
SpeakQL: Towards Speech-driven Multi-modal�erying
Dharmil Chandarana Vraj Shah Arun Kumar Lawrence Saul

University of California, San Diego
{dharmil,vps002,arunkk,saul}@eng.ucsd.edu

ABSTRACT
Natural language and touch-based interfaces are making data
querying signi�cantly easier. But typed SQL remains the gold
standard for query sophistication although it is painful in many
querying environments. Recent advancements in automatic speech
recognition raise the tantalizing possibility of bridging this gap by
enabling spoken SQL queries. In this work, we outline our vision
of one such new query interface and system for regular SQL that
is primarily speech-driven. We propose an end-to-end architecture
for making spoken SQL querying e�ective and e�cient and present
initial empirical results to understand the feasibility of such an
approach. We identify several open research questions and propose
alternative solutions that we plan to explore.

1 INTRODUCTION
In the last few years, thanks to the advent of deep neural networks,
large training datasets, and massive compute resources [7], auto-
matic speech recognition (ASR) is beginning to match (in some
cases, even surpass) human-level accuracy in some domains [4].
Naturally, the popularity of speech-based inputs is rising rapidly in
several applications where typing was the primary mode of input,
including text messaging, emails, and Web search. ASR is also a
key enabler of new applications such as conversational personal
assistants, e.g. Siri, Alexa, Cortana, and Google Home.

Our community has long studied low-barrier query interfaces
to obviate the need to type SQL; they fall into two main categories.
�e �rst provide visual (both tabular [15] and drag-and-drop [3])
or touch (both gestural [12] and pen-based [6]) interfaces. �e
second provides a natural language interface (NLI), either typed [9]
or bidirectional conversations [10]. Almost of of them translate
under the covers to SQL but at the user level, they eliminate “SQL”
from “type SQL” or both. But conspicuous by its absence is a robust
speech-based interface for regular SQL that exploits modern ASR,
i.e., one that eliminates only “type” from “type SQL.” Building such
an interface is the focus of this work.

At �rst blush, one might wonder, why dictate SQL?Why not just
use NLIs or touch-based interfaces? From a research standpoint,
the very motivation of SQL was to have a structured English query
language, i.e., a constrained NLI, to enable non-CS users to perform
sophisticated data querying. �us, any understanding of ASR’s

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permi�ed. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
HILDA’17, Chicago, IL, USA
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.
978-1-4503-5029-7/17/05. . . $$15.00
DOI: h�p://dx.doi.org/10.1145/3077257.3077264

Figure 1: A qualitative comparison of the trade-o� between
ease of use and currently feasible query sophistication for
di�erent kinds of interactive query interfaces (top right
is best). SpeakQL aims for almost full SQL sophistication,
while improving ease of use using both speech and touch.

bene�ts for data querying is incomplete without a proper under-
standing of its interplay with SQL. From a practical standpoint,
many important users, including in the C-suite, in enterprise, Web,
healthcare, and other domains are already familiar with SQL (even
if only a subset of it) and use it routinely! A spoken SQL interface
could help them speed up query speci�cation, especially in con-
strained se�ings such as smartphones and tablets, where typing
SQL would be painful but speech-driven applications are common.
More fundamentally, there is a trade-o� inherent in any new query
interface: how easy is it to use vs. how much query sophistication
can it support well, as illustrated in Figure 1. SQL remains the gold
standard for query sophistication. While complex NLIs might sup-
plant SQL in the future, they are beholden to the “AI-hard” natural
language understanding (NLU) problem. For these reasons, we
argue that more research is needed on exploiting ASR to make it
easier to specify SQL or SQL-like queries, not just eliminating SQL
from data query interfaces.
Relationship to Prior Work. �ere is some prior work on using
ASR for data querying. �e US military has explored the use of
Dragon NaturallySpeaking for querying document databases [8].
Nuance has a healthcare-focused ASR engine integrated with some
commercial RDBMSs [2]. But to the best of our knowledge, there
is no general-purpose open domain spoken SQL query interface.
�e recent system Echo�ery is a conversational NLI designed
as an Alexa skill [10]. While it could be useful for layman users,
cascading of errors caused by NLU and ASR could restrict the query
sophistication of such an approach. Moreover, the low information
density of speechmakes it an impractical mechanism to return large
query results. Also, a recent user study by Baidu showed that even
for simple text messaging, most users prefer using speech only for
the �rst dictation; for error correction and re�nement, they prefer
touch [14]. Nevertheless, our work can be seen as an alternative
approach within the “query by voice” paradigm mentioned in [10].

