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ABSTRACT

There is an arms race in the data management industry to
support analytics, in which one critical step is feature se-
lection, the process of selecting a feature set that will be
used to build a statistical model. Analytics is one of the
biggest topics in data management, and feature selection is
widely regarded as the most critical step of analytics; thus,
we argue that managing the feature selection process is a
pressing data management challenge. We study this chal-
lenge by describing a feature-selection language and a sup-
porting prototype system that builds on top of current in-
dustrial, R-integration layers. From our interactions with
analysts, we learned that feature selection is an interactive,
human-in-the-loop process, which means that feature selec-
tion workloads are rife with reuse opportunities. Thus, we
study how to materialize portions of this computation using
not only classical database materialization optimizations but
also methods that have not previously been used in database
optimization, including structural decomposition methods
(like QR factorization) and warmstart. These new methods
have no analog in traditional SQL systems, but they may
be interesting for array and scientific database applications.
On a diverse set of data sets and programs, we find that
traditional database-style approaches that ignore these new
opportunities are more than two orders of magnitude slower
than an optimal plan in this new tradeoff space across multi-
ple R-backends. Furthermore, we show that it is possible to
build a simple cost-based optimizer to automatically select
a near-optimal execution plan for feature selection.
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1. INTRODUCTION
One of the most critical stages in the data analytics pro-

cess is feature selection; in feature selection, an analyst se-
lects the inputs or features of a model to help improve mod-
eling accuracy or to help an analyst understand and explore
their data. With the increased interest in data analytics, a
pressing challenge is to improve the efficiency of the feature
selection process. In this work, we propose Columbus, the
first data-processing system designed to support the enter-
prise feature-selection process.

To understand the practice of feature selection, we in-
terviewed analysts in enterprise settings. This included an
insurance company, a consulting firm, a major database
vendor’s analytics customer, and a major e-commerce firm.
Uniformly, analysts agreed that they spend the bulk of their
time on the feature selection process. Confirming the litera-
ture on feature selection [20,25], we found that features are
selected (or not) for many reasons: their statistical perfor-
mance, their real-world explanatory power, legal reasons,1

or for some combination of reasons. Thus, feature selec-
tion is practiced as an interactive process with an analyst
in the loop. Analysts use feature selection algorithms, data
statistics, and data manipulations as a dialogue that is of-
ten specific to their application domain [6]. Nevertheless,
the feature selection process has structure: analysts often
use domain-specific cookbooks that outline best practices
for feature selection [2, 7, 20].

Although feature selection cookbooks are widely used, the
analyst must still write low-level code, increasingly in R, to
perform the subtasks in the cookbook that comprise a fea-
ture selection task. In particular, we have observed that
such users are forced to write their own custom R libraries
to implement simple routine operations in the feature selec-
tion literature (e.g., stepwise addition or deletion [20]). Over
the last few years, database vendors have taken notice of this
trend, and now, virtually every major database engine ships
a product with some R extension: Oracle’s ORE [4], IBM’s
SystemML [17], SAP HANA [5], and Revolution Analytics
on Hadoop and Teradata. These R-extension layers (RELs)
transparently scale operations, such as matrix-vector mul-
tiplication or the determinant, to larger sets of data across
a variety of backends, including multicore main memory,
database engines, and Hadoop. We call these REL opera-
tions ROPs. Scaling ROPs is actively worked on in industry.
However, we observed that one major source of inefficiency

1Using credit score as a feature is considered a discrimina-
tory practice by the insurance commissions in both Califor-
nia and Massachusetts.
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in analysts’ code is not addressed by ROP optimization:
missed opportunities for reuse and materialization across
ROPs. Our first contribution is to demonstrate a handful
of materialization optimizations that can improve perfor-
mance by orders of magnitude. Selecting the optimal mate-
rialization strategy is difficult for an analyst, as the optimal
strategy depends on the reuse opportunities of the feature
selection task, the error the analyst is willing to tolerate, and
properties of the data and compute node, such as parallelism
and data size. Thus, an optimal materialization strategy for
an R script for one dataset may not be the optimal strat-
egy for the same task on another data set. As a result, it
is difficult for analysts to pick the correct combination of
materialization optimizations.

To study these tradeoffs, we introduce Columbus, an R
language extension and execution framework designed for
feature selection. To use Columbus, a user writes a stan-
dard R program. Columbus provides a library of several
common feature selection operations, such as stepwise ad-
dition, i.e., “add each feature to the current feature set and
solve.” This library mirrors the most common operations in
the feature selection literature [20] and what we observed
in analysts’ programs. Columbus’s optimizer uses these
higher-level, declarative constructs to recognize opportuni-
ties for data and computation reuse. To describe the opti-
mization techniques that Columbus employs, we introduce
the notion of a basic block.

A basic block is Columbus’s main unit of optimization. A
basic block captures a feature selection task for generalized
linear models, which captures models like linear and logistic
regression, support vector machines, lasso, and many more;
see Def. 2.1. Roughly, a basic block B consists of a data ma-
trix A ∈ R

N×d , where N is the number of examples and d is
the number of features, a target b ∈ R

N , several feature sets
(subsets of the columns of A), and a (convex) loss function.
A basic block defines a set of regression problems on the
same data set (with one regression problem for each feature
set). Columbus compiles programs into a sequence of ba-
sic blocks, which are optimized and then transformed into
ROPs. Our focus is not on improving the performance of
ROPs, but on how to use widely available ROPs to improve
the performance of feature selection workloads.

We describe the opportunities for reuse and materializa-
tion that Columbus considers in a basic block. As a base-
line, we implement classical batching and materialization
optimizations. In addition, we identify three novel classes of
optimizations, study the tradeoffs each presents, and then
describe a cost model that allows Columbus to choose be-
tween them. These optimizations are novel in that they have
not been considered in traditional SQL-style analytics (but
all the optimizations have been implemented in other areas).

