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ABSTRACT

Advanced analytics is a booming area in both industry
and academia. Several projects aim to implement ma-
chine learning (ML) algorithms efficiently. But three
key challenging and iterative practical tasks in using ML
— feature engineering, algorithm selection, and pa-
rameter tuning, collectively called model selection —
have largely been overlooked by the data management
community, even though these are often the most time-
consuming tasks for analysts. To make the iterative pro-
cess of model selection easier and faster, we envision
a unifying abstract framework that acts as a basis for a
new class of analytics systems that we call model selec-
tion management systems (MSMS). We discuss how
time-tested ideas from database research offer new av-
enues to improving model selection, and outline how
MSMSs are a new frontier for interesting and impact-
ful data management research.

1. INTRODUCTION

The data management community has produced
successful systems that implement machine learning
(ML) techniques efficiently, often over data manage-
ment platforms [2,6,[8L/11,/19]. But the process of
building ML models for data applications is seldom
a one-shot “slam dunk.” Analysts face major prac-
tical bottlenecks in using ML that slow down the
analytics lifecycle [3]. To understand these bottle-
necks, we spoke with analysts at several enterprise
and Web companies. Unanimously, they mentioned
that choosing the right features and appropriately
tuned ML models were among their top concerns.
Other recent studies have produced similar find-
ings |4L/5,[12]. In this paper, we focus on a related
set of challenging practical tasks in using ML for
data-driven applications: feature engineering (FE),
in which the analyst chooses the features to use; al-
gorithm selection (AS), in which the analyst picks

an ML algorithm; and parameter tuning (PT), in
which the analyst tunes ML algorithm parameters.
These tasks, collectively called model selection, lie
at the heart of advanced analytics.

Model Selection. Broadly defined, model selec-
tion is the process of building a precise prediction
function to make “satisfactorily” accurate predic-
tions about a data-generating process using data
generated by the same process [10]. In this paper,
we explain how viewing model selection from a data
management standpoint can improve the process.
To this end, we envision a unifying framework that
lays a foundation for a new class of analytics sys-
tems: model selection management systems.

Model Selection Triple. A large body of work in
ML focuses on various theoretical aspects of model
selection |10]. But from a practical perspective, we
found that analysts typically use an iterative ex-
ploratory process. While the process varies across
analysts, we observed that the core object of their
exploration is identical — an object we call the model
selection triple (MST). It has three components: an
FE “option” (loosely defined, a sequence of com-
putation operations) that fixes the feature set that
represents the data, an AS option that fixes the ML
algorithm, and a PT option that fixes the param-
eter choices conditioned on the AS option. Model
selection is iterative and exploratory because the
space of MSTs is usually infinite, and it is generally
impossible for analysts to know a priori which MST
will yield satisfactory accuracy and/or insights.

Three-Phase Iteration. We divide an iteration
into three phases, as shown in Figure[[[A). (1) Steer-
ing: the analyst decides on an MST and specifies it
in an ML-related language or GUI such as R, Scala,
SAS, or Weka. For example, suppose she has struc-
tured data; she might decide to use all features (FE
option), and build a decision tree (AS option) with
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approach: the analyst chooses one combination of

options for feature engineering (FE), algorithm selection (AS), and parameter tuning (PT); we call it a
Model Selection Triple (MST). She iterates by modifying the MST, e.g., altering a parameter, or dropping
a feature. (B) Our vision: she groups logically related MSTs, while the system optimizes the computations
and helps manage results across iterations. (C) MSTs act as a unifying abstraction (a “narrow waist”) for
a new class of analytics systems that we call Model Selection Management Systems (MSMS).

a fixed tree height (PT option). (2) Ezecution: the
system executes the MST to build and evaluate the
ML model, typically on top of a data management
platform, e.g., an RDBMS or Spark. (3) Consump-
tion: the analyst assesses the results to decide upon
the MST for the next iteration, or stops the process.
For example, if the tree is too big, she might re-
duce the height (PT option changed), or drop some
features (FE option changed). Even such minor
changes in MSTs can cause major changes in ac-
curacy and interpretability, and it is generally hard
to anticipate such effects. Thus, analysts evaluate
several MSTs using an iterative process.

Alas, most existing ML systems (e.g., [2,/6,[8}/11}
19]) force analysts to explore one MST per iteration.
This overburdens the analyst, since she has to per-
form more iterations. Also, since the system is igno-
rant of the relationship between the MSTs explored,
opportunities to speed up Execution are lost, while
Consumption becomes more manual, which causes
more pain for analysts. Our vision aims to mitigate
these issues by providing more systems support to
improve the effectiveness of analysts as well as the
efficiency of the iterative process of model selection.

