
2

Materialization Optimizations for Feature Selection Workloads

CE ZHANG, Stanford University
ARUN KUMAR, University of Wisconsin–Madison
CHRISTOPHER RÉ, Stanford University

There is an arms race in the data management industry to support statistical analytics. Feature selection,
the process of selecting a feature set that will be used to build a statistical model, is widely regarded as the
most critical step of statistical analytics. Thus, we argue that managing the feature selection process is a
pressing data management challenge. We study this challenge by describing a feature selection language
and a supporting prototype system that builds on top of current industrial R-integration layers. From our
interactions with analysts, we learned that feature selection is an interactive human-in-the-loop process,
which means that feature selection workloads are rife with reuse opportunities. Thus, we study how to mate-
rialize portions of this computation using not only classical database materialization optimizations but also
methods that have not previously been used in database optimization, including structural decomposition
methods (like QR factorization) and warmstart. These new methods have no analogue in traditional SQL sys-
tems, but they may be interesting for array and scientific database applications. On a diverse set of datasets
and programs, we find that traditional database-style approaches that ignore these new opportunities are
more than two orders of magnitude slower than an optimal plan in this new trade-off space across multiple
R backends. Furthermore, we show that it is possible to build a simple cost-based optimizer to automatically
select a near-optimal execution plan for feature selection.

Categories and Subject Descriptors: H.2.4 [Information Systems]: Database Management

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: Feature selection, statistical analytics, machine learning, materializa-
tion, optimization, declarative language, R

ACM Reference Format:
Ce Zhang, Arun Kumar, and Christopher Ré. 2016. Materialization optimizations for feature selection work-
loads. ACM Trans. Database Syst. 41, 1, Article 2 (February 2016), 32 pages.
DOI: http://dx.doi.org/10.1145/2877204

We gratefully acknowledge the support of the Defense Advanced Research Projects Agency (DARPA) XDATA
program award FA8750-12-2-0335 and DEFT program award FA8750-13-2-0039, DARPA’s MEMEX program
and SIMPLEX program, the National Science Foundation (NSF) CAREER award IIS-1353606, the Office
of Naval Research (ONR) awards N000141210041 and N000141310129, the National Institutes of Health
(NIH) grant U54EB020405 awarded by the National Institute of Biomedical Imaging and Bioengineering
(NIBIB) through funds provided by the trans-NIH Big Data to Knowledge (BD2K, http://www.bd2k.nih.gov)
initiative, the Sloan Research Fellowship, the Moore Foundation, American Family Insurance, Google, and
Toshiba. The second author is supported by a grant from the Microsoft Jim Gray Systems Lab. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors and do not
necessarily reflect the views of DARPA, AFRL, NSF, ONR, NIH, or the U.S. government, or any of the other
sponsors.
Authors’ addresses: C. Zhang and C. Ré, Department of Computer Science, Stanford University, 353 Serra
Mall, Stanford, CA 94305-9025; emails: {czhang, chrismre}@cs.stanford.edu; A. Kumar, Department of Com-
puter Sciences, 1210 West Dayton Street, Madison, WI-53706; email: arun@cs.wisc.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2016 ACM 0362-5915/2016/02-ART2 $15.00
DOI: http://dx.doi.org/10.1145/2877204

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

http://dx.doi.org/10.1145/2877204
http://www.bd2k.nih.gov
file:arun@cs.wisc.edu
http://dx.doi.org/10.1145/2877204

2:2 C. Zhang et al.

1. INTRODUCTION

One of the most critical stages in the statistical analytics process is feature selection; in
feature selection, an analyst selects the inputs or features of a model to help improve
modeling accuracy or to help an analyst understand and explore his or her data.
With the increased interest in data analytics, a pressing challenge is to improve the
efficiency of the feature selection process. In this work, we propose COLUMBUS, the first
data processing system designed to support the enterprise feature selection process.

To understand the practice of feature selection, we interviewed analysts in enterprise
settings. This included an insurance company, a consulting firm, a major database ven-
dor’s analytics customer, and a major e-commerce firm. Uniformly, analysts agreed
that they spend the bulk of their time on the feature selection process. Confirming the
literature on feature selection [Guyon and Elisseeff 2003; Kandel et al. 2012], we found
that features are selected (or not) for many reasons: their statistical performance, their
real-world explanatory power, legal reasons,1 or for some combination of reasons. Thus,
feature selection is practiced as an interactive process with an analyst in the loop. An-
alysts use feature selection algorithms, data statistics, and data manipulations as a
dialogue that is often specific to their application domain.2 Nevertheless, the feature
selection process has structure: analysts often use domain-specific cookbooks that out-
line best practices for feature selection from both industry3 and academia [Guyon and
Elisseeff 2003].

Although feature selection cookbooks are widely used, the analyst must still write
low-level code, increasingly in R, to perform the subtasks in the cookbook that comprise
a feature selection task. In particular, we have observed that such users are forced to
write their own custom R libraries to implement simple routine operations in the
feature selection literature (e.g., stepwise addition or deletion [Guyon and Elisseeff
2003]). Over the past few years, database vendors have taken notice of this trend, and
now virtually every major database engine ships a product with some R extension:
Oracle’s ORE,4 IBM’s SystemML [Ghoting et al. 2011], SAP HANA,5 and Revolution
Analytics on Hadoop and Teradata. These R-extension layers (RELs) transparently
scale operations, such as matrix-vector multiplication or the determinant, to larger
sets of data across a variety of backends, including multicore main memory, database
engines, and Hadoop. We call these REL operations ROPs. Scaling ROPs is actively
worked on in industry.

However, we observed that one major source of inefficiency in analysts’ code is not
addressed by ROP optimization: missed opportunities for reuse and materialization
across ROPs. Our first contribution is to demonstrate a handful of materialization
optimizations that can improve performance by orders of magnitude. Selecting the
optimal materialization strategy is difficult for an analyst, as the optimal strategy
depends on the reuse opportunities of the feature selection task; the error the analyst
is willing to tolerate; and properties of the data and compute node, such as parallelism
and data size. Thus, an optimal materialization strategy for an R script for one dataset
may not be the optimal strategy for the same task on another dataset. As a result, it is
difficult for analysts to pick the correct combination of materialization optimizations.

To study these trade-offs, we introduce COLUMBUS, an R language extension and ex-
ecution framework designed for feature selection. To use COLUMBUS, a user writes a

1Using credit score as a feature is considered a discriminatory practice by the insurance commissions in both
California and Massachusetts.
2sas.com/reg/wp/corp/23876.
3http://www.lexjansen.com/nesug/nesug11/sa/sa08.pdf; http://www.lexjansen.com/nesug/nesug06/an/da23.pdf.
4docs.oracle.com/cd/E27988_01/doc.112/e26499.pdf.
5help.sap.com/hana/hana_dev_r_emb_en.pdf.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

http://www.sas.com/reg/wp/corp/23876
http://www.lexjansen.com/nesug/nesug11/sa/sa08.pdf; ignorespaces http://www.lexjansen.com/nesug/nesug06/an/da23.pdf.
file:docs.oracle.com/cd/E2798801/doc.112/e26499.pdf.
http://www.help.sap.com/hana/hanadevremben.pdf

Materialization Optimizations for Feature Selection Workloads 2:3

standard R program. COLUMBUS provides a library of several common feature selection
operations, such as stepwise addition, i.e., ‘‘add each feature to the current feature set
and solve.” This library mirrors the most common operations in the feature selection
literature [Guyon and Elisseeff 2003] and what we observed in analysts’ programs.
COLUMBUS’s optimizer uses these higher-level declarative constructs to recognize oppor-
tunities for data and computation reuse. To describe the optimization techniques that
COLUMBUS employs, we introduce the notion of a basic block.

A basic block is COLUMBUS’s main unit of optimization. A basic block captures a feature
selection task for generalized linear models, which captures models like linear and
logistic regression, support vector machines, lasso, and many more (see Definition 2.1).
Roughly, a basic block B consists of a data matrix A ∈ R

N×d, where N is the number
of examples and d is the number of features; a target b ∈ R

N; several feature sets
(subsets of the columns of A); and a (convex) loss function. A basic block defines a set of
regression problems on the same dataset (with one regression problem for each feature
set). COLUMBUS compiles programs into a sequence of basic blocks, which are optimized
and then transformed into ROPs. Our focus is not on improving the performance of
ROPs but on how to use widely available ROPs to improve the performance of feature
selection workloads.

We describe the opportunities for reuse and materialization that COLUMBUS considers
in a basic block. As a baseline, we implement classical batching and materialization
optimizations. We implement two approaches, namely Lazy and Eager, based on the
classical database literature on materialized views (see Section 3.1.1). In addition,
we identify three novel classes of optimizations, study the trade-offs each presents,
and then describe a cost model that allows COLUMBUS to choose between them. These
optimizations are novel in that they have not been considered in traditional SQL-style
analytics (but all optimizations have been implemented in other areas).

Subsampling. Analysts employ subsampling to reduce the amount of data the system
needs to process to improve runtime or reduce overfitting. These techniques are a
natural choice for analytics, as both the underlying data collection process and solution
procedures are only reliable up to some tolerance. Popular sampling techniques include
naı̈ve random sampling and importance sampling (coresets). Coresets is a relatively
recent importance-sampling technique; when d � N, coresets allow one to create a
sample whose size depends on d (the number of features)—as opposed to N (the number
of examples)—and that can achieve strong approximation results: essentially, the loss
is preserved on the sample for any model. In enterprise workloads (as opposed to
Web workloads), we found that the overdetermined problems (d � N), well-studied in
classical statistics, are common. Thus, we can use a coreset to optimize the result with
a provably small error. However, computing a coreset requires computing importance
scores that are more expensive than a naı̈ve random sample. We study the cost-benefit
trade-off for sampling-based materialization strategies. Of course, sampling strategies
have the ability to improve performance by an order of magnitude. On a real dataset,
called Census (Section 4.1), we found that d was 1,000× smaller than N, as well as that
using a coreset outperforms a baseline approach by 89×, while still getting a solution
that is within 1% of the loss of the solution on the entire data set.

Transformation materialization. Linear algebra has a variety of decompositions that
are analogous to sophisticated materialized views. One such decomposition, referred
to as a (thin) QR decomposition, is widely used to optimize regression problems. Es-
sentially, after some preprocessing, a QR decomposition allows one to solve a class of
regression problems in a single scan over the matrix. In feature selection, one has to
solve many closely related regression problems, e.g., for various subsets of features
(columns of A). We show how to adapt QR to this scenario as well. When applicable,

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

2:4 C. Zhang et al.

Fig. 1. Summary of trade-offs in COLUMBUS. Error tolerance, sophistication of tasks, and reuse are defined
in Section 3. As an example, “Low” in the Error Tolerance column means the corresponding approach can
support the workload in which the user has a low tolerance for error (i.e., requires an exact solution).

QR can outperform a baseline by more than 10X; QR can also be applied together with
coresets, which can result in 5× more speedup. Of course, there is a cost-benefit trade-
off that one must make when materializing QR, and COLUMBUS develops a simple cost
model for this choice.

Model caching. Feature selection workloads require that analysts solve many similar
problems. Intuitively, it should be possible to reuse these partial results to “warmstart”
a model and improve its convergence behavior. We propose to cache several models, and
we develop a technique that chooses which model to use for a warmstart. The challenge
is to be able to find “nearby” models, and we introduce a simple heuristic for model
caching. Compared to the default approach in R (initializing with a random start point
or all 0’s), our heuristic provides a 13× speedup; compared to a simple strategy that
selects a random model in the cache, our heuristic achieves a 6× speedup. Thus, the
cache and the heuristic contribute to our improved runtime.

We tease apart the optimization space along three related axes: error tolerance, the
sophistication of the task, and the amount of reuse (see Section 3). Figure 1 summarizes
the relationship between these axes and the trade-offs. Of course, the correct choice
also depends on computational constraints, notably parallelism. We describe a series
of experiments to validate this trade-off space and find that no one strategy dominates
another. Thus, we develop a cost-based optimizer that attempts to select an optimal
combination of the preceding materialization strategies. We validate that our heuristic
optimizer has performance within 10% of the optimal optimization strategy (found of-
fline by brute force) on all of our workloads. We establish that many of the subproblems
of the optimizer are classically NP-hard, justifying heuristic optimizers.