Subsampling. Analysts employ subsampling to reduce the
amount of data the system needs to process to improve run-
time or reduce overfitting. These techniques are a natural
choice for analytics, as both the underlying data collection
process and solution procedures are only reliable up to some
tolerance. Popular sampling techniques include näıve ran-
dom sampling and importance sampling (coresets). Coresets
is a relatively recent importance-sampling technique; when
d ≪ N , coresets allow one to create a sample whose size
depends on d (the number of features)–as opposed to N

(the number of examples)–and that can achieve strong ap-
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Figure 1: Summary of Tradeoffs in Columbus.

proximation results: essentially, the loss is preserved on the
sample for any model. In enterprise workloads (as opposed
to web workloads), we found that the overdetermined prob-
lems (d ≪ N), well-studied in classical statistics, are com-
mon. Thus, we can use a coreset to optimize the result with
provably small error. However, computing a coreset requires
computing importance scores that are more expensive than
a näıve random sample. We study the cost-benefit trade-
off for sampling-based materialization strategies. Of course,
sampling strategies have the ability to improve performance
by an order of magnitude. On a real data set, called Cen-
sus, we found that d was 1000x smaller than N, as well as
that using a coreset outperforms a baseline approach by 89x,
while still getting a solution that is within 1% of the loss of
the solution on the entire dataset.

Transformation Materialization. Linear algebra has a va-
riety of decompositions that are analogous to sophisticated
materialized views. One such decomposition, called a (thin)
QR decomposition, is widely used to optimize regression
problems. Essentially, after some preprocessing, a QR de-
composition allows one to solve a class of regression prob-
lems in a single scan over the matrix. In feature selection,
one has to solve many closely related regression problems,
e.g., for various subsets of features (columns of A). We show
how to adapt QR to this scenario as well. When applicable,
QR can outperform a baseline by more than 10X; QR can
also be applied together with coresets, which can result in
5x more speed up. Of course, there is a cost-benefit tradeoff
that one must make when materializing QR, and Columbus
develops a simple cost model for this choice.

Model Caching. Feature selection workloads require that
analysts solve many similar problems. Intuitively, it should
be possible to reuse these partial results to “warmstart” a
model and improve its convergence behavior. We propose
to cache several models, and we develop a technique that
chooses which model to use for a warmstart. The challenge
is to be able to find “nearby” models, and we introduce a
simple heuristic for model caching. Compared with the de-
fault approach in R (initializing with a random start point
or all 0’s), our heuristic provides a 13x speedup; compared
with a simple strategy that selects a random model in the
cache, our heuristic achieves a 6x speedup. Thus, the cache
and the heuristic contribute to our improved runtime.

We tease apart the optimization space along three related
axes: error tolerance, the sophistication of the task, and
the amount of reuse (see Section 3). Figure 1 summarizes
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1! e  = SetErrorTolerance(0.01)        # Set Error Tolerance!

2! d1 = Dataset(“USCensus”)            # Register the dataset!

3! s1 = FeatureSet(“NumHouses”, ...)   # Population-related features!

4! l1 = CorrelationX(s1, d1)           # Get mutual correlations!

5! s1 = Remove(s1, “NumHouses”)        # Drop the feature “NumHouses”!

6! l2 = CV(lsquares_loss, s1, d1, k=5) # Cross validation (least squares)!

7! d2 = Select(d1,“Income >= 10000”)   # Focus on high-income areas!

8! s2 = FeatureSet(“Income”, ...)      # Economic features!

9! l3 = CV(logit_loss, s2, d2, k=5)    # Cross validation with (logit loss)!

10! s3 = Union(s1, s2)                  # Use both sets of features!

11! s4 = StepAdd(logit_loss, s3, d1)    # Add in one other feature!

12! Final(s4)                           # Session ends with chosen features!

Figure 2: Example Snippet of a Columbus Program.

the relationship between these axes and the tradeoffs. Of
course, the correct choice also depends on computational
constraints, notably parallelism. We describe a series of ex-
periments to validate this tradeoff space and find that no one
strategy dominates another. Thus, we develop a cost-based
optimizer that attempts to select an optimal combination of
the above materialization strategies. We validate that our
heuristic optimizer has performance within 10% of the opti-
mal optimization strategy (found offline by brute force) on
all our workloads. In the full version, we establish that many
of the subproblems of the optimizer are classically NP-hard,
justifying heuristic optimizers.

Contributions. This work makes three contributions: (1)
We propose Columbus, which is the first data processing
system designed to support the feature selection dialogue;
(2) we are the first to identify and study both existing and
novel optimizations for feature selection workloads as data
management problems; and (3) we use the insights from (2)
to develop a novel cost-based optimizer. We validate our re-
sults on several real-world programs and datasets patterned
after our conversations with analysts. Additionally, we val-
idate Columbus across two backends from main memory
and REL for an RDBMS. We argue that these results sug-
gest that feature selection is a promising area for future data
management research. Additionally, we are optimistic that
the technical optimizations we pursue apply beyond feature
selection to areas like array and scientific databases and tun-
ing machine learning.

Outline. The rest of this paper is organized as follows. In
Section 2, we provide an overview of the Columbus system.
In Section 3, we describe the tradeoff space for executing
a feature selection program and our cost-based optimizer.
We describe experimental results in Section 4. We discuss
related work in Section 5 and conclude in Section 6.

The key task of Columbus is to compile and optimize an
extension of the R language for feature selection. We com-
pile this language into a set of REL operations, which are
R-language constructs implemented by today’s language ex-
tenders, including ORE, Revolution Analytics, etc. One key
design decision in Columbus is not to optimize the execu-
tion of these REL operators; these have already been studied
intensively and are the subjects of major ongoing engineer-
ing efforts. Instead, we focus on how to compile our language
into the most common of these REL operations (ROPs).
Figure 5 shows all ROPs that are used in Columbus.
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Figure 3: Summary of Operators in Columbus.
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Figure 4: Architecture of Columbus.