Automation Spectrum. A natural first step is to
automate some of the analyst’s work by providing
a more holistic view of the process to the system.
For example, the system can evaluate decision trees
with all possible heights (PT options), or all subsets
of features (FE options). Clearly, such naive brute-
force automation might be prohibitively expensive,
while the analyst’s expertise might be wastefully ig-
nored. On the other hand, if the system hardcodes
only a few sets of MSTs, analysts might deem it too
restrictive to be useful. Ideally, what we want is the

flexibility to cover a wide spectrum of automation,
in which the analyst controls exactly how much au-
tomation she desires for her application. This would
enable analysts to still use their expertise during
Steering, but push much of the “heavy lifting” to
the system during Execution and Consumption.

1.1 Our Vision: MSMS to Manage MST's

We envision a unifying framework that enables
analysts to easily explore a set of logically related
MSTs per iteration rather than just one MST per
iteration. The analyst’s expertise is useful in de-
ciding which MSTs are grouped. Figure [1{B) illus-
trates our vision. In the figure, the analyst groups
multiple values of tree height and feature subsets.
As we will explain shortly, this ability to handle a
logically related set of MSTs all at once is a simple
but powerful unifying abstraction for a new class of
analytics systems that aim to support the iterative
process of model selection. We call such systems
model selection management systems (MSMS).

Iteration in an MSMS. MSTs are too low-level
for analysts to enumerate. Thus, an MSMS should
provide a higher level of abstraction for specifying
MSTs. A trivial way is to use for loops. But our
vision goes deeper to exploit the full potential of
our idea, by drawing inspiration from the RDBMS
philosophy of handling “queries.” By repurposing
three key ideas from the database literature, an
MSMS can make model selection significantly easier
and faster. (1) Steering: an MSMS should offer a
framework of declarative operations that enable an-
alysts to easily group logically related MSTs. For
example, the analyst can just “declare” the set of
tree heights and feature subsets (projections). The



system generates lower-level code to implicitly enu-
merate the MSTs encoded by the declarative op-
erations. (2) Execution: an MSMS should include
optimization techniques to reduce the runtime per
iteration by exploiting the set-oriented nature of
specifying MSTs. For example, the system could
share computations across different parameters or
share intermediate materialized data for different
feature sets. (3) Consumption: an MSMS should
offer provenance management so that the system
can help the analyst manage results and help with
optimization. For example, the analyst can inspect
the results using standard queries to help steer the
next iteration, while the system can track interme-
diate data and models for reuse. Qverall, an MSMS
that is designed based on our unifying framework
can reduce both the number of iterations (by im-
proving Steering and Consumption) and the time
per iteration (by improving Ezxecution).

Unifying Narrow Waist. Interestingly, our frame-
work subsumes many prior abstractions that can
be seen as basically restricted MSMS interfaces in
hindsight, as shown in Figure[1[C). In a sense, our
abstraction acts as a “narrow waist” for MSMSs[1]
An MSMS stacks higher layers of abstraction (declar-
ative interfaces) to make it easier to specify sets of
MSTs and lower layers of optimized implementa-
tions to exploit the set-oriented nature of specifying
MSTs. We elaborate with three key examples: (1)
R provides many autotuned functions, e.g., glmnet
for linear models. These can be viewed as declar-
ative operations to explore multiple PT options,
while fixing FE and AS options. (2) Columbus [18]
offers declarative operations to explore a set of fea-
ture subsets simultaneously. This can be viewed as
exploring multiple FE options, while fixing AS and
PT options. (3) MLBase [13] fully automates algo-
rithm selection and parameter tuning by hardcod-
ing a small set of ML techniques and tuning heuris-
tics (unlike our vision of handling a wide spectrum
of automation). This can be viewed as exploring
multiple combinations of AS and PT options, while
fixing the FE option. Our vision is the distillation
of the common thread across such abstractions, and
lays a principled foundation for the design and eval-
uation of model selection management systems.
Towards a Unified MSMS. The natural next
step is to build a unified MSMS that exposes the
full power of our abstraction rather than support-
ing FE, AS, and PT in a piecemeal fashion. A

'Like how IP acts as the “narrow waist” of the Internet.