In contrast to the prior approaches, we aim to build an open
domain, speech-driven, and multi-modal interface for regular SQL.

Figure 2: End-to-end Architecture of SpeakQL 1.0. For illustration purposes, we show how a simple spoken SQL query even-
tually gets converted to a query displayed on a screen, which the user can interactively re�ne.

We would like to enable users to specify an SQL query with speech
but perform interactive query correction using a screen-based
touch (or click) interface, with the query results displayed on screen
as well. We call our interface and system, SpeakQL.

In the rest of this paper, we present our vision for SpeakQL,
including our desiderata and an initial architecture that uses a cloud
ASR service. We discuss our evaluation methodology and present
an initial empirical study that reveals the key di�erences between
general English recognition and SQL recognition. Our results reveal
several challenging research questions and we consider alternative
approaches to solving them by combining ideas from database
systems, information retrieval (IR), linguistics, and applied ML.

2 PRELIMINARIES
2.1 Desiderata and Technical Challenge
Complementary to prior work on NLIs, visual, touch-based, and
gestural interfaces, our desiderata for a new speech-driven multi-
modal query interface are as follows:

(1) Supports regular SQL with a given grammar.
(2) Exploits state of the art ASR for high accuracy.
(3) Open domain, i.e., supports queries in any domain with a

potentially in�nite vocabulary.
(4) Supports touch-based or click-based interactive query cor-

rection with a screen display.
Our desiderata are motivated by the unique way in which SQL

di�ers from regular English speech: it is both less andmore general!
SQL is less general due to its unambiguous context free grammar
(CFG), which could make syntactic analysis and parsing easier
than regular English speech. But SQL is also more general be-
cause non-vocabulary tokens (from an ASR perspective) are far
more likely in SQL due to the in�nite variety of database instances
across domains. For instance, it is unlikely that any ASR engine
can exactly recognize a literal like CUSTID 1729A. We call this the
open domain problem; addressing this problem is a core techni-
cal challenge in making speech-driven SQL e�ective. We believe
human-in-the-loop query correction might be a necessary compo-
nent of achieving this goal. Note that the open domain problem
has not been solved even for spoken NLIs such as [10]. �us, we
believe some of the techniques developed as part of this work could
potentially bene�t spoken NLIs as well.

2.2 Architecture of SpeakQL 1.0
In our �rst design, we want to understand how good a modern
o�-the-shelf ASR tool is for our task and how to exploit it. So,
we “outsource” the ASR part and focus on SQL-speci�c issues.
To expand on an earlier observation, SQL contains only three
kinds of tokens: English keywords, special characters (“SplChar”),
and literals (table names, a�ribute names, and a�ribute values).
Keywords and SplChars are from a small vocabulary present in
the SQL grammar, while literals are from a potentially in�nite
vocabulary. But we observe that in practice, literals in SQL are
typically from the set of values already present in the database
instance being queried or a general numeric value. Exploiting
our observations, we envision a four-component architecture, as
Figure 2 shows. We brie�y describe each component’s role and
their current baseline implementation.

ASR Wrapper. �is component records the spoken SQL query
as an audio �le, invokes a modern ASR tool, and obtains the top
ASR transcription outputs.
Current Implementation. We send the audio to Google’s Cloud
Speech API [1] and obtain a ranked list of outputs. Google’s API
also o�ers two interesting and useful options: accents and hints. We
used the “en-US” option for the accent. Hints are tokens that might
be present in the audio; they help the ASR engine pick between
alternate transcriptions. For example, if “=” is given as a hint, we
might get the “=” symbol instead of “equals” as text. Empirically,
we �nd that hints help improve baseline ASR accuracy and thus,
decrease the downstream work.