2. SYSTEM OVERVIEW

2.1 Columbus Programs
In Columbus, a user expresses their feature selection pro-

gram against a set of high-level constructs that form a do-
main specific language for feature selection. We describe
these constructs next, and we selected these constructs by
talking to a diverse set of analysts and following the state-of-
the-art literature in feature selection. Columbus’s language
is a strict superset of R, so the user still has access to the full
power of R.2 We found that this flexibility was a requirement
for most of the analysts surveyed. Figure 2 shows an exam-
ple snippet of a Columbus program. For example, the 9th

line of the program executes logistic regression and reports
its score using cross validation.

Columbus has three major datatypes: A data set, which
is a relational table R(A1, . . . , Ad).

3 A feature set F for
a dataset R(A1, . . . , Ad) is a subset of the attributes F ⊆
{A1, . . . , Ad}. A model for a feature set is a vector that
assigns each feature a real-valued weight. As shown in Fig-
ure 3, Columbus supports several operations. We classify
these operators based on what types of output an operator
produces and order the classes in roughly increasing order of
the sophistication of optimization that Columbus is able to
perform for such operations (see Figure 3 for examples): (1)
Data Transformation Operations, which produce new data
sets; (2) Evaluate Operations, which evaluate data sets and
models; (3) Regression Operations, which produce a model
given a feature set; and (4) Explore Operations, which pro-
duce new feature sets:

(1) Data Transform. These operations are standard
data manipulations to slice and dice the dataset. In Colum-
bus, we are aware only of the schema and cardinality of these
operations; these operations are executed and optimized di-

2We also have expressed the same language over Python,
but for simplicity, we stick to the R model in this paper.
3Note that the table itself can be a view; this is allowed in
Columbus, and the tradeoffs for materialization are stan-
dard, so we omit the discussion of them in the paper.
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rectly using a standard RDBMS or main-memory engine. In
R, the frames can be interpreted either as a table or an array
in the obvious way. We map between these two representa-
tions freely.

(2) Evaluate. These operations obtain various numeric
scores given a feature set including descriptive scores for
the input feature set, e.g., mean, variance, or Pearson cor-
relations and scores computed after regression, e.g., cross-
validation error (e.g., of logistic regression), and Akaike In-
formation Criterion (AIC) [20]. Columbus can optimize
these calculations by batching several together.

(3) Regression. These operations obtain a model given
a feature set and data, e.g., models trained by using logistic
regression or linear regression. The result of a regression
operation is often used by downstream explore operations,
which produces a new feature set based on how the pre-
vious feature set performs. These operations also take a
termination criterion (as they do in R): either the number
of iterations or until an error criterion is met. Columbus
supports either of these conditions and can perform opti-
mizations based on the type of model (as we discuss).

(4) Explore. These operations enable an analyst to tra-
verse the space of feature sets. Typically, these operations
result in training many models. For example, a StepDrop
operator takes as input a data set and a feature set, and
outputs a new feature set that removes one feature from the
input by training a model on each candidate feature set.
Our most sophisticated optimizations leverage the fact that
these operations operate on features in bulk. The other ma-
jor operation is StepAdd. Both are used in many workloads
and are described in Guyon et al. [20].
Columbus is not intended to be comprehensive. However,

it does capture the workloads of several analysts that we
observed, so we argue that it serves as a reasonable starting
point to study feature selection workloads.

2.2 Basic Blocks
InColumbus, we compile a user’s program into a directed-

acyclic-dataflow graph with nodes of two types: R functions
and an intermediate representation called a basic block. The
R functions are opaque toColumbus, and the central unit of
optimization is the basic block (extensible optimizers [19]).

Definition 2.1. A task is a tuple t = (A, b, ℓ, ǫ, F,R)
where A ∈ R

N×d is a data matrix, b ∈ R
N is a label (or

target), ℓ : R2 → R
+ is a loss function, ǫ > 0 is an error

tolerance, F ⊆ [d] is a feature set, and R ⊆ [N ] is a subset
of rows. A task specifies a regression problem of the form:

Lt(x) =
∑

i∈R

ℓ(zi, bi) s.t. z = AΠFx

Here ΠF is the axis-aligned projection that selects the columns
or feature sets specified by F .4 Denote an optimal solution
of the task x∗(t) defined as

x∗(t) = argmin
x∈Rd

Lt(x)

4For F ⊆ [d], ΠF ∈ R
d×d where (ΠF )ii = 1 if i ∈ F and all

other entries are 0.

Our goal is to find an x(t) that satisfies the error5

‖Lt(x(t))− Lt(x∗(t))‖2 ≤ ǫ

A basic block, B, is a set of tasks with common data (A, b)
but with possibly different feature sets F̄ and subsets of rows
R̄.

Columbus supports a family of popular non-linear mod-
els, including support vector machines, (sparse and dense)
logistic regression, ℓp regression, lasso, and elastic net regu-
larization. We give an example to help clarify the definition.

Example 2.1. Consider the 6th line in Figure 2, which
specifies a 5-fold cross validation operator with least squares
over data set d1 and feature set s1. Columbus will generate
a basic block B with 5 tasks, one for each fold. Let ti =
(A, b, l, ǫ, F,R). Then, A and b are defined by the data set
d1 and l(x, b) = (x − b)2. The error tolerance ǫ is given by
the user in the 1st line. The projection of features F = s1 is
found by a simple static analysis. Finally, R corresponds to
the set of examples that will be used by the ith fold.

The basic block is the unit of Columbus’s optimization.
Our design choice is to combine several operations on the
same data at a high-enough level to facilitate bulk optimiza-
tion, which is our focus in the next section.

Columbus’s compilation process creates a task for each
regression or classification operator in the program; each of
these specifies all of the required information. To enable
arbitrary R code, we allow black box code in this work flow,
which is simply executed. Selecting how to both optimize
and construct basic blocks that will execute efficiently is the
subject of Section 3.

REL Operations. To execute a program, we compile it into
a sequence of REL Operations (ROPs). These are operators
that are provided by the R runtime, e.g., R and ORE. Fig-
ure 5 summarizes the host-level operators that Columbus
uses, and we observe that these operators are present in both
R and ORE. Our focus is how to optimize the compilation
of language operators into ROPs.