Contributions. This work makes three contributions: (1) we propose COLUMBUS, which
is the first data processing system designed to support the feature selection dialogue;
(2) we are the first to identify and study both existing and novel optimizations for
feature selection workloads as data management problems; and (3) we use the insights
from (2) to develop a novel cost-based optimizer. We validate our results on several
real-world programs and datasets patterned after our conversations with analysts.
Additionally, we validate COLUMBUS across two backends from main memory and REL
for an RDBMS. We argue that these results suggest that feature selection is a promising
area for future data management research. Additionally, we are optimistic that the

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

Materialization Optimizations for Feature Selection Workloads 2:5

technical optimizations that we pursue apply beyond feature selection to areas like
array and scientific databases and tuning machine learning.

Outline. The rest of this article is organized as follows. In Section 2, we provide
an overview of the COLUMBUS system. In Section 3, we describe the trade-off space
for executing a feature selection program and our cost-based optimizer. We describe
experimental results in Section 4. We discuss related work in Section 5 and conclude
in Section 6.

The key task of COLUMBUS is to compile and optimize an extension of the R language
for feature selection. We compile this language into a set of REL operations, which
are R-language constructs implemented by today’s language extenders, such as ORE
and Revolution Analytics. One key design decision in COLUMBUS is not to optimize the
execution of these REL operators; these have already been studied intensively and are
the subjects of major ongoing engineering efforts. Instead, we focus on how to compile
our language into the most common of these REL operations (ROPs). Later, Figure 4
shows all ROPs used in COLUMBUS.

A shorter version of this article was published at the ACM SIGMOD 2014 confer-
ence [Zhang et al. 2014]. In that paper, we introduced the COLUMBUS system, explained
the optimization axes, and outlined the materialization strategies. Compared to that
paper, here we provide a more detailed explanation of our cost model, including how
we derived the costs. We also explain the materialization strategies in greater detail
and provide the exact algorithms using the ROPs. Finally, we significantly expand the
discussion of the multiblock optimization case, specifically the Lazy and Eager ma-
terializations. We prove that the materialization problem is NP-hard in general but
can be solved in polynomial time in two prominent special cases. We provide dynamic
programming algorithms for the special cases.

2. SYSTEM OVERVIEW

2.1. COLUMBUS Programs

In COLUMBUS, a user expresses his or her feature selection program against a set of high-
level constructs that form a domain-specific language for feature selection. We describe
these constructs next, and we selected these constructs by talking to a diverse set of
analysts and following the state-of-the-art literature in feature selection. COLUMBUS’s
language is a strict superset of R, so the user still has access to the full power of R.6
We found that this flexibility was a requirement for most of the analysts surveyed.
Figure 2 shows an example snippet of a COLUMBUS program. For example, the 9th line
of the program executes logistic regression and reports its score using cross validation.

COLUMBUS has three major datatypes: a dataset is a relational table R(A1, . . . , Ad),7 a
feature set F for a dataset R(A1, . . . , Ad) is a subset of the attributes F ⊆ {A1, . . . , Ad},
and a model for a feature set is a vector that assigns each feature a real-valued weight.
As shown in Figure 3, COLUMBUS supports several operations. We classify these oper-
ators based on what types of output an operator produces and order the classes in
roughly increasing order of the sophistication of optimization that COLUMBUS is able to
perform for such operations (see Figure 3 for examples): (1) data transformation oper-
ations, which produce new datasets; (2) evaluate operations, which evaluate datasets
and models; (3) regression operations, which produce a model given a feature set; and
(4) explore operations, which produce new feature sets:

6We also have expressed the same language over Python, but for simplicity, we stick to the R model in this
article.
7Note that the table itself can be a view; this is allowed in COLUMBUS, and the trade-offs for materialization
are standard, so we omit the discussion of them in the article.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

2:6 C. Zhang et al.

Fig. 2. Example snippet of a COLUMBUS program.

Fig. 3. Summary of operators in COLUMBUS.

(1) Data transform: These operations are standard data manipulations to slice and dice
the dataset. In COLUMBUS, we are aware only of the schema and cardinality of these
operations; these operations are executed and optimized directly using a standard
RDBMS or main-memory engine. In R, the frames can be interpreted either as a
table or an array in the obvious way. We map between these two representations
freely.

(2) Evaluate: These operations obtain various numeric scores given a feature set, in-
cluding descriptive scores for the input feature set, e.g., mean, variance, or Pearson
correlations, and scores computed after regression, e.g., cross-validation error (e.g.,
of logistic regression), and the Akaike information criterion (AIC) [Guyon and Elis-
seeff 2003]. COLUMBUS can optimize these calculations by batching several together.

(3) Regression: These operations obtain a model given a feature set and data, e.g.,
models trained by using logistic regression or linear regression. The result of a
regression operation is often used by downstream explore operations, which produce
a new feature set based on how the previous feature set performs. These operations
also take a termination criterion (as they do in R): either the number of iterations
or until an error criterion is met. COLUMBUS supports either of these conditions and
can perform optimizations based on the type of model (as we discuss).

(4) Explore: These operations enable an analyst to traverse the space of feature sets.
Typically, these operations result in training many models. For example, a STEP-
DROP operator takes as input a dataset and a feature set and outputs a new feature
set that removes one feature from the input by training a model on each candidate

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

Materialization Optimizations for Feature Selection Workloads 2:7

feature set. Our most sophisticated optimizations leverage the fact that these op-
erations operate on features in bulk. The other major operation is STEPADD. Both
are used in many workloads and are described in Guyon and Elisseeff [2003].

COLUMBUS is not intended to be comprehensive. However, it does capture the work-
loads of several analysts that we observed, so we argue that it serves as a reasonable
starting point to study feature selection workloads.

2.2. Basic Blocks

In COLUMBUS, we compile a user’s program into a directed acyclic dataflow graph with
nodes of two types: R functions and an intermediate representation called a basic block.
The R functions are opaque to COLUMBUS, and the central unit of optimization is the
basic block (extensible optimizers [Graefe and McKenna 1993]).

Definition 2.1. A task is a tuple t = (A, b, �, ε, F, R), where A ∈ R
N×d is a data matrix,

b ∈ R
N is a label (or target), � : R

2 → R
+ is a loss function, ε > 0 is an error tolerance,

F ⊆ [d] is a feature set, and R ⊆ [N] is a subset of rows. A task specifies a regression
problem of the form

Lt(x) =
∑
i∈R

�(zi, bi) s.t. z = A�F x.

Here, �F is the axis-aligned projection that selects the columns or feature sets specified
by F.8 Denote an optimal solution of the task x∗(t) defined as

x∗(t) = argmin
x∈Rd

Lt(x).

Our goal is to find an x(t) that satisfies the error9

‖Lt(x(t)) − Lt(x∗(t))‖2 ≤ ε.

A basic block, B, is a set of tasks with common data (A, b) but with possibly different
feature sets F̄ and subsets of rows R̄.

COLUMBUS supports a family of popular nonlinear models, including support vector
machines, (sparse and dense) logistic regression, �p regression, lasso, and elastic net
regularization. We give an example to help clarify the definition.

Example 2.2. Consider the sixth line in Figure 2, which specifies a fivefold cross-
validation operator with least squares over dataset d1 and feature set s1. COLUMBUS

will generate a basic block B with five tasks, one for each fold. Let ti = (A, b, l, ε, F, R).
Then, A and b are defined by the dataset d1 and l(x, b) = (x − b)2. The error tolerance
ε is given by the user in the first line. The projection of features F = s1 is found by a
simple static analysis. Finally, R corresponds to the set of examples that will be used
by the ith fold.

The basic block is the unit of COLUMBUS’s optimization. Our design choice is to com-
bine several operations on the same data at a high enough level to facilitate bulk
optimization, which is our focus in the next section.

COLUMBUS’s compilation process creates a task for each regression or classification
operator in the program; each of these specifies all of the required information. To

8For F ⊆ [d], �F ∈ R
d×d, where (�F)ii = 1 if i ∈ F and all other entries are 0.

9We allow termination criteria via a user-defined function or the number of iterations. The latter simplifies
reuse calculations in Section 3, whereas arbitrary code is difficult to analyze (we must resort to heuristics to
estimate reuse). We present the latter as the termination criterion to simplify the discussion and because it
brings out interesting trade-offs.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

2:8 C. Zhang et al.

Fig. 4. (a) ROPs used in COLUMBUS and their costs. (b) Cost model of materializations in COLUMBUS. When
data are stored in main memory, the cost for matrix subselection (a ← B[1 : n, 1 : d]) is only dn. In (b),
materialization ROPs are the ROPs used in the materialization phase for an operator, whereas execution
ROPs are those used during execution (i.e., while solving the model). The materialization cost and execution
cost for each strategy can be estimated by summing the cost of each ROP that they produce in (a).

Fig. 5. Architecture of COLUMBUS.

enable arbitrary R code, we allow black-box code in this work flow, which is simply
executed. Selecting how to both optimize and construct basic blocks that will execute
efficiently is the subject of Section 3.

REL operations. To execute a program, we compile it into a sequence of REL oper-
ations (ROPs). These are operators that are provided by the R runtime, e.g., R and
ORE. Later, Figure 4 summarizes the host-level operators that COLUMBUS uses, and we
observe that these operators are present in both R and ORE. Our focus is on how to
optimize the compilation of language operators into ROPs.

2.3. Executing a COLUMBUS Program

To execute a COLUMBUS program, our prototype contains three standard components,
as shown in Figure 5: (1) parser, (2) optimizer, and (3) executor. At a high level, these
three steps are similar to the existing architecture of any data processing system. The
output of the parser can be viewed as a directed acyclic graph, in which the nodes are
either basic blocks or standard ROPs, and the edges indicate data flow dependency.
The optimizer is responsible for generating a “physical plan.” This plan defines which
algorithms and materialization strategies are used for each basic block; the relevant
decisions are described in Sections 3.1 and 3.2. The optimizer may also merge basic
blocks together, called multiblock optimization, which is described in Section 3.4. Fi-
nally, there is a standard executor that manages the interaction with the REL and
issues concurrent requests.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

Materialization Optimizations for Feature Selection Workloads 2:9

Fig. 6. An illustration of the trade-off space of COLUMBUS, which is defined in Section 3.

3. THE COLUMBUS OPTIMIZER

We begin with optimizations for a basic block that has a least-squares cost, which is
the simplest setting in which COLUMBUS’s optimizations apply. We then describe how
to extend these ideas to basic blocks that contain nonlinear loss functions and then
describe a simple technique called model caching.

Optimization axes. To help understand the optimization space, we present exper-
imental results on the CENSUS dataset using COLUMBUS programs modeled after our
experience with insurance analysts. Figure 6 illustrates the crossover points for
each optimization opportunity along three axes that we will refer to throughout this
section:10

(1) Error tolerance depends on the analyst and task. For intuition, we think of differ-
ent types of error tolerances, with two extremes: error tolerant ε = 0.5 and high
qualityε = 10−3. In Figure 6, we show ε ∈ {0.001, 0.01, 0.1, 0.5}.

(2) Sophistication of the feature selection task, namely the loss function (linear or not)
and the number of feature sets or rows selected. In Figure 6, we set the number of
features as {10, 100, 161} and the number of tasks in each block as {1, 10, 20, 50}.
Intuitively, sophistication measures how many regression tasks (e.g., number of
folds in cross validation or number of runs inside a StepAdd operator) are in each
basic block and how many features each task needs to solve. The reuse opportunities
across each task are measured by the Reuse axes as defined later.

(3) Reuse is the degree to which we can reuse computation (and that it is helpful
to do so). The key factors are the amount of overlap in the feature sets in the
workloads11 and the number of available threads that COLUMBUS uses, which we set
here to {1, 5, 10, 20}.12

We discuss these graphs in paragraphs marked Trade-off and in Section 3.1.4.