Structure and Literal Determination. �e structure determina-
tion component post-processes the ASR output(s) to determine
a ranked list of syntactically correct SQL statements with place-
holder variables for literals. It exploits the given SQL grammar
and a set of SplChar handling rules (their textual and phonetic
representations) to correct the query structure and �x keywords
and SplChars. �e literal determination component processes the
syntactically correct SQL statements and “�lls in the blanks” for
the literal placeholders. It uses the raw ASR outputs as a surrogate
for what was spoken for the literals. �e open domain issue is
addressed by pre-computing a set of “materialized views” that pro-
vide the table names, a�ribute names and types, and the domains
of the a�ributes (sets of unique values, tokens in textual a�ributes,

and numeric ranges) from the database schema and instance being
queried. �is component then uses the raw ASR outpus and “joins”
them with relevant metadata to obtain a ranked list of literals for
each placeholder. Decoupling structure determination from literal
determination is a crucial design decision that helps us a�ack the
open domain problem. �is is because correcting the syntactic
structure is a relatively easier problem for which existing natu-
ral language processing (NLP) techniques can be applied, while
e�ective literal determination is harder.
Current Implementation. We have built a simple baseline mod-
ule using rule-based heuristics to correct SQL queries. Essentially,
we create a dictionary of all keywords, SplChars, and schema liter-
als (table and a�ribute names). We then match each token in the
transcription output with a dictionary entry based on shortest edit
distance on strings. We also create another baseline that augments
this dictionary with instance literals (domain values of a�ributes).
�e intuition is that the larger dictionary could help resolve errors
in literals that arise in predicates. Clearly, this naive dictionary-
based approach has several issues, including not exploiting the SQL
grammar and poor scalability of dictionary lookups. But it serves
as the most “braindead” baseline; we explore more sophisticated
approaches to mitigate both of these issues in Section 4.

Interactive Display. �is is the component that the user inter-
acts with. It displays a single SQL statement that represents the
“best” transcription of the spoken SQL query and provides interac-
tive touch/click-based mechanisms for query correction that are
inspired by touch-based text messaging apps. Literals are high-
lighted and boxed, with the respective ranked lists cached by our
system. If a displayed literal is incorrect, the user can touch its box
and a pop-up menu will display the ranked lists of alternatives for
that placeholder. In Figure 2, the user corrects “Jon” to “John.” If
the structure of the query itself is wrong, the user can select the
“Alter�ery” bu�on to obtain a larger menu with the ranked list of
alternative query structures. In the worst case, if our system fails
to identify the correct query structure and/or literals, the user can
delete and type into the query display box to correct one token,
multiple tokens, or the whole query.
Current Implementation. In our preliminary implementation,
we use a simple terminal-based front-end for displaying the cor-
rection results. We plan to develop a more sophisticated interface
as outlined above in due course.

3 INITIAL EMPIRICAL STUDY
We start with an initial empirical study using our baseline imple-
mentation. �is study will help us set up the workloads and an
end-to-end evaluation infrastructure.

3.1 Experimental Setup
Since there are no publicly available datasets for spoken SQL recog-
nition, we create our own dataset. We will shortly describe the
database and query set but �rst, we explain our overall work�ow.
(1) Recording Spoken SQL: To simulate a real-world scenario,
we recorded the SQL queries on a popular smartphone (iPhone 6S).
�e audio clips were of varying lengths, between 4 to 24 seconds
at a sampling rate of 48,000 Hz.

(2) ASR Transcription: �e audio �les are encoded in Base64
format, as required by Google’s API, and sent as JSON requests
with the language option “en-US”, top 5 as the number of outputs,
and the hints as mentioned earlier. �e API returns the hypothesis
text with top 5 alternatives and their con�dence scores.
(3)�ery Correction: We analyze the transcribed results using
our baseline implementation. �e details of our methodology and
metrics will be discussed shortly.
Database and�ery Set. We used two publicly available database
schemas: the Employees Sample Database from MySQL1 and the
Northwind database schema from northwinddatabase.codeplex.
com. We created a set of 25 SQL queries in the MySQL dialect;
they are listed in Table 1. All queries are SELECT statements with
no nesting; we focus on SELECT statements in this initial work,
since they are perhaps the most common form of queries, and to
improve tractability (although our architecture is applicable to any
SQL query in general). �e queries are designed to be of increasing
di�culty for a speech-based querying engine. �us, these queries
have di�erent fractions of keywords, SplChars, and literals, with
even the literals being increasingly sophisticated.
ASR Hints. We provided all of the SQL keywords and SplChars
that arise in our queries as hints to Google’s API. As we show later,
hints help improve baseline accuracy signi�cantly. �e following
are the hints we provided:

• Keywords: Select, From, Where, And, Or, Order By, Limit,
Between, Group By, In, Sum, Count, Max, Avg

• SplChars: = * < > () % . ,
We post-process the ASR results and use di�erent error metrics

for evaluation. For brevity sake, we list only the most likely (top 1)
transcription per query in Table 2.

3.2 Error Metrics
We explain why a standard ASR metric is not enough for SQL
queries and then propose new SQL-oriented metrics.
Word Error Rate (WER). WER is the most common error metric
in ASR [13]; it is the edit distance between the reference text (ground
truth SQL query) and the hypothesis text (transcription output).
Formally, given the number of “words” n in the reference text,
number of substitutions s , number of deletions d , and number of
insertions i ,WER = (s + d + i)/n. Since SQL has three kinds of
tokens (keywords, SplChars, and literals), all should be treated as
words. Literals with spaces are treated as multiple tokens.2

WER does not capture important peculiarities of SQL that are
crucial for query correction, especially the separation of structure
and literal determination. Moreover, it is not always clear what a
“word” is in an SQL query. For instance, consider the literal oid 73fc
from Q21 in Table 1. Is it one word or eight words ({o,i,d, ,7,3,f,c})?
From ASR’s perspective, it is the la�er. But from an SQL parser’s
perspective, it is the former! �us, we make the evaluation process
SQL-aware by proposing eight additional �ne-grained metrics that
intuitively separate the concerns of structure and literal determi-
nation. We start with some notation.

1dev.mysql.com/doc/employee/en. We transformed the a�ribute names to be more
easily pronouncable.
2For the user’s convenience, we omit quotation marks during dictation; so, they are
excluded in the error metrics too.

northwinddatabase.codeplex.com
northwinddatabase.codeplex.com
dev.mysql.com/doc/employee/en

ID �ery
Q01 SELECT * FROM Departments
Q02 SELECT * FROM Employees WHERE FirstName=“Adam”
Q03 SELECT * FROM Employees WHERE FirstName=“Mary”
Q04 SELECT * FROM Employees WHERE FirstName=“Mary” AND Gender=“M”
Q05 SELECT BirthDate, JoinDate FROM Employees WHERE LastName=“Griswold”
Q06 SELECT * FROM Departments where DepartmentName = “Finance”
Q07 SELECT * FROM Employees WHERE salary>150,000
Q08 SELECT EmployeeNumber FROM titles WHERE Title=“Senior Engineer”
Q09 SELECT EmployeeNumber FROM DepartmentManager WHERE DepatmentNumber=“d001”
Q10 SELECT DepartmentNumber FROM DepartmentManager WHERE EmployeeNumber=110228

Q11 SELECT FirstName, LastName, DepartmentNumber FROM Employees, DepartmentManager WHERE
Employees.EmployeeNumber = DepartmentManager.EmployeeNumber

Q12
SELECT FirstName, LastName, DepartmentName FROM Employees, DepartmentManager, Departments WHERE
Employees.EmployeeNumber = DepartmentManager.EmployeeNumber AND
DepartmentManager.DepartmentNumber = Departments.DepartmentNumber

Q13 SELECT * FROM Employees WHERE FirstName=“Adam” ORDER BY LastName
Q14 SELECT JoinDate FROM Employees WHERE FirstName=“Domenick” OR FirstName=“Bojan” LIMIT 10

Q15 SELECT AVG(Salary) FROM Employees,Salaries WHERE
Employees.FirstName=“Patricio” AND Employees.EmployeeNumber = Salaries.EmployeeNumber