2.3 Executing a Columbus Program
To execute a Columbus program, our prototype contains

three standard components, as shown in Figure 4: (1) parser;
(2) optimizer; and (3) executor. At a high-level, these three
steps are similar to the existing architecture of any data pro-
cessing system. The output of the parser can be viewed as
a directed acyclic graph, in which the nodes are either ba-
sic blocks or standard ROPs, and the edges indicate data
flow dependency. The optimizer is responsible for generat-
ing a “physical plan.” This plan defines which algorithms
and materialization stategies are used for each basic block;
the relevant decisions are described in Sections 3.1 and 3.2.
The optimizer may also merge basic blocks together, which
is called multiblock optimization, which is described in Sec-
tion 3.4. Finally, there is a standard executor that manages
the interaction with the REL and issues concurrent requests.

5We allow termination criteria via a user-defined function
or the number of iterations. The latter simplifies reuse cal-
culations in Section 3, while arbitrary code is difficult to
analyze (we must resort to heuristics to estimate reuse). We
present the latter as the termination criterion to simplify
the discussion and as it brings out interesting tradeoffs.
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3. THE Columbus OPTIMIZER
We begin with optimizations for a basic block that has

a least-squares cost, which is the simplest setting in which
Columbus’s optimizations apply. We then describe how to
extend these ideas to basic blocks that contain nonlinear loss
functions and then describe a simple technique called model
caching.

Optimization Axes. To help understand the optimization
space, we present experimental results on the Census data
set using Columbus programs modeled after our experience
with insurance analysts. Figure 6 illustrates the crossover
points for each optimization opportunity along three axes
that we will refer to throughout this section:6

(1) Error tolerance depends on the analyst and task.
For intuition, we think of different types of error tolerances,
with two extremes: error tolerant ǫ = 0.5 and high quality
ǫ = 10−3. In Figure 6, we show ǫ ∈ {0.001, 0.01, 0.1, 0.5}.

(2) Sophistication of the feature selection task, namely
the loss function (linear or not), the number of feature sets
or rows selected, and their degree of overlap. In Figure 6, we
set the number of features as {10, 100, 161} and the number
of tasks in each block as {1, 10, 20, 50}.

(3) Reuse is the degree to which we can reuse computa-
tion (and that it is helpful to do so). The key factors are
the amount of overlap in the feature sets in the workloads7

and the number of available threads that Columbus uses,
which we set here to {1, 5, 10, 20}.8

We discuss these graphs in paragraphs marked Tradeoff
and in Section 3.1.4.

3.1 A Single, Linear Basic Block
We consider three families of optimizations: (1) classical

database optimizations, (2) sampling-based optimizations,
and (3) transformation-based optimizations. The first opti-
mization is essentially unaware of the feature-selection pro-
cess; in contrast, the last two of these leverage the fact that
we are solving several regression problems. Each of these
optimizations can be viewed as a form of precomputation
(materialization). Thus, we describe the mechanics of each
optimization, the cost it incurs in materialization, and its
cost at runtime. Figure 5 summarizes the cost of each ROP
and the dominant ROP in each optimization. Because each
ROP is executed once, one can estimate the cost of each
materialization from this figure.9

To simplify our presentation, in this subsection, we let
ℓ(x, b) = (x − b)2, i.e., the least-squares loss, and suppose
that all tasks have a single error ε. We return to the more

6For each combination of parameters below, we execute
Columbus and record the total execution time in a main
memory R backend. This gives us about 40K data points,
and we only summarize the best results in this paper. Any
omitted data point is dominated by a shown data point.
7Let G = (∪F∈F̄F,E) be a graph, in which each node cor-
responds to a feature. An edge (f1, f2) ∈ E if there exists
F ∈ F̄ such that f1, f2 ∈ F . We use the size of the largest
connected component in G as a proxy for overlap.
8Note that Columbus supports two execution models,
namely batch mode and interactive mode.
9We ran experiments on three different types of machines
to validate that the cost we estimated for each operator is
close to the actual running time. In the full version of this
paper, we show that the cost we estimated for one operator
is within 15% of the actual execution time.

general case in the next subsection. Our basic block can be
simplified to B = (A, b, F̄ , R̄, ε), for which we compute:

x(R,F ) = argmin
x∈Rd

‖ΠR (AΠFx− b) ‖22 where R ∈ R̄, F ∈ F̄

Our goal is to compile the basic block into a set of ROPs.
We explain the optimizations that we identify below.

3.1.1 Classical Database Optimizations

We consider classical eager and lazy view materialization
schemes. Denote F∪ = ∪F∈F̄F and R∪ = ∪R∈R̄ in the
basic block. It may happen that A contains more columns
than F∪ and more rows than R∪. In this case, one can
project away these extra rows and columns—analogous to
materialized views of queries that contain selections and pro-
jections. As a result, classical database materialized view
optimizations apply. Specially, Columbus implements two
strategies, namely Lazy and Eager. The Lazy strategy will
compute these projections at execution time, and Eager will
compute these projections at materialization time and use
them directly at execution time. When data are stored on
disk, e.g., as in ORE, Eager could save I/Os versus Lazy.

Tradeoff. Not surprisingly, Eager has a higher materializa-
tion cost than Lazy, while Lazy has a slightly higher ex-
ecution cost than Eager, as one must subselect the data.
Note that if there is ample parallelism (at least as many
threads as feature sets), then Lazy dominates. The stan-
dard tradeoffs apply, and Columbus selects between these
two techniques in a cost-based way. If there are disjoint
feature sets F1 ∩ F2 = ∅, then it may be more efficient to
materialize these two views separately. In the full paper,
we show that the general problem of selecting an optimal
way to split a basic block to minimize cost is essentially a
weighted set cover, which is NP-hard. As a result, we use
a simple heuristic: split disjoint feature sets. With a fea-
ture selection workload, we may know the number of times
a particular view will be reused, which Columbus can use
to more intelligently chose between Lazy and Eager (rather
than not having this information). These methods are insen-
sitive to error and the underlying loss function, which will
be major concerns for our remaining feature-selection-aware
methods.