3.1. A Single, Linear Basic Block

We consider three families of optimizations: (1) classical database optimizations, (2)
sampling-based optimizations, and (3) transformation-based optimizations. The first
optimization is essentially unaware of the feature selection process; in contrast, the
other two leverage the fact that we are solving several regression problems. Each of

10For each combination of parameters, we execute COLUMBUS and record the total execution time in a main
memory R backend. This gives us about 40K data points, and we only summarize the best results in this
article. Any omitted data point is dominated by a shown data point.
11Let G = (∪F∈F̄ F, E) be a graph, in which each node corresponds to a feature. An edge (f1, f2) ∈ E if there
exists F ∈ F̄ such that f1, f2 ∈ F. We use the size of the largest connected component in G as a proxy for
overlap.
12Note that COLUMBUS supports two execution models, namely batch mode and interactive mode.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

2:10 C. Zhang et al.

Fig. 7. Notation used throughout Section 3.

these optimizations can be viewed as a form of precomputation (materialization). Thus,
we describe the mechanics of each optimization, the cost it incurs in materialization,
and its cost at runtime. Figure 4 summarizes the cost of each ROP and the dominant
ROP in each optimization. Because each ROP is executed once, one can estimate the
cost of each materialization from this figure.13

To simplify our presentation, in this section we let �(x, b) = (x − b)2, i.e., the least-
squares loss, and suppose that all tasks have a single error ε. We return to the more
general case in the next section. Our basic block can be simplified to B = (A, b, F̄, R̄, ε),
for which we compute

x(R, F) = argmin
x∈Rd

‖�R (A�F x − b) ‖2
2 where R ∈ R̄, F ∈ F̄.

Our goal is to compile the basic block into a set of ROPs. We explain the optimizations
that we identify next. Figure 7 lists the notation used throughout this section.

3.1.1. Classical Database Optimizations. We consider classical Eager and Lazy view ma-
terialization schemes. Denote F∪ = ∪F∈F̄ F and R∪ = ∪R∈R̄ in the basic block. It may
happen that Acontains more columns than F∪ and more rows than R∪. In this case, one
can project away these extra rows and columns, which are analogous to materialized
views of queries that contain selections and projections. As a result, classical database
materialized view optimizations apply. Specially, COLUMBUS implements two strategies,
namely Lazy and Eager. The Lazy strategy will compute these projections at execution
time, and Eager will compute these projections at materialization time and use them
directly at execution time. When data are stored on disk, e.g., as in ORE, Eager could

13We ran experiments on three different types of machines to validate that the cost we estimated for each
operator is close to the actual running time.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

Materialization Optimizations for Feature Selection Workloads 2:11

ALGORITHM 1: Lazy Materialization Using ROPs

Data: Data matrix A and b. Set of feature sets F̄, set of example sets R̄, error tolerance ε.
Procedure Materialization(A, b, F̄, R̄, ε)

1 M ← list() // Materialized information
2 return M

Procedure Execution(M, A, b, F̄, R̄, ε)
1 R̃ = {Ri ∈ R̄}
2 for R ∈ R̃ do
3 F̃ = {Fi ∈ F̄ : Ri = R}
4 F = UNION(F̃)
5 MA ← A[R, F] // DN + kf dn
6 Mb ← b[R] // N + n
7 AA ← MAT % ∗ %MA // k2

f d
2n

8 bb ← MAT % ∗ %Mb // kf dn
9 for Fi ∈ F do

10 rs ← solve(AA[Fi, Fi], bb[Fi]) // 2d3/3
end

end

ALGORITHM 2: Eager Materialization Using ROPs

Data: Data matrix A and b. Set of feature sets F̄, set of example sets R̄, error tolerance ε.
Procedure Materialization(A, b, F̄, R̄, ε)

1 F ← UNION(F̄)
2 R ← UNION(R̄)
3 M = list(“A′′ = A[R, F], “b′′ = b[R]) // DN + krkf dn + N + krn
4 return M

Procedure Execution(M, A, b, F̄, R̄, ε)
1 R̃ = {Ri ∈ R̄}
2 for R ∈ R̃ do
3 F̃ = {Fi ∈ F̄ : Ri = R}
4 F = UNION(F̃)
5 MA ← M$A[R, F] // kf krdn + kf dn
6 Mb ← M$b[R] // krn + n
7 AA ← MAT % ∗ %MA // k2

f d
2n

8 bb ← MAT % ∗ %Mb // kf dn
9 for Fi ∈ F̃ do

10 rs ← solve(AA[Fi, Fi], bb[Fi]) // 2d3/3
end

end

save I/Os versus Lazy. Algorithms 1 and 2 provide the exact procedures for these two
materialization approaches using ROPs.

Trade-off . Not surprisingly, Eager has a higher materialization cost than Lazy,
whereas Lazy has a slightly higher execution cost than Eager as one must subselect the
data. Note that if there is ample parallelism (at least as many threads as feature sets),
then Lazy dominates. The standard trade-offs apply, and COLUMBUS selects between
these two techniques in a cost-based way. If there are disjoint feature sets F1 ∩ F2 = ∅,
then it may be more efficient to materialize these two views separately. Later, in

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

2:12 C. Zhang et al.

ALGORITHM 3: Naı̈ve Sampling Using ROPs

Data: Data matrix A and b. Set of feature sets F̄, set of example sets R̄, error tolerance ε,
selectivity of sampling ρ.

Procedure Materialization(A, b, F̄, R̄, ε, ρ)
1 M ← list()
2 R̃ = {Ri ∈ R̄}
3 for R ∈ R̃ do
4 sampled ← sample(1 : |R|, ρ|R|) // n
5 MA = A[sampled,] // DN + ρDn
6 Mb = b[sampled] // N + ρn
7 M[R] = list(“A′′ = MA, “b′′ = Mb)

end
8 return M

Procedure Execution(M, A, b, F̄, R̄, ε)
1 R̃ = {Ri ∈ R̄}
2 for R ∈ R̃ do
3 F̃ = {Fi ∈ F̄ : Ri = R}
4 F = UNION(F̃)
5 MA ← M[R]$A[, F] // ρDn + ρkf dn
6 Mb ← M[R]$b
7 AA ← MAT % ∗ %MA // ρk2

f d
2n

8 bb ← MAT % ∗ %Mb // ρkf dn
9 for Fi ∈ F do

10 rs ← solve(AA[Fi, Fi], bb[Fi]) // 2d3/3
end

end

Section 3.4, we show that the general problem of selecting an optimal way to split a
basic block to minimize cost is essentially a weighted set cover, which is NP-hard. As
a result, we use a simple heuristic: split disjoint feature sets. With a feature selection
workload, we may know the number of times a particular view will be reused, which
COLUMBUS can use to more intelligently chose between Lazy and Eager (rather than not
having this information). These methods are insensitive to error and the underlying
loss function, which will be major concerns for our remaining feature-selection-aware
methods.

3.1.2. Sampling-Based Optimizations. Subsampling is a popular method to cope with
large data and long runtimes. This optimization saves time simply because one is
operating on a smaller dataset. This optimization can be modeled by adding a subset
selection (R ∈ R̄) to a basic block. In this section, we describe two popular methods:
naı̈ve random sampling and a more sophisticated importance-sampling method called
coresets [Boutsidis et al. 2013; Langberg and Schulman 2010]; we describe the trade-
offs that these methods provide.

Naı̈ve sampling. Naı̈ve random sampling is widely used. In fact, analysts ask for it by
name. In naı̈ve random sampling, one selects some fraction of the dataset. Recall that
Ahas N rows and d columns; in naı̈ve sampling, one selects some fraction of the N rows
(say 10%). The cost model for both materialization and its savings of random sampling is
straightforward, as one performs the same solve—only on a smaller matrix. We perform
this sampling using the ROP SAMPLE. Algorithm 3 provides the exact procedure using
ROPs.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

Materialization Optimizations for Feature Selection Workloads 2:13

Coresets. A recent technique called coresets allows one to sample from an overdeter-
mined system A ∈ R

N×d with a sample size that is proportional to d and independent of
N with much stronger guarantees than naı̈ve sampling. In some enterprise settings, d
(the number of features) is often small (say 40), but the number of data points is much
higher, say millions, and coresets can be a large savings. We give one such result in the
following proposition.

PROPOSITION 3.1 ([BOUTSIDIS ET AL. 2013]). For A ∈ R
N×d and b ∈ R

N. Define s(i) =
aT

i (AT A)−1ai. Let Ã and b̃ be the result of sampling m rows, where row i is selected with
probability proportional to s(i). Then, for all x ∈ R

d, we have the following,

Pr
[∣∣∣∣‖Ax − b‖2

2 − N
m

‖Ãx − b̃‖2
2

∣∣∣∣ < ε‖Ax − b‖2
2

]
>

1
2

,

as long as m > 2ε−2d log d.

This guarantee is strong.14 To understand how strong, observe that naı̈ve sampling
cannot meet this type of guarantee without sampling proportional to N. To see this,
consider the case in which a feature occurs in only a single example, e.g., A1,1 = 1 and
Ai,1 = 0 for i = 2, . . . , N. It is not hard to see that the only way to achieve a similar
guarantee is to make sure the first row is selected. Hence, naı̈ve sampling will need
roughly N samples to guarantee this is selected. Note that Proposition 3.1 does not
use the value b. COLUMBUS uses this fact later to optimize basic blocks with changing
right-hand sides. Algorithm 4 provides the exact procedure using ROPs.

Trade-off . Looking at Figure 6, one can see a clear trade-off space: coresets require
two passes over the data to compute the sensitivity scores. However, the smaller sample
size (proportional to d) can be a large savings when the error ε is moderately large. But
as either d or ε−1 grows, coresets become less effective, and there is a crossover point.
In fact, coresets are useless when N = d. One benefit of coresets is that they have
explicit error guarantees in terms of ε. Thus, our current implementation of COLUMBUS

will not automatically apply naı̈ve sampling unless the user requests it. With optimal
settings for sample size, naı̈ve sampling can get better performance than coresets.
Nevertheless, recent analysis has shown that one could leverage randomized linear
algebra techniques to construct a new importance-sampling method that can be used
as a preconditioner for SGD to obtain the best of both worlds—good performance as
well as theoretical guarantees on convergence [Yang et al. 2016]. We leave it to future
work to integrate this new performance–accuracy trade-off into COLUMBUS.

3.1.3. Transformation-Based Optimizations. In linear algebra, there are decomposition
methods to solve (repeated) least squares efficiently; the most popular of these is called
the QR decomposition [Golub 1965]. At a high level, we use the QR decomposition to
transform the data matrix A so that many least-squares problems can be solved effi-
ciently. Typically, one uses a QR to solve for many different values of b (e.g., in Kalman
filter updates). However, in feature selection, we use a different property of the QR:
that it can be used across many different feature sets. We define the QR factorization
(technically the thin QR), describe how COLUMBUS uses it, and then describe its cost
model.

Definition 3.2 (Thin QR Factorization). The QR decomposition of a matrix A ∈ RN×d

is a pair of matrices (Q, R), where Q ∈ R
N×d, R ∈ R

d×d, and A = QR. Q is an orthogonal
matrix, i.e., QT Q = I and R is upper triangular.

14Note that one can use log2 δ−1 independent trials to boost the probability of success to 1 − δ.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

2:14 C. Zhang et al.