Q16 SELECT COUNT(*) FROM Salaries WHERE Salary BETWEEN 70,000 AND 80,000

Q17 SELECT Title, SUM(Salary) FROM Salaries, Titles WHERE
Salaries.EmployeeNumber = Titles.EmployeeNumber GROUP BY Title

Q18 SELECT * FROM Employees WHERE BirthDate = “1953-09-02”
Q19 SELECT * FROM DepartmentEmployees WHERE DepartmentNumber IN(d001,d002)
Q20 SELECT * FROM Employees WHERE BirthDate LIKE “1953%”
Q21 SELECT Order Dt, Shipped Dt FROM Orders WHERE OrderID=“oid 73fc”
Q22 SELECT Supp ID FROM Products WHERE ProductName=“Belkin BE44-80 Surge Protector”
Q23 SELECT MAX(�antityPerUnit), ProductName FROM Products WHERE UnitPrice=4.99
Q24 SELECT ShipVia, Freight FROM Orders, Customers WHERE Customer.Region=“us west 1”
Q25 SELECT ContactTitle, ContactName FROM Customers WHERE Address=“1035 Niguel Ln”

Table 1: �e ground truth for the spoken SQL queries.

Given a query text, we tokenize it to obtain a multiset of tokens;
let A denote this multiset for the reference SQL query text and B,
for a given a hypothesis query text (with or without correction).
Tokens that are not textually identical are treated as di�erent to-
kens. For example, “=” and “equals” are treated as di�erent tokens
as are “department” and “departments.” While this might appear
harsh, we think it is necessary because an SQL parser might report
an error otherwise, which has to be �xed by our system or the user.
We de�ne AKW , ASC , and ALI as the subsets of A corresponding
to keywords, SplChars, and literals respectively. Subsets of B are
de�ned similarly. Keywords and SplChars are detected using the
vocabulary of the SQL grammar; all other tokens are treated as
literals. We are now ready to de�ne our new metrics.

(1) Keyword Recall Rate. KRR = |AKW ∩BKW |
|AKW |

(2) SplChar Recall Rate. SRR = |ASC∩BSC |
|AKW |

(3) Literal Recall Rate. LRR = |ALI∩BLI |
|ALI |

(4) Word Recall Rate.WRR = |A∩B |
|A |

Similarly, we de�ne four precision-oriented metrics: Word Preci-
sion Rate,WPR = |A∩B |

|B | , Keyword Precision Rate, and so on. Note
that while these new metrics delineate the accuracy of recognizing
the di�erent kinds of tokens, they do not capture errors in the
ordering of the tokens.
3.3 Results
For brevity sake, we only report top 1 results (we brie�y discuss top
5 results later). We compare “before correction” accuracy against
two naive dictionary-based correction baselines: a “small” dictio-
nary with only keywords, SplChars, and schema literals, and a

“large” dictionary that also includes instance literals. Figure 3 plots
the cumulative distribution functions of the error metrics for the
queries in Table 2. Table 3 reports the mean values of the same.

We see that the recall rates are already quite high for keywords
and SplChars, even without correction. �is is not surprising be-
cause they were provided as hints. For literals, however, the recall
rates are quite low (mean of 0.43). �e dictionary-based correction
schemes lead to only marginal improvements (mean of 0.47). �us,
the overall WRR is also low, primarily because of literals. �e
precision results present an interesting contrast: the overall literal
precision rates go up signi�cantly but the larger dictionary per-
forms counterintuitively worse than the smaller one! Even more
surprisingly, keyword precision rates go down a�er correction!
We con�rmed that this is because the dictionary-based methods
introduce spurious keywords and literals based on the edit dis-
tances. �is underscores the need for more sophisticated similarity
search approaches (more in Section 4). Overall, these initial results
validate our earlier claim: the open domain problem is a key bot-
tleneck for spoken SQL recognition (and this issue will remain for
spoken NLIs too). By delineating structure and literal determina-
tion, our work lays out a promising architecture and framework to
systematically improve spoken SQL recognition and data querying.
Importance of Hints. We now turn o� hints to assess how much
they helped before correction. Table 4 lists the mean error metrics
with and without hints. For additional insights, we present the
results for both top 1 outputs and “best of” top 5 outputs. We see
that hints improve both recall and precision rates for keywords and
SplChars (especially the la�er). LRR, as expected, is not a�ected
signi�cantly. �us, it is bene�cial to exploit hints, if possible. As