3.1.2 Sampling-Based Optimizations

Subsampling is a popular method to cope with large data
and long runtimes. This optimization saves time simply be-
cause one is operating on a smaller dataset. This optimiza-
tion can be modeled by adding a subset selection (R ∈ R̄)
to a basic block. In this section, we describe two popular
methods: näıve random sampling and a more sophisticated
importance-sampling method called coresets [11,27]; we de-
scribe the tradeoffs these methods provide.

Naïve Sampling. Näıve random sampling is widely used,
and in fact, analysts ask for it by name. In näıve random
sampling, one selects some fraction of the data set. Recall
that A has N rows and d columns; in näıve sampling, one se-
lects some fraction of the N rows (say 10%). The cost model
for both materialization and its savings of random sampling
is straightforward, as one performs the same solve—only on
a smaller matrix. We perform this sampling using the ROP
sample.
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Definition 3.1 (Thin QR Factorization). The QR
decomposition of a matrix A ∈ RN×d is a pair of matrices
(Q,R) where Q ∈ R

N×d, R ∈ R
d×d, and A=QR. Q is an

orthogonal matrix, i.e., QTQ = I and R is upper triangular.

We observe that since Q−1 = QT and R is upper trian-
gular, one can solve Ax = b by setting QRx = b and mul-
tiplying through by the transpose of Q so that Rx = QT b.
Since R is upper triangular, one can solve can this equation
with back substitution; back substitution does not require
computing the inverse of R, and its running time is linear in
the number of entries of R, i.e., O(d2).

Columbus leverages a simple property of the QR factor-
ization: upper triangular matrices are closed under multi-
plication, i.e., if U is upper triangular, then so is RU . Since
ΠF is upper triangular, we can compute many QR factor-
izations by simply reading off the inverse of RΠF .

11 This
simple observation is critical for feature selection. Thus, if
there are several different row selectors, Columbus creates
a separate QR factorization for each.

Tradeoff. As summarized in Figure 5, QR’s materialization
cost is similar to importance sampling. In terms of execution
time, Figure 6 shows that QR can be much faster than core-
sets: solving the linear system is quadratic in the number of
features for QR but cubic for coresets (without QR). When
there are a large number of feature sets and they overlap,
QR can be a substantial win (this is precisely the case when
coresets are ineffective). These techniques can also be com-
bined, which further modifies the optimal tradeoff point. An
additional point is that QR does not introduce error (and is
often used to improve numerical stability), which means that
QR is applicable in error tolerance regimes when sampling
methods cannot be used.

3.1.4 Discussion of Tradeoff Space

Figure 6 shows the crossover points for the tradeoffs we de-
scribed in this section for the Census dataset. We describe
why we assert that each of the following aspects affects the
tradeoff space.

Error. For error-tolerant computation, näıve random sam-
pling provides dramatic performance improvements. How-
ever, when low error is required, then one must use classical
database optimizations or the QR optimization. In between,
there are many combinations of QR, coresets, and sampling
that can be optimal. As we can see in Figure 6(a), when the
error tolerance is small, coresets are significantly slower than
QR. When the tolerance is 0.01, the coreset we need is even
larger than the original data set, and if we force Colum-
bus to run on this large coreset, it would be more than 12x
slower than QR. For tolerance 0.1, coreset is 1.82x slower
than QR. We look into the breakdown of materialization
time and execution time, and we find that materialization
time contributes to more than 1.8x of this difference. When
error tolerance is 0.5, Coreset+QR is 1.4x faster than QR.
We ignore the curve for Lazy and Eager because they are
insensitive to noises and are more than 1.2x slower than QR.

Sophistication. One measure of sophistication is the num-
ber of features the analyst is considering. When the number

11Notice that ΠRQ is not necessarily orthogonal, so ΠRQ
may be expensive to invert.

of features in a basic block is much smaller than the data set
size, coresets create much smaller but essentially equivalent
data sets. As the number of features, d, increases, or the
error decreases, coresets become less effective. On the other
hand, optimizations, like QR, become more effective in this
regime: although materialization for QR is quadratic in d,
it reduces the cost to compute an inverse from roughly d3

to d2.
As shown in Figure6(b), as the number of features grows,

CoreSet+QR slows down. With 161 features, the coreset
will be larger than the original data set. However, when the
number of features is small, the gap between CoreSet+QR
and QR will be smaller. When the number of features is 10,
CoreSet+QR is 1.7x faster than QR. When the number of
feature is small, the time it takes to run a QR decomposition
over the coreset could be smaller than over the original data
set, hence, the 1.7x speedup of CoreSet+QR over QR.

Reuse. In linear models, the amount of overlap in the fea-
ture sets correlates with the amount of reuse. We randomly
select features but vary the size of overlapping feature sets.
Figure6(c) shows the result. When the size of the over-
lapping feature sets is small, Lazy is 15x faster than Core-
Set+QR. This is because CoreSet wastes time in material-
izing for a large feature set. Instead, Lazy will solve these
problems independently. On the other hand, when the over-
lap is large, CoreSet+QR is 2.5x faster than Lazy. Here,
CoreSet+QR is able to amortize the materialization cost by
reusing it on different models.

Available Parallelism. If there is a large amount of paral-
lelism and one needs to scan the data only once, then a lazy
materialization strategy is optimal. However, in feature se-
lection workloads where one is considering hundreds of mod-
els or repeatedly iterating over data, parallelism may be lim-
ited, so mechanisms that reuse the computation may be op-
timal. As shown by Figure 6(e), when the number of threads
is large, Lazy is 1.9x faster than CoreSet+QR. The reason is
that although the reuse between models is high, all of these
models could be run in parallel in Lazy. Thus, although
CoreSet+QR does save computation, it does not improve
the wall-clock time. On the other hand, when the number
of threads is small, CoreSet+QR is 11x faster than Lazy.

3.2 A Single, Non-linear Basic Block
We extend our methods to non-linear loss functions. The

same tradeoffs from the previous section apply, but there
are two additional techniques we can use. We describe them
below.

Recall that a task solves the problem

min
x∈Rd

N∑

i=1

ℓ(zi, bi) subject to z = Ax

where ℓ : R2 → R
+ is a convex function.