ALGORITHM 4: CoreSet Using ROPs (Assume ∀Ri, Rj ∈ R̄, Ri ∩ Rj = ∅)

Data: Data matrix A and b. Set of feature sets F̄, set of example sets R̄, error tolerance ε.
Procedure Materialization(A, b, F̄, R̄, ε)

1 M = list()
2 R̃ = {Ri ∈ R̄}
3 for R ∈ R̃ do
4 F̃ = {Fi ∈ F̄ : Ri = R}
5 F = UNION(F̃)
6 MA ← A[R, F] // DN + kf dn
7 Mb ← b[R] // N + n
8 N ← NROW(MA)
9 d ← NCOL(MA)

10 AA ← t(MA)% ∗ %MA //k2
f d

2n
11 inv ← solve(AA) // 2k3

f d
3/3

12 sensitivity ← rowSums((MA % ∗ % inv) ∗ MA) //k2
f d

2n + 2kf dn
13 sampled ← sample(1 : N, 2d/ε2, prob = sensitivity) //n
14 MA ← MA[sampled,] // kf dn + 2kf d2/ε2

15 Mb ← Mb[sampled] // n + 2d/ε2

16 M[(R, F)] = list(“A”=MA, “b”=Mb)
end

17 return M
Procedure Execution(M, A, b, F̄, R̄, ε)

1 R̃ = {Ri ∈ R̄}
2 for R ∈ R̃ do
3 F̃ = {Fi ∈ F̄ : Ri = R}
4 F = UNION(F̃)
5 MA ← M[(R, F)]
6 Mb ← b[R]
7 AA ← MAT % ∗ %MA // 2k2

f d
3/ε2

8 bb ← MAT % ∗ %Mb // 2kf d2/ε2

9 for Fi ∈ F do
10 rs ← solve(AA[Fi, Fi], bb[Fi]) // d3

end
end

We observe that since Q−1 = QT and R is upper triangular, one can solve Ax = b
by setting QRx = b and multiplying through by the transpose of Q so that Rx = QT b.
Since R is upper triangular, one can solve this equation with back substitution; back
substitution does not require computing the inverse of R, and its running time is linear
in the number of entries of R, i.e., O(d2).

COLUMBUS leverages a simple property of the QR factorization: upper triangular
matrices are closed under multiplication, i.e., if U is upper triangular, then so is RU .
Since �F is upper triangular, we can compute many QR factorizations by simply reading
off the inverse of R�F .15 This simple observation is critical for feature selection. Thus, if
there are several different row selectors, COLUMBUS creates a separate QR factorization
for each. Algorithm 5 provides the exact procedure using ROPs.

Trade-off . As summarized in Figure 4, QR’s materialization cost is similar to impor-
tance sampling. In terms of execution time, Figure 6 shows that QR can be much faster

15Notice that �RQ is not necessarily orthogonal, so �RQ may be expensive to invert.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

Materialization Optimizations for Feature Selection Workloads 2:15

ALGORITHM 5: QR Decomposition Using ROPs

Data: Data matrix A and b. Set of feature sets F̄, set of example sets R̄, error tolerance ε.
Procedure Materialization(A, b, F̄, R̄, ε)

1 M = list()
2 R̃ = {Ri ∈ R̄}
3 for R ∈ R̃ do
4 F̃ = {Fi ∈ F̄ : Ri = R}
5 F = UNION(F̃)
6 MA ← A[R, F] // DN + kf dn
7 Mb ← b[R] // N + n
8 qrrs = qr(MA)
9 q ← qr.Q(qrrs)

10 r ← qr.R(qrrs) // 2k2
f d

2n
11 Mb ← qT % ∗ %Mb // kf dn
12 M[(R, F)] = list(“r”=r, “b”=Mb)

end
13 return M

Procedure Execution(M, A, b, F̄, R̄, ε)
1 R̃ = {Ri ∈ R̄}
2 for R ∈ R̃ do
3 F̃ = {Fi ∈ F̄ : Ri = R}
4 F = UNION(F̃)
5 r ← M[(R, F)]$r
6 Mb ← Mb[(R, F)]$b
7 for Fi ∈ F̃ do
8 rs ← backsolve(r[, Fi], Mb) // d2/2

end
end

than coresets: solving the linear system is quadratic in the number of features for QR
but cubic for coresets (without QR). When there are a large number of feature sets
and they overlap, QR can be a substantial win (this is precisely the case when coresets
are ineffective). These techniques can also be combined, which further modifies the
optimal trade-off point. An additional point is that QR does not introduce error (and is
often used to improve numerical stability), which means that QR is applicable in error
tolerance regimes when sampling methods cannot be used.

3.1.4. Discussion of Trade-Off Space. Figure 6 shows the crossover points for the trade-
offs that we described in this section for the CENSUS dataset. We describe why we assert
that each of the following aspects affects the trade-off space.

Error For error-tolerant computation, naı̈ve random sampling provides dramatic
performance improvements. However, when low error is required, then one must use
classical database optimizations or the QR optimization. In between, there are many
combinations of QR, coresets, and sampling that can be optimal. As we can see in
Figure 6(a), when the error tolerance is small, coresets are significantly slower than
QR. When the tolerance is 0.01, the coreset that we need is even larger than the
original dataset, and if we force COLUMBUS to run on this large coreset, it would be
more than 12× slower than QR. For tolerance 0.1, coreset is 1.82× slower than QR.
We look into the breakdown of materialization time and execution time, and we find
that materialization time contributes to more than 1.8× of this difference. When error
tolerance is 0.5, Coreset+QR is 1.4× faster than QR. We ignore the curve for Lazy and
Eager because they are insensitive to noises and are more than 1.2× slower than QR.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

2:16 C. Zhang et al.

Fig. 8. Cost model. We list the costs of different materialization strategies. We use [a]b to denote that b runs
with the cost a can be executed in parallel. Given a basic block B = (A, b, F̄, R̄), N and D are the number of
rows and columns in A, and r and f are the distinct number of elements in R̄ and F̄, respectively; we assume
that d and n are the number of elements of F ∈ F̄ and R ∈ R̄ and | ∪i Fi | = kf d and | ∪i Ri | = krn.

Sophistication. One measure of sophistication is the number of features that the
analyst is considering. When the number of features in a basic block is much smaller
than the dataset size, coresets create much smaller but essentially equivalent datasets.
As the number of features, d, increases, or the error decreases, coresets become less
effective. On the other hand, optimizations like QR become more effective in this
regime: although materialization for QR is quadratic in d, it reduces the cost to compute
an inverse from roughly d3 to d2.

As shown in Figure 6(b), as the number of features grows, CoreSet+QR slows down.
With 161 features, the coreset will be larger than the original dataset. However, when
the number of features is small, the gap between CoreSet+QR and QR will be smaller.
When the number of features is 10, CoreSet+QR is 1.7× faster than QR. When the
number of feature is small, the time it takes to run a QR decomposition over the
coreset could be smaller than over the original dataset, hence the 1.7× speedup of
CoreSet+QR over QR.

Reuse. In linear models, the amount of overlap in the feature sets correlates with
the amount of reuse. We randomly select features but vary the size of overlapping
feature sets. Figure 6(c) shows the result. When the size of the overlapping feature
sets is small, Lazy is 15× faster than CoreSet+QR. This is because CoreSet wastes
time in materializing for a large feature set. Instead, Lazy will solve these problems
independently. On the other hand, when the overlap is large, CoreSet+QR is 2.5× faster
than Lazy. Here, CoreSet+QR is able to amortize the materialization cost by reusing it
on different models.

Available parallelism. If there is a large amount of parallelism and one needs to
scan the data only once, then a Lazy materialization strategy is optimal. However, in
feature selection workloads where one is considering hundreds of models or repeatedly
iterating over data, parallelism may be limited and mechanisms that reuse the compu-
tation may be optimal. As shown by Figure 6(e), when the number of threads is large,
Lazy is 1.9× faster than CoreSet+QR. The reason is that although the reuse between
models is high, all of these models could be run in parallel in Lazy. Thus, although
CoreSet+QR does save computation, it does not improve the wall-clock time. On the
other hand, when the number of threads is small, CoreSet+QR is 11× faster than Lazy.

3.1.5. Cost Model. The preceding performance trade-offs between materialization and
execution can be captured using a simple cost model that considers the cost for each
ROP in each strategy. Figure 8 presents the detailed costs of materialization and
execution for one basic block. The cost of each ROP either comes from the manual of R

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

Materialization Optimizations for Feature Selection Workloads 2:17

Fig. 9. Costs of the major ROPs used to obtain the cost model for the various materialization strategies. We
also describe how we obtained these costs. The complexity of solve and qr are obtained from LAPACK and
LINPACK, respectively.16

or the corresponding BLAS function that R invokes. We list the costs of the ROPs (the
nonobvious ones) in Figure 9.

3.2. A Single, Nonlinear Basic Block

We extend our methods to nonlinear loss functions. The same trade-offs from the
previous section apply, but there are two additional techniques that we can use. We
describe them next.

Recall that a task solves the problem

min
x∈Rd

N∑
i=1

�(zi, bi) subject to z = Ax,

where � : R
2 → R

+ is a convex function.

Iterative methods. We select two methods: first, stochastic gradient descent
(SGD) [Bertsekas 1999; Shalev-Shwartz and Srebro 2008; Bottou and Bousquet 2007],
and second, iterative reweighted least squares (IRLS), which is implemented in R’s gen-
eralized linear model package.17 We describe an optimization—warmstarting—that
applies to such models as well as to the alternating direction method of multipliers
(ADMM).

ADMM. There is a classical general-purpose method that allows one to decompose
such a problem into a least-squares problem and a second simple problem. The method
that we explore—ADMM-is one of the most popular [Boyd et al. 2011], which has been
widely used since the 1970s. We explain the details of this method to highlight a key
property that allows us to reuse the optimizations from the previous section.

ADMM is iterative and defines a sequence of triples (xk, zk, uk) for k = 0, 1, 2, It
starts by randomly initializing the three variables (x0, z0, u0), which are then updated
by the following equations:

x(k+1) = argmin
x

ρ

2

∣∣∣∣Ax − z(k) + u(k)
∣∣∣∣2

2

z(k+1) = argmin
z

N∑
i=1

l(zi, bi) + ρ

2

∣∣∣∣Ax(k+1) − z + u(k)
∣∣∣∣2

2

u(k+1) = u(k) + Ax(k+1) − z(k+1).

16http://www.netlib.org/lapack/lug/node71.html; http://tel.archives-ouvertes.fr/docs/00/83/33/56/PDF/VD2_
KHABOU_AMAL_11022013.pdf.
17stat.ethz.ch/R-manual/R-patched/library/stats/html/glm.html.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

http://www.netlib.org/lapack/lug/node71.html
http://tel.archives-ouvertes.fr/docs/00/83/33/56/PDF/VD2KHABOUAMAL11022013.pdf
http://tel.archives-ouvertes.fr/docs/00/83/33/56/PDF/VD2KHABOUAMAL11022013.pdf
file:stat.ethz.ch/R-manual/R-patched/library/stats/html/glm.html

2:18 C. Zhang et al.

The constant ρ ∈ (0, 2) is a step-size parameter that we set by a grid search over five
values.

There are two key properties of ADMM equations that are critical for feature selection
applications:

(1) Repeated least squares: The solve for x(k+1) is a linear basic block from the previous
section since z and u are fixed and the A matrix is unchanged across iterations. In
nonlinear basic blocks, we solve multiple feature sets concurrently, so we can reuse
the transformation optimizations of the previous section for each such update. To
take advantage of this, COLUMBUS logically rewrites ADMM into a sequence of linear
basic blocks with custom R functions.

(2) One-dimensional z: We can rewrite the update for z into a series of independent,
one-dimensional problems—that is,

z(k+1)
i = argmin

zi

l(zi, bi) + ρ

2
(qi − zi)2, where q = Ax(k+1) + u(k).

This one-dimensional minimization can be solved by fast methods, such as bisection
or Newton. To update x(k+1), the bottleneck is the ROP “solve,” whose cost is in
Figure 4. The cost of updating z and u is linear in the number of rows in A and can
be decomposed into N problems that may be solved independently.

Trade-offs. In COLUMBUS, ADMM is our default solver for nonlinear basic blocks.
Empirically, on all of our applications in our experiments, if one first materializes the
QR computation for the least-squares subproblem, then we find that ADMM converges
faster than SGD to the same loss. Moreover, there is sharing across feature sets that
can be leveraged by COLUMBUS in ADMM (using our earlier optimization about QR).
One more advanced case for reuse is when we must fit hyperparameters, like ρ above or
regularization parameters; in this case, ADMM enables opportunities for high degrees
of sharing.