ID �ery
Q01 select * from Department
Q02 select * from employees their �rst name = Adam
Q03 select * from employees their �rst name = Mary
Q04 select * from employees where �rst name = Mary and gender = m
Q05 select birth date, you ended from employees where last name = dri�wood
Q06 select * from department where Department name = Finance
Q07 select * from employees where salary greater than 150000
Q08 select employee number from titles where title = senior engineer
Q09 select employee number from department manager where department number = LY001
Q10 select department number from department managers where employee number = 1 10228

Q11 select �rst name, last name, and apartment number from employees, department manager where
employees not employ a number = department manager. Employee number

Q12
select �rst name, last name, Department name from employees, department managers, department where
employees. Employee number = department manager. Employee number and
department manager. Department number department store Department number

Q13 select * from employees where �rst name = Adam order by last name
Q14 select join date from employees where �rst name = Dominic or �rst name = version limit 10

Q15 select AVG (salary) from employees, salaries where employees. First name = by Tricia and
employees. Employee number = salaries. Employee number

Q16 let’s count (* plus (from Telus where Saturday between 70000 and 80

Q17 select Title, sum (salary growth) from salaries, titles van salaries. Employee number = titles. Employee number
Group by title

Q18 select * from employees where birthdate = 1953 - 09 - 02
Q19 select * from Department employees where department number in (bc20 one, d002 plus (
Q20 select * from employees where birthday like 1953 %
Q21 select order Duty, ship Duty from order where are there any = or ID 7 3 f c
Q22 select Su Bebe ID from products where product name = Belkin be for 4-8 zero search protector
Q23 select Max (quantity per unit), product name from products that you need price = 4.99
Q24 select Supply, free from orders, customers that customer. Region = u.s. vest one
Q25 select contact title, contact name from customers where address = 1035 Niguel Ln

Table 2: Top 1 transcription results from the ASR engine (with hints provided).

0

0.5

1

0 0.5 1

C
D

F

SplChar Precision Rate

0

0.5

1

0 1 2

C
D

F

Word Error Rate

0

0.5

1

0 0.5 1
Literal Precision Rate

G HF0

0.5

1

0 0.5 1

C
D

F

Keyword Precision Rate

E

C
D

F

0

0.5

1

0 0.5 1

C
D

F

SplChar Recall Rate

0

0.5

1

0 0.5 1

C
D

F

Word Recall Rate

0

0.5

1

0 0.5 1
Literal Recall Rate

C

DB0

0.5

1

0 0.5 1

BC

AC - Large

AC - SmallC
D

F

Keyword Recall Rate

A

C
D

F

Figure 3: Cumulative distribution of accuracy metrics for the top 1 results from Table 2. Before correction (BC), A�er Correc-
tion with large dictionary (AC - Large) and small Dictionary (AC - Small).

Metric Top 1 BoTop-5
BC ACS ACL BC ACS ACL

KRR 0.94 0.94 0.94 0.98 0.98 0.98
SRR 0.94 0.94 0.94 0.97 0.97 0.97
LRR 0.43 0.45 0.47 0.51 0.49 0.50
WRR 0.71 0.71 0.72 0.76 0.75 0.75
KPR 0.76 0.50 0.62 0.78 0.55 0.66
SPR 0.89 0.89 0.89 0.92 0.92 0.92
LPR 0.38 0.59 0.45 0.45 0.60 0.49
WPR 0.58 0.58 0.58 0.62 0.62 0.62
WER 0.58 0.58 0.57 0.53 0.53 0.52

Table 3: Mean error metrics: Before Correction (BC), A�er
Correction using small dictionary (ACS) and using large dic-
tionary (ACL). “BoTop” stands for “Best of Top.”