unified MSMS could make it easier for analysts to

handle the whole process in one “program” rather

than straddling multiple tools. It also enables shar-

ing code for tasks such as cross-validation, which is

needed for each of FE, AS, and PT. However, build-

ing a unified MSMS poses research challenges that

data management researchers are perhaps more fa-

miliar with than ML researchers, e.g., the design

trade-offs for declarative languages. A unified MSMS
also requires ideas from data management and ML,

e.g., materializing intermediate data, or sharing com-
putations, which requires RDBMS-style cost-based

analyses of ML algorithms. The data management

community’s expertise in designing query optimiz-

ers could be useful here. A caveat is that the three

tasks, especially FE, involve a wide variety of oper-

ations. It is perhaps infeasible to capture all such

operations in the first design of a unified MSMS.

Thus, any such MSMS must be extensible. Next,

we provide more background on FE, AS, and PT.

2. MORE BACKGROUND

Feature Engineering (FE) is the process of con-
verting raw data into a precise feature vector that
provides the domain of the prediction function (a
learned ML model) [5]. FE includes a variety of
options (a sequence of computational operations),
e.g., counting words or selecting a feature subset.
Some options, such as subset selection and feature
ranking, are well studied [9]. FE is considered a
domain-specific “black art” [41/5], mostly because it
is influenced by many technical and logistical fac-
tors, e.g., data and application properties, accuracy,
time, interpretability, and company policies. Un-
fortunately, there is not much integrated systems
support for FE, which often forces analysts to write
scripts in languages external to data management
systems, sample and migrate data, create interme-
diate data, and track their steps manually [4,]12].
Such manual effort slows and inhibits exploration.

Algorithm Selection (AS) is the process of pick-
ing an ML model, i.e., an inductive bias, that fixes
the hypothesis space of prediction functions explored
for a given application [10]. For example, logis-
tic regression and decision trees are popular ML
techniques for classification applications. Some ML
models have multiple learning algorithms; for ex-
ample, logistic regression can use both batch and
stochastic gradient methods. Like FE, AS depends
on both technical and non-technical factors, which
leads to a combinatorial explosion of choices. Learn-
ing ensembles of ML models is also popular [10].



This complexity often forces analysts to iteratively
try multiple ML techniques, which often leads to
duplicated effort, and wasted time and resources.

Parameter Tuning (PT) is the process of choos-
ing the values of (hyper-)parameters that many ML
models and algorithms have. For example, logistic
regression is typically used with a parameter known
as the regularizer. Such parameters are important
because they control accuracy-performance trade-
offs, but tuning them is challenging partly because
the optimization problems involved are usually non-
convex [10]. Thus, analysts typically perform ad
hoc manual tuning by iteratively picking a set of val-
ues, or by using heuristics such as grid search [10].
Some toolkits automate PT for popular ML tech-
niques, which could indeed be useful for some appli-
cations. But from our conversations with analysts,
we learned that they often tend to avoid such “black
box” tuning in order to exercise more control over
the accuracy-performance trade-offs.

3. RESEARCH CHALLENGES AND
DESIGN TRADE-OFFS

We discuss the key challenges in realizing our vi-
sion of a unified MSMS and explain how they lead
to novel and interesting research problems in data
management. We also outline potential solution ap-
proaches, but in order to provide a broader perspec-
tive, we explain the design trade-offs involved rather
than choosing specific approaches.

3.1 Steering: Declarative Interface

The first major challenge is to make it easier for
analysts to specify sets of logically related MSTs
using the power of declarative interface languages.
There are two components to this challenge.

Language Environment: This component involves
deciding whether to create a new language or em-
bedded domain-specific languages (DSLs). The for-
mer offers more flexibility, but it might isolate us
from popular language environments such as Python,
R, and Scala. A related decision is whether to use
logic or more general dataflow abstractions as the
basis. The latter might be less rigorous but they are
more flexible. The lessons of early MSMSs suggest
that DSLs and dataflow abstractions are preferable;
for example, Columbus provides a DSL for R [18].
The expertise of the data management community
with declarative languages will be crucial here.

Scope and Extensibility: Identifying the right
declarative primitives is a key challenge. Our goal

is to capture a wide spectrum of automation. Thus,
we need several predefined primitives to hardcode
common operations for each of FE, AS, and PT as
well as popular ways of combining MSTs. For ex-
ample, for FE, standardization of features and joins
are common operations, while subset selection is a
common way of combining MSTs. For AS and PT,
popular combinations and parameter search heuris-
tics can be supported as first-class primitives, but
we also need primitives that enable analysts to spec-
ify custom combinations based on their expertise.
Of course, it is unlikely that one language can cap-
ture all ML models for AS or all operations for FE
and PT. Moreover, different data types (structured
data, text, etc.) need different operations. A prag-
matic approach is to start with a set of most com-
mon and popular operations as first-class citizens
that are optimized, and then expand systematically
to include more. Thus, the language needs to be ex-
tensible, i.e., support user-defined functions, even if
they are less optimizable.

