
C������: E�icient and Reproducible
Model Selection on Deep Learning Systems

Supun Nakandala, Yuhao Zhang, and Arun Kumar
University of California, San Diego

{snakanda,yuz870,arunkk}@eng.ucsd.edu

ABSTRACT
Arti�cial Neural Networks (ANNs) are revolutionizing many
machine learning (ML) applications. But there is a major
bottleneck to wider adoption: the pain of model selection.
This empirical process involves exploring the ANN archi-
tecture and hyper-parameters, often requiring hundreds of
trials. Alas, most ML systems focus on training one model
at a time, reducing throughput and raising costs; some also
sacri�ce reproducibility. We present our vision of C������,
a system to raise ANN model selection throughput at scale
and ensure reproducibility. C������ uses a novel parallel
execution strategy we call model hopper parallelism. We dis-
cuss the research questions in building C������ and present
promising initial empirical results.
ACM Reference Format:
Supun Nakandala, Yuhao Zhang, and Arun Kumar. 2019. C������:
E�cient and Reproducible Model Selection on Deep Learning Sys-
tems. In International Workshop on Data Management for End-to-End
Machine Learning (DEEM’30), June 30, 2019, Amsterdam, Netherlands.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3329486.
3329496

1 INTRODUCTION
Arti�cial Neural Networks (ANNs) are revolutionizing many
machine learning (ML) applications. Their success at ma-
jor Web companies has created excitement among many
enterprises and domain scientists to try ANNs for their ap-
plications. But training ANNs is a painful empirical pro-
cess, since accuracy is tied to the ANN architecture and
hyper-parameter settings. Common practice to choose these
settings is to empirically compare as many training con�g-
urations for the application. This process is called model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
DEEM’30, June 30, 2019, Amsterdam, Netherlands
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6797-4/19/06. . . $15.00
https://doi.org/10.1145/3329486.3329496

selection, and it is unavoidable because it is how one controls
under�tting vs over�tting [2]. Model selection is a major bot-
tleneck for adoption of ANNs among enterprises and domain
scientists due to both the time spent and resource costs.

Example. Alice wants to train a deep convolutional neural
network (CNN) to identify brands in product images. She
tries 5 di�erent CNN architectures and 5 values each for the
initial learning rate and regularizer. So, she already has 125
training con�gurations to try. She then tries 3 new CNNs
and uses an “AutoML” procedure such as Hyperband [3] to
automatically decide the hyper-parameter settings.

Importance of Throughput. Regardless of grid/random
searches or AutoML searches, a key bottleneck for Alice’s
training is model selection throughput: how many training
con�gurations are evaluated per unit time. Higher through-
put means she can iterate through more con�gurations in
bulk, potentially reaching a better accuracy sooner. High-
throughput execution can also reduce total resource costs
by improving resource utilization.

Limitations of Existing Systems.Alas, popular ANN tools
like TensorFlow focus on the latency of training one model
at a time, not on throughput. The simplest way to raise
throughput is parallelism. ANN training uses variants of
mini-batch stochastic gradient descent (SGD), but SGD is
inherently sequential. Thus, various parallel execution ap-
proaches have been studied; we group them into 3 categories:
(1) task parallel; (2) bulk synchronous parallel; and (3) �ne-
grained asynchronous or synchronous data parallel. Each
category has some practical limitations: poor scalability, high
resource costs, low throughput, and/or unreproducible ex-
ecutions. While reproducibility may not be a concern for
some Web users, it is a showstopper for many enterprises
and domain scientists. Section 3 explain the tradeo�s further.