Metric KRR SRR LRR WRR WPR WER
Top 1 wo 0.78 0.44 0.44 0.57 0.46 0.73
BoTop 5 wo 0.79 0.44 0.52 0.60 0.48 0.70
Top 1 w 0.94 0.94 0.43 0.71 0.58 0.58
BoTop 5 w 0.98 0.97 0.51 0.76 0.62 0.53

Table 4: Mean error metrics for (uncorrected) transcribed
queries with (“w”) and without (“wo”) hints.

an interesting aside, even when we turned o� the hints, Google’s
API managed to correctly transcribe “,” and “.” as symbols for some
queries! But in most cases, hints were necessary to avoid low
SRR. �ese results also suggest that providing some literals as
hints might help improve LRR. While this is feasible for schema
literals, instance literals might become a bo�leneck due to their
sheer number. We plan to study this issue further in future work.

Latency. In our current baseline implementation, Google’s API
turned out to be the latency bo�leneck. �e round-trip times for
obtaining transcription results were between 8s to 46s, with a
mean of 24s. Our pre- and post-processing took less than 5% of
the overall time for most queries when using the small dictionary
for correction. While this is clearly not “real time,” we expect that
Google will improve their cloud API’s latency over time. However,
we are also exploring more local ASR alternatives (see Section
4). In contrast, when using the large dictionary, the time was
roughly equally split between the cloud API round-trip and query
correction for most queries. �is suggests that it is crucial to design
and use be�er index structures for similarity search to speed up
literal determination (see Section 4).

4 RESEARCH QUESTIONS AND PLAN
We now discuss key open research questions and our plan to im-
prove SpeakQL based on our initial empirical �ndings.
Structure Determination. To make this component e�ective, we
need to be able to parse erroneous SQL statements, while mask-
ing out literals. Tackling this challenge requires combining text
processing, SQL grammar, and NLP. First, we need to tag literals
and mask them as terminal variable placeholders. �is is a binary
classi�cation problem; we plan to explore both rule-based and ML
classi�ers, say, a conditional random �eld (CRF). Going further, we
need to exploit the SQL grammar (at least its SELECT statement
subset for starters). Since directly applying an SQL parser will fail
when there are errors in the transcriptions, we plan to adapt the
approach of [5] and create a language model that exploits the syn-
tactic structure of SQL.�is would likely require augmenting SQL’s
CFG to devise a probabilistic context free grammar (PCFG) [11]
that would let us obtain the most likely parse trees of a given er-
roneous SQL statement. Eventually, we expect to combine literal
tagging with the PCFG for holistic structure determination.
Literal Determination. As our baseline dictionary-based ap-
proach showed, we need indexes of materialized views of the given
database instance to improve the e�ectiveness of literal determi-
nation. Such indexes should improve both accuracy and runtimes.
Tackling this challenge requires combining database indexing, IR,
linguistics, and HCI. First, string similarity measures will likely fall
short of what we really want: phonetic similarity search. We plan to
map literals to a standard IPA-based phonetic representation. While
IPA dictionaries exist for regular English words, out-of-vocabulary
tokens are a challenge, e.g., CUSTID 1729A from before. Second, to
obtain near-real time latency, our indexes should be optimized in
layout and hardware usage for top k similarity queries. We plan
to benchmark existing indexes from the database and IR litera-
tures and possibly adapt them. Finally, incorporating user feedback
in the top k listings of literal placeholders and re-optimizing the
rankings on the �y, say, as the user is typing, could help improve
accuracy, while still reducing user e�ort.
Metrics, Data, and Methodology. To the best of our knowledge,
there is almost no prior research on spoken SQL. �us, many open
questions remain even on methodology and evaluation metrics.
Neither WER nor our new SQL-oriented quality metrics quantify
structural errors precisely. �us, we plan to devise such new error
metrics that exploit the SQL grammar. We also plan to create