Iterative Methods. We select two methods: stochastic gra-
dient descent (SGD) [8,10,29], and iterative reweighted least
squares (IRLS), which is implemented in R’s generalized lin-
ear model package.12 We describe an optimization, warm-
starting, that applies to such models as well as to ADMM.

12stat.ethz.ch/R-manual/R-patched/library/stats/
html/glm.html
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ADMM. There is a classical, general purpose method that
allows one to decompose such a problem into a least-squares
problem and a second simple problem. The method we ex-
plore is one of the most popular, called the Alternating Di-
rection Method of Multipliers (ADMM) [13], which has been
widely used since the 1970s. We explain the details of this
method to highlight a key property that allows us to reuse
the optimizations from the previous section.

ADMM is iterative and defines a sequence of triples
(xk, zk, uk) for k = 0, 1, 2, . . . . It starts by randomly initial-
izing the three variables (x0, z0, u0), which are then updated
by the following equations:

x
(k+1) = argmin

x

ρ

2
||Ax− z

(k) + u
(k)||22

z
(k+1) = argmin

z

N∑

i=1

l(zi, bi) +
ρ

2
||Ax

(k+1) − z + u
(k)||22

u
(k+1) = u

(k) +Ax
(k+1) − z

(k+1)

The constant ρ ∈ (0, 2) is a step size parameter that we set
by a grid search over 5 values.

There are two key properties of the ADMM equations that
are critical for feature selection applications:

(1) Repeated Least Squares. The solve for x(k+1) is a lin-
ear basic block from the previous section since z and u are
fixed and the A matrix is unchanged across iteration. In
nonlinear basic blocks, we solve multiple feature sets con-
currently, so we can reuse the transformation optimizations
of the previous section for each such update. To take ad-
vantage of this, Columbus logically rewrites ADMM into a
sequence of linear basic blocks with custom R functions.

(2) One-dimensional z. We can rewrite the update for
z into a series of independent, one-dimensional problems.
That is,

z
(k+1)
i = argmin

zi

l(zi, bi)+
ρ

2
(qi−zi)

2
, where q = Ax

(k+1)+u
(k)

This one-dimensional minimization can be solved by fast
methods, such as bisection or Newton. To update x(k+1),
the bottleneck is the ROP“solve,” whose cost is in Figure 5.
The cost of updating z and u is linear in the number of rows
in A, and can be decomposed into N problems that may be
solved independently.

Tradeoffs. In Columbus, ADMM is our default solver for
non-linear basic blocks. Empirically, on all of our applica-
tions in our experiments, if one first materializes the QR
computation for the least-squares subproblem, then we find
that ADMM converges faster than SGD to the same loss.
Moreover, there is sharing across feature sets that can be
leveraged by Columbus in ADMM (using our earlier opti-
mization about QR). One more advanced case for reuse is
when we must fit hyperparameters, like ρ above or regu-
larization parameters; in this case, ADMM enables oppor-
tunities for high degrees of sharing. We cover these more
complex cases in the full version of this paper.

3.3 Warmstarting by Model-Caching
In feature selection workloads, our goal is to solve a model

after having solved many similar models. For iterative meth-

ods like gradient descent or ADMM, we should be able to
partially reuse these similar models. We identify three situ-
ations in which such reuse occurs in feature-selection work-
loads: (1) We downsample the data, learn a model on the
sample, and then train a model on the original data. (2) We
perform stepwise removal of a feature in feature selection,
and the “parent” model with all features is already trained.
(3) We examine several nearby feature sets interactively. In
each case, we should be able to reuse the previous models,
but it would be difficult for an analyst to implement effec-
tively in all but the simplest cases. In contrast, Columbus
can use warmstart to achieve up to 13x performance im-
provement for iterative methods without user intervention.

Given a cache of models, we need to choose a model: we
observe that computing the loss of each model on the cache
on a sample of the data is inexpensive. Thus, we select the
model with the lowest sampled loss. To choose models to
evict, we simply use an LRU strategy. In our workloads, the
cache does not become full, so we do not discuss it. However,
if one imagines several analysts running workloads on similar
data, the cache could become a source of challenges and
optimizations.

3.4 Multiblock Optimization
There are two tasks we need to do across blocks: (1) We

need to decide on how coarse or fine to make a basic block,
and (2) we need to execute the sequence of basic blocks
across the backend.

Multiblock Logical Optimization. Given a sequence of
basic blocks from the parser, Columbus must first decide
how coarse or fine to create individual blocks. Cross val-
idation is, for example, merged into a single basic block.
In Columbus, we greedily improve the cost using the ob-
vious estimates from Figure 5. The problem of deciding
the optimal partitioning of many feature sets is NP-hard by
a reduction to WeightedSetCover, which we explain in
the full version of the paper. The intuition is clear, as one
must cover all the different features with as few basic blocks
as possible. However, the heuristic merging can have large
wins, as operations like cross validation and grid searching
parameters allow one to find opportunities for reuse.

Cost-based Execution. Recall that the executor of Colum-
bus executes ROPs by calling the required database or main-
memory backend. The executor is responsible for executing
and coordinating multiple ROPs that can be executed in
parallel; Columbus executor simply creates one thread to
manage each of these ROPs. The actual execution of each
physical operator is performed by the backend statistical
framework, e.g., R or ORE. Nevertheless, we need to de-
cide how to schedule these ROPs for a given program. We
experimented with the tradeoff of how coarsely or finely to
batch the execution. Many of the straightforward formula-
tions of the scheduling problems are, not surprisingly, NP-
hard. Nevertheless, we found that a simple greedy strategy
(to batch as many operators as possible, i.e., operators that
do not share data flow dependencies) was within 10% of the
optimal schedule obtained by a brute-force search. After dig-
ging into this detail, we found that many of the host-level
substrates already provide sophisticated data processing op-
timizations (e.g. sharing scans). Since this particular set of
optimizations did not have a dramatic effect on the runtime
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Figure 7: Dataset and Program Statistics. LS refers
to Least Sqaures. LR refers to Logistic Regression.

for any of our data sets, we report them only in the full
version of this paper.