ThisWork.We present our vision of a new system for ANN
model selection we call C������ that raises throughput with-
out raising resource costs. Our target setting is small clusters
(say, 10s of nodes), which covers a vast majority (almost
90%) of parallel ML workloads in practice [6]. We have 4 key
system desiderata: scalability, SGD e�ciency, reproducibil-
ity, and system generality; we explain these in Section 2. To
satisfy all these desiderata, C������ uses a novel parallel

A
D

at
a

Sc
al

ab
il
it

y

Ease of Reproducibility

Fine-grained Async.
(e.g., Parameter Server)

BSP
(e.g., Spark)

Task Parallel
(e.g., Celery)

MOP (Our Approach)

Pe
r-

E
p
o
ch

 E
ff

ic
ie

n
cy

SGD Convergence Efficiency

B Task Parallel
(e.g., Celery)

Fine-grained Async.
(e.g., Parameter Server)

BSP
(e.g., Spark)

Better

B
e
tt

e
r

Better

B
e
tt

e
r

MOP (Our Approach)

C AutoML Procedures

ANN/AutoGrad Frameworks

Distributed Infrastructure

Cerebro

Hyperband PBT Grid Search Random Search
Decentralized Sync.

(e.g., Horovord)

Decentralized Sync.
(e.g., Horovord)

Figure 1: (A,B) Qualitative comparisons of tradeo�s on key systemdesiderata (data scalability and convergence e�ciency a�ect
accuracy). (C) High-level architecture of our envisioned system.

execution strategy we call model hopper parallelism (MOP).
MOP combines task and data parallelism by exploiting a key
formal property of SGD. We explain MOP and our proposed
system architecture in Section 4. We discuss the key research
challenges in realizing C������ and explain our plans. Fi-
nally, we present some promising initial empirical results on
ImageNet that show the bene�ts of C������.

2 SYSTEM DESIDERATA
Scalability.Deep ANNs typically use large training datasets,
often larger than single-node memory or even disk. ANN
model selection is also highly compute-intensive, which
means multiple nodes (with or without GPUs) are typically
used to reduce completion time. Thus, we desire out-of-the-
box scalability to large partitioned datasets (data scalability)
and distributed execution on a cluster (compute scalability).
Our current focus is the small cluster setting, which is com-
mon among enterprises [6].

SGD E�ciency. We need to maximize resource utilization
for executing SGD on a cluster. This has two parts: per-epoch
e�ciency and convergence e�ciency. For the former, we need
to reduce data ETL overheads and network communication
costs. It also means we need to reduce idle times. For the
latter, the gold standard is logically sequential SGD. Any-
thing that deviates from this usually needs more epochs to
converge to a similar accuracy. In Section 3, we explain the
limitations of prevailing logically parallel SGD approaches:
�ne-grained asynchronous [4], �ne-grained synchronous [8],
and bulk synchronous.

Reproducibility. From speaking with ML users in many
enterprises and domain sciences, we �nd that Parameter
Server (PS) [4] and related asynchronous/semi-synchronous
approaches are rarely used in such settings. This is because
they want reproducible executions. But unreproducibility
is inherent in such approaches due to the uncontrollable
randomness of the physical world. Since such settings are
our main focus, we desire exact reproducibility.

System Generality. We seek to support a variety of model
selection procedures ranging from manual grid or random
searches to AutoML procedures such asHyperband [3]. These

di�er in what set of training con�gurations they execute in
bulk. This is a higher-level decision that is orthogonal to our
focus. We also desire to support many popular ANN frame-
works such as TensorFlow, PyTorch, MXNet, and CNTK.
Such frameworks support arbitrary neural computational
graphs, o�ermany SGD-based optimizers, and have hardware-
e�cient linear algebra kernels. We do not want to waste their
engineering e�orts; rather, we desire to build on top of them
to make practical adoption easier.

3 TRADEOFFS OF EXISTING SYSTEMS
We now explain the tradeo�s of existing approaches for par-
allel ANN model selection. But �rst, we recap the data access
pattern of SGD.We randomly shu�e the training dataset and
then perform a sequential scan per epoch. The most common
practice is to shu�e dataset only once. ANN training typi-
cally needs dozens of epochs. There are 4 main paradigms
of parallelism: embarassingly task parallel, bulk synchro-
nous parallel (BSP), Parameter Servers, and decentralized
synchronous parallel. Figure 1(A,B) depicts their tradeo�s.