3.2 Execution: Optimization

To fully exploit declarativity, an MSMS should
use the relationship between MSTs to optimize the
execution of each iteration. Faster iterations might
encourage analysts to explore more MSTs, leading
to more insights. This challenge has three aspects.

Avoiding Redundancy: Perhaps the most im-
portant and interesting aspect is to avoid redun-
dancy in both data movement and computations,
since the MSTs grouped together in one iteration
are likely to differ only slightly. This idea has been
studied before, but its full power is yet to be ex-
ploited, especially for arbitrary sets of MSTs. For
example, Columbus [18] demonstrated a handful of
optimizations for multiple feature sets being grouped
together during subset selection over structured data.
Extending it to other aspects of FE as well as to AS
and PT is an open problem. For example, we need
not build a decision tree from scratch for different
height parameters, if monotonicity is ensured. An-
other example is sharing computations across differ-
ent linear models. Redundancy can also be avoided
within a single MST; for example, combining the
FE option of joins with the AS option of learning a
linear model could avoid costly denormalization [15]
or even whole input tables [16]. Extending this to
other ML models is an open question. Such op-
timizations require complex performance trade-offs
involving data and system properties, which might
be unfamiliar to ML researchers. Thus, the exper-



tise of the data management community in design-
ing cost models and optimizers is crucial here.

System Flexibility: This aspect relates to what
lies beneath the declarative language. One approach
is to build an MSMS on top of existing data plat-
forms such as Spark, which might make adoption
easier, but might make it more daunting to include
optimizations that need changes to the system code.
An alternative is to build mostly from scratch, which
would offer more flexibility but requires more time
and software engineering effort. This underscores
the importance of optimizations that are generic
and easily portable across data platforms.

Incorporating Approximation: Many ML mod-
els are robust to perturbations in the data and/or
the learning algorithm, e.g., sampling or approxi-
mations. While such ideas have been studied for
a single MST, new opportunities arise when multi-
ple MSTs are executed together. For example, one
could “warm start” models using models learned on
a different feature subset [18]. A more challenging
question is whether such warm starting is possible
across different ML models. Finally, new and in-
tuitive mechanisms to enable analysts to trade off
time and accuracy can be studied by asking analysts
to provide desired bounds on time or accuracy in
the declarative interface. The system could alter its
search space on the fly and provide interactive feed-
back. Exploiting such opportunities requires char-
acterization of new accuracy-performance trade-offs,
which might require the data management commu-
nity to work more closely with ML researchers.

3.3 Consumption: Managing Provenance

Operating on more MSTs per iteration means the
analyst needs to consume more results and track the
effects of their choices more carefully. But thanks
to declarativity, the system can offer more pervasive
help for such tasks. This has two aspects.

Capture and Storage: The first aspect is to de-
cide what to capture and how to store it. Storing
information about all MSTs naively might cause un-
acceptable storage and performance overheads. For
example, even simple subset selection operations for
FE on a dataset with dozens of features might yield
millions of MSTs. One approach is to design spe-
cial provenance schemas based on the semantics of
the declarative operations. Another approach is
to design new compression techniques. The ana-
lyst might have a key role to play in deciding ex-
actly what needs to be tracked; for example, they

might not be interested in PT-related changes, but
might want to inspect AS- and FE-related changes.
Novel applications are possible if these problems
are solved, e.g., auto-completion or recommenda-
tion of MST changes to help analysts improve Steer-
ing. The expertise of the data management commu-
nity with managing workflow and data provenance
could be helpful in tackling such problems. Building
applications to improve analyst interaction using
provenance might require more collaboration with
the human-computer interaction (HCI) community.

Reuse and Replay: Another aspect is the interac-
tion of provenance with optimization. A key appli-
cation is avoiding redundancy across iterations by
reusing intermediate data and ML models. Such re-
dundancy can arise, since MSTs typically differ only
slightly across iterations, or if there are multiple an-
alysts. This could involve classically hard problems
such as relational query equivalence, but also new
problems such as defining hierarchies of “subsump-
tion” among ML models. For example, it is easy to
reuse intermediate results for logistic regression if
the number of iterations is increased by the analyst,
but it is non-obvious to decide what to reuse if she
drops some data examples or features. This points
to the need to characterize a formal notion of “ML
provenance,” which is different from both data and
workflow provenance. The data management com-
munity’s expertise with formal provenance models
could be helpful in tackling this challenge.