3.3. Warmstarting by Model Caching

In feature selection workloads, our goal is to solve a model after having solved many
similar models. For iterative methods like gradient descent or ADMM, we should be
able to partially reuse these similar models. We identify three situations in which
such reuse occurs in feature selection workloads. First, we downsample the data,
learn a model on the sample, and then train a model on the original data. Second,
we perform stepwise removal of a feature in feature selection, and the “parent” model
with all features is already trained. Third, we examine several nearby feature sets
interactively. In each case, we should be able to reuse the previous models, but it would
be difficult for an analyst to implement effectively in all but the simplest cases. In
contrast, COLUMBUS can use warmstart to achieve up to 13× performance improvement
for iterative methods without user intervention.

Given a cache of models, we need to choose a model. We observe that computing the
loss of each model on the cache on a sample of the data is inexpensive. Thus, we select
the model with the lowest sampled loss. To choose models to evict, we simply use an
LRU strategy. In our workloads, the cache does not become full, so we do not discuss
it. However, if one imagines several analysts running workloads on similar data, the
cache could become a source of challenges and optimizations.

3.4. Multiblock Optimization

There are two tasks that we need to do across blocks: (1) decide on how coarse or fine
to make a basic block and (2) execute the sequence of basic blocks across the backend.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

Materialization Optimizations for Feature Selection Workloads 2:19

ALGORITHM 6: Dynamic Program to Solve MATOPT for a Chain of Feature Sets F̄

1 T (i, 0) = r(Fi) Read(F) + T (i − 1, 0) //i > 0, use original dataset
2 T (i, j) = r(Fi) Read(Fj) + T (i − 1, j) //i > j > 0, use the last materialization
3 T (i, i) = min j=1...i−1(Store(Fj, Fi) + T (i − 1, j)) + r(Fi) Read(Fi)//i > 0, mat. costs on diagonal

Multiblock logical optimization. Given a sequence of basic blocks from the parser,
COLUMBUS must first decide how coarse or fine to create individual blocks. Cross vali-
dation is, e.g., merged into a single basic block. In COLUMBUS, we greedily improve the
cost using the obvious estimates from Figure 4. The problem of deciding the optimal
partitioning of many feature sets is NP-hard in general. The intuition is clear, as one
must cover all of the different features with as few basic blocks as possible. However,
the heuristic merging can have large wins, as operations like cross validation and grid
searching parameters allow one to find opportunities for reuse. We now formalize the
problem of materializing different subsets of feature sets (Eager vs. Lazy) and prove
its hardness. Note that the different feature sets can be from the same basic block or
from different basic blocks that share the data and other inputs.

Problem statement. Fix dataset (A, b) with a full set of features F. We are given a
set of accesses of subsets of F, labeled F̄ = {F1, . . . , FN}, wherein Fi ⊆ F,∀i = 1 . . . N.
The subsets are accessed with repetitions {r(Fi)}N

i=1, i.e., Fj is accessed r(Fj) times. A
materialization plan is a subset F̄ ′ ⊆ F̄ whose feature sets are materialized and used
for data accesses. We want to obtain a materialization plan with minimum cost. We
formulate it as an optimization problem:

MATOPT: minF̄ ′⊆F̄ Cost(F̄ ′),
where Cost(F̄ ′) =

∑
F∈F̄ ′

min
F ′∈F̄ ′∪{F}\{F}:F ′⊇F

Store(F ′, F)

+
∑
F∈F̄

r(F) min
F ′∈F̄ ′∪{F}:F ′⊇F

Read(F ′).

In other words, we materialize the feature sets in F̄ ′ and use the “thinnest” among
them (or the whole dataset) for each feature set. In the objective function of MATOPT,
we use generic costs (considering both I/O and CPU) for reading and writing data with
a feature subset materialized. Essentially, Read(F ′) is the cost of reading the dataset
with features F ′ ⊆ F. Additionally, Store(F ′, F) is the cost of materializing (writing) a
dataset with features F ′ by reading the data set with features F ⊇ F ′. A more complex
formulation could consider reading a smaller data set instead. We first consider two
restrictions on F̄ based on real usage that we observed—first, when F̄ is a chain, i.e.,
there is a containment hierarchy among the feature sets, and second, when the width
of the lattice of F̄ is fixed. We provide polynomial-time algorithms for these two special
cases. After that, we consider the general set of sets and prove that it is NP-hard.

THEOREM 3.3. For F̄ that is a chain, MATOPT can be solved in O(N2) time and O(N2)
space by Algorithm 6.

PROOF. Algorithm 6 presents a dynamic programming-based solution for MATOPT on
chain inputs. With N input feature sets, the dynamic program fills the lower triangular
part of the N×N memo (excluding diagonal elements) in time �(N(N−1)/2). Filling the
diagonal elements requires referring to each row above (up to the diagonal element).
This is in time �(N(N −1)/2+ N). Reading the backpointers is in time �(N). Thus, the
overall algorithm is in time O(N2). The memo of time costs is in space �(N(N−1)/2+N),
whereas the backpointers are in space �(N). Thus, the overall space complexity is also
O(N2).

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

2:20 C. Zhang et al.

ALGORITHM 7: Dynamic Program to Solve MATOPT for a set of Features Sets F̄ That Exist
in a k-Width Lattice
1 //i ≥ 0 :

T (i + 1, 0) = T (i, 0) + ∑
j=1...k r(F(i + 1, j)) Read(F)

2 //i ≥ 0; v s.t. ∀ j = 1 . . . k, v j ≤ i :
T (i + 1, v) = T (i, v) + [

∑
j=1...k r(F(i + 1, j))] minl=1...k Read(F(vl, l))

3 //i ≥ 1; v s.t. ∀ j = 1 . . . k, v j ≤ i, and ∃ j = 1 . . . k, s.t. v j = i :
T (i, v) = ∑

j:v j=i(r(F(i, j)) Read(F(i, j))) + [
∑

j:v j<i r(F(i, j))] minl=1...k Read(F(vl, l)) +
minw:w j<i,∀ j:v j=i∧w j=v j ,∀ j:v j<i[T (i − 1, w) + ∑

j:v j=i minl=1...k Store(F(i, j), F(wl, l)]

Next, we analyze MATOPT for the input feature sets existing in a bounded-width
lattice. The feature sets in F̄ have a lattice ordering L : (F̄,⊆). Let the height of L be
N (i.e., we have N levels L1 . . . LN). The width of L is a given constant k (i.e., k sets at
each level). Sets in L1 . . . LN−1 have k children each, and sets in L2 . . . LN have k parents
each. In this case, our dynamic program’s memo will become richer—its has k entries
per slot, corresponding to the width of the lattice. In this scenario, we can still compute
an optimum in time polynomial in N (but exponential in the constant k).

We introduce a convenient “grid” notation for the feature sets in F̄ that we will use in
the rest of this section. We write F̄ = {F(i, j)}, i ∈ {1, . . . , N} and j ∈ {1, . . . , k}. A level
is thus a set of feature sets with the same i, whereas we call a set of feature sets with
the same j as a “column.” Our memo is changed to T (i, v), which is the cumulative
cost up to level i, and v = (v1, . . . , vk) is a k-length vector of indices, each of which
refers to the level at which the last materialization was done in its respective column
(0 ≤ v j ≤ N,∀ j = 1 . . . k). We define T (i, v) recursively (considering only scan and
materialization costs) as given in Algorithm 7.

THEOREM 3.4. For F̄ that is a k-width lattice, MATOPT can be solved in O(k22kNk+1)
time with O(Nk+1) space by Algorithm 7.

PROOF. The proof is along the lines of that for Theorem 3.3. In our memo T (i, v), i
can take N values, and v is a k-length vector in which each entry v j can take one of N
values. Thus, the size of the memo is O(N × Nk). The backpointers require a space of
only �(N), making the overall space complexity O(Nk+1).

Fixing i, there is 1 entry of the form T (i, 0), computing which is in time �(k). There-
fore, we get total time O(Nk) here.

Fixing i, there are ik − 1 entries of the form T (i, v), s.t.∀ j, v j ≤ i − 1, and v �= 0.
Computing each is in time �(k). Thus, we get total time k

∑N
i=1(ik − 1) = O(Nk+1) here.

Finally, fixing i, the entries of the form T (i, v), s.t.∀ j, v j ≤ i, and ∃ j, s.t. v j = i and
their total time can be computed using a z to count how many v j exist such that v j = i.
Therefore, the time spent for a fixed i is

t(i) =
k∑

z=1

(
k
z

)
ik−z(z + (k − z)k + izzk)

= kik
k∑

z=1

(
k
z

)
z + k2

k∑
z=1

(
k
z

)
ik−z − (k − 1)

k∑
z=1

(
k
z

)
ik−zz

≤ kik(k2k−1) + k2ik[(1 + i−1)k − 1]

≤ k22kik + k2[(i + 1)k − ik].

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

Materialization Optimizations for Feature Selection Workloads 2:21

Thus, the total time that we get here is ≤ ∑N
i=1 t(i) ≤ k22kNk+1 + k2(N + 1)k ≤

ck22kNk+1, for some constant c. Therefore, the time here is O(k22kNk+1), so the overall
time is also O(k22kNk+1).

THEOREM 3.5. MATOPT is NP-hard in the width of the lattice on F̄, the set of input
feature sets.

PROOF. We prove by reduction from the NP-hard problem of SETCOVER-EC [Garey and
Johnson 1979]. We are given a universe of elements U , and a family Ū of subsets of
U that covers U , i.e., ∪u∈Ū u = U , such that all u ∈ Ū have equal cardinality l. The
optimization version of SETCOVER-EC asks for a subfamily Ū ′ ⊆ Ū of minimum |Ū ′|
that covers U . We reduce an instance of SETCOVER-EC to an instance of our problem as
follows.

U is treated as the full set of features F. Let |Ū | = N. Create N feature set inputs
{Fs|Fs ⊆ F}, one for each s ∈ Ū . We use F̄ for {Fs} as well. All Fs equal cardinality l.
Create |F| additional feature singleton set inputs {xj}, representing singleton feature
sets from F. We use X to denote {xj}. We now construct other inputs to our problem
conforming to our cost model.

First, make CPU costs negligible so that data access (read) times are linear only in
the number of features in the dataset. It is given by Read(Fj) = α|Fj |, where α is a free
parameter. Note that it does not depend on Fi, which is the input for computations.
Second, materialization costs are also linear, and given by Store(F, Fi) = Read(F) +
Write(Fi) = α|F| + β|Fi|, where β is also a free parameter. Note that Write(Fi) is the
cost of writing alone. It is reasonable to assume that only F is used for materialization,
as we can always make F̄ an antichain by dropping a set contained in another within
F̄ in the given SETCOVER-EC instance. Third, set the repetitions of all Fs to be equal to
γ , another free parameter. Set the repetitions of every xj to 1.

The idea is that members of X will never be materialized, as their individual mate-
rialization costs are higher than just accessing F, or any member of F̄. Thus, we set
the parameters of our problem instance in such a way that our optimal solution will
materialize a subset of F̄ to use both for serving those feature sets covers all of X. This
optimal materialized subset will be an optimum for the given SETCOVER-EC instance.

Recall that we have three free parameters—α, β, and γ . The given instance of
SETCOVER-EC gives us F (the universe of features), F̄ (the family of subsets of F),
N (= |F̄|), and l (cardinality of each member of F̄). Thus, the objective function (F̄ ′ ⊆ F̄)
can be rewritten as follows:

Cost(F̄ ′) =
∑
s∈F̄ ′

(Store(F, s) + γ Read(Fs)) +
∑

s∈F̄\F̄ ′

γ Read(F)

+
∑

x∈X:∃s∈F̄ ′,x⊆s

Read(Fs) +
∑

x∈X:∀s∈F̄ ′,x �⊆s

Read(F)

= |F̄ ′|((α|F| + βl) + γαl) + (|F̄| − |F̄ ′|)γα|F|
+ αl(#xj covered by F̄ ′) + α|F|(#xj not covered by F̄ ′)

= |F̄|γα|F| + |F̄ ′|(−γα|F| + α|F| + βl + γαl)

+ αl|X| + α(|F| − l)(#xj not covered by F̄ ′).