Embarassingly Task Parallel. Tools such as Python Dask,
Celery, and Ray [5] can run di�erent training con�gura-
tions on di�erent workers in a task parallel manner. Each
worker can use logically sequential SGD, which yields repro-
ducibility and best SGD e�ciency. There is no communica-
tion across workers during training, but the whole dataset
is copied to each worker. While this may su�ce for small
datasets, it is not scalable to large partitioned datasets, forcing
users to downsample and risk over�tting. Copying the whole
datasets to all workers is also highly wasteful of resources,
both memory and storage, raising costs. Alternatively, one
could use distributed storage (e.g., S3) to read data remotely
instead of replicating. But this approach will still incur mas-
sive overheads and costs due to remote I/O reads.

Bulk Synchronous Parallel (BSP). BSP systems such as
Spark and TensorFlow with model averaging parallelize one
model at a time. They broadcast the model, train models
independently on each worker’s partition, collect all models
on the master, average the weights, and repeat this every
epoch. Alas, this approach converges poorly; so, it is almost
never used for ANN training.

Parameter Server (PS). PS approaches also parallelize one
model at a time but at a �ner granularity than BSP. Work-
ers push gradient updates to the master at each mini-batch
and pull the latest model when ready. If the master waits to
collect all updates per cycle, it is synchronous; otherwise, if
the master continues training whenever it gets an update,
it is asynchronous. Asynchronous PS is highly scalable but
unreproducible; it often has poorer convergence than syn-
chronous PS due to stale updates but synchronous PS has
higher overhead for synchronization. All PS-style approaches
have high communication costs compared to BSP due to their
centralized all-to-one communications at each mini-batch.

Decentralized Synchronous Parallel. Decentralized sys-
tems such as Horovod [8] adopt HPC-style techniques to
enable synchronous all-reduce SGD. It is reproducible and
the adopted ring all-reduce algorithm has a time complexity
independent of the number of workers for the bandwidth-
bound term. However, the synchronization barrier becomes
a communication bottleneck.

4 OUR PROPOSED SYSTEM
We present our MOP execution strategy and envisioned sys-
tem architecture. We also discuss key research questions and
present some initial results.

4.1 Model Hopper Parallelism (MOP)
From Figure 1(A,B), we observe that BSP and task parallelism,
between them, cover all of our desiderata. This motivates us
to hybridize them in a manner inspired by multi-query opti-
mization (MQO) techniques [7]. Our intuition is to “emulate”
BSP data parallelism underneath task parallelism to increase
scalability and avoid replicating the whole dataset.
Given a dataset D, shu�e it once and partition it across

p workers. The model selection procedure gives a set S of
ANN training con�gurations. p is up to a few 10s in our
setting, but |S | can even be 100s; so, p << |S | typically. MOP
is decentralized: the client schedules S . Given a schedule (ex-
plained shortly), start SGD for p models from S in parallel on
p workers. When a model �nishes a pass over its partition,
a sub-epoch of SGD is done. That model is checkpointed lo-
cally, “hops” to the next worker as per schedule, and resumes
the same epoch on the new partition. After p hops, all of D
is seen and a full epoch of SGD is over. Repeat this every
epoch. Note that checkpointing time here is tiny relative to
ANN training times. MOP is thus scalable to large partitioned
datasets without any replication, unlike task parallelism. Re-
producibility is trivial–just replay the saved schedule. MOP
also guarantees a strong property: logical equivalence to se-
quential SGD for each model, unlike logically parallel SGD
systems. Optimization theory tells us that any random data
ordering is acceptable for SGD–MOP leverages this theoreti-
cal insight. Finally, MOP’s communication costs are much

lower than PS, as Figure 1(C) shows, since a model hops once
per partition, not once per mini-batch.