human e�ciency metrics such as the total time to obtain a fully
correct query. �ere are also no known public benchmark labeled
datasets for spoken SQL. We plan to create such a labeled dataset
but how to do so is itself a non-trivial problem. It is probably cruel
to get students to dictate millions of queries. We plan to explore
various options and evaluate their trade-o�s: crowdsourcing (a
la ImageNet for image recognition), semi-synthesis of queries by
combining the SQL grammar with human-spoken query fragments,
and speech synthesis tools such as Amazon Polly. Finally, once we
build SpeakQL 1.0, we plan to conduct a user study to compare
the user experience both subjectively (surveys) and objectively
(number of clicks, number of edits, time to correct query, etc.)
Towards Fully Local Execution. While Google’s speech API is
a promising start, the latency is currently unacceptably high. �us,
we plan to explore alternatives that enable fully local execution.
One option is Apple’s device-local speech recognition API for iOS
environments. Another option is to adapt an open-source ASR
engine for spoken SQL. While the acoustic model can be retained,
we would likely need to plug in a new language model that is tai-
lored to SQL queries. Down the line, we also plan to explore a fully
end-to-end spoken SQL recognition engine using a deep recurrent
neural network, say, by adapting Baidu’s DeepSpeech2 [4]. �is
is predicated upon the availability of a large training dataset as
mentioned in the previous paragraph.
Spoken Predicates and Spoken SQL Dialect. Eventually, we
envision supporting spoken SQL over both structured and speech
data, say, using the LIKE predicate. With local execution, the
availability of acoustic features could help support spoken predicates
that bypass text altogether. We also plan to explore how to make
SQL more natural for spoken querying, while still preserving its
unambiguous CFG-based sophistication. For example, we could
replace some special characters with new intuitive idioms and
add new keywords to demarcate complex literals, e.g., BEGIN/END
LITERAL. By slightly adapting the SQL grammar, we will essentially
create a new speech-�rst SQL dialect!
REFERENCES
[1] Google Cloud Speech API. cloud.google.com/speech.
[2] Nuance MagicSpeech. australia.nuance.com/products/speechmagic/index.htm.
[3] Oracle SQL Developer. oracle.com/technetwork/issue-archive/2008/08-mar/

o28sql-100636.html.
[4] D. Amodei et al. Deep Speech 2 : End-to-End Speech Recognition in English and

Mandarin. In ICML, 2016.
[5] C. Chelba and F. Jelinek. Exploiting Syntactic Structure for Language Modeling.

In ACL, 2008.
[6] A. Cro�y et al. Vizdom: Interactive Analytics through Pen and Touch. In VLDB

Demo, 2014.
[7] G. Hinton et al. Deep Neural Networks for Acoustic Modeling in Speech Recog-

nition. Signal Processing Magazine, 2012.
[8] S. Lajoie et al. Application of Spoken and Natural Language Technologies to

Lotus Notes Based Messaging and Communication, 2002. dtic.mil/dtic/tr/fulltext/
u2/a402014.pdf.

[9] F. Li et al. Constructing an Interactive Natural Language Interface for Relational
Databases. In VLDB, 2015.

[10] G. Lyons et al. Making the Case for�ery-by-Voice with Echo�ery. In SIGMOD
Demo, 2016.

[11] T. Matsuzaki et al. Probabilistic CFG with Latent Annotations. In ACL, 2005.
[12] A. Nandi et al. Gestural �ery Speci�cation. In VLDB, 2014.
[13] L. Rabiner and B.-H. Juang. Fundamentals of Speech Recognition. Prentice-Hall,

Inc., 1993.
[14] S. Ruan et al. Speech Is 3x Faster than Typing for English and Mandarin Text

Entry on Mobile Devices. CoRR, abs/1608.07323.
[15] M. M. Zloof. �ery by Example. In National Computer Conference and Exposition,

1975.

cloud.google.com/speech
australia.nuance.com/products/speechmagic/index.htm
oracle.com/technetwork/issue-archive/2008/08-mar/o28sql-100636.html
oracle.com/technetwork/issue-archive/2008/08-mar/o28sql-100636.html
dtic.mil/dtic/tr/fulltext/u2/a402014.pdf
dtic.mil/dtic/tr/fulltext/u2/a402014.pdf

	Introduction
	Preliminaries
	Desiderata and Technical Challenge
	Architecture of SpeakQL 1.0

	Initial Empirical Study
	Experimental Setup
	Error Metrics
	Results

	Research Questions and Plan