Summary. Building a unified MSMS to expose the
full power of our abstraction requires tackling chal-
lenging research problems, which we outlined with
potential solutions and design trade-offs. Our list is
not comprehensive — other opportunities also exist,
e.g., using visualization techniques to make Steering
and Consumption easier. We hope to see more of
such interesting new problems in MSMS research.

4. EXISTING LANDSCAPE

We now briefly survey the existing landscape of
ML systems and discuss how our vision relates to
them. We classify the systems into six categories
based on their key goals and functionalities. Due to
space constraints, we provide our survey in a sepa-
rate report [14], but summarize it in Table |1} Our
taxonomy is not intended to be exhaustive, but to
give a picture of the gaps in the existing landscape.

Numerous systems have focused on efficient and /or
scalable implementations of ML algorithms and/or
R-like languages. Some other systems have focused



Statistical Software Packages

Software toolkits with a large set of implementations of ML
algorithms, typically with visualization support

SAS, R, Matlab, SPSS

Data Mining Toolkits

Software toolkits with a relatively limited set of ML algorithms,
typically over a data platform, possibly with incremental maintenance | Mahout, Hazy-Classify

Weka, AzureML, ODM, MADIib,

Packages of !VlL Developability-oriented Software frameworks and systems that aim to improve developability, GraphLab, Bismarck. MLBase
Implementations Frameworks typically from academic research prLaD: ’

SRL Frameworks Implementations of statistical relational learning (SRL)

DeepDive

Deep Learning Systems Implementations of deep neural networks

Google Brain, Microsoft Adam

CEVESERN T EISTEE I Systems providing scalable inference for Bayesian ML models

SimSQL, Elementary, Tuffy

S e R ATEIEEE T EEE . Systemss offering an interactive statistical programming environment | SAS, R, Matlab

Linear Algebra-

based Systems R-based Anal Systems

Systems that provide R or an R-like language for analytics, typically
over a data platform, possibly with incremental maintenance

RIOT, ORE, SystemML, LINVIEW

Model Management Systems Systems that provide querying, versioning, and deployment support

SAS, LongView, Velox

Systems for Feature Engineering Systems that provide abstractions to make feature engineering easier | Columbus , DeepDive

Systems for Algorithm Selection Systems that provide abstractions to make algorithm selection easier | MLBase, AzureML

Systems for Parameter Tuning Systems that provide abstractions to make parameter tuning easier

SAS, R, MLBase, AzureML

Table 1: Major categories of ML systems surveyed, along with examples from both products and research.
It is possible for a system to belong to more than one category, since it could have multiple key goals.

on “model management”-related issues, which in-
volve logistical tasks such as deployment and ver-
sioning. A few recent systems aim to tackle one
or more of FE, AS, and PT — Columbus, MLBase,
DeepDive, and AzureML. However, they either do
not abstract the whole process of model selection
as we do, or do not aim to support a wide portion
of the automation spectrum. We have already dis-
cussed Columbus and MLBase in Section 1. Deep-
Dive provides a declarative language to specify fac-
tor graph models and aims to make FE easier [17],
but it does not address AS and PT. Automation of
PT using massive parallelism has also been stud-
ied . AzureML provides something similar, and
it also aims to make it easier to manage ML work-
flows for algorithm selection [1]. All these projects
provided the inspiration for our vision. We distill
their lessons as well as our interactions with ana-
lysts into a unifying abstract framework. We also
take the logical next step of envisioning a unified
MSMS based on our framework to support FE, AS,
and PT in an integrated fashion (Figure .

S. CONCLUSION

We argue that it is time for the data management
community to look beyond just implementing ML
algorithms efficiently and help improve the iterative
process of model selection, which lies at the heart
of using ML for data applications. Our unifying
abstraction of model selection triples acts as a ba-
sis for designing a new class of analytics systems to
manage model selection in a holistic and integrated

fashion. By leveraging three key ideas from data
management research — declarativity, optimization,
and provenance — such model selection management
systems could help make model selection easier and
faster. This could be a promising direction for inter-
esting and impactful research in data management,
as well as its intersection with ML and HCI.
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