4.2 Envisioned System Architecture
We propose a narrow-waist architecture inspired by [2] to
support many AutoML procedures and many ANN/Autograd
frameworks, as Figure 1(C) illustrates. The core of C������ is
an optimizing scheduler to apply MOP to each ANN training
con�guration over the distributed infrastructure.

4.3 Research Challenges and Plan
Challenge: E�cient Scheduling. While the core idea of
MOP is simple, we need to tackle some algorithmic and
systems challenges for the C������ Scheduler. Our goal is
to maximize resource utilization. Randomly allocating ANN
training jobs from S to workers in a greedy fashion could be
sub-optimal, since some ANNs could �nish their sub-epochs
faster, leading to idle times between model hops. Thus, we
need to schedule more carefully for more resource e�ciency.
This requires estimating the job unit costs and worker speeds.

Our Plan. We formalize the C������ Scheduler as a new
variant of the classical open shop scheduling [9] problem from
the operations research literature. A sub-epoch in MOP is a
job’s unit. Given job unit costs and worker speeds, we want
to minimizemakespan (completion time); this is known to be
NP�Hard. But our setting has a special property: p << |S |.
We plan to exploit this property to adapt PTIME algorithms
from [9]. To estimate units costs and worker speeds, one
could devise cost models; but these are unwieldy for complex
ANNs. Our plan is simpler: use the �rst epoch as a pilot run
to estimate these quantities. Since ANN training often takes
dozens of epochs, the pilot run’s overhead is marginal.

Challenge: System Generality This has two parts. First,
C������ should o�er extensible APIs to specify the set S of
training con�gurations in any way, including with AutoML
procedures. Second, C������ must be extensible enough
to support any arbitrary ANN/AutoGrad framework (e.g.,
TensorFlow or PyTorch), all kinds of ANN architectures, and
any SGD-based optimizer (e.g., Adam or AdaGrad).

Our Plan. We observe that most AutoML procedures for
hyper-parameter tuning and neural architecture search �t a
common template: Create an initial set of training con�gura-
tions and evaluate them after each epoch (or after every few
epochs). Based on these evaluations, terminate some con�g-
urations (e.g., as in Hyperband [3] and PBT [1]) or add new
con�gurations [1]. Grid/random search is a one-shot instance
of this template. Thus, we adopt this template for our Sched-
uler and run it one epoch at a time. Given S , C������ trains
all models in S for one epoch and passes control back to the
AutoML procedure for convergence/termination/addition
evaluations and gets a potentially modi�ed set S 0 for the

Method Runtime
(hours)

Avg. GPU
Utilization (%)

Asynchronous
PS 189.97 8.62

Horovod 54.24 92.08

Model
Averaging 19.70 72.05

Celery 19.45 73.15

MOP 17.68 79.76

Figure 2: Makespans, GPU utilization, and learning curves
for a workload with |S | = 16 on an 8-node GPU cluster.

next epoch. This templated approach allows C������ to be
highly general: we can support all popular convergence de�-
nitions for training (�xed or unknown numbers of epochs)
and many popular AutoML search procedures.

To support arbitrary ANN/AutoGrad frameworks, we will
have an extensible architecture with custom handlers to
delineate framework-speci�c aspects as model checkpoint-
ing and restoring. Users will have to provide the data ETL
pipeline, ANN architecture de�nition, training and testing
criteria, and the SGD-based optimizer as functions in their
chosen ANN framework. C������ will automatically sched-
ule these functions, checkpointing, and restoring on the
workers. Overall, this planned implementation will make
C������ highly general and support all forms of data types,
ANN architectures, and SGD-based optimizers.

Challenge: Heterogeneity, Elasticity, and Fault Toler-
anceWe desire C������ to be robust to these issues. Cluster
heterogeneity can arise when workers have di�erent (num-
bers of) CPUs, GPUs, etc. C������ Scheduler must take
these di�erences into account to avoid unexpected idle times
due to stragglers. We also desire elasticity to let ML users
add/remove workers on the �y (say, to reduce completion
times) and support tolerance to worker faults.