4. EXPERIMENTS
Using the materialization tradeoffs we have outlined, we

validate that Columbus is able to speed up the execution of
feature selection programs by orders of magnitude compared
to straightforward implementations in state-of-the-art sta-
tistical analytics frameworks across two different backends:
R (in-memory) and a commercial RDBMS. We validate the
details of our technical claims about the tradeoff space of
materialization and our (preliminary) multiblock optimizer.

4.1 Experiment Setting
Based on conversations with analysts, we selected a hand-

ful of datasets and created programs that use these datasets
to mimic analysts’ tasks in different domains. We describe
these programs and other experimental details.

Datasets and Programs. To compare the efficiency of
Columbus with baseline systems, we select five publicly
available data sets: (1) Census, (2) House, (3) KDD, (4)
Music, and (5) Fund.13 These data sets have different
sizes, and we show the statistics in Figure 7. We categorize
them by the number of features in each data set.

BothHouse, a dataset for predicting household electronic
usage, and Fund, a dataset for predicting the donation that
a given agency will receive each year, have a small number
of features (fewer than 20). In these data sets, it is feasible
to simply try and score almost all combinations of features.
We mimic this scenario by having a large basic block that
regresses a least-squares model on feature sets of sizes larger
than 5 on House and 13 on Fund and then scores the re-
sults using AIC. These models reflect a common scenario in
current enterprise analytics systems.

At the other extreme, KDD has a large number of fea-
tures (481), and it is infeasible to try many combinations. In
this scenario, the analyst is guided by automatic algorithms,
like lasso (that selects a few sparse features), manual inter-
vention (moving around the feature space), and heavy use of
cross-validation techniques.14 Census is a dataset for the
task of predicting mail responsiveness of people in different
Census blocks, each of which contains a moderate number of

13These data sets are publicly available on Kaggle (www.
kaggle.com/) or the UCI Machine Learning Repository.
(archive.ics.uci.edu/ml/)

14The KDD program contains six basic blocks, each of which
is a 10-fold cross-validation. These 6 different basic blocks
work on non-overlappings set of features specified by the
user manually.

features (161). In this example, analysts use a mix of auto-
matic and manual specification tasks that are interleaved.15

This is the reason that we select this task for our running
example. Music is similar to Census, and both programs
contain both linear models (least squares) and non-linear
models (logistic regression) to mimic the scenario in which
an analyst jointly explores the feature set to select and the
model to use.

R Backends. We implementedColumbus on multiple back-
ends and report on two: (1) R, which is the standard, main-
memory R and (2) DB-R, commercial R implementation
over RDBMS. We use R 2.15.2, and the most recent avail-
able versions of the commercial systems.

For all operators, we use the result of the corresponding
main memory R function as the gold standard. All exper-
iments are run on instances on Amazon EC2 (cr1.8xlarge),
which has 32 vCPU, 244 GB RAM, and 2x120GB SSD and
runs Ubuntu 12.04.16

4.2 End-to-End Efficiency
We validate that Columbus improves the end-to-end

performance of feature selection programs. We construct
two families of competitor systems (one for each backend):
Vanilla, and dbOPT. Vanilla is a baseline system that
is a straightforward implementation of the corresponding
feature selection problem using the ROPs; thus it has the
standard optimizations. dbOPT is Columbus, but we en-
able only the optimizations that have appeared in classical
database literature, i.e., Lazy, Eager, and batching. dbOPT
and Columbus perform scheduling in the same way to im-
prove parallelism to isolate the contributions of the materi-
alization. Figure 8 shows the result of running these systems
over all five data sets with error tolerance ǫ set to 0.01.

On the R-based backend, Columbus executes the same
program using less time than R on all datasets. On Census,
Columbus is two orders of magnitude faster, and on Music
and Fund, Columbus is one order of magnitude faster. On
Fund and House, Columbus chooses to use CoreSet+QR as
the materialization strategy for all basic blocks and chooses
to use QR for other data sets. This is because for data sets
that contain fewer rows and more columns, QR dominates
CoreSet-based approaches, as described in the previous Sec-
tion. One reason that Columbus improves more on Census
than on Music and Fund is that Census has more features
than Music and Fund; therefore, operations like StepDrop
produce more opportunities for reuse than Census.

To understand the classical points in the tradeoff space,
compare the efficiency of dbOPT with the baseline system,
Vanilla. When we use R as a backend, the difference be-
tween dbOPT and R is less than 5%. The reason is that
R holds all data in memory, and accessing a specific por-
tion of the data does not incur any IO cost. In contrast, we
observe that when we use the DB backend, dbOPT is 1.5x
faster than Vanilla on House. However, this is because the
underlying database is a row store, so the time difference is
due to IO and deserialization of database tuples.

15The Census program contains four basic blocks, each of
which is a StepDrop operation on the feature set output
by the previous basic block.

16We also run experiments on other dedicated machines. The
tradeoff space is similar to what we report in this paper.
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Figure 8: End-to-end Performance of Columbus. All approaches return a loss within 1% optimal loss.

We can also see that the new forms of reuse we outline
are significant. If we compare the execution time of Cen-
sus and Music, we see a difference between the approaches.
While Census is smaller than Music, baseline systems, e.g.,
Vanilla, are slower on Census than on Music. In contrast,
Columbus is faster on Census than on Music. This is be-
cause Census contains more features than Music; therefore,
the time that Vanilla spent on executing complex oper-
ators like StepDrop is larger in Census. In contrast, by
exploiting the new tradeoff space of materialization, Colum-
bus is able to reuse computation more efficiently for feature
selection workloads.

4.3 Linear Basic Blocks
We validate that all materialization tradeoffs that we iden-

tified affect the efficiency of Columbus. In Section 3, we de-
signed experiments to understand the tradeoff between dif-
ferent materialization strategies with respect to three axes,
i.e., error tolerance, sophistication of tasks and reuse, and
computation. Here, we validate that each optimization con-
tributes to the final results in a full program (on Census).
We then validate our claim that the cross-over points for op-
timizations change based on the dataset but that the space
essentially stays the same. We only show results on the
main-memory backend.