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

2:22 C. Zhang et al.

The terms |F̄|γα|F| and αl|X| shown earlier are constants independent of F̄ ′ and so
we can drop them from the optimization. Thus, we rewrite as

Cost(F̄ ′) = |F̄ ′|(α|F| + βl − γα(|F| − l)) + α(|F| − l)(#xj not covered by F̄ ′).

Now, |F|, l, and N(= |F̄|) are given by the instance. We demonstrate a choice of α, β, γ
such that the optimal solution to the preceding gives the optimal to the SETCOVER-EC
instance.

First,we want the coefficient of |F̄ ′| shown earlier (call it p) to be positive, i.e., p =
α|F| + βl − γα(|F| − l) > 0. This can be done by fixing any positive value for α. Then fix
any positive integer value for γ . Then, we choose a positive β subject to β > α(γ (|F| −
l) − |F|)/L. Call the RHS d (say), i.e., d := α(γ (|F| − l) − |F|)/l, and β > d. Second,
we need to see if the maximum value of the first term (which is Np, when F̄ ′ = F̄)
is outweighed by an occurrence of the second term, i.e., when at least one xj is not
covered. In other words, we check if Np < α(|F| − l). Expanding p, it becomes if
N(α|F| + βl − γα(|F| − l)) < α(|F| − l). Rearranging in terms of β, it becomes if β <
α(γ (|F|−l)−|F|)/l+α(|F|−l)/(lN), i.e., if β < d+α(|F|−l)/(lN). Since the second term
is positive (as |F| > l), we only have to choose β such that d < β < d + α(|F| − l)/(lN).

Since not covering even one xj raises the cost more than choosing all the sets, a
minimum cost solution to the precedint instance of MATOPT will always cover all xj ,
and it will minimize among the chosen subsets of F̄. Thus, an optimal solution to
the instance of MATOPT as constructed earlier will be an optimal solution to the given
instance of SETCOVER-EC.

Cost-based execution. Recall that the executor of COLUMBUS executes ROPs by call-
ing the required database or main-memory backend. The executor is responsible for
executing and coordinating multiple ROPs that can be executed in parallel; COLUMBUS

executor simply creates one thread to manage each of these ROPs. The actual execu-
tion of each physical operator is performed by the backend statistical framework, e.g.,
R or ORE. Nevertheless, we need to decide how to schedule these ROPs for a given
program. We experimented with the trade-off of how coarsely or finely to batch the
execution. Many of the straightforward formulations of the scheduling problems are,
not surprisingly, NP-hard. Nevertheless, we found that a simple greedy strategy (to
batch as many operators as possible, i.e., operators that do not share data flow de-
pendencies) was within 10% of the optimal schedule obtained by a brute-force search.
After digging into this detail, we found that many of the host-level substrates already
provide sophisticated data processing optimizations, e.g., sharing scans.

4. EXPERIMENTS

Using the materialization trade-offs that we have outlined, we validate that COLUMBUS

is able to speed up the execution of feature selection programs by orders of magnitude
compared to straightforward implementations in state-of-the-art statistical analytics
frameworks across two different backends: R (in-memory) and a commercial RDBMS.
We validate the details of our technical claims about the trade-off space of materializa-
tion and our (preliminary) multiblock optimizer.

4.1. Experiment Setting

Based on conversations with analysts, we selected a handful of datasets and created
programs that use these datasets to mimic analysts’ tasks in different domains. We
describe these programs and other experimental details.

Datasets and programs. To compare the efficiency of COLUMBUS with baseline systems,
we select five publicly available datasets: (1) Census, (2) House, (3) KDD, (4) Music, and

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

Materialization Optimizations for Feature Selection Workloads 2:23

Fig. 10. Dataset and program statistics. LS refers to least squares. LR refers to logistic regression.

(5) Fund.18 These datasets have different sizes, and we show the statistics in Figure 10.
We categorize them by the number of features in each dataset.

Both House, a dataset for predicting household electronic usage, and Fund, a dataset
for predicting the donation that a given agency will receive each year, have a small
number of features (fewer than 20). In these datasets, it is feasible to simply try and
score almost all combinations of features. We mimic this scenario by having a large
basic block that regresses a least-squares model on feature sets of sizes larger than 5
on House and 13 on Fund and then scores the results using AIC. These models reflect
a common scenario in current enterprise analytics systems.

At the other extreme, KDD has a large number of features (481), and it is infeasible to
try many combinations. In this scenario, the analyst is guided by automatic algorithms,
like lasso (which selects a few sparse features), manual intervention (moving around
the feature space), and heavy use of cross-validation techniques.19 Census is a dataset
for the task of predicting the mail responsiveness of people in different Census blocks,
each of which contains a moderate number of features (161). In this example, analysts
use a mix of automatic and manual specification tasks that are interleaved.20 This is
the reason we select this task for our running example. Music is similar to Census,
and both programs contain both linear models (least squares) and nonlinear models
(logistic regression) to mimic the scenario in which an analyst jointly explores the
feature set to select and the model to use.

R backends. We implemented COLUMBUS on multiple backends and report on two:
(1) R, which is the standard main-memory R, and (2) DB-R, the commercial R imple-
mentation over RDBMS. We use R 2.15.2 and the most recent available versions of the
commercial systems.

For all operators, we use the result of the corresponding main memory R function as
the gold standard. All experiments are run on instances on Amazon EC2 (cr1.8xlarge),
which has 32 vCPU, 244GB RAM, and 2×120GB SSD and runs Ubuntu 12.04.21

4.2. End-to-End Efficiency

We validate that COLUMBUS improves the end-to-end performance of feature selec-
tion programs. We construct two families of competitor systems (one for each back-
end): VANILLA and DBOPT. VANILLA is a baseline system that is a straightforward

18These datasets are publicly available on Kaggle (www.kaggle.com/) or the UCI Machine Learning Reposi-
tory (archive.ics.uci.edu/ml/).
19The KDD program contains six basic blocks, each of which is a 10-fold cross validation. These six different
basic blocks work on a nonoverlappings set of features specified by the user manually.
20The Census program contains four basic blocks, each of which is a STEPDROP operation on the feature set
output by the previous basic block.
21We also ran experiments on other dedicated machines. The trade-off space is similar to what we report in
this article.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

http://www.kaggle.com/
http://archive.ics.uci.edu/ml/

2:24 C. Zhang et al.

Fig. 11. End-to-end performance of COLUMBUS. All approaches return a loss within 1% optimal loss.

implementation of the corresponding feature selection problem using the ROPs; thus,
it has the standard optimizations. DBOPT is COLUMBUS, but we enable only the opti-
mizations that have appeared in classical database literature, i.e., Lazy, Eager, and
batching. DBOPT and COLUMBUS perform scheduling in the same way to improve paral-
lelism to isolate the contributions of the materialization. Figure 11 shows the result of
running these systems over all five datasets with error tolerance ε set to 0.01.

On the R-based backend, COLUMBUS executes the same program using less time than
R on all datasets. On Census, COLUMBUS is two orders of magnitude faster, and on Music
and Fund, COLUMBUS is one order of magnitude faster. On Fund and House, COLUMBUS

chooses to use CoreSet+QR as the materialization strategy for all basic blocks and
chooses to use QR for other datasets. This is because for datasets that contain fewer
rows and more columns, QR dominates CoreSet-based approaches, as described in the
previous section. One reason COLUMBUS improves more on Census than on Music and
Fund is that Census has more features than Music and Fund; therefore, operations
like StepDrop produce more opportunities for reuse than Census.

To understand the classical points in the trade-off space, compare the efficiency of
DBOPT to the baseline system, VANILLA. When we use R as a backend, the difference
between DBOPT and R is less than 5%. The reason is that R holds all data in memory,
and accessing a specific portion of the data does not incur any IO cost. In contrast,
we observe that when we use the DB backend, DBOPT is 1.5× faster than VANILLA on
House. However, this is because the underlying database is a row store, so the time
difference is due to IO and deserialization of database tuples.

We can also see that the new forms of reuse we outline are significant. If we compare
the execution time of Census and Music, we see a difference between the approaches.
Whereas Census is smaller than Music, baseline systems, e.g., VANILLA, are slower on
Census than on Music. In contrast, COLUMBUS is faster on Census than on Music. This
is because Census contains more features than Music; therefore, the time that VANILLA

spent on executing complex operators like STEPDROP is larger in CENSUS. In contrast,
by exploiting the new trade-off space of materialization, COLUMBUS is able to reuse
computation more efficiently for feature selection workloads.

4.3. Linear Basic Blocks

We validate that all materialization trade-offs that we identified affect the efficiency of
COLUMBUS. In Section 3, we designed experiments to understand the trade-off between
different materialization strategies with respect to three axes, i.e., error tolerance,
sophistication of tasks and reuse, and computation. Here, we validate that each opti-
mization contributes to the final results in a full program (on Census). We then validate
our claim that the crossover points for optimizations change based on the dataset but
that the space essentially stays the same. We only show results on the main-memory
backend.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

Materialization Optimizations for Feature Selection Workloads 2:25

Fig. 12. Robustness of materialization trade-offs across datasets. For each parameter setting (one column
in the table), we report the materialization strategy that has the fastest execution time given the parameter
setting. Q refers to QR, C refers to CoreSet+QR, and L refers to Lazy. The protocol is the same as for Figure 6
in Section 3.

Lesion study. We validate that each materialization strategy has an impact on the
performance of COLUMBUS. For each parameter setting used to create Figure 6, we
remove a materialization strategy. Then we measure the maximum slowdown of an
execution with that optimization removed. We report the maximum slowdown across
all parameters in Figure 11(c) in main memory on Census. We see that Lazy, QR, and
CoreSet all have significant impacts on quality, ranging from 1.9× to 37×. This means
that if we drop any of them from COLUMBUS, one would expect a 1.9× to 37× slowdown
on the whole COLUMBUS system. Similar observations hold for other backends. The only
major difference is that our DB backend is a row store, and Eager has a larger impact
(1.5× slowdown).

We validate our claim that the high-level principles of the trade-offs remain the
same across datasets, but we contend that the trade-off points change across datasets.
Thus, our work provides a guideline about these trade-offs, but it is still difficult
for an analyst to choose the optimal point. In particular, for each parameter setting,
we report the name of the materialization strategy that has the fastest execution
time. Figure 12 shows that across different datasets, the same pattern holds but with
different crossover points. Consider the error tolerance. On all datasets, for high error
tolerance, CoreSet+QR is always faster than QR. On Census and KDD, for the lowest
three error tolerances, QR is faster than CoreSet+QR, whereas on Music, only for the
lowest two error tolerance is QR faster than CoreSet+QR. On Fund and House, for
all error tolerances except the lowest one, CoreSet+QR is faster than QR. Thus, the
crossover point changes.

We now validate that the high-level principles of the trade-offs do not change even
when we vary the number of examples and features. Note that most of our real datasets
have a relatively small number of examples and features even if they resemble the
real use cases of analysts that we found in practice. Thus, we use a new dataset
with 100K examples and 2,000 features.22 We drop features and examples (or add
synthetic features) to generate a series of datasets with the number of examples in
{1000, 10000, 100000}, the number of features in {100, 200, 400, 800, 1000, 2000, 4000},
and the number of features smaller than the number of examples. We run each dataset
with one thread and the first 100 tasks in a StepDrop operator. Figure 13(a) shows
the relative execution time speedup of QR over Lazy. We see that even with very large
number of examples and features, QR consistently outperforms Lazy, as indicated by
our cost model. The largest speedup is achieved when the number of examples is large
but the number of features is small. Given the same number of features, the more

22http://largescale.ml.tu-berlin.de/instructions/.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

http://largescale.ml.tu-berlin.de/instructions/

2:26 C. Zhang et al.