Our Plan To handle heterogeneity (and support fault toler-
ance), we plan to support partial data replication and create
a two-stage Scheduler. First, we minimize the maximum
load on any worker by assigning job units to workers us-
ing a load balancing algorithm that uses our job unit costs
and machine speed estimates. This assignment will then be
used by our open shop Scheduler to produce the optimized
schedule. Since our Scheduler operates at every epoch, fault
tolerance and elasticity essentially come for free. When extra
workers are added, include them for scheduling at the very
next epoch. Workers can be removed in between epochs,
as long as a replica of that partition is still available. Fault
tolerance is easy to o�er, since MOP anyway checkpoints
models after sub-epochs. To detect worker failures, we will
use periodic “heartbeat" messages. When a failure is detected,
C������will use a recovery mode wherein job units assigned
on the failed worker will be reassigned to other workers

based on replica availability after the current epoch is �n-
ished. Overall, C������’s uni�ed templated Scheduler will
robustly handle all these distributed systems-oriented issues.
4.4 Preliminary Results
We compare a prototype implementation of MOP on Ten-
sorFlow to many state-of-the-art systems on an 8-node GPU
cluster with Nvidia P100 GPUs. We train 16 models on Ima-
geNet for 10 epochs: 2 architectures (VGG16 and ResNet50), 2
batch sizes (32 and 256); 2 learning rates (10�4 and 10�6), and 2
regularizers (10�4 and 10�6). Figure 2 shows the makespans,
average GPU utilization, and learning curves of the best
model from each system.
MOP is over 10x faster than TF’s in-built asynchronous

PS. PS’s GPU utilization is as low as 8%. MOP is also 3x
faster than Horovod. However, Horovod has high GPU uti-
lization close to 92%. This is because GPU utilization val-
ues for Horovod also captures the communication time as
its communication utilizes GPU kernels. MOP’s runtime is
comparable to TF’s model averaging (BSP-style) and Cel-
ery’s (disk-aware) task parallelism. But model averaging does
not converge at all. Celery and MOP have the best learning
curves, which are also almost identical, but note that Celery
has 8x the memory/storage footprint as MOP due to dataset
copies. Horovod’s convergence is slower due to the larger
e�ective mini-batch in its synchronous gradient aggrega-
tion. MOP can also cache and reuse pre-processed partitions
across models, while other systems redo pre-processing for
every model. Overall, MOP is the most resource-e�cient and
still o�ers accuracy similar to sequential SGD.

Acknowledgments. This work was supported in part by a
Hellman Fellowship and by the NIDDK of the NIH under
award number R01DK114945. The content is solely the re-
sponsibility of the authors and does not necessarily represent
the o�cial views of the NIH.

REFERENCES
[1] Max Jaderberg et al. 2017. Population based training of neural networks.

arXiv preprint arXiv:1711.09846 (2017).
[2] Arun Kumar et al. 2016. Model selection management systems: The

next frontier of advanced analytics. SIGMOD Record (2016).
[3] Lisha Li et al. 2016. Hyperband: A novel bandit-based approach to

hyperparameter optimization. arXiv preprint arXiv:1603.06560 (2016).
[4] Mu Li et al. 2014. Scaling Distributed Machine Learning with the

Parameter Server. In OSDI.
[5] Philipp Moritz et al. 2018. Ray: A Distributed Framework for Emerging

AI Applications. In OSDI.
[6] Szilard Pafka. Accessed February 28, 2019. Big RAM is eating big data

- Size of datasets used for analytics. https://www.kdnuggets.com/2015/
11/big-ram-big-data-size-datasets.html.

[7] Timos K Sellis. 1988. Multiple-query optimization. TODS (1988).
[8] Alexander Sergeev et al. 2018. Horovod: fast and easy distributed deep

learning in TF. arXiv preprint arXiv:1802.05799 (2018).
[9] Gerhard J Woeginger. 2018. The Open Shop Scheduling Problem. In

STACS.