Lesion Study. We validate that each materialization strat-
egy has an impact on the performance of Columbus. For
each parameter setting used to create Figure 6, we remove
a materialization strategy. Then, we measure the maximum
slowdown of an execution with that optimization removed.
We report the maximum slowdown across all parameters
in Figure 8(c) in main memory on Census. We see that
Lazy, QR, and CoreSet all have significant impacts on qual-
ity, ranging from 1.9x to 37x. This means that if we drop
any of them from Columbus, one would expect a 1.9x to 37x
slowdown on the whole Columbus system. Similar observa-
tions hold for other backends. The only major difference is
that our DB-backend is a row store, and Eager has a larger
impact (1.5x slowdown).

We validate our claim that the high-level principles of the
tradeoffs remain the same across datasets, but we contend
that the tradeoff points change across data sets. Thus, our
work provides a guideline about these tradeoffs, but it is
still difficult for an analyst to choose the optimal point. In
particular, for each parameter setting, we report the name
of the materialization strategy that has the fastest execu-
tion time. Figure 9 shows that across different data sets,
the same pattern holds, but with different crossover points.
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Figure 9: Robustness of Materialization Tradeoffs
Across Datasets. For each parameter setting (one
column in the table), we report the materialization
strategy that has the fastest execution time given
the parameter setting. Q refers to QR, C refers to
CoreSet+QR, and L refers to Lazy. The protocol is
the same as Figure 6 in Section 3.

Consider the error tolerance. On all data sets, for high er-
ror tolerance, CoreSet+QR is always faster than QR. On
Census and KDD, for the lowest three error tolerances, QR
is faster than CoreSet+QR, while on Music, only for the
lowest two error tolerance is QR faster than CoreSet+QR.
While on Fund and House, for all error tolerances except
the lowest one, CoreSet+QR is faster than QR. Thus, the
cross-over point changes.

4.4 Non-Linear Basic Blocks with ADMM
Columbus uses ADMM as the default non-linear solver,

which requires that one solves a least-squares problem that
we studied in linear basic blocks. Compared with linear ba-
sic blocks, one key twist with ADMM is that it is iterative–
thus, it has an additional parameter, the number of itera-
tions to run. We validate that tradeoffs similar to the linear
case still apply to non-linear basic blocks, and we describe
how convergence impacts the tradeoff space. For each data
set, we vary the number of iterations to run for ADMM and
try different materialization strategies. For CoreSet-based
approaches, we grid search the error tolerance, as we did for
the linear case. As shown in Figure 6(d), when the number
of iterations is small, QR is 2.24x slower than Lazy. Because
there is only one iteration, the least-squares problem is only
solved once. Thus, Lazy is the faster strategy compared with
QR. However, when the number of iterations grows to 10,
QR is 3.8x faster than Lazy. This is not surprising based on
our study for linear cases–by running more iterations, the
opportunities for reuse increase. We expect an even larger
speedup if we run more iterations.
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5.2 Analytics Systems
Systems that deal with data management for statistical

and machine learning techniques have been developed in
both industry and academia. These include data mining
toolkits from major RDBMS vendors, which integrate spe-
cific algorithms with an RDBMS [3,23]. Similar efforts exist
for other data platforms [1]. The second stream includes re-
cent products from enterprise analytics vendors that aim to
support statistical computing languages, like R, over data
residing in data platforms, e.g., Oracle’s ORE [4], IBM’s
SystemML [17], SAP HANA [5], and the RIOT project [32].
Our work focuses on the data management issues in the pro-
cess of feature selection, and our ideas can be integrated into
these systems.

Array databases were initiated by Sarawagi et al. [28], who
studied how to efficiently organize multidimensional arrays
in an RDBMS. Since then, there has been a recent resur-
gence in arrays as first-class citizens [14,15,31]. For example,
Stonebraker et al. [31] recently envisioned the idea of using
carefully optimized C++ code, e.g., ScaLAPACK, in array
databases for matrix calculations. Our Columbus system
is complementary to these efforts, as we focus on how to
optimize the execution of multiple operations to facilitate
reuse. The materialization tradeoffs we explore are (largely)
orthogonal to these lower-level tradeoffs.

There has been an intense effort to scale up individual lin-
ear algebra operations in data processing systems [9,16,32].
Constantine et al. [16] propose a distributed algorithm to
calculate QR decomposition using MapReduce, while ScaLA-
PACK [9] uses a distributed main memory system to scale
up linear algebra. The RIOT [32] system optimizes the I/O
costs incurred during matrix calculations. Similar to array
databases, Columbus directly takes advantage these tech-
niques to speed up the execution of each ROP.

Our focus on performance optimizations across full pro-
grams was inspired by similar efforts in RIOT-DB [32] and
SystemML [17]. RIOT-DB optimizes I/O by rearranging
page accesses for specific loop constructs in an R program [32].
SystemML [17] converts R-style programs to workflows of
MapReduce jobs. They describe an optimization called pig-
gybacking, which enables sharing of data access by jobs that
follow each other.

In a similar spirit, declarative machine learning systems,
e.g., MLBase [26], provide the end users a high-level lan-
guage to specify a machine learning task. Compared with
these systems, Columbus focuses on providing a high-level
language for feature selection as opposed to algorithms. The
conventional wisdom is that most improvement comes through
good features as opposed to different algorithms. We are
hopeful that the materialization tradeoffs that we study can
be applied in declarative machine learning systems.

6. CONCLUSION
Columbus is the first system to treat the feature selec-

tion dialogue as a database systems problem. Our first
contribution is a declarative language for feature selection,
informed by conversations with analysts over the last two
years. We observed that there are reuse opportunities in
analysts’ workloads that are not addressed by today’s R
backends. To demonstrate our point, we showed that simple
materialization operations could yield orders of magnitude
performance improvements on feature selection workloads.

As analytics grows in importance, we believe that feature
selection will become a pressing data management problem.
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