Platforms. Existing AutoML platforms such as
Einstein [8] and AutoWeka [4] focus mainly on model se-
lection, not ML-based ML data prep. Thus, the models we
produce can enhance such platforms. OpenML [9] is an open-
source platform for ML users to share and compare models,
data, and analysis workflows. Our focus on creating high-
quality labeled datasets for semi-automating ML data prep
tasks is thus complementary. Our artifacts can be contributed
to OpenML for spurring more research on end-to-end Au-
toML platforms. We could also get more analysis workflows
from OpenML to enhance our work in the future.

REFERENCES
[1] Accessed March 15, 2018. The ML Data Prep Zoo Repository. https:

//github.com/pvn25/ML-Data-Prep-Zoo.
[2] Denis Baylor et al. 2017. Tfx: A tensorflow-based production-scale

machine learning platform. In SIGKDD.
[3] Nick Hynes et al. 2017. The data linter: Lightweight, automated sanity

checking for ml data sets. In NIPS MLSys Workshop.
[4] Lars Kotthoff et al. 2017. Auto-WEKA 2.0: Automatic model selection

and hyperparameter optimization in WEKA. JMLR (2017).
[5] Sanjay Krishnan et al. 2016. Activeclean: An interactive data cleaning

framework for modern machine learning. In SIGMOD.
[6] Alexander Ratner et al. 2017. Snorkel: Rapid training data creation

with weak supervision. PVLDB (2017).
[7] https://www.kaggle.com/surveys/2017. Accessed February 15, 2018.

2017 Kaggle survey on data science.
[8] https://www.salesforce.com/video/1776007. Accessed February 15,

2018. SalesForce Einstein AutoML.
[9] Joaquin Vanschoren et al. 2014. OpenML: networked science in ma-

chine learning. ACM SIGKDD Explorations Newsletter (2014).
[10] Paroma Varma et al. 2018. Snuba: automating weak supervision to

label training data. PVLDB (2018).

https://github.com/pvn25/ML-Data-Prep-Zoo
https://github.com/pvn25/ML-Data-Prep-Zoo
https://www.kaggle.com/surveys/2017
https://www.salesforce.com/video/1776007

	Abstract
	1 Introduction
	2 Data Prep Tasks for ML
	2.1 Current Scope
	2.2 Task 0: ML Schema Inference
	2.3 Tasks for Usable-Categorical
	2.4 Tasks for Usable-with-Extraction

	3 Research Questions and Options
	3.1 Metrics and Featurization
	3.2 Creating Large Labeled Datasets
	3.3 Creating Human-in-the-loop Tools

	4 Case Study: ML Schema Inference
	5 The ML Data Prep Zoo
	6 Related Work
	References