Fig. 13. Varying the number of features and number of examples. (a) Speedup of QR over Lazy. (b) Actual
execution time of QR. We only consider datasets where the the number of examples exceeds the number of
features.

examples a dataset has, the larger the speedup. This is because the execution time of
QR is only quadratic in the number of features, as shown in Figure 4. Figure 13(b)
shows the absolute execution time of QR for reference. For the largest dataset, it takes
about 1 hour to finish both materialization and execution. Of course, improving the
efficiency of each ROP could reduce the total execution time even more. This issue is
orthogonal to our work.

4.4. Nonlinear Basic Blocks with ADMM

COLUMBUS uses ADMM as the default nonlinear solver, which requires that one solves a
least-squares problem that we studied in linear basic blocks. Compared to linear basic
blocks, one key twist with ADMM is that it is iterative and thus has an additional
parameter: the number of iterations to run. We validate that trade-offs similar to the
linear case still apply to nonlinear basic blocks, and we describe how convergence
impacts the trade-off space. For each dataset, we vary the number of iterations to run
for ADMM and try different materialization strategies. For CoreSet-based approaches,
we grid search the error tolerance, as we did for the linear case. As shown in Figure 6(d),
when the number of iterations is small, QR is 2.24× slower than Lazy. Because there
is only one iteration, the least-squares problem is only solved once. Thus, Lazy is the
faster strategy compared with QR. However, when the number of iterations grows to
10, QR is 3.8× faster than Lazy. This is not surprising based on our study for linear
cases—by running more iterations, the opportunities for reuse increase. We would
expect an even larger speedup if we ran more iterations.

Warmstart using model caching. We validate the model-caching trade-off for different
iterative models, including SGD, ADMM, and IRLS. We use logistic regression as an
example throughout (as it is the most common nonlinear loss).

Given a feature set F, we construct seven feature sets to mimic different scenarios
of model caching, and we call them F−All, F−10%, F−1, F0 F+1, F+10%, and F+All. Where
F−All mimics the cold start problem when the analyst has not trained any models for
this dataset, we initialize with a random data point (this is RANDOM); F+All means
that the analyst has a “superparent” model trained for all features and has selected
some features for warmstart; F−10% (respectively, F+10%) is when we warmstart with a
model different from F by removing (respectively, adding) 10%|F| of randomly picked
features; F+1 and F−1 mimic models generated by StepDrop or StepAdd, which are
made different from F by removing or adding only a single feature. F0 is when we have
the same F (we call it SAMEMODEL). For each dataset, we run ADMM with the initial
model set to the model obtained from training different Fs. Then we measure the
time needed to converge to 1%, 10%, and 2× of the optimal loss for F. Our heuristic

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

Materialization Optimizations for Feature Selection Workloads 2:27

Fig. 14. (a) The impact of model caching for ADMM. The execution time is measured by the time needed to
converge to 1% optimal loss. (b) The speedup of model caching. Different iterative approaches are compared
to a given loss with a random initial model.

LOWESTLOSS chooses a single model based on which has the lowest loss, and OPT
chooses the lowest execution time among all Fs, except F0. Because the process relies
on randomly selecting features to add or remove, we randomly select 10 feature sets
and train a model for each them and report the average.

We first consider this for ADMM, and Figure 14(a) shows the result. We see that
LOWESTLOSS is 13× faster than RANDOM. In addition, if we disable our heuristic and just
pick a random feature set to use for warmstart, we could be 11× slower in the worst
case. Compared to OPT, LOWESTLOSS is 1.03× slower. This validates the effectiveness
of our warmstart heuristic. Another observation is that when we use a feature set
that is a superset of F (F+1, F+10%), we can usually expect better performance than
using a subset (F−1, F−10%). This is not surprising because the superset contains more
information relevant to all features in F.

Other iterative approaches. We validate that warmstart also works for other iterative
approaches, namely SGD and IRLS (the default in R). We run all approaches and
report the speedup using our proposed lowest-loss heuristic compared to RANDOM. As
shown in Figure 14(b), we see that both SGD and IRLS are able to take advantage of
warmstarting to speed up their convergence by up to 12×.

4.5. Multiblock Optimization

We validate that our greedy optimizer for multiblock optimization has comparable
performance to the optimal optimizer. We compare the plan that is picked by the
COLUMBUS optimizer, which uses a greedy algorithm to choose between different physical
plans and the optimal physical plan that we find by brute-force search.23 We call the
optimal physical plan OPT and show the result in Figure 15.

As shown in Figure 15, COLUMBUS’s greedy optimizer is slower than OPT on KDD,
Census, and Music; however, it is slower within a range of less than 10%. For Fund
and House, OPT has the same performance as COLUMBUS’s greedy optimizer, because
there is only one basic block, and the optimal strategy is picked by COLUMBUS’s greedy
optimizer. When OPT selects a better plan than our greedy optimizer, we found that
the greedy optimizer does not accurately estimate the amount of reuse.

5. RELATED WORK

We consider work in feature selection and analytics.

23For each physical plan, we terminate the plan if it runs longer than the plan picked by the greedy scheduler.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

2:28 C. Zhang et al.

Fig. 15. Greedy versus optimal optimizer.

5.1. Feature Selection

Algorithms for feature selection have been studied in the statistical and machine learn-
ing literature for decades [Boyce 1974; John et al. 1994; Hastie et al. 2001; Guyon and
Elisseeff 2003; Guyon et al. 2006]. A typical formalization is to obtain one subset of
the features of a given dataset, subject to some optimization criteria. Feature selection
algorithms are categorized into Filters, Wrappers, and Embedded methods. Filters as-
sign scores to features independent of what statistical model for which the features are
used. Wrappers are meta-algorithms that score feature sets using a statistical model.
Embedded methods wire feature selection into a statistical model [Guyon et al. 2006].
Our conversations with analysts revealed that feature selection is often a data-rich
process with the analyst in the loop rather than a one-shot algorithm. Our goal is to
take a step toward managing the process of feature selection using data management
ideas. We aim to leverage popular selection algorithms, not design new ones.

Scaling individual feature selection algorithms to larger data has received attention
in the past for specific platforms. Oracle Data Mining offers three popular feature
selection algorithms over in-RDBMS data.24 Singh et al. [2009] parallelize forward
selection for logistic regression on MapReduce/Hadoop. In contrast, our focus is on
building a generic framework for the feature selection processes rather than for specific
algorithms and platforms.

5.2. Analytics Systems

Systems that deal with data management for statistical and machine learning tech-
niques have been developed in both industry and academia. These include data min-
ing toolkits from major RDBMS vendors that integrate specific algorithms with an
RDBMS [Hellerstein et al. 2012] and systems that aim to make it easier to imple-
ment machine learning in an RDBMS [Feng et al. 2012]. Similar efforts exist for other
data platforms.25 The second stream includes recent products from enterprise analytics
vendors that aim to support statistical computing languages like R over data residing
in data platforms, e.g., Oracle’s ORE,26 IBM’s SystemML [Ghoting et al. 2011], SAP
HANA,27 and the RIOT project [Zhang et al. 2010]. Our work focuses on the data man-
agement issues in the process of feature selection, and our ideas can be integrated into
these systems.

Array databases were initiated by Sarawagi and Stonebraker [1994], who studied
how to efficiently organize multidimensional arrays in an RDBMS. Since then, there

24oracle.com/technetwork/database/options/advanced-analytics/odm.
25mahout.apache.org.
26https://docs.oracle.com/cd/E27988_01/doc.112/e26499.pdf.
27help.sap.com/hana/hana_dev_r_emb_en.pdf.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

http://oracle.com/technetwork/database/options/advanced-analytics/odm
file:mahout.apache.org
https://docs.oracle.com/cd/E27988_01/doc.112/e26499.pdf
http://help.sap.com/hana/hanadevremben.pdf

Materialization Optimizations for Feature Selection Workloads 2:29

has been a recent resurgence in arrays as first-class citizens [Cohen et al. 2009; Brown
2010; Hellerstein et al. 2012; Stonebraker et al. 2013]. For example, Stonebraker
et al. [2013] recently envisioned the idea of using carefully optimized C++ code, e.g.,
ScaLAPACK, in array databases for matrix calculations. COLUMBUS is complementary
to these efforts, as we focus on how to optimize the execution of multiple operations to
facilitate reuse. The materialization trade-offs that we explore are (largely) orthogonal
to these lower-level trade-offs. However, since linear algebra operations arise in both R
and array databases, we hope that our proposed techniques can also be applied in the
realm of array databases.

There has been an intense effort to scale up individual linear algebra operations in
data processing systems [Benson et al. 2013; Zhang et al. 2010; Blackford et al. 1996].
Benson et al. [2013] propose a distributed algorithm to calculate QR decomposition
using MapReduce, whereas ScaLAPACK [Blackford et al. 1996] uses a distributed
main memory system to scale up linear algebra. The RIOT [Zhang et al. 2010] system
optimizes the I/O costs incurred during matrix calculations. Similar to array databases,
COLUMBUS directly takes advantage these techniques to speed up the execution of each
ROP.

Our focus on performance optimizations across full programs was inspired by similar
efforts in RIOT-DB [Zhang et al. 2010] and SystemML [Ghoting et al. 2011]. RIOT-
DB optimizes I/O by rearranging page accesses for specific loop constructs in an R
program [Zhang et al. 2010]. SystemML [Ghoting et al. 2011] converts R-style programs
to workflows of MapReduce jobs. They describe an optimization called piggybacking
that enables sharing of data access by jobs that follow each other.

In a similar spirit, declarative machine learning systems, e.g., MLBase [Kraska et al.
2013], provide a high-level language to end users to specify a machine learning task and
compare multiple learning algorithms. Compared to these systems, COLUMBUS focuses
on providing a high-level language for feature selection as opposed to algorithms.
The conventional wisdom is that most improvement comes through good features as
opposed to different algorithms. We are hopeful that the materialization trade-offs that
we study can be applied in declarative machine learning systems.

Finally, the Hazy project highlighted usability and development issues in statisti-
cal analytics (in addition to performance and scalability) that require more research
attention [Kumar et al. 2013]. In particular, feature engineering, which is the pro-
cess of designing and managing features for machine learning, is increasingly being
recognized by the database community as a critical bottleneck in this regard. For ex-
ample, Brainwash envisions a framework to support an iterative, human-in-the-loop
approach to feature engineering [Anderson et al. 2013]. We hope that our work on
COLUMBUS contributes to more research in this direction.

6. CONCLUSION AND FUTURE WORK

COLUMBUS is the first system to treat the feature selection dialogue as a database
systems problem. Our first contribution is a declarative language for feature selec-
tion, informed by conversations with analysts over the past 2 years. We observed that
there are reuse opportunities in analysts’ workloads that are not addressed by today’s R
backends. To demonstrate our point, we showed that simple materialization operations
could yield orders of magnitude performance improvements on feature selection work-
loads. As analytics grows in importance, we believe that feature selection will become
a pressing data management problem. There are several directions for future work.

First, we could better support the human-in-the-loop process of feature selection by
building an REPL-like environment for feature selection that automatically performs
materializations even as analysts browse and analyze their datasets. To support this
type of application, we expect the trade-off space studied in COLUMBUS to be useful

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

2:30 C. Zhang et al.

in guiding which materialization strategies should be executed. One question in this
context is whether it is possible to predict the future workloads of the analysts based on
their queries to a given point in time. This could enable new, speculative materialization
opportunities. Recent work in modeling SQL workloads [Ganapathi et al. 2010] might
be relevant for this problem, but it is still an open question as to how their techniques
can be adapted to statistical analytics.

Second, the current formalization of basic blocks in COLUMBUS is motivated by feature
selection workloads. It is an open question as to whether it is possible to extend our
ideas to a larger subset of the R language. This would require us to consider a richer
set of techniques for materialization beyond just QR and coresets such as partial
and incremental model computations. More generally, new opportunities to improve
performance and usability arise when we consider Explore, Evaluate, Regression, and
other learning operations in conjunction with data transform operations. For example,
recognizing that the joins that typically precede learning over normalized data might
introduce redundancy enables one to simply avoid such redundancy by “learning over
joins” rather than after joins [Kumar et al. 2015]. It is future work to extend the
COLUMBUS optimizer and cost model to integrate these new techniques and support
such new workloads.

Finally, another direction is to apply the approach of COLUMBUS to less-structured
data sources such as text, scanned documents, and images. For these sources, features
are often generated by a separate feature engineering phase, which is also a human-
in-the-loop process [Shin et al. 2015] that requires domain experts to iteratively write
“extractors” to produce features. As future work, we could study how these two human-
in-the-loop processes interact with each other. For example, will a fast feature selection
subsystem provide intuitive guidelines and hints on promising new features one has
not yet extracted? By jointly conducting feature selection and feature engineering in a
single framework, it might be possible to further facilitate the development of feature-
centric statistical analytics systems.

REFERENCES

Michael Anderson, Dolan Antenucci, Victor Bittorf, Matthew Burgess, Michael Cafarella, Arun Kumar,
Feng Niu, Yongjoo Park, Christopher Ré, and Ce Zhang. 2013. Brainwash: A data system for
feature engineering. In 6th Biennial Conference on Innovative Data Systems Research (CIDR’13).
http://web.eecs.umich.edu/∼michjc/papers/mythical_man.pdf.

Austin R. Benson, David F. Gleich, and James Demmel. 2013. Direct QR factorizations for tall-and-skinny
matrices in MapReduce architectures. In Proceedings of the 2013 IEEE International Conference on Big
Data. 264–272. DOI:http://dx.doi.org/10.1109/BigData.2013.6691583

D. P. Bertsekas. 1999. Nonlinear Programming. Athena Scientific.
L. Susan Blackford, Jaeyoung Choi, Andrew J. Cleary, James Demmel, Inderjit S. Dhillon, Jack Don-

garra, Sven Hammarling, Greg Henry, Antoine Petitet, Ken Stanley, David W. Walker, and R. Clinton
Whaley. 1996. ScaLAPACK: A portable linear algebra library for distributed memory computers—design
issues and performance. In Proceedings of the 1996 ACM/IEEE Conference on Supercomputing. 5.
DOI:http://dx.doi.org/10.1109/SC.1996.41

Léon Bottou and Olivier Bousquet. 2007. The tradeoffs of large scale learning. In Proceedings of the 21st
Annual Conference on Neural Information Processing Systems (NIPS’07). 161–168. http://papers.nips.
cc/paper/3323-the-tradeoffs-of-large-scale-learning.

Christos Boutsidis, Petros Drineas, and Malik Magdon-Ismail. 2013. Near-optimal coresets for least-
squares regression. IEEE Transactions on Information Theory 59, 10, 6880–6892. DOI:http://dx.doi.org/
10.1109/TIT.2013.2272457

David E. Boyce. 1974. Optimal Subset Selection: Multiple Regression, Interdependence, and Optimal Network
Algorithms. Springer-Verlag.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011. Distributed optimization
and statistical learning via the alternating direction method of multipliers. Foundations and Trends in
Machine Learning 3, 1, 1–122.

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

http://web.eecs.umich.edu/protect $
elax sim $michjc/papers/mythical_man.pdf
http://dx.doi.org/10.1109/BigData.2013.6691583
http://dx.doi.org/10.1109/SC.1996.41
http://papers.nips.cc/paper/3323-the-tradeoffs-of-large-scale-learning
http://papers.nips.cc/paper/3323-the-tradeoffs-of-large-scale-learning
http://dx.doi.org/10.1109/TIT.2013.2272457
http://dx.doi.org/10.1109/TIT.2013.2272457

Materialization Optimizations for Feature Selection Workloads 2:31

Paul G. Brown. 2010. Overview of SciDB: Large scale array storage, processing and analysis. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data (SIGMOD’10). 963–968.
DOI:http://dx.doi.org/10.1145/1807167.1807271

Jeffrey Cohen, Brian Dolan, Mark Dunlap, Joseph M. Hellerstein, and Caleb Welton. 2009. MAD skills: New
analysis practices for big data. Proceedings of the VLDB Endowment 2, 2, 1481–1492. DOI:http://dx.
doi.org/10.14778/1687553.1687576

Xixuan Feng, Arun Kumar, Benjamin Recht, and Christopher Ré. 2012. Towards a unified architecture for
in-RDBMS analytics. In Proceedings of the ACM SIGMOD International Conference on Management of
Data (SIGMOD’12). 325–336. DOI:http://dx.doi.org/10.1145/2213836.2213874

Archana Ganapathi, Yanpei Chen, Armando Fox, Randy H. Katz, and David A. Patterson. 2010. Statistics-
driven workload modeling for the cloud. In Proceedings of the Workshops of the IEEE International
Conference on Data Engineering (ICDE’10). 87–92. DOI:http://dx.doi.org/10.1109/ICDEW.2010.5452742

M. R. Garey and David S. Johnson. 1979. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman.

Amol Ghoting, Rajasekar Krishnamurthy, Edwin P. D. Pednault, Berthold Reinwald, Vikas Sindhwani,
Shirish Tatikonda, Yuanyuan Tian, and Shivakumar Vaithyanathan. 2011. SystemML: Declarative ma-
chine learning on MapReduce. In Proceedings of the IEEE International Conference on Data Engineering
(ICDE’11). 231–242. DOI:http://dx.doi.org/10.1109/ICDE.2011.5767930

G. Golub. 1965. Numerical methods for solving linear least squares problems. Numerische Mathematik 7, 3,
206–216.

Goetz Graefe and William J. McKenna. 1993. The volcano optimizer generator: Extensibility and efficient
search. In Proceedings of the IEEE International Conference on Data Engineering (ICDE’93). 209–218.
DOI:http://dx.doi.org/10.1109/ICDE.1993.344061

Isabelle Guyon and André Elisseeff. 2003. An introduction to variable and feature selection. Journal of
Machine Learning Research 3, 1157–1182. http://www.jmlr.org/papers/v3/guyon03a.html.

Isabelle Guyon, Steve Gunn, Masoud Nikravesh, and Lotfi A. Zadeh. 2006. Feature Extraction: Foundations
and Applications. Springer-Verlag, New York, NY.

Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. The Elements of Statistical Learning: Data
Mining, Inference, and Prediction. Springer.

Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang, Eugene Fratkin, Aleksander
Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng, Kun Li, and Arun Kumar. 2012. The MADlib
analytics library or MAD skills, the SQL. Proceedings of the VLDB Endowment 5, 12, 1700–1711.
http://vldb.org/pvldb/vol5/p1700_joehellerstein_vldb2012.pdf.

George H. John, Ron Kohavi, and Karl Pfleger. 1994. Irrelevant features and the subset selection problem.
In Proceedings of the 11th International Conference on Machine Learning. 121–129.

Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. 2012. Enterprise data analysis and
visualization: An interview study. IEEE Transactions on Visualization and Computer Graphics 18, 12,
2917–2926. DOI:http://dx.doi.org/10.1109/TVCG.2012.219

Tim Kraska, Ameet Talwalkar, John C. Duchi, Rean Griffith, Michael J. Franklin, and Michael I. Jordan.
2013. MLbase: A distributed machine-learning system. In Proceedings of the 6th Biennial Con-
ference on Innovative Data Systems Research (CIDR’13). http://www.cidrdb.org/cidr2013/Papers/
CIDR13_Paper118.pdf.

Arun Kumar, Jeffrey Naughton, and Jignesh M. Patel. 2015. Learning generalized linear models over nor-
malized data. In Proceedings of the ACM SIGMOD International Conference on Management of Data
(SIGMOD’15). 1969–1984. DOI:http://dx.doi.org/10.1145/2723372.2723713

Arun Kumar, Feng Niu, and Christopher Ré. 2013. Hazy: Making it easier to build and maintain big-data
analytics. Communications of the ACM 56, 3, 40–49. DOI:http://dx.doi.org/10.1145/2428556.2428570

Michael Langberg and Leonard J. Schulman. 2010. Universal epsilon-approximators for integrals. In
Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10). 598–607.
DOI:http://dx.doi.org/10.1137/1.9781611973075.50

Sunita Sarawagi and Michael Stonebraker. 1994. Efficient organization of large multidimensional ar-
rays. In Proceedings of the IEEE International Conference on Data Engineering (ICDE’94). 328–336.
DOI:http://dx.doi.org/10.1109/ICDE.1994.283048

Shai Shalev-Shwartz and Nathan Srebro. 2008. SVM optimization: Inverse dependence on train-
ing set size. In Machine Learning: Proceedings of the 25th International Conference. 928–935.
DOI:http://dx.doi.org/10.1145/1390156.1390273

Jaeho Shin, Sen Wu, Feiran Wang, Christopher De Sa, Ce Zhang, and Christopher Ré. 2015. Incremental
knowledge base construction using deepdive. Proceedings of the VLDB Endowment 8, 11, 1310–1321.
DOI:http://dx.doi.org/10.14778/2809974.2809991

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

http://dx.doi.org/10.1145/1807167.1807271
http://dx.doi.org/10.14778/1687553.1687576
http://dx.doi.org/10.14778/1687553.1687576
http://dx.doi.org/10.1145/2213836.2213874
http://dx.doi.org/10.1109/ICDEW.2010.5452742
http://dx.doi.org/10.1109/ICDE.2011.5767930
http://dx.doi.org/10.1109/ICDE.1993.344061
http://www.jmlr.org/papers/v3/guyon03a.html
http://vldb.org/pvldb/vol5/p1700_joehellerstein_vldb2012.pdf
http://dx.doi.org/10.1109/TVCG.2012.219
http://www.cidrdb.org/cidr2013/Papers/CIDR13Paper118.pdf
http://www.cidrdb.org/cidr2013/Papers/CIDR13Paper118.pdf
http://dx.doi.org/10.1145/2723372.2723713
http://dx.doi.org/10.1145/2428556.2428570
http://dx.doi.org/10.1137/1.9781611973075.50
http://dx.doi.org/10.1109/ICDE.1994.283048
http://dx.doi.org/10.1145/1390156.1390273
http://dx.doi.org/10.14778/2809974.2809991

2:32 C. Zhang et al.

Sameer Singh, Jeremy Kubica, Scott Larsen, and Daria Sorokina. 2009. Parallel large scale feature selection
for logistic regression. In Proceedings of the SIAM International Conference on Data Mining (SDM’09).
1172–1183. DOI:http://dx.doi.org/10.1137/1.9781611972795.100

Michael Stonebraker, Sam Madden, and Pradeep Dubey. 2013. Intel “big data” science and technol-
ogy center vision and execution plan. ACM SIGMOD Record 42, 1, 44–49. DOI:http://dx.doi.org/
10.1145/2481528.2481537

Jiyan Yang, Yin-Lam Chow, Christopher Ré, and Michael Mahoney. 2016. Weighted SGD for lp regression
with randomized preconditioning. In Proceedings of the Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’16).

Ce Zhang, Arun Kumar, and Christopher Ré. 2014. Materialization optimizations for feature selection work-
loads. In Proceedings of the ACM SIGMOD International Conference on Management of Data (SIG-
MOD’14). 265–276. DOI:http://dx.doi.org/10.1145/2588555.2593678

Yi Zhang, Weiping Zhang, and Jun Yang. 2010. I/O-efficient statistical computing with RIOT. In Proceedings
of the IEEE International Conference on Data Engineering (ICDE’10). 1157–1160. DOI:http://dx.doi.org/
10.1109/ICDE.2010.5447819

Received February 2015; revised September 2015; accepted November 2015

ACM Transactions on Database Systems, Vol. 41, No. 1, Article 2, Publication date: February 2016.

http://dx.doi.org/10.1137/1.9781611972795.100
http://dx.doi.org/10.1145/2481528.2481537
http://dx.doi.org/10.1145/2481528.2481537
http://dx.doi.org/10.1145/2588555.2593678
http://dx.doi.org/ ignorespaces 10.1109/ICDE.2010.5447819
http://dx.doi.org/ ignorespaces 10.1109/ICDE.2010.5447819